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SAT-Hard Cyclic Logic Obfuscation for Protecting
the IP in the Manufacturing Supply Chain

Shervin Roshanisefat™, Hadi Mardani Kamali, Houman Homayoun, and Avesta Sasan

Abstract— State-of-the-art  attacks against cyclic logic
obfuscation use satisfiability solvers that are equipped with a
set of cycle-avoidance clauses. These cycle-avoidance clauses
are generated in a preprocessing step and define various key
combinations that could open or close cycles without making the
circuit oscillating or stateful. In this article, we show that this
preprocessing step has to generate cycle-avoidance conditions
on all cycles in a netlist; otherwise, a missing cycle could trap
the solver in an infinite loop or make it exit with an incorrect
key. Then, we propose several techniques by which the number
of cycles is exponentially increased as a function of the number
of inserted feedback. We further illustrate that when the
number of feedback is increased, the preprocessing step of the
attack faces an exponential increase in complexity and runtime,
preventing the correct composition of cycle-avoidance clauses
in a reasonable time. On the other hand, if the preprocessing
is not concluded, the attack formulated by the satisfiability
solver will either get stuck or exit with an incorrect key. Hence,
when the cyclic obfuscation under the conditions proposed in
this article is implemented, it would impose an exponentially
difficult problem for the satisfiability solver-based attacks.

Index Terms— Logic locking, obfuscation, SAT attack.

I. INTRODUCTION

HE cost of building a new semiconductor fab was

estimated to be $5.0 billion in 2015, with large recurring
maintenance costs [1], [2], which increases sharply as technol-
ogy migrates to smaller nodes. Thus, to reduce the fabrication
cost, and for economic feasibility, most of the manufacturing
and fabrication is pushed offshore [1]. However, many offshore
fabrication facilities are considered to be untrusted, which
has raised concern over potential attacks in the manufacturing
supply chain, with an intimate knowledge of the fabrication
process, the ability to modify and expand the design before
production, and unavoidable access to the fabricated chips dur-
ing testing. Hence, fabrication in untrusted fabs has introduced
multiple forms of security threats from supply chain including
that of overproduction, Trojan insertion, reverse engineering,
intellectual property (IP) theft, and counterfeiting [2].
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To prevent the adversaries from such attacks, researchers
have proposed various obfuscation methods for hiding and/or
locking the functionality of a netlist [3]-[7]. However,
the validity and strength of logic obfuscation to defend an
IP against adversaries in the manufacturing supply chain
was seriously challenged as researchers demonstrated that
deobfuscation attacks leveraging satisfiability (SAT) solvers
[8]-[10] combined with signal probability skew (SPS)
attacks [11] could break the existing obfuscation schemes
(both locking and camouflaging) in a relatively short time.
Cyclic obfuscation [12] was another approach that was con-
sidered as a defense mechanism against SAT solvers. However,
this technique was later broken by CycSAT attack [13].
CycSAT added a preprocessing step to the original SAT
attack for detection and avoidance of cycles in the netlist
before deploying a SAT attack. In this article, we illustrate
that the preprocessing step of CycSAT attack has to process
a cycle-avoidance condition for every cycle in the netlist;
otherwise, the subsequent SAT attack could get stuck in an
infinite loop or returns UNSAT. Hence, the runtime of the
preprocessing step is linearly related to the number of cycles
in a netlist. Besides, we illustrate that the generation of a cycle-
avoidance clause for a netlist of cyclic Boolean nature is far
more time consuming than an acyclic Boolean logic.

From this observation, we first propose several mechanisms
for cyclification of a noncyclic Boolean netlist. Then, we pro-
pose two design techniques by which a linear increase in the
number of inserted feedback in a netlist would exponentially
increase the number of generated cycles. Since a successful
SAT attack on a cyclic circuit requires generation of a per-
cycle-avoidance clause and considering that our proposed
techniques make the time it takes to generate such avoidance
clauses an exponential function of the number of inserted
feedback, CycSAT attack faces exponential runtime at its
processing step. Hence, when deploying CycSAT, the com-
plexity of the preprocessing of the resulting cyclic netlist
goes beyond a reasonable time limit. On the other hand,
skipping the prepossessing results in an unsuccessful SAT
attack. Hence, cyclic obfuscation, when constructed using the
proposed methodology, proves to be a strong defense against
the SAT and CycSAT attacks.

Contributions of this article are as follows: 1) we provide
a comprehensive background on (both cyclic and acyclic)
SAT-resistant logic-encryption solutions; 2) we introduce a
new attack that enables a SAT attack to break two recently
published logic-locking solutions (i.e., obfuscation using
nested or hard cycles); 3) we propose a new cyclic obfuscation
solution that makes the number of created (real and dummy)
cycles an exponential function of the number of inserted
feedback and elaborates how it is as an effective means
for breaking cyclic SAT attacks; 4) we propose a timing-
aware cyclification algorithm to manage and control the timing
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overheads of our proposed solution; and 5) we assess the
effectiveness of our proposed solutions on several benchmarks
using an improved/modified cyclic attack and report the power,
performance, and area overhead of our proposed solution.

The rest of this article is organized as follows. In Section II,
we cover the background on logic obfuscation. Then,
in Section III, we elaborate on the limitation of cyclic
attacks and our approach for breaking/preventing these attacks.
In Section IV, we introduce our techniques for building an
exponential relation between the number of feedback and the
number of created cycles in a circuit. We also introduce three
mechanisms for building a cyclic Boolean function to further
increase the complexity of preprocessing in cyclic attacks.
Our experimental results are summarized in Section VI.
Section VII concludes this article.

II. BACKGROUND

Logic obfuscation is the process of hiding the functionality
of an IP by building ambiguity or by implementing post-
manufacturing means of control and programmability into a
netlist. Gate camouflaging [14]-[17] and circuit locking [18],
[19] are two of the widely explored obfuscation mechanisms
for this purpose. A camouflaged gate is a gate that after reverse
engineering (using delayering and lithography) could be
mapped to any member of a possible set of gates or may look
like one logic gate (e.g., AND), however functionally perform
as another (e.g., XOR). In locking solutions, the functionality
of a circuit is locked using several key inputs such that only
when a correct key is applied, the circuit resumes its expected
functionality. Otherwise, the correct function is hidden among
many of the 2K (K being the number of keys) circuit possibil-
ities. The claim raised by such an obfuscation scheme was that
to break the obfuscation, an adversary needs to try a large num-
ber of inputs and key combinations to extract the correct key,
and the difficulty of this process increases exponentially as the
number of keys and primary inputs increases. Hence, if enough
gates are obfuscated, an adversary faces an unacceptably long
time (claimed as years to decades) to break the obfuscation
scheme. Note that the availability of scan chains, which is
inserted following design for test (DFT) recommended flow,
allows an adversary to access combinational logic in each stage
of a sequential circuit, load the desired input, execute the stage
for one cycle, and readout the output.

The validity and strength of logic obfuscation to defend
the IP against adversaries in the manufacturing supply chain
was seriously challenged, as researchers demonstrated that the
SAT solvers, when formulated according to Algorithm 1, could
break the obfuscation (both locking and camouflaging) in a
matter of minutes as opposed to the promised claim of years
and decades [8], [9]. In this algorithm, C(X, K, Y) refers to
the obfuscated circuit that produces output vector Y using
input vector X and key vector K, and CpjackBox(X) refers to
the output of the activated circuit for input vector X. As illus-
trated in Algorithm 1, to employ a SAT attack, the obfuscated
circuit is transformed into a circuit SAT problem, in which the
SAT solver looks for an input value X for which the obfuscated
circuit produces two different outputs for two different input
keys. Such input is referred to as a Distinguishing Input
(DIP) Xpi. Each time a new Xpy is found, the circuit SAT
is updated to make sure that the next two keys that will be
found in the next iteration of SAT solver invocation produce
the same output for all previously discovered Xp;y. This is done
by building a distinguishing input validation circuit (DIVC)
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Algorithm 1 SAT Attack on Obfuscated Circuits

DIVC =1;
SATcircuit = C(X, K1,Y1) AN C(X, K2, Y2) A (Y1 # Ya);
while (Xpr, K1, K2) + SATp(SATeireuss) = T) do
Yy < CBilackBox(XD1):
DIVC = DIVC A C(XD[, Ky, Yf) AN C(XDI, KQ,Yf)L
SATcircuit = SATcircuit N DIV C;
KeyGenCircuit = DIVC A (K1 = Ka2)
Key «+ SATp (KeyGenClircuit)

A ol

as illustrated in Algorithm 1. When the SAT solver can no
longer find Xpy, the DIVC circuit contains a complete set of
distinguishing inputs. At this point, any key that satisfies the
DIVC (by calling a SAT solver on this circuit) is the key to
the obfuscated circuit [8], [9], [20].

A. Acyclic Logic Obfuscation

The revelation of this attack redirected the attention of the
researchers to find harder obfuscation schemes that protect
acyclic Boolean logic and resist the SAT attack. These methods
have targeted a number of weaknesses in the SAT attack and
could be categorized into three categories:

1) Weaker Distinguishing Inputs: Original SAT attack was
powerful because each DIP could rule out several wrong keys
and constrain the key space effectively. The SARLock and
Anti-SAT [21], [22] logic-locking methods were proposed
to mitigate this vulnerability. In a circuit protected by these
solutions, a wrong key produces a wrong output only for one
input. This will create a much weaker DIP as each DIP can
only rule out one wrong key. Hence, a SAT attack will be
reduced to a Brute-force attack as it requires an exponential
number of DIPs to find the correct key. A design protected by
these mechanisms, regardless of the key used for its activation,
behaves very similar to the original design (except for one
input). Hence, this group of obfuscation solutions suffers from
low output corruption. To increase the output corruption, they
could be augmented with other (output corruption-oriented)
obfuscation mechanisms. However, by using approximate SAT
attack [23], almost all key values for the augmented obfusca-
tion mechanism could be correctly identified.

Further research revealed that these obfuscation techniques
are vulnerable to removal [11], Bypass [24] and FALL [25]
attacks. In a removal attack, these SAT hard blocks are
identified using SPS attack [11] and removed. In a Bypass
attack [24], an auxiliary circuit that recovers the wrong output
in these locking schemes is created. This attack identifies
the input combinations that produce the wrong output for
a wrong key; then it adds a bypass circuit to flip the wrong
output when that specific input is applied. In FALL attacks,
a functional analysis of the circuit will be performed and have
two stages. In the first stage, it analyses the functionality of the
obfuscated circuit and tries to identify the locking keys. If there
was more than one candidate for the locking key, it tries to
use the SAT to find the correct locking key from a list of
alternatives and using simulations on the unlocked circuit.

2) Increasing Circuit-SAT Complexity: Another feature that
makes the SAT attack powerful is the fast execution time of the
underlying SAT solver in solving the circuit SAT and extract-
ing DIPs. For locking schemes in this category, the netlist
is designed in a way that translates into a large circuit SAT
with possibly a SAT-hard portion and thus requires more
time to solve. Cross-Lock [26] exploited this vulnerability
by adding cross-bars to the netlist and obfuscates circuit
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connections. Equivalent circuit SAT in this method requires
large multiplexers and the symmetric nature of this block will
make it a SAT-hard problem [27]-[29]. Without any additional
clauses, any SAT solver requires a long execution time to find
a single distinguishing input.

Netlists with camouflaged or memory-based blocks could
also be used for this purpose. For these blocks, an equivalent
circuit should be used that replaces them. For blocks with a
large number of input and key ports, the equivalent circuit
could be very large. This is especially true in the case of a
locked circuit with large LUTs. This could lead to a large
circuit SAT with lots of SAT clauses.

3) SAT Unsolvable Structures: SAT attack needs to translate
the reverse-engineered netlist into CNF clauses to be able to
use the underlying SAT solver. Memory blocks and Boolean
gates could be easily translated into CNF clauses using
equivalent circuits and Tseitin [30] transformation. Boolean
limitation of SAT solvers could be used as a vulnerability
to implement non-Boolean structures to counter the SAT
attack.

Delay locking [31] is one such method. It uses key gates
to lock both the functionality and the timing behavior of
the obfuscated circuits. The logic aspect of the locking
could be easily translated into CNF, however the behavioral
(timing) aspect of circuit operation cannot be easily translated
into a SAT-friendly CNF. Hence, formulating a SAT attack
on a delay-locked netlist will produce a circuit of correct
functionality, but the timing violations will make the circuit
malfunctioning. This method could potentially prevent over-
production or any reuse of fabrication materials like masks,
but it cannot prevent reverse engineering and IP-theft of the
design. Also, an attack called TimingSAT [32] was later
proposed to break this obfuscation method.

B. Cyclic Logic Obfuscation

Another method that could render SAT solvers ineffective
is to invalidate the acyclic nature of netlist by using cyclic
logic obfuscation. Cyclic logic obfuscation was first proposed
in [12] whereby introducing feedback in the netlist, the netlist
is no longer a directed acyclic graph (DAG). In their approach,
each intentionally created cycle had more than one way to be
opened, making such cycle irreducible by structural analysis,
claiming that the existence of such a cycle breaks the original
SAT attack in [8] and [9].

Attacks previously proposed for breaking logic-locking
solutions are not effective on cyclically obfuscated circuits.
The brute-force attack on obfuscated circuits (even those
that are not SAT hard) will face exponential difficulty. The
sensitization attack would not work on cyclic circuits since the
key values control the multiplexers’ select line and the select
values cannot be sensitized to output pins. The pure SAT attack
does not work on cyclic circuits as cycles could either trap the
SAT solver or make it exit with an incorrect key, a problem that
also occurs in approximate SAT attacks (i.e., AppSAT); the
approximate attacks address the issue of separating the keys
between SAT hard and conventional obfuscation. Considering
that cyclic circuits trap the SAT solver, this group of attack
is also would not work. Removal and SPS attacks are aimed
at detecting and removing point functions which are used as
a means of building SAT hard solutions in the DAG-based
network. Considering that the cyclic obfuscation does not use
a point function, SPS and removal attacks are not applicable.

Algorithm 2 CycSAT Attack on Cyclic Obfuscated Circuits

Find a set of feedback signals (wo, w1, ... W );
Compute "no structural path” formulas F'(wq, w(')), wos Fwom, w!));
NC(K) = A F(w;, w))
C(X,K,Y) = C(X,K,Y) A NC(K)
SATcircuit = C(X, K1,Y1) NC(X, K2,Y2) A (Y1 # Ya):
while ((XDI7 Kl, Kz) < SATF(SATCircuit) = T) do
Yy < CBilackBox(XDI):
DIVC = DIVC AC(Xpr, K1,Yy) NC(Xpr, K2, Yy);
SATcircuit = SATcircuit N DIV C;
KeyGenCircuit = DIVC A (K1 = Ka)
Key <+ SATr(KeyGenCircuit)

TV

—_—

Cyclic obfuscation was later broken with introduction of
cyclic (cycle aware) attacks in [13], [33], and [34]. CycSAT
was the first cyclic attack, details of which are shortly dis-
cussed. Later, Chen [33] introduced an enhanced SAT attack
that considers structural cycles. From a functional standpoint,
this attack acts similar to the structural attack in CycSAT.

In a CycSAT attack, before invoking the SAT solver,
the netlist is checked for key conditions that may result in
the creation of cycles. These conditions are translated into a
set of cycle-avoidance clauses and are added to the list of
clauses that represent the circuit SAT problem. Algorithm 2
illustrates the flow of utilizing the cycle-avoidance clauses in
CycSAT.

In this algorithm, (wg, w1, ..., wy) is a collection of feed-
back signals whose break will make the encrypted circuit
acyclic and w! is a signal that feeds to w; before the break.
F(w;, j) is a function that constructs the condition for having
no structural path between signal w; to signal j. F(w;, j) is
computed by starting from a feedback signal w; and constructs
a string of clauses that satisfy the following condition while
traversing a cycle:

Fwi, jy= [\ F(wi,)vbk(, j). (0
IeNK (j)

In this function, NK(j) are the nonkey inputs of signal
j and bk(l, j) is the condition on the key, assuring key
does not affect j. This function is initiated with condition
F(w;, w;) = 0 and finishes after completing the loop. In this
case, the condition for no structural path is tested on all
discovered feedback signals in line 3 of the algorithm.

Subsequently, Rezaie et al. [35] proposed two solutions to
counter a CycSAT attack. In the first solution [35], by adding
hard cycles to the original netlist, they create a situation that
any traversal of the feedback signals will miss a cycle. Also,
for this method, dependent cycles are added to the original
circuit such that two nested cycles should be closed to create
a working circuit. In the second solution [36], a method
is introduced to create cycles that behave noncombinational
in unreachable states. However, in the following section,
after providing further details on these locking mechanisms,
we illustrate that these solutions are still vulnerable and a
simple modification to CycSAT attack could easily break them.

Finding all cycles in a cyclic circuit (a requirement for
CycSAT attack) is not an easy task. Recently, Shen er al.
introduced a new attack called BeSAT [34]. The authors of
this attack argue that “it is impossible to capture all cycles
in any graph with any set of feedback signals as done in
CycSAT algorithm.” To address this problem, BeSAT first
adds “no structural path” (CycSAT-I) conditions for a “set of
feedback signals.” This is similar to the preprocessing step in
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Cyclification with dependent cycles. (a) Original circuit, (b) cyclified with an auxiliary circuit that acts as a buffer, (c) obfuscated auxiliary circuit,

(d) auxiliary circuit with broken outer cycle, and (e) auxiliary circuit with broken inner cycle.

a CycSAT attack. Then, it performs SAT while monitoring the
behavior of the attack: during the DIP generation process, due
to the missing no cycle (NC) clauses, it is possible that solving
the circuit-SAT problem results in repeated DIPs. Under the
original SAT attack, this could trap the attack in an infinite
loop. In BeSAT, every new DIP is compared with previous
DIPs and if it was generated before, the algorithm uses it to
determine the stateful key K. BeSAT compares the output of
the new DIP for the two found keys with the oracle circuit.
The output of the stateful key disagrees with the oracle circuit.
Then, the found stateful key will be explicitly banned by
adding (K1 # Ky A K2 # Kj) condition to the circuit-
SAT problem. After finding all DIPs and banning all stateful
keys, BeSAT begins pruning oscillating keys by employing
ternary SAT.

III. ANALYZING THE WEAKNESSES OF
CyYCLIC OBFUSCATION

In this section, we first show that the nested cycles could not
guarantee a secure cyclic obfuscation. Furthermore, we pro-
pose a new attack mechanism to break the hard cycles. Then,
we investigate the weaknesses of a CycSAT attack, according
to which we propose a new mechanism for cyclic obfuscation.

A. Breaking Nested Cycles

An obfuscation method that was previously proposed to
counter a CycSAT attack is the use of nested cycles [35].
In this method, the original circuit is augmented with a
pair of nested cycles such that for correct operation, both
cycles should be closed. An example of such a transformation
is shown in Fig. 1(b) for the original circuit in Fig. 1(a).
After the transformation, the nested cycles are a needed and
valid part of the original circuit, and attempting to remove
one or both cycles will affect the correct functionality of the
circuit. A designer may try to obfuscate these cycles using
multiplexers as shown in Fig. 1(c).

Direct application of structural CycSAT attacks, as claimed
in [35], results in breaking each of the nested cycles separately,
creating an oscillating and un-SAT-isfiable circuit. However,
as claimed earlier, we can still deploy a successful attack
against this variant of cyclic obfuscation using a simple
modification to the preprocessing step of CycSAT attack.

For this purpose, during the preprocessing step, in addition
to composing the “no sensitizable path” clauses (as proposed
in [13]), we compose and include a new set of clauses that
consider “reducibility” as an alternative option to opening the
loops. In this picture, the cycle could either be opened (using
no sensitizable path clauses) or could be reduced using newly
added reducible clauses. The reducible clauses are defined for
possible dependent cycles that implement specific functions
between their inputs and outputs. These clauses will be gen-
erated for each cycle by pairing it with matching outer cycles.
The process of generating the reducible clauses is captured in
Algorithm 3. The reduction attack procedure, first, sorts all
cycles according to their length and then begins processing

Algorithm 3 Generating RC Clauses for Dependent Cycles

1: procedure REDUCTION_ATTACK(circuit K)

2 Find and sort all cycles in K by their length C' = (co, c1, ...Cm )3
3 for all ¢; in C do

4 RC(c;) = ¢

5: for all ¢; in C do

6: if IS_COMB_CYCLE(c;) == False then;

7 RC/(ci) = RC(c;) V opened(c;);

8 while c; < next outer cycle do

9 sub_circuit < sub-circuit of closed ¢; and c;;

10: if IS_COMB_CYCLE(sub_circuit) then
11: RC(c;) = RC(ci) V (closed(c;) A closed(cj));
12: RC(c;) = RC(cj;) V (closed(c;) A closed(c;));
13: RC(K) = RC(K) AN RC(c;);

1: procedure 1S_COMB_CYCLE(sub_circuit S)

2: r, 7’ « input and output of auxiliary-circuit;

3 if SAT (Sopenea A (r # ")) then

4: return False;

5 else

6 return True;

them from the shortest to the longest cycle. For each cycle,
it checks whether the cycle is combinational; if it is not, it tries
to find an outer cycle that makes its behavior combinational.
In this algorithm, IS_COM B_CY CLE() validates whether a
subcircuit containing a cycle is combinational or not. For this
purpose, the function disconnects the cycles by breaking the
feedback into two disconnected wire segments r and r’. Then
by using a SAT solver, it checks whether there are any values
for the wires that » # r’. If such a scenario was not found,
it classifies the subcircuit as a combinational circuit. Other-
wise, it is classified as a noncombinational circuit, according
to which the necessary clauses are generated.

This algorithm could be applied to any netlist obfuscated
using the auxiliary circuit such as the one in Fig. 1(c). This
circuit has two cycles ¢; = {X2} and ¢ = {X1, X2}. The
smallest cycle ¢ is oscillating and oscillates when X1 output
is 1 as shown in Fig. 1(d). By considering this cycle as
closed and pairing it with its only outer cycle ¢z, we will
have RC(cy) = k6 V (ko A kp). The outer cycle ¢y as shown
in Fig. 1(e) is also noncombinational and the reducible clauses
will be RC(c2) = ki V (ko A ki). Thus, by closing both
cycles, as shown in Fig. 1(b), it can be derived that r’ =
r@®r @r = r and the circuit does act as a buffer with
no oscillation. The reducible clause for this circuit will be
RC(K) = (ki v (ko A k1)) A (k] V (ko A k1)) for closing
both cycles or opening both cycles since none of them has
combinational behavior independently.

It should be noted that these auxiliary circuits could be
in the form of partially intercepted cycles, where more than
one outer cycle is partially intercepted with another outer
cycle. We acknowledge that for partially intercepted cycles,
our proposed algorithm would not work, and an alternative
algorithm that generates the NC condition by considering the
partially intercepted combinational cycles is required.
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Fig. 2. Example of a circuit obfuscated with a hard cycle. Added key gates
are shown in red, and the original wires are shown with dotted lines.

B. Breaking Hard Cycles

Hard cycles were proposed in [35] to create a situation that
any traversal of feedback signals will miss a cycle. An example
is shown in Fig. 2, where the original circuit consists of
gates U, V, W, and Z. In the obfuscated netlist, the gate U is
connected to V and Z, and W is connected to Z. By creating
a hard cycle, new connections using AND gates have been
added. These new wires connect (V, W), (W, U), and (Z, U)
and shown with thicker lines. Feedback sets for the new circuit
are {V, W} and {Z, U}. Application of a CycSAT attack on
this circuit misses the larger cycle {U, V, W, Z, U}, and the
attack fails.

Hard cycles could be easily broken by modifying the
mechanisms used for the computation of F(w;, j). F(w;, j)
could be computed in two ways: 1) traversing through a cycle
starting from w; until w; is visited again and ignoring the
cycle break conditions imposed by fan-ins of other nested
cycles or 2) traversing through one cycle and adding the cycle
break conditions imposed by other nested cycle. As shown
for the example in Fig. 2 and the next example, the first
choice results in missing some “NC” conditions, leaving cycles
in a design that could break the subsequent SAT attack.
By choosing the condition 2), we show that it is possible
to build the NC condition by visiting all cycles in the netlist
without missing any of the hard cycles. To better illustrate this
concept, consider the following example: For the obfuscated
netlist in Fig. 3 and a topological sort from gate A, the edges
E and F are identified as feedback. When following rule
1), and after building the NC condition, we will have

. F(F, A) = F(F, F) V bk(k;) = k|

. F(F, F') = F(F, A) vV bk(ka) = k| V ky

. F(E,C) = F(E, E) V bk(ky) = k}

. F(E,E') = F(E, C) v bk(k3) = k} V K}

. NC = F(F,F') A F(E, E') = (K, V ka) A (k) v/ K}).

[ L S B S

The problem with this assignment is
when (ki, k2, k3) = (1, 1,0). In this case, the NC condition
is satisfied, however the larger nested cycle {E, F, G, E} is
not broken. Hence, the NC condition would not resolve the
cycles if nested or multipath scenarios exist. In this case,
if the wrong key (k1, k2, k3) = (1, 1, 0) is chosen by the SAT
solver, it will enter a loop. Depending on whether the cycle
is oscillating or stateful, the SAT solver will either be trapped
in an infinite loop or will exit UNSAT. Note that this infinite
loop happens during the execution of the SAT solver and not
during the topological sort used in the original SAT attack
proposed in [8] and [9].

To avoid the problem imposed by rule 1), we need to follow
rule 2) where the key contribution of all fan-ins in all stages are
considered. When using rule 2) for building the NC condition
for the same circuit, we have

Fig. 3. (a) Original circuit. (b) Flow diagram of the obfuscated circuit.
(c) Cyclically obfuscated circuit.

I: F(F, A) = F(F, F) v bk(ky) = k|

2 F(F,F') = (F(F,A) V bk(k2)) A (F(F, E) Vv bk(ks)) =
(ky v ko) A (K} V k3 V)

3. F(E,C) = F(E, E) V bk(ky) = k)

4 F(E,E') = (F(E,C) V bk(k3)) A (F(E, G) V bk(k3)) =
(k5 v k5) A (Ky v Ky v k)

5: NC = F(C,C")AF(E, E') = (K vV k5) A (K} v Ky V k3) A
(K} V k).

By following the 2), the previous assignment of keys
(k1, kz, k3) = (1,1,0) will no longer be a valid assignment,
preventing the SAT solver from being stuck or exiting with
a wrong key. However, in this case, all cycles in the design
have to be traversed and conditioned. As a matter of fact,
given the way the NC is formulated in [13], to derive the “no
structural path” condition, some of the combinational cycles
(such as {E, F, G, E} in Fig. 3) have been visited more than
once. Hence, the number of times the key conditions have to
be generated is even larger than the number of netlist cycles.

The problem of visiting nested cycles more than once in a
CycSAT attack could be resolved by a slight modification to
the CycSAT preprocessing step. In the modified attack, instead
of applying rule 2) on one-cycle-per feedback, we could apply
rule 1) on all cycles. It is intuitive to see that both approaches
produce the same NC clauses. For example, in Fig. 3 when
following condition 1), and traversing cycle {E, F, G, E},
the condition (k] k), Vk3) is generated. Hence, by ANDing the
generated condition to the two clauses generated by applying
rule 1), the NC condition of rule 2) is generated. However,
in this case, the combinational cycle {E, F, G, E} is only
visited once. Even by considering the improvement suggested
in CycSAT formulation, it still requires visiting all cycles in a
netlist to compose the NC clauses. This necessity, as described
in the next section, becomes one of the key features, which is
used in this article to break the CycSAT attack.

A different method of introducing complexity is by eliminat-
ing the DAG nature of the original netlist and by transforming
it into a Boolean cyclic function, which could be represented
using a Directed Cyclic Graph (DCG), before subjecting it to
cyclic obfuscation. If the original netlist is not a DAG, the Cyc-
SAT preprocessing step has to build the NC condition by
checking for the “no sensitizable path” condition [13], instead
of the “no structural path” condition. The no sensitizable path
condition from [13] is recited in the following equation:

Fwi, )=\

lefan-in(j)

F(w;, ) vns(,j). 2)
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The “no sensitizable path” condition generates a clause for
each multiinput gate in a cycle. As a result, NC clauses are
much longer and much weaker. Hence, adding even a small
number of feedback to such circuits (that have valid Boolean
cycles) for obfuscation will significantly increase the size of
the circuit SAT problem, as the “no sensitizable path” condi-
tion has to be generated for all cycles. To illustrate the weaker
and longer nature of the NC clauses, the “no sensitizable
path condition” for the circuit in Fig. 3 is constructed as
follows:

I: F(F,A) = F(F,F)vns(F,A) = k|
2 F(F,B)=F(F,A)Vvns(A, B) =k} v x
3. F(F,F) = (F(F,B) Vv ns(B,F)) A (F(F,E) Vv
ns(E, F)) = (kj vV x5 V ko) A (k] V k3 Vv k)
4 F(E,C) = F(E, E)Vns(E,C) =k,
. F(E, D) = F(E,C) v ns(C, D) =k,
6 F(E,E') = (F(E,D) Vv ns(D,E)) A (F(E,G) Vv
ns(G, E")) = (ki vV k5) A (Ky v k) v x5V k3)
7. NC = F(F,F')NF(E,E') = (k| Vx) Vk) A (k] Vk3V
ky) A (ks v kS) A (K v KV X5V k).

(9,1

IV. SRC-Lock: THE PROPOSED CYCLIC OBFUSCATION

The issue with the original method of generating
cycle-avoidance (NC) clauses using CycSAT was shown and
discussed in Section II-B using two simple examples in which
traversal of wires based on a single topological sort of gates
resulted in a missing cycle. When using the original CycSAT,
because of the missing NC clauses for such cycles and
due to the randomness of assigned key and input values by
the SAT solver, the SAT attack can be stuck in an infinite
loop or exit with a wrong key. The possibility of facing an
oscillating or stateful cycle greatly increases as the number of
generated cycles in the design increases to a point that majority
of key space (to be tested by the SAT solver) could result in
oscillating or stateful cycles, vanishing the chances of a suc-
cessful attack to unreasonably small probability. On the other
hand, attacks such as BeSAT [34] that can track the behavior of
the SAT attack at runtime, could detect oscillating or stateful
scenarios (due to missing cycles in preprocessing time) and
eliminate the incorrect key. However, at runtime, BeSAT
eliminates one key at a time. Hence, it is successful if the
number of such key combinations is small. In other words,
the BeSAT attack runtime is linearly dependent on the number
of such keys. When such key combinations are (exponentially)
large (which is the case in our to-be-proposed obfuscation
solution), the BeSAT attack’s runtime becomes unacceptably
large.

CycSAT preprocessing time is characterized in (3). As
illustrated, the processing time is linearly related to the
number of discovered cycles N and the time for composing
the NC condition #nc per cycle. Our approach for breaking
CycSAT is to exponentially increase the time needed for
composing the NC condition in the preprocessing step of
CycSAT beyond acceptable. This is achieved by exponentially
increasing the number of cycles N in a design with respect
to the number of inserted feedback m and increasing the
time required for processing each cycle (fnc) by forcing
the preprocessing step to consider the “no sensitizable path”
condition instead of the “no structural path.” Next, we provide
two solutions for building an exponential relation between the
number of feedback and number of generated cycles, and
three solutions for converting an acyclic circuit to a valid
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Fig. 4. Building an SC from seven gate MCs. (a) Path segment containing
seven gates. (b) Building an MC. (c) Building an SC by strongly connecting
multiple MCs.
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A. Exponentially Increasing the Number of Cycles in a Netlist

In order to exponentially increase the number of cycles
in a given netlist with respect to the number of inserted
feedback, we introduce two approaches: 1) building super
cycles (SCs) and 2) building logarithmic feedback networks
(LFNs).

1) Building SCs: The process of building an SC is illus-
trated in Fig. 4. A microcycle (MC) is a cycle created by
following the cycle creation conditions adopted from [12],
which are recited in the following.

MC Condition 1: Any created cycle has to be nonreducible.

MC Condition 2: At least n > 2 edges in each small cycle
have to be removable.

A reducible cycle has a single entry point. Hence, the
depth-first-search (DFS) traversal of a netlist that only contains
reducible cycles is unique. This allows the reducible cycles to
be easily opened by removing a unique set of feedback edges
which can be found efficiently [12]. By having multiple entries
into each MC, the nonreducible condition is satisfied, forcing
an adversary to use the CycSAT preprocessing step to generate
the necessary cycle-avoidance clauses before invoking the
SAT solver. In graph theory, a strongly connected graph is
defined as a graph with at least one path between any two
pairs of its vertices. Adopting from this definition, in our
solution, an SC is defined as a strongly connected graph
of MCs. To substantially increase the number of generated
cycles, in the last step of SC generation, the edge density of
the generated strongly connected graph is increased, creating
additional paths between MCs. The process of building an SC
is summarized in Algorithm 4.

In this algorithm, the requirement of generating the MCs in
the fan-in of the smallest number of primary outputs increases
the likelihood of shared and/or connecting edges between
created MCs. By having all MCs strongly connected, we create
the possibility of larger combinational cycles. And finally,
adding the random connections increase the density of the
edges in the strongly connected graph, increasing the number
of resulting cycles. In Section VI, we illustrate that the number
of created cycles, generated from following these steps as
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Algorithm 4 Steps for Building an SC

1: Construct MCs in the fanin of smallest possible number of primary
outputs.

2: Strongly connect all generated MCs (this, as illustrated in Fig. 4.b, is
done by creating a two-way connection between each newly created MC,
and the existing SC).

3: Select signals in MCs (A, B, C, D in Fig. 4.c) that are not used for SC
connectivity and provide a two way path from them to unused edges in
other MCs or random signals in their fanin cone.

SPIA EP!A SP\R EPg
OX’

(b) ©

Fig. 5. Building an LFN in which the number of cycles exponentially
increase with the number of feedback. (a) Selected logic paths for creating
LEN. (b) Selected paths are broken and reorganized to create four smaller
logic segments. (c) SP and EP of multiple such logic path segments are used
to build a logarithmic switching network.

described in Algorithm 4, becomes an exponential function
of the number of inserted feedback.

Lemma: The lower bound on the number of cycles created
when using an SC is 2™, when m is the number of inserted
feedback.

Informal Proof: The proposed SC method adds two paths
(from and to paths) to connect each new cycle to the
existing SC. This way, the new cycle could be added or not
added to any of the previously existing cycles. Hence, the addi-
tion of a new cycle at least doubles the number of potential
cycles. Note that the number of connecting edges between
the new cycle and the existing cycle could be more than 1,
resulting in an increase in the number of cycles with a much
higher rate. From this discussion, after inserting m feedback
and connecting them, at least 2" cycles will be created. M

2) Building Logarithmic Feedback Networks: 1In this
method, as illustrated in Fig. 5(a), several logic paths (prefer-
ably from the fan-in cone of a single primary output) are
selected. Then, by breaking a wire in the midpoint of each
logic path, we create two smaller logic segments. The signal
entering and the signal exiting each half segment is marked
as its start point (SP) and endpoint (EP), respectively. Then,
the SP and EP of multiple such logic path segments are used to
build a logarithmic switching network (e.g., Omega, Butterfly,
Benes, or Banyan network). When connecting M number of
EPs to M number of SPs, for Ms of power of 2, we need
M(1 + log,(M)) multiplexers for a logarithmic network.
In this case, when the correct key is applied, the switching
network is configured correctly; otherwise, invalid connectivity
obfuscates the netlist functionality.

Lemma: The lower bound on the number of cycles created
when using LFN is >/, (7)(l — 1)!, when m is the number
of inserted feedback and / is the cycle size divided by 2.

X3
X2

13 2
j’“‘ )(lu’” ( i’d fo PR

W o W L o

Fig. 6. Three-input Rivest circuit implementing six functions.

Informal Proof: The proposed LFN is a special case of a
complete bipartite graph that contains no odd cycles. Suppose
that SE;; indicates a vertex from SP; to EP;. Similarly, E'S;;
indicates a vertex from EP; to SP;. For [ = 2, the cycles
are all paths from an SP to its corresponding EP and
return path {SE;;, ES;;}. If we start from SP;, the second
visited node is its EP (EP;). Since each EP is connected
to all SPy, for intermediate nodes, we have all permutations
as alternative possible paths. Cycles with / = 2 have no
intermediate node. So, there are (m)O! cycles when [ = 2.
For | = 4, the cycles are paths like {SE;;, ES;;, SEjj, ESji}.
There is only one intermediate node in cycles when [ = 4
resulting in (%})1! cycles. Similarly, for [ = 6, the cycles
are paths like {SE;;, ES;j, SE;j, ESjk, SExk, ESi;}. Since
we have two intermediate nodes, j and k, we should
consider their permutation as a new cycle, that is,
(SEii, ESik, SErk, ESkj, SEjj, ESj;}. So, for [ = 6, we have
('})2! with a similar relation, for I = 8, we have (';)3! cycles.
We can extend this relation to all cycles with different length.
The summation of these cycles indicates the number of cycles
in our logarithmic network, which is > (7)( — 1)! [

Note that >, ( ) (I —1)!is the lower bound of the number
of simple and nested cycles created by using the logarithmic
network. The number of paths from each SP to each EP
could be more than 1, and there are possibilities of having a
connection between SPs and EPs of the different paths in the
original circuit, increasing the number of cycle possibilities
to a far larger number. Based on the lower bound formula,
the number of created cycles is O L, (7)( — D) <
O(m!) = O(m™). Hence, there exists an exponential relation
between the number of inserted feedback and the number of
resulting cycles in the netlist.

B. Building Cyclic Boolean Functions

A Boolean function does not need to be acyclic.
Furthermore, it is possible to reduce the number of gates in
a circuit if a function could be implemented in its acyclic
form [37]-[40]. For example, the work in [40] presents an
n-input 2n-output positive unate Boolean function which can
be realized with 2n two-input gates when the feedback is
used but requires 3n — 2 gates if the feedback is not used.
Hence, cyclification of a circuit in addition to forcing a
CycSAT preprocessing step to consider the “no sensitizable
path,” could also remedy the area overhead of introducing
new gates for cyclic obfuscation. To cyclify a netlist and to
increase fNc in 3, we suggest three approaches: 1) template-
based cyclic-function mapping; 2) input-dependence-based
cycle generation; and 3) node-merging cycle generation.

1) Template-Based Cyclic-Function Mapping: In this
approach, many small cyclic Boolean circuits are collected
as templates in our obfuscation library. Then, a netlist is
scanned for opportunities (with and without logic manipula-
tion) to replace a cluster of logic gates with such templates.
An example of such feedback template is the circuit introduced
in [40] where a special case of it (for three inputs) is
illustrated in Fig. 6. To introduce cycles, the circuit could be

Authorized licensed use limited to: George Mason University. Downloaded on October 13,2020 at 02:26:05 UTC from IEEE Xplore. Restrictions apply.



ROSHANISEFAT et al.: SAT-HARD CYCLIC LOGIC OBFUSCATION

1 0
11

N[

i
11
Fig. 7. Due to correlation of intermediate signals, certain signal combinations
may never occur.
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Fig. 8. Input-dependence-based cyclification of a Boolean function.
(a) SR latch. (b) Original circuit. (c) Cyclified circuit when ABC D = 0010 is
nonoccurring. (d) Obfuscated cyclified circuit using additional random inputs
E,F,G,H, and M.

modified to introduce at least one of the possible functions
in this circuit. The candidate logic cluster is then replaced
by the template. To prevent template scanning and removal
attacks, in a subsequent camouflaging step (using the gate and
route obfuscation), the template will be hidden. Note that many
such templates could be made [37]-[40], and by not knowing
the template type and the camouflaged technique used to hide
the connection, an attacker cannot identify and remove these
templates.

2) Input-Dependence-Based Cycle Generation:  This
method explores the correlations between signals that share
common primary inputs in their fan-in cone. Considering
N such signals in an arbitrary stage of a DAG, some of
the 2V inputs may never occur. For example, when tracking
four signals A, B, C, and D in Fig. 7, we may find that
ABCD = {0010} could not occur. A SAT solver could
be used for finding the nonoccurring input scenarios. This
process is illustrated in Fig. 7, where the logic clusters L2 and
L3 are removed, and the four signals are ANDed together
such that for a certain case, for example, ABCD = 0010,
the output of AND gate is evaluated to 1. Then, this circuit is
given to a SAT solver to find a satisfying input assignment.
If the SAT solver returns UNSAT, this combination of input
is chosen since it would never happen; otherwise, a different
combination is checked.

In the next step, we use a sequential element and tie the
discovered nonoccurring input scenario to the state-preserving
input of the sequential element. For example, by using an SR
latch in Fig. 8(a), if SR = 11 does not happen, Qnext i the
inverse of input S. Hence, we can build a circuit that ties
the discovered nonoccurring input scenario to the SR = 11.
For example, let us assume wires A, B, C, and D have a
nonoccurring combination ABCD = 0010 and these signals
construct the signal ¥ = A 4+ B 4+ CD. Fig. 8(c) illustrates
the signal Y reconstructed when the nonoccurring combination
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Algorithm 5 Timing-Aware Cyclic Obfuscation

1: procedure SWITCH_INSERTION(int required_paths, circuit K)

2 largest_cone <— output port with largest cone;

3 b = BFS(largest_cone);

4 while (number of inserted feedbacks < required_paths) do

5: tail <— pop(b);

6 if (slack(tail) > delay of a keygate and tail not marked) then
7 path <— DFS on tail considering slacks;

8 mark path as selected in the circuit;

9: add feedback to the path;

10: update the circuit’s timing using STA/EDA;

11: for (each selected path) do

12: for (each gate in the path) do

13: if (slack(gate) > delay of a multiplexer) then

14: disconnect gate output;

15: insert multiplexer;

16: connect gate and multiplexer based on SC/LFN;
17: update circuit timing using STA/EDA;

of the inputs is tied to SR input of the latch. After generating
the cyclic logic, to hide the correlation between input signals,
the wire selection is obfuscated. Finally, the SR-latch feedback
is obfuscated using a set of multiplexers. This assures that
CycSAT can only generate the correct NC clauses if the “no
sensitizable path” condition is processed; otherwise, it breaks
the SR-latch feedback and invalidates the netlist.

3) Node-Merging-Based Cycle Generation: The third
approach for cyclification of a netlist is based on the work
in [37] where the logic implication is used to identify cycli-
fiable structure candidates directly or to create them aggres-
sively in circuits. At its core, the work in [37] introduces active
combinational feedback cycles by merging two nodes in the
original DAG. To check the validity of the generated cyclic
netlist, they use a SAT-based algorithm and validate whether
the formed cycles are combinational or not.

V. TIMING-AWARE CYCLIC OBFUSCATION

During logic locking, each modification to the original
netlist affects the timing characteristics of the original cir-
cuit. A timing oblivious obfuscation solution could result in
changes to the delay of one or more timing critical path(s)
(via insertion of key gates), leading to a slower design. In this
section, we argue that our proposed obfuscation solution could
be designed to be timing aware, minimizing (or removing) the
impact of obfuscation on circuit timing. This can be achieved
by incorporating a simple static timing analysis (STA) in our
obfuscation procedure.

Our proposed solution for timing-aware cyclic obfuscation
is presented in Algorithm 5. Both SC and LFN methods
(supported in this algorithm) require selection of nonoverlap-
ping logic paths in the circuit for intertwined cycle creation.
In our solution, presented in Algorithm 5, we find these
nonoverlapping logic paths in the fan-in cone (FIC) of a single
primary output. The reason for selecting the logic paths in the
same FIC is to take advantage of the existing connections
between selected logic subpaths when one subpath is in the
FIC of at least one of the gates in the other subpath. This
condition results in the generation of many additional cycles,
on top of those generated by LFNs or SCs. This is because
each feedback could create a cycle when combined with
each of the path forward edges. After selection of a logic
subpath and before committing to the insertion of a new
switch, the netlist is assessed for timing violation. If there is
no violation, the cycle is generated and the slack of affected
timing paths are updated. Finally, the logic gates in the selected

Authorized licensed use limited to: George Mason University. Downloaded on October 13,2020 at 02:26:05 UTC from IEEE Xplore. Restrictions apply.



962 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 28, NO. 4, APRIL 2020

TABLE I
DESCRIPTION OF ISCAS-85 CIRCUITS USED IN THIS ARTICLE

Circuit #Gates #PIs #POs|| Circuit #Gates #PIs #POs|| Circuit #Gates #PIs #POs

c432 160 36 7 ||cl355 546 41 32 ||c3540 1669 50 22
c499 202 41 32 ||cl908 880 33 25 ||c5315 2307 178 123
c880 383 60 26 ||c2670 1269 233 140 ||c7552 3513 207 108

subpath are marked as used, removing them from future
searches.

Our proposed algorithm selects new logic paths in the FIC
of the selected primary output until there are no more viable
subpaths. The algorithm could be modified to continue finding
new paths by selecting the next primary output candidate that
has the largest number of unused gates.

VI. RESULTS

In this section, we analyze the effectiveness of our proposed
defense against SAT, CycSAT, and BeSAT attacks. For finding
cycles in a netlist (after cyclic obfuscation), we implemented
the cycle identification algorithm proposed in [41] using C++-.
Considering that the source code for BeSAT was not openly
available, we implemented the BeSAT attack based on the
description in [34] using Yices SAT solver [42]. Our com-
putational platform is a Dell PowerEdge R620 equipped with
Intel Xeon E5-2670 and 64 GB of RAM. We used ISCAS-85
benchmarks listed and described in Table I to evaluate our
solution and to compare it with the prior work. The timeout
limit in our experiments is set to 10 h: if an experiment
does not conclude within the timeout limit, its table entry is
marked as “t/0.” In an experiment, if the netlist is too small for
insertion of the number of required feedback, its table entry
is marked as “Netlist is Small (NiS).”

A. Exponential Growth in the Number of Cycles

1) Cyclification Using SCs: The number of cycles created
in ISCAS-85 benchmarks, when using N =1, 2, 3, 5, 10, and
15 MCs of size 7 (i.e., seven gates in a cycle) for building
an SC is reported in Table II. Using curve-fitting techniques,
the number of cycles in each netlist is also reported as a
function of the number of feedback X, in the form of 2"X,
in which m is the netlist-specific exponential acceleration
factor. The minimum bound for m (according to the discussion
in Section IV-A1) when using SC is one. However, as reported
in Table II, the value of m is usually far larger than one,
meaning there would be a far larger number of cycles than
that expected from the SC-imposed minimum bound.

As illustrated in Table II, increasing the number of feedback
exponentially increases the number of cycles, such that with
only 15 feedback, the cycles in none of the netlists could be
counted in a 10-h limit. Note that the designer can exponen-
tially increase CycSAT attack’s preprocessing time, by linearly
increasing the number of feedback. For executions resulted
in timeout, we also confirmed that initiating CycSAT with
incomplete NC clauses traps the SAT solver in an infinite
loop. Hence, the attacker cannot complete the preprocessing
in a reasonable time, and incomplete preprocessing traps the
subsequent invocation of the SAT solver. The area overhead
for building the SC in terms of the number of switches depends
on the number of MCs and the number of gates in each MC.
The area overhead for having various numbers of MCs of
seven gates when building an SC is reported in Table III.

TABLE II

NUMBER OF CYCLES REPORTED DURING A CYCSAT ATTACK. THE
EXPONENTIAL FITTING FUNCTION Is IN FORM OF ¢ = 2%

Circuit N=1 N=2 N=3 N=5 N=10 N=15 m
c432 37384 23879 4.6%10°  NiS NiS NiS 6.3
c499 10 331 1528 1.4%10%  NiS NiS 4.1
c880 67 1,601 1,903 5.0%10° t/o tlo 4.5
c1355 59 636 5.7%10° 1.9%10° t/o tlo 62
cl908 13 294 12,594 1.3%107 t/o tlo 4.8
€2670 273 1,570 8912 2.9x10° t/o t/o 3.6
c3540 1,215 5991 8.7%10% 4.9 %108 t/o tlo 5.8
c5315 162 4869 6,650 1.2%109 t/o t/o 6.0
c7552 11 124 1,558 2.6%10° 1.2%10° tlo 3.0
TABLE 11

PERCENTAGE OF AREA OVERHEAD FOR SC CREATION WHEN USING
DIFFERENT NUMBER OF MCS (N) OF LENGTH 7.

- N=1 N=2 N=3 N=5 N=10 N=15 N=20

Circuit
Area Overhead Percentages (%)

c432 7.50 1375  20.00 NiS NiS NiS NiS
c499 594 1089 15.84 25.74 NiS NiS NiS
c880 3.13 5.74 8.36 13.58  26.63 39.69 52.74
cl355 220 4.03 5.86 9.52 18.68  27.84  37.00
c1908 1.36 2.50 3.64 5.91 11.59 1727 2295
c2670  0.95 1.73 2.52 4.10 8.04 1198 1592
c3540 0.72 1.32 1.92 3.12 6.11 9.11 12.10
c¢5315 052 095 1.39 2.25 4.42 6.59 8.76
c¢7552 034 0.63 091 1.48 2.90 4.33 5.75

2) Cyclification Using Logarithmic Feedback Networks: As
discussed and proved in Section IV-A2, the lower bound on
the number of generated cycles, when the LFN method for
cyclification flow is adopted, is an exponential function of the
number of feedback. Furthermore, similar to an SC, the edge
density of the original netlist may substantially increase the
number of created cycles. This is because of the gates with
fan-outs greater than 1 in selected logic path segments. If the
output of a gate in the LFN is connected to the input(s) of
another gate(s) in the same network, the resulting net counts
as an additional forward path. Then, each forward path could
be matched with a feedback, resulting in an additional cycle.
Considering that path segments are selected from the FIC
of the same primary output, there exist many such connec-
tions (forward edges), resulting in the generation of a far
larger number of cycles than the guaranteed minimum bound
expected from using LFN. To illustrate this, both the number
of created cycles for each benchmark and the theoretical
lower bound (calculated using >, () — 1)! as proved
in Section IV-A2) is reported in Table IV. As illustrated,
for most of the obfuscated benchmarks with an LFN larger
than 4, cycle enumeration results in timeout after 10 h due to
the exponential number of created cycles. This indicates an
exponential runtime at the CycSAT preprocessing stage. The
area overhead for creating LFNs of different sizes (different
number of input paths) is reported in Table V. Note that in
both SCs and LFNs, the area overhead scales with the number
of inserted feedback and not the size of the circuit. Hence,
the area overhead is smaller in larger circuits.

Capturing the power overhead of cyclic obfuscation is more
involved. The leakage component of power overhead is a
function of the area overhead of the obfuscation solution,
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TABLE IV

NUMBER OF CYCLES REPORTED DURING A CYCSAT ATTACK USING
LFN METHOD. N IS THE NUMBER OF SELECTED PATHS
FOR CREATING LFNs

N=2 N=4 N=8 N=16 N=32

Lower Bound 3 24 16072 3.8 x 10'? 2.3 x 1032
c432 26,578 NiS NiS NiS NiS
c499 192 278,577 1.3 x 10*° t/o NiS
c880 8,836 4.5 x 10° t/o t/o NiS
1355 8.3 x 108 t/o t/o t/o NiS
¢1908 8.4 x 107 t/o t/o t/o t/o
2670 1.2 x 107 t/o t/o t/o t/o
¢3540 8.5 x 10° t/o t/o t/o t/o
¢5315 1.2 x 10° t/o t/o t/o t/o
c7552 2.9 x 10° t/o t/o t/o t/o

TABLE V

PERCENTAGE OF AREA OVERHEAD FOR AN INSERTED LFN
FOR DIFFERENT NUMBER OF SELECTED PATHS (N)

Circuit N=2 N=4 N=8 N=16 N=32
Area Overhead Percentages (%)
c432 5.00 NiS NiS NiS NiS
c499 396 11.88 27.72 79.21 NiS
c880 2.09 6.27 14.62 41.78 NiS
cl1355 1.47 4.40 10.26  29.30 NiS
cl908 091 2.73 6.36 18.18  43.64
2670  0.63 1.89 4.41 12.61  30.26
c3540 048 1.44 3.36 9.59 23.01
c5315  0.35 1.04 243 6.94 16.64
7552 0.23 0.68 1.59 4.55 10.93

and threshold voltage (VT) of inserted multiplexers. Using a
high-VT switch cell reduces the leakage impact, however it
introduces additional delay [43]. In a simple implementation
where standard cells are selected from a single VT, the increase
in the leakage power is similar to the increase in the area. The
dynamic power consumption, on the other hand, depends on
the switching activity of the inserted switches. After proper
activation, the switching activity of the inserted multiplexers
depends on the toggling rate of the correct input net to the
multiplexer. The net toggling activity, in turn, depends on
the level of controllability of that net and the probable input
scenario to the netlist. The power consumption of both the
LFN and SC-based solutions of size N = 16 is provided
in Table VI. However, note that the power consumption could
improve (at the expense of timing and security) by modifying
the SC or LFN algorithm to choose nets with small toggling
rate to reduce the overhead of dynamic power consumption.

B. SAT, CycSAT, and BeSAT Attack Resilience

Table VII captures the result of SAT, CycSAT, and BeSAT
attacks on ISCAS-85 benchmarks that are obfuscated using
our proposed solution. For generating the data in this table,
we prepared three sets of obfuscated benchmarks. The first set
of benchmarks is obfuscated with only two MCs using the SC
approach for the obfuscation method. This group of obfuscated
benchmarks represents cyclification with a small number of
dummy cycles, with no real cycles. The netlists in the second
set are first obfuscated using 10 SR-latches (by using the input-
dependence-based obfuscation as described in Section 1V-B2)
and then are cyclified by inserting two MCs. The second group
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TABLE VI
POWER OVERHEAD OF SCS AND LFNS OF SIZE N = 16
Circuit SC (N=16) LFN (N=16)
Switching (%)  Leakage (%)  Switching (%) Leakage (%)

432 NiS NiS NiS NiS
c499 NiS NiS 212.64 75.13
c880 38.09 44.85 56.67 38.82
cl1355 12.79 32.77 13.26 24.6
c1908 8.42 19.1 13.38 15.66
2670 14.14 15.96 13.17 12.32
c3540 8.76 10.79 3.86 8.88
c5315 5.75 8.51 6.13 6.7
c7552 2.88 5.78 7.79 4.4

represents the case where there are some real cycles in the
design, while the total number of cycles is still small. The
third group is similar to the second group, however the number
of inserted MCs is increased to 15. It represents obfuscated
solutions with both real and exponentially large number of
dummy cycles. The results of running SAT, CycSAT, and
BeSAT is captured in Table VII. For c432 and c499, generating
a large number of MCs (15) was not possible, and hence the
largest number of possible MCs were used in the generation
of SC.

The first group introduces a small number of removable
cycles. As reported in Table VII, even the existence of simple
cycles traps the original SAT attack in an infinite loop in most
cases (except for two benchmarks that SAT solver luckily
chooses a sequence of inputs that avoid or exit the trap).
However, CycSAT, when uses the “no structural path” con-
dition (CycSAT-I) for generating the cycle-avoidance clauses,
easily breaks all obfuscated netlists. As illustrated in this
table and predicted in (3), CycSAT runtime (which includes
the runtime for both preprocessing step and SAT solver’s
invocation) almost linearly varies with the number of cycles
in each netlist.

For the second group, where the original circuit is also
cyclified (using real cycles), the usage of CycSAT-I returns
UNSAT as it produces NC clauses that breaks the real Boolean
cycles. However, when CycSAT uses the “no sensitizable path”
conditions (CycSAT-II), it breaks the obfuscation in all cases.
Most notable in this data is the increase in the runtime of
CycSAT attack (when compared to the first group) as the time
it takes to compose the NC condition for each cycle based on
“no sensitizable path” condition is longer. This validates the
impact of logic cyclification on the runtime of CycSAT attack.
Another attack possibility is the BeSAT attack. However,
the BeSAT attack should be slightly modified: considering that
the design contains real Boolean cycles, the “no sensitizable
path” condition (instead of “no structural path” in the BeSAT
attack as described in [34]) should be used for the generation
of the NC clauses. Hence, the attack could be carried by
generating a set of NC clauses (given a deadline) and then use
BeSAT to attack the obfuscation and recover from oscillating
and stateful cycle conditions. To model this attack, we set “no
sensitizable path” preprocessing deadline to 2 h, and BeSAT
attack time to 8 h (total of 10 h attack time). As shown
for “N = 2 4+ SR-L = 10,” all but one deobfuscation was
successful and, in general, BeSAT underperforms compared
to the CycSAT-II attack. This is because there exist a small
number of cycles, and both CycSAT-II and BeSAT have found
and conditioned all cycles, however, BeSAT due to the runtime
monitoring of DIPs is slower compared to CycSAT-II attack.
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TABLE VII

SAT ATTACK, CYCSAT, AND BESAT EXECUTION TIME AFTER INSERTI

ON OF AN SC (N = 2), INSERTION OF AN SC AND 10 SR-LATCHES

(N =2+ SR-L =10), AND INSERTION OF 15 MCs AND 10 SR-LATCHES (N = 15 + SR-L =10)

Circuit N=2 N=2 + SR-L=10 N=15 + SR-L=10
SAT #Cycles  CycSAT-I  SAT #Cycles CycSAT-I  CycSAT-II BeSAT SAT  #Cycles  CycSAT-I ~ CycSAT-II  BeSAT

c432 Inf 23,879 2.56s Inf 1.65 x 10° UNSAT 11.69s 35.48s Inf t/o UNSAT t/o t/o
c499 0.56s 236 0.10s Inf 397 UNSAT 0.11s 0.79s Inf t/o UNSAT t/o t/o
c880 Inf 1,601 0.24s Inf 7.87 x 108 UNSAT 793.12s t/o Inf t/o UNSAT t/o t/o
c1355 Inf 636 0.12s Inf 5.00 x 10° UNSAT 53.21s 134.56s Inf t/o UNSAT t/o t/o
c1908 0.28s 294 0.10s Inf 6,467 UNSAT 0.73s 170.74s Inf t/o UNSAT t/o t/o
c2670 Inf 1,570 0.23s Inf 7,412 UNSAT 0.92s 17.22s Inf t/o UNSAT t/o t/o
¢3540 Inf 5,991 0.75s Inf 6,026 UNSAT 0.75s 22.67s Inf t/o UNSAT t/o t/o
c5315 Inf 4,869 0.61s Inf 2.59 x 10° UNSAT 26.04s 370.08s Inf t/o UNSAT t/o t/o
¢7552 Inf 124 0.189s Inf 164 UNSAT 0.19s 18.30s Inf t/o UNSAT t/o t/o

Finally, for the third group, where the number of inserted
feedback is increased to 15, all three attacks fail. CycSAT-I
is not applicable, as it will open real cycles, resulting in
netlist malfunction, and even if preprocessing of this attack
finishes, it will exit as UNSAT. CycSAT-II fails as it cannot
finish the preprocessing on time. Note that by increasing the
number of feedback, the designer can easily and exponentially
increase the required preprocessing time unreasonably long.
The remaining attack possibility is the BeSAT attack. In this
case, the preprocessing of NC clauses is carried until the time
limit (2 h) and then BeSAT attack is carried out. Note that
in this condition, BeSAT starts the SAT attack with a partial
set of clauses generated in the preprocessing step. However,
as illustrated in Table VII, BeSAT will reach the deadline
after invalidating 100 s of thousands of keys. This is when
there exist millions (or larger) other keys that cause oscillating
behavior which BeSAT has not yet examined and pruned
(one at a time) in the time limit.

As explained in Section IV, BeSAT only works when the
number of undetected cycles (and unconditioned keys) is
small. The BeSAT attack is slow and eliminates one incorrect
key at a time. This is when, in our proposed obfuscation solu-
tion, there exists an exponentially large number of invalid keys
even after partial preprocessing: As a part of our obfuscation
solution (and to create real cycles), we are using (diffused)
SR latches. To prevent stateful behavior, through careful input
logic section (as described in Section IV-B2), we ensure that
the value of SR input cannot evaluate to 11 (condition for
statefulness). For this purpose, the input logic cone to S and
R input is constructed by exploiting the interdependency of
selected wires in the netlist. However, the selection of inputs
is further hidden through routing obfuscation. In this case,
only with the application of the correct key, the interdepen-
dence of the input wires will render the SR-latch nonstateful
(by skipping the 11 input). Let us assume S = g(K1, X) and
R = f(K»>, X), where the g and f are the logic representing
the input cone of S and R input to the SR latch, K| and K>
are the key gates in the fan-in cone of S and R, and the X is
the choice of primary input. In this scenario, any choice of K1,
K>, and X that could make the SR = 11 will result in a stateful
circuit. From this analysis, the worst case scenario for BeSAT
is a function of the size of primary input X, and key selection
K and K, for which the wire S and R evaluate to 1, which
is an exponential function of the key length K = (K () K2).
Considering that our solution builds a strongly connected
graph, the FIC of S and R could span to all the key gates.
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Hence, the number of invalid keys that should be banned
is exponentially large. Considering this discussion, and for
a large number of key combinations that should be banned
(one at a time), as shown in the results for “N = 15 +
SR-L = 10,” BeSAT attack does not work against our proposed
solution.

C. SAT, CycSAT, and BeSAT Resiliency of
Previous Methods

In this section, we study the effectiveness of previously
proposed cyclic logic solutions and compare them with our
proposed solution. To attack the prior art solutions, we use
the modified CycSAT attack as described and formulated in
Section III-B. The modified CycSAT attack works similar to
the original CycSAT attack, however instead of composing the
NC clauses per detected feedback, it composes the NC clauses
per detected cycle.

The original cyclic-locking method was introduced in [12]
where authors proposed inserting multiplexers in the circuit
to create cycles. This obfuscation solution attempts to create
irreducible cycles. This method can only create dummy cycles
as it does not affect the DAG nature of a combinational
netlist and is referenced in this article as glsvisil7. The second
method discussed here [35] considers CycSAT attack and tries
to defeat CycSAT-I using an auxiliary circuit. This method was
discussed in Section III-A. By adding the proposed auxiliary
circuits to a design, real cycles are formed, converting the
DAG nature of the netlist into a DCG. The netlist is then
augmented with additional dummy cycles (similar to the
glsvlsil7 method), making the netlist to contain both real and
dummy cycles. In this article, we use the name datelS§ to refer
to this cyclic obfuscation solution.

To assess the effectiveness of prior art solutions, we
modeled each of glsvlsil7 and datel8 to obfuscate the
ISCAS-85 benchmarks. To compare the evaluation results of
prior art to that of our proposed solution (in Table VII),
the glsvlsil7 method is implemented using 15 randomly
selected feedback of length 7, while the benchmarks prepared
using datel8 solution are obfuscated using the same number
of feedback (15) and 10 real cycles (for DAG to DCG transfor-
mation), implemented using the auxiliary circuit as described
in [35]. For smaller benchmarks, where insertion of this many
feedback was not feasible, we have inserted the largest feasible
number of feedback. To show the effectiveness of our solution
in increasing the runtime of the CycSAT preprocessing step,
we have also evaluated the number of generated cycles for
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TABLE VIII

SAT ATTACK, MODIFIED CYCSAT, AND BESAT RESULTS FOR
EVALUATION OF GLSVLSI17 METHOD [12]

Circuit #Cycles SAT CycSAT-1 BeSAT
Time Iteration Time Iteration Time Banned
c432 32 t/o - 0.02 1 0.45 0
c499 282 t/o - 0.05 1 0.88 0
c880 36 1.35 61 0.13 15 3.59 0
cl355 t/o t/o - t/o - 7220.83 3
cl1908 1,625 t/o - 0.95 83 8.44 0
c2670 129 t/o - 2.26 19 55.11 0
c3540 606 0.63 41 0.70 14 10.03 0
c5315 4,216 1.7 33 1.19 45 32.75 0
c¢7552 1,117 235 105 1.77 73 43.24 0
TABLE IX

EVALUATING DATE18 OBFUSCATION [35] AGAINST SAT,
CYCSAT, AND BESAT

Cireuit #Cycles SAT CycSAT-1 CycSAT-II BeSAT
Time Iteration Time Iteration Time Iteration Time Banned
c432 62 t/o - 0.02 UNSAT 0.3 18 9.19 0
c499 1,157 to - 0.06 UNSAT 0.14 18 2.00 0
c880 56 t/o - 0.04 UNSAT 0.31 23 5.11 0
cl355 t/o t/o - t/o - t/o - 7268.77 12
cl908 1,645 1.99 144 0.02 UNSAT 0.88 68 205.02 0
2670 149 t/o - 0.03 UNSAT 0.53 41 10.53 0
c3540 626  6.49 187 0.1 UNSAT 1.53 37 18.19 0
c5315 4236 to - 0.05 UNSAT 2.06 60 30.45 0
c¢7552 1,137  tlo - 0.08 UNSAT 1.9 31 40.75 0

each of the prior cyclic obfuscation (glsvlsil7 and datel8)
solutions.

Table VIII captures our evaluation results for glsvlsil7 when
attacked using SAT, CycSAT-I, and BeSAT. As expected the
success of SAT attack on selected benchmarks is random,
as generated cycles could trap the SAT solver. Note that by
increasing the number of feedback, the chances of trapping the
SAT solver increases. CycSAT-I1 breaks the obfuscation and
finds the key to all but one obfuscated benchmark. For c1355,
cycles could not be processed within the 10-h time limit,
and the attack is timed out. But this case is a great showcase
to see the power of BeSAT. As expected, BeSAT could also
break this obfuscation. Considering that the preprocessing for
most of the benchmarks could be done in less than 2 h, and all
cycles could be found for such small obfuscations, the number
of banned keys for all cases but one is zero. For this reason
and for the additional overhead of runtime monitoring of SAT
execution time, the BeSAT takes longer than CycSAT-1. The
only interesting scenario is for c1355, where the CycSAT-I is
timed out and cannot finish the preprocessing of all cycles.
In this case, the incomplete set of NCs is used in BeSAT, and
with only three banned keys, BeSAT skips the traps and finds
the correct key. Note that the reason why BeSAT does work
is that the number of oscillating keys generated in this obfus-
cation solution is small. This is unlike our proposed solution
that there exists an exponentially large number of such keys,
and if given to BeSAT, they have to be eliminated one at a
time.

Table IX captures evaluation results for the datel8 method.
Aware of the shortcomings of glsvlsil7, the datel8 solution
was proposed as a CycSAT-resistant obfuscation solution. The
proposed auxiliary circuit by itself has a minimal impact on
the number of cycles. However, this method is expected to
have a larger number of stateful cycles, and when the original
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SAT attack used there are higher chances for trapping the SAT
solver in an infinite loop. The results in Table IX support
this hypothesis, as only two benchmarks are successfully
attacked using the base SAT attack. When attacked using
CycSAT-1, the datel8 solution remains resistant as the pre-
processing step of CycSAT-I incorrectly opens the real cycles
during NC clause generation. However, when the modified
CycSAT-II attack, as described in Section III, is deployed,
it could easily break all instances of obfuscated solutions
except c1355 (that could not be preprocessed in a reasonable
time for having a very large number of cycles). However,
in the case of BeSAT and after limiting the preprocessing
time to 2 h, the key for c1355 could be recovered in 68.77 s
after 2 h of NC clause generation. Other benchmarks that
previously was broken by CycSAT-II are also broken by
BeSAT with zero banned keys since the generated NC clauses
cover all undesirable cycle conditions. Note that for this
attack, the NC clauses for BeSAT are generated using the “no
sensitizable path” condition; otherwise, the attack will return
as UNSAT.

Comparing the glsvlsil7 and datel8 data in Tables VIII
and IX with that of our proposed solution in Table VII
illustrates the effectiveness of our solution: none of the
obfuscated netlists using our solution could be broken by the
SAT, CycSAT-I, CycSAT-II, or BeSAT (original and modified)
attacks, as it includes a solution to trap both the SAT solver
and preprocessing step of CycSAT/BeSAT. Note that, when
deploying the SAT or CycSAT attack to break glsvlsil7 or
datel8, the runtime, in addition to the number of inserted
feedback, also depends on the selection of feedback. Hence,
a random selection of feedback in glsvlsil7 and datel8 results
in considerable variation in the attack time. Therefore, these
solutions, unlike our proposed solution, cannot guarantee a
monotonic increase in the runtime of the attack as the number
of randomly selected feedback increases. Note that in our
solution, the runtime is dominated by CycSAT’s or BeSAT’s
preprocessing step, and this runtime is linearly dependent
on the number of cycles, and the number of cycles is an
exponential function of the number of inserted feedback.
Hence, we can guarantee a monotonic increase in the overall
runtime of the attack against our proposed solution as the
number of inserted feedback increases.

D. Timing-Aware Cyclification

As described in Section V, inserting logic gates in
timing-critical paths would increase the critical path of the
netlist resulting in a performance penalty. To minimize the
performance penalty to the extent possible, we proposed
a timing-aware cyclic obfuscation flow in Section V. This
solution would only affect the timing if it can no longer use
noncritical timing paths for feedback insertion.

Table X captures the result of our proposed timing-aware
cyclic obfuscation when allowing 0% and 5% delay overhead
for cyclic obfuscation. Using this delay constraint, the algo-
rithm tries to insert the maximum number of feasible feed-
back in each benchmark using the SC solution proposed in
Section IV-Al. In this table, we have provided a measure
of the maximum number of MCs that could be implemented
in each benchmark for building a strongly connected graph
before running out of usable gates. The key count is the sum
of the number of key values needed for managing the MCs and
the number of key values needed for managing the additional
multiplexers (used for creating outgoing edges from internal
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TABLE X

TIMING-AWARE OBFUSCATION RESULTS FOR THE SC METHOD.
MAXIMUM NUMBER OF MCS ARE INSERTED FOR 0% AND 5%
OVERHEAD OVER TIMING SLACK

Slack = 5% Slack = 0%

Circuit

#Cycles SAT(s) #Keys #MCs|#Cycles SAT(s) #Keys #MCs Area %

c432 303,476 0.14 15 2 NiS NiS NiS NiS NiS
c499 NiS NiS NiS NiS | NiS NiS NiS NiS NiS
c880 t/o t/o 95 18 t/o 023 51 12 26.63
cl355 tlo to 109 23 | 2,766 055 25 8 9.16
c1908  t/lo to 187 38 t/o to 111 24 2523
c2670  tlo to 335 70 t/o t/o 244 53 3846
c3540 tlo to 378 75 t/o to 274 57 32.83
c5315  tlo tlo 448 110 t/o t/lo 446 95 38.66
c7552  tlo to 729 183 t/o t/o 632 158 3598

gates in each MC). As illustrated, the maximum number of
MCs and key values is a function of the netlist size and the
acceptable delay overhead. Note that in larger benchmarks,
even without incurring a time penalty, we can insert a large
number of MCs, pushing CycSAT attack to be trapped in its
preprocessing step until timeout. In addition, note that with
10 MCs, our C++ implementation of preprocessor cannot
finish counting the number of generated cycles, and accord-
ing to SC and LFN lemmas proved in Sections IV-Al and
IV-A2, the number of generated cycles exponentially grows
with each added feedback. Hence, we can make the attack
time unreasonably long with no or limited timing impact.

The number of MCs and the number of gates in each
MC (e.g., cycle length) could affect the number of created
cycles and defines the SAT resiliency of the circuit. Parameters
like targeted frequency and area overheads should also be
considered during cyclic obfuscation. However, this could
create a tradeoff on how SAT resilient a circuit is versus how
efficiently it could be implemented.

VII. CONCLUSION

In this article, we proposed a new mean of cyclic
obfuscation that is immune to SAT, CycSAT, and BeSAT
attacks. To make the preprocessing step of CycSAT and
BeSAT attacks ineffective, we proposed two mechanisms
(SCs and LFNs) for exponentially increasing the number
of generated cycles with respect to the number of inserted
feedback. In addition, we proposed three mechanisms to
cyclify the circuit with real cycles (Cyclic Boolean Logic).
The addition of real cycles forces an attacker to generate
the “no sensitizable path” conditions during the preprocessing
step of the CycSAT or BeSAT attacks, which is considerably
more time consuming than “no structural path” generation.
The exponential increase in the number of feedback prevents
the attacker from generating NC conditions for all cycles in a
reasonable amount of time. This breaks the CycSAT attack.
The BeSAT attack can proceed to its SAT stage with an
incomplete set of NC clauses, however, it has to ban remaining
invalid keys one at a time, and there exists an exponentially
large number of such keys. Hence, it also fails to break the
proposed solution.
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