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Abstract—Can we reduce the search cost of Neural Architec-
ture Search (NAS) from days down to only a few hours? NAS
methods automate the design of Convolutional Networks (Con-
vNets) under hardware constraints and they have emerged as key
components of AutoML frameworks. However, the NAS problem
remains challenging due to the combinatorially large design space
and the significant search time (at least 200 GPU-hours). In this
article, we alleviate the NAS search cost down to less than 3 hours,
while achieving state-of-the-art image classification results under
mobile latency constraints. We propose a novel differentiable NAS
formulation, namely Single-Path NAS, that uses one single-path
over-parameterized ConvNet to encode all architectural decisions
based on shared convolutional kernel parameters, hence drasti-
cally decreasing the search overhead. Single-Path NAS achieves
state-of-the-art top-1 ImageNet accuracy (75.62%), hence outper-
forming existing mobile NAS methods in similar latency settings
(∼80 ms). In particular, we enhance the accuracy-runtime trade-
off in differentiable NAS by treating the Squeeze-and-Excitation
path as a fully searchable operation with our novel single-path
encoding. Our method has an overall cost of only 8 epochs (24
TPU-hours), which is up to 5,000× faster compared to prior
work. Moreover, we study how different NAS formulation choices
affect the performance of the designed ConvNets. Furthermore,
we exploit the efficiency of our method to answer an interesting
question: instead of empirically tuning the hyperparameters of
the NAS solver (as in prior work), can we automatically find the
hyperparameter values that yield the desired accuracy-runtime
trade-off (e.g., target runtime for different platforms)? We view
our extensive experimental results as a valuable exploration for
NAS-based cloud AutoML services, and we open-source our entire
codebase at: https://github.com/dstamoulis/single-path-nas.

Index Terms—Neural architecture search (NAS), hardware-
aware convnets, ConvNets, AutoML.
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I. INTRODUCTION

Is it possible to automatically design the Convolutional Net-
work (ConvNet) with highest classification accuracy that satis-
fies the inference latency constraints of a mobile phone? Can we
have a push-button solution that automatically finds such design
within only a few hours?” ConvNets have been traditionally de-
signed by human experts in a painstaking and expensive process.
AutoML approaches, and Neural Architecture Search (NAS)
methods in particular, present a promising path for alleviating
the engineering costs that are intrinsic to the manual ConvNet
design, by automating the tuning of DNN hyperparameters (e.g.,
the number of layers, the type of operations per layer, etc.).

NAS approaches formulate the design of hardware-efficient
ConvNets as a multi-objective hyperparameter optimization
problem [2]. In fact, we are witnessing a proliferation of novel
AutoML approaches, with NAS formulations spanning many
different optimization methodologies, such as reinforcement
learning [3], evolutionary algorithms [4], and Bayesian opti-
mization [5]. More importantly, NAS-based AutoML has drawn
significant interest from industry, as demonstrated by the im-
mense amount of computational resources used in NAS research
[3], [4], [6] and by the plethora of commercial cloud-based
AutoML services and frameworks [7]–[11]. Overall, AutoML is
a research topic of paramount importance, since “push-button”
solutions such as NAS frameworks are expected to significantly
advance numerous deep learning (DL) applications, especially
when designing ConvNets for computer vision tasks under the
constraints of mobile devices [2].

Despite the recent breakthroughs, NAS remains an intrinsi-
cally costly optimization problem due to the combinatorially
large search space: e.g., for a mobile-efficient ConvNet with
22 layers, choosing among five candidate operations yields
522 ≈ 2.3× 1015 possible ConvNet architectures. NAS litera-
ture has seen a shift towards one-shot differentiable formula-
tions [12]–[14] which search over a supernet that encompasses
all candidate architectures. Specifically, current NAS methods
relax the combinatorial optimization problem of finding the
optimal ConvNet architecture to an operation/path selection
problem: first, an over-parameterized, multi-path supernet is
constructed, where, for each layer, every candidate operation
is added as a separate trainable path, as illustrated in Fig. 2
(left). Next, NAS formulations solve for the (distributions
of) paths of the multi-path supernet that yield the optimal
architecture.
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Fig. 1. Search Cost vs. ImageNet Accuracy: Our Single-Path NAS out-
performs Mobile NAS methods in both search cost and ImageNet accuracy,
while also improving upon manually-designed MobileNets [1]. In particular,
Single-Path NAS achieves new state-of-the-art 75.62% top-1 accuracy compared
to methods designing for similar latency setting (∼80 ms). We report results
from Mobile NAS and the “Mobile setting” of NAS literature (x-axis is shown
in symlog-scale). Detailed discussion follows in Table I.

Fig. 2. Single-Path NAS directly optimizes for the subset of convolution
weights of an over-parameterized superkernel in each ConvNet layer (right).
Our novel view of the design space eliminates the need for maintaining separate
paths for each candidate operation, as in previous multi-path approaches (left).

As expected, naively branching out all paths is intrinsically
inefficient, since the number of trainable parameters that need to
be maintained and updated during the search grow linearly with
respect to the number of candidate operations per layer [6]. To
tame the memory explosion introduced by the multi-path super-
net, current methods employ creative “workaround” solutions:
e.g., searching on a proxy dataset [15], or employing a memory-
wise scheme with only a subset of paths being updated during
the search [16]. However, these techniques remain considerably
costly, with an overall computational demand of hundreds of
GPU-hours.

In this paper, we propose Single-Path NAS, a novel NAS
method for designing hardware-efficient ConvNets in less than
3 hours. Our key insight is illustrated in Fig. 2 (right). We build
upon the observation that different candidate convolutional op-
erations in NAS can be viewed as subsets of a single superkernel.
Without having to choose among different paths/operations as
in multi-path methods, we instead solve the NAS problem as
finding which subset of kernel weights to use in each ConvNet
layer. By sharing the convolutional kernel weights, we encode

all candidate NAS operations into searchable superkernels (i.e.,
a single path) for each layer of the one-shot NAS supernet.
Single-Path NAS achieves 75.62% top-1 accuracy on ImageNet
with ∼80 ms latency on a Pixel 1, i.e., a +0.4% improvement
over the current best hardware-aware NAS [2] and manually-
designed [1] ConvNets in similar latency settings. The overall
search cost is only 8 epochs, i.e., 2.45 hours on TPU-v3 (24
TPU-hours), up to 5,000× faster compared to prior work. Our
contributions are as follows:

1) Single-path differentiable NAS: We propose a novel
single-path encoding of the one-shot differentiable NAS prob-
lem. Moreover, while recent work investigates the use of
Squeeze-and-Excitation [17] (SE) as a binary NAS decision,
we are first to treat the SE path as a fully searchable operation.
To the best of our knowledge, this is the first single-path, differ-
entiable NAS approach with SE paths, and our fully searchable
treatment improves the accuracy-runtime trade-off compared to
manually-tuned SE paths [1].

2) NAS hyperparameter optimization: To our knowledge,
our work is the first to formulate the hyperparameter tun-
ing of a differentiable NAS solver as a hyperparameter op-
timization problem itself, aiming to answer the question “in-
stead of empirically tuning, can we automatically find the
trade-off hyperparameter in differentiable NAS given a target
runtime?”

II. RELATED WORK

While complex ConvNet designs have unlocked unprece-
dented performance levels in computer vision tasks, the accuracy
improvement has come at the cost of higher computational com-
plexity, making the deployment of state-of-the-art ConvNets to
mobile devices challenging [19]. To this end, a significant body
of prior work aims to co-optimize for the inference latency of
ConvNets. Earlier approaches focus on human expertise to intro-
duce hardware-efficient operations [20], [21]. Pruning [22]–[24]
and quantization [25]–[27] methods share the same goal to
improve the ConvNet efficiency.

NAS methods aim to automate the design of ConvNets based
on reinforcement learning (RL), evolutionary algorithms, or
gradient-based formulations [3], [4], [12], [13], [28]. Earlier
approaches train an agent (e.g., RNN controller) by sampling
candidate architectures over a cell-based design space, where the
same cell is repeated in all layers and the focus is on searching
the cell architecture [3]. Nonetheless, training the controller over
different architectures makes the search costly. An increasing
number of recent methods motivate the need for alleviating the
NAS search cost [29].

Hardware-aware NAS: Earlier NAS methods focused on
maximizing accuracy under FLOPs constraints [14], [30], but
low FLOP count does not necessarily translate to hardware
efficiency [31], [32]. More recent methods incorporate hard-
ware terms (e.g., runtime, power) into cell-based NAS formula-
tions [33], [34], but cell-based implementations are not hardware
friendly [15]. Breaking away from cell-based assumptions in
the search space encoding, Mnasnet searches over a generalized
MobileNetV2-based design space [2].
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Recent NAS literature has seen a shift towards one-shot NAS
formulations [12]–[14]. Differentiable NAS in particular has
gained increased popularity and has achieved state-of-the-art
results [35]. One-shot-based methods use an over-parameterized
super-model network, where, for each layer, every candidate
operation is added as a separate trainable path. Nonetheless,
multi-path search spaces have an intrinsic limitation: the number
of trainable parameters that need to be maintained and updated
with gradients during the search grow linearly with respect to the
number of different convolutional operations per layer, resulting
in memory explosion [6], [16].

To this end, state-of-the-art approaches employ different
“workaround” solutions. FBNet [15] searches on a “proxy”
dataset (i.e., subset of the ImageNet dataset). Despite the de-
creased search cost thanks to the reduced number of train-
ing images, these approaches do not address the fact that the
entire supermodel needs to be maintained in memory during
search, hence the efficiency is limited due to inevitable use of
smaller batch sizes. ProxylessNAS [16] employs a memory-
wise scheme, where only a set of paths is updated during
search. However, such implementation improvements do not
address a second key suboptimality of one-shot approaches, i.e.,
the fact that separate gradient steps are needed to update the
weights and the architectural decisions interchangeably [12].
Although the number of trainable parameters in terms of mem-
ory cost is kept to the same level at any step, the way that
multi-path-based methods traverse the design space remains
inefficient.

While concurrent methods consider relaxed convolution for-
mulations with insight similar to our work [18], [36]–[38], they
either use design spaces and objectives that have been shown to
be hardware inefficient (e.g., cell-based space, FLOP count), or
they optimize over a subset of our design space. In our work,
we optimize over multiple searchable kernels per layer and we
simultaneously search across several NAS decisions, i.e., kernel
sizes, channels dimensions, expansion ratio, or Squeeze-and-
Excitation [17] ratio dimensions.

Searching for Squeeze-and-Excitation [17]: Recently, Mo-
bileNetV3 explored various design choices on top of the
MobileNetV2 backbone, showing that augmenting the mo-
bile inverted bottleneck convolution (MBConv) layers with a
Squeeze-and-Excitation [17] (SE) path can improve the overall
accuracy [1]. Recent RL-based mobile NAS has adapted this
finding by adding the SE path into their search space [2], but by
limiting however their exploration to a binary decision of using
SE or not. Instead, in our work we are the first to treat the SE
path as fully searchable (i.e., searching over various SE ratios),
with a novel outcome. As discussed in our results section, larger
SE ratios further improve the overall performance by yielding
a better DNN accuracy-trade-off. Our AutoML-designed DNN
achieves a new state-of-the-art ImageNet accuracy compared to
methods designing for similar latency settings (∼80 ms).

Hyperparameter optimization beyond DL: Last, we note
that the various aforementioned NAS approaches, including our
proposed methodology, share inspiration and complexity chal-
lenges similar to various hyperparameter optimization methods
in other CS domains, e.g., evolutionary and simulated annealing

algorithms for compiler optimization [39], [40] and one-shot
decision theory in operation research [41].

III. PROPOSED METHOD: SINGLE-PATH NAS

In this Section, we present our proposed method. First,
we discuss our novel single-path view (Subsection III-A)
of the search space. Next, we encode the NAS problem
as finding the subset of convolution weights over the over-
parameterized superkernel (Subsection III-B), and we discuss
how it compares to existing multi-path-based NAS (Subsec-
tion III-C). Last, we formulate the hardware-aware NAS ob-
jective function, where we incorporate an accurate inference
latency model of ConvNets executing on the Pixel 1 smartphone
(Subsection III-D).

A. Mobile ConvNets Search Space: A Novel View

Search Space: As illustrated in Fig. 3 (left), our method builds
upon a fixed “backbone” [16] which follows the MobileNetV2
design [21] and which has been successfully considered by
other differentiable NAS approaches [18]. Specifically, in this
macro-architecture, except for the head and stem layers, all
ConvNet layers are grouped into blocks based on their filter
sizes. The filter numbers per block follow the values in [15],
i.e., we use seven blocks with up to four layers each. Each
layer of these blocks is a mobile inverted bottleneck convolution
MBConv [21] micro-architecture. In particular, an MBConv
layer consists of a point-wise (1× 1) convolution, ak × k depth-
wise convolution, a Squeeze-and-Excitation (SE) block [17],
and a linear 1× 1 convolution. Unless the layer has a stride
value of two, a skip path is introduced to provide a residual
connection from input to output. The goal of NAS is to automat-
ically identify the type of each MBConv layer in the ConvNet
design.

Our search space consists of 13 candidate layer types, with the
layer-wise choices listed in Fig. 3. In particular, each MBConv
layer is parameterized by the following choices: (i) the kernel
size of the depthwise convolution k × k, (ii) the expansion
ratio e, i.e., the ratio between the output and input of the first
1× 1 convolution, and (iii) the Squeeze-and-Excitation [17]
(SE) ratio se, i.e., the ratio between the number of channels
in the intermediate convolution and the input of the SE path. It
is worth observing that, unlike prior NAS work, in our search
space we treat the SE-path as fully searchable (i.e., searching
over various SE ratios). Furthermore, NAS considers a special
skip-op “layer,” which “zeroes-out” the kernel and feeds the
input directly to the output, i.e., the entire layer is dropped. This
NAS choice effectively corresponds to reducing the depth of
the network. Based on this parameterization, we denote each
MBConv as MBConv-k × k-e-se.

Novel view of design space: We build upon the key obser-
vation that different candidate convolutional operations in NAS
can be viewed as subsets of the weights of over-parameterized
superkernels. This observation allows us to view the NAS com-
binatorial problem as finding which subset of kernel weights to
use in each MBConv layer, while sharing the kernel parameters
across different MBConv architectural options. As shown in
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Fig. 3. Single-Path NAS builds upon hierarchical MobileNetV2-like search spaces [2], [18] to identify the mobile inverted bottleneck convolution (MBConv)
per layer (left). Our one-shot supernet encapsulates all possible NAS architectures in the search space without the need for appending each candidate operation as
a separate path. Single-Path NAS directly searches over the weights of two per-layer searchable superkernels that encode all MBConv types, i.e., the different
kernel size (bottom, middle) and expansion ratio (bottom, right) values on the searchable depthwise superkernel, and the different Squeeze-and-Excitation [17]
(SE) ratios over the searchable squeeze superkernel (top, right). That is, instead of treating the SE-path as a binary NAS decision (use it with fixed SE-ratio or not,
as in [2]), we treat the SE path as a fully searchable operation with our single-path encoding. We show that this search space enhancement further improves the
accuracy-runtime trade-off.

Fig. 3, we encode all candidate NAS operations to two searchable
superkernels (i.e., a single path), for each layer of the one-shot
NAS supernet.

B. Proposed Methodology: Single-Path NAS Formulation

Kernel size: To simplify notation and without loss of gener-
ality, we show the case of choosing between a 3× 3 or a 5× 5
kernel for an MBConv layer. Let us denote the weights of the two
candidate kernels as w3×3 and w5×5, respectively. As shown in
Fig. 3 (bottom), we observe that the weights of the 3× 3 kernel
can be viewed as the inner core of the weights of the 5× 5
kernel, while “zeroing” out the weights of the “outer” shell. We
denote this (outer) subset of weights (that does not contribute
to output of the 3× 3 kernel but only to the 5× 5 kernel), as
w5×5\3×3. Hence, the NAS architectural choice of using the
5× 5 convolution corresponds to using both the inner w3×3

weights and the outer shell, i.e., w5×5 = w3×3 +w5×5\3×3.
We can therefore encode the NAS decision directly into the

superkernel of an MBConv layer as a function of kernel weights
as follows:

wk = w3×3 + 1(use 5× 5) ·w5×5\3×3 (1)

where 1(·) is the indicator function that encodes the architectural
NAS choice, i.e., if 1(·) = 1 then wk = w3×3 +w5×5\3×3 =
w5×5, else 1(·) = 0 then wk = w3×3.

Trainable encoding: While the indicator function encodes
the NAS decision, a critical choice is how to formulate the
condition over which the 1(·) is evaluated. Our intuition is that,
for an indicator function that represents whether to use the subset
of weights, its condition should be directly a function of the
subset’s weights. Thus, our goal is to define an “importance”
signal of the subset weights that intrinsically captures their
contribution to the overall ConvNet loss. We draw inspiration

from weight-based conditions that have been successfully used
for quantization-related decisions [42], [43] and we use the
group Lasso term. Specifically, for the indicator related to the
w5×5\3×3 “outer shell” decision, we write condition:

wk = w3×3 + 1
(∥∥w5×5\3×3

∥∥2 > tk=5

)
·w5×5\3×3 (2)

where tk=5 is a latent variable that controls the decision (e.g., a
threshold value) of selecting kernel 5× 5. The threshold will be
compared to the Lasso term to determine if the outerw5×5\3×3

weights are used to the overall convolution. It is important to
notice that, instead of picking the thresholds (e.g., tk=5) by hand,
we seamlessly treat them as trainable parameters to learn via gra-
dient descent. To compute the gradients for thresholds, we relax
the indicator function g(x, t) = 1(x > t) to a sigmoid function,
σ(·), when computing gradients, i.e., ĝ(x, t) = σ(x > t).

Expansion ratio and skip-op: Since the result of the kernel-
based NAS decision wk (2) is a convolution kernel itself, we
can in turn apply our formulation to also encode NAS decisions
for the expansion ratio of the wk kernel. As illustrated in Fig. 3
(bottom, right), the channels of the depthwise convolution in
an MBConv-k × k-3 layer with expansion ratio e = 3 can be
viewed as using one half of the channels of an MBConv-k × k-6
layer with expansion ratio e = 6, while “zeroing” out the second
half of channels {wk,6\3}. Finally, by “zeroing” out the first half
of the output filters as well, the entire superkernel contributes
nothing if added to the residual connection of the MBConv layer:
i.e., by deciding if e = 3, we can encode the NAS decision of
using, or not, only the “skip-op” path. For both decisions over
the searchable kernel of the depthwise convolution, we write:

wdw = 1(‖wk,3‖2 > te=3) · (wk,3

+ 1(
∥∥wk,6\3

∥∥2 > te=6) ·wk,6\3) (3)
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SE ratio: Next, we extend the superkernel-based definition to
encode the Squeeze-and-Excitation [17] (SE) ratio se decision.
In particular, we observe that choosing SE ratio (3) effectively
means to choose the number of channels of the squeeze convolu-
tion stage in the SE path. Hence, as shown in Fig. 3 (top, right),
we replace the convolution kernel of the squeeze convolution
with a searchable superkernel, where the largest number of
channels corresponds to the largest candidate se value, i.e.,
se = 0.5. By following an intuition similar to (3), we observe
that “zero-ing out” the second half of the squeeze convolution
corresponds to using se = 0.25, while “zero-ing out” the entire
kernel corresponds to not using a SE path (se = 0). We therefore
write:

wse = 1(‖w0.25‖2 > tse=0.25)

· (w0.25 + 1(
∥∥w0.5\0.25

∥∥2 > tse=0.5) ·w0.5\0.25)
(4)

Searchable MBConvs: Each MBConv uses 1× 1 convolu-
tions for the point-wise and linear stages, while the kernel-size
decisions affect only the k × k depthwise convolution (Fig. 3).
Thus, we use our searchable depthwise kernel wdw at this
middle stage. In terms of number of channels, the depthwise
kernel depends on the point-wise 1× 1 output, which allows
us to encode the expansion ratio e into wdw as well. That is,
we set the point-wise 1× 1 output to the maximum candidate
expansion ratio, and we instead solve for which of them not to
“zero” out at the depthwise stage. In other words, we also encode
the NAS decision for the expansion ratio at wdw. Similarly, we
can encode the SE ratio se by deciding which the channels of
the 1× 1 squeeze convolution to “zero” out. To this end, we can
simply replace the squeeze kernel with the searchable kernelwse

to directly search for the SE-ratio across the SE path (Fig. 3, top
right).

Overall, our single-path formulation can sufficiently capture
any MBConv type (e.g., MBConv-3× 3-6-0.25, MBConv-5×
5-3-0.5, etc.) in the design space (Fig. 3). For input x, the output
of the i-th MBConv layer of the network is:

oi(x) = conv(x,wi|tik=5, t
i
e=6, t

i
e=3, t

i
se=0.5, t

i
se=0.25) (5)

C. Single-Path vs. Existing Multi-Path Assumptions

We briefly illustrate how our single-path formulation com-
pares to multi-path NAS approaches. In existing methods [12],
[15], [16], the output of each layer i is a (weighted) sum de-
fined over the output of N different paths, where each path j
corresponds to a different candidate kernel wi,j

k×k,e. The weight
of each path αi,j corresponds to the probability that this path is
selected over the parallel paths:

oimulti−path(x) =

N∑
j=1

αi,j · oi,j(x)

= αi,0 · conv(x,wi,0
3×3) + · · ·+ αi,N

· conv(x,wi,N
5×5) (6)

It is easy to see how our novel single-path view is advanta-
geous, since the output of the convolution at layer i of our
search space is directly a function of the weights of our single
over-parameterized kernel (5):

oisingle−path(x) = oi(x)

= conv(x,wi|tik=5, t
i
e=6, t

i
e=3, t

i
se=0.5, t

i
se=0.25) (7)

Multi-path NAS methods solve for the optimal architecture
parameters α (path weights), such that the weights wα of the
corresponding α-architecture have minimal loss L(α,wα):

min
α

min
wα

L(α,wα) (8)

However, solving (8) gives rise to a challenging bi-level opti-
mization problem [12]. Existing methods interchangeably up-
date the α’s while freezing the w’s and vice versa, leading to
more gradient steps.

In contrast, with our single-path formulation, the overall net-
work loss is directly a function of the superkernel weights, where
the learnable kernel- and expansion ratio-related threshold vari-
ables, tk and te, are directly derived as a function (norm) of the
kernel weights w. Consequently, Single-Path NAS formulates
the NAS problem as solving directly over the weight kernels w
of a single-path, compact neural network. Formally, the NAS
problem becomes:

min
w

L(w|tk, te, tse) (9)

Efficiency of Single-Path NAS: Unlike the bi-level optimiza-
tion problem in prior work, solving our NAS formulation in (9) is
as expensive as training the weights of a single-path, branchless,
compact neural network with vanilla gradient descent. There-
fore, our formulation eliminates the need for separate gradient
steps between the ConvNet weights and the NAS parameters.
Moreover, the reduction of the trainable parameters w per se,
further leads to a drastic reduction of the search cost down to
just a few epochs, as our experimental results show later in
Section V.

D. Hardware-Aware NAS With Differentiable Runtime Loss

To design hardware-efficient ConvNets, the differentiable
objective in (9) should reflect both the accuracy of the searched
architecture and its inference latency on the target hardware.
Hence, we use a latency-aware formulation [15]:

L(w|tk, te, tse) = CE(w|tk, te, tse)
+ λ · log(R(w|tk, te, tse)) (10)

The first term CE corresponds to the cross-entropy loss of the
single-path model. The hardware-related term R is the runtime
in milliseconds (ms) of the searched NAS model on the target
mobile platform. Finally, the coefficient λ modulates the trade-
off between cross-entropy and runtime.

To preserve the differentiability of the objective, another crit-
ical choice is the formulation of the latency term R. Prior art has
showed that the total network latency of a mobile ConvNet can
be modeled as the sum of each i-th layer’s runtime Ri, since the
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runtime of each operator is independent of other operators [15],
[16], [44]:

R(w|tk, te) =
∑
i

Ri(wi|tik, tie, tise) (11)

For our approach, we adapt the per-layer runtime model
as a function of the NAS-related decisions t. We profile the
target mobile platform (Pixel 1) and we record the runtime
for each candidate kernel operation per layer i, i.e., Ri

3×3,3,
Ri

3×3,6, Ri
5×5,3, and Ri

5×5,6. We denote the runtime of layer
i by following the notation in (3). First, we express the runtime
of each layer i as a function of the expansion ratio decision:

Ri
e = 1(‖wk,3‖2 > te=3) · (Ri

5×5,3

+ 1(
∥∥wk,6\3

∥∥2 > te=6) · (Ri
5×5,6 −Ri

5×5,3)) (12)

By incorporating the kernel size decision, the runtime based on
the kernel k and expansion ratio decision e is:

Ri
k,e =

Ri
3×3,6

Ri
5×5,6

·Ri
e +Ri

e ·
(
1− Ri

3×3,6

Ri
5×5,6

)

· 1
(∥∥w5×5\3×3

∥∥2 > tk=5

)
(13)

Next, we capture the effect that the SE path has on the runtime.
We denote the total runtime of the i-th MBConv layer with
kernel size k, expansion ratio e, and SE ratios 0.25 or 0.5 as
Ri

k×k,e,se=0.25 and Ri
k×k,e,se=0.5, respectively. Similarly, we

denote the runtime of the MBConv layer without a SE path
as Ri

k×k,e,se=0. For notation clarity, let us define the relative
increase in runtime due to the addition of the SE path, compared
to the runtime without the SE path, as scaling factor:

sik,e,se = Ri
k×k,e,se/R

i
k×k,e,se=0 (14)

Based on our runtime profiling (Section IV), we make two
observations: (i) due to the relatively smaller size of the squeeze
convolution compared to the k × k convolution of the main path,
the difference in the relative runtime increase from using either
SE ratios is negligible, i.e., sik,e,0.25 ≈ sik,e,0.5. Next, (ii) the
relative ratio of the runtimes with and without the SE path differs
based on the type of the main MBConv path. Thus, we express
the overall runtime scaling as function of the kernel and the
expansion ratio choices:

sik,e=6,0.25 = 1(
∥∥w5×5\3×3

∥∥2 > tk=5) · sik=5,e=6,0.25

+ (1− 1(
∥∥w5×5\3×3

∥∥2 > tk=5) · sik=3,e=6,0.25

(15)

sik,e=3,0.25 = 1(
∥∥w5×5\3×3

∥∥2 > tk=5) · sik=5,e=3,0.25

+ (1− 1(
∥∥w5×5\3×3

∥∥2 > tk=5) · sik=3,e=3,0.25

(16)

Hence, overall we have:

Ri =
(
1− 1(

∥∥w0.5\0.25
∥∥2 > tse=0.25)

)
·Ri

k,e

+ 1(
∥∥w0.5\0.25

∥∥2 > tse=0.25)·

Fig. 4. Runtime profiling: (Left) The runtime model (11) is accurate, with an
average prediction error of 1.76%. (Right) Runtime results with SE ratios 0,
0.25, and 0.5 show that allowing for SE ratios larger than 0.25 (i.e., 0.5 SE ratio)
provides a better accuracy-runtime trade-off, since the squeeze step is enhanced
with more channels with negligible runtime overhead (sik,e,0.25 ≈ sik,e,0.5),
especially for the deeper layers (MBConv 18-21).

{
1(
∥∥wk,6\3

∥∥2 > te=6) · sik,e=6,0.25

+
(
1− 1(

∥∥wk,6\3
∥∥2 > te=6)

)
· sik,e=3,0.25

}
·Ri

k,e

(17)

As in (2), we relax the indicator function to a sigmoid function
σ(·)when computing gradients. By using this model, the runtime
term in the loss function remains differentiable with respect to
layer-wise NAS choices.

IV. EXPERIMENTAL SETUP

We use Single-Path NAS to design ConvNets for image
classification on ImageNet [46]. We use Pixel 1 as the target
mobile platform. The choice of this experimental setup is im-
portant, since it allows for a representative comparison with
prior hardware-efficient NAS methods that optimize for the same
Pixel 1 device around a target latency of 80 ms [2], [16].

Implementation and deployment: We implement our NAS
framework in TensorFlow (TF version 1.12). During both search
and training stages, we use TPUs (version 3) [47]. To this end, we
build on top of theTPUEstimator classes following the TPU-
related documentation of the MnasNet repository [11]. Last, all
models (ours and prior work) are deployed with TensorFlow
TFLite to the mobile device. On the device, we profile run-
time using the Facebook AI Performance Evaluation Platform
(FAI-PEP) [48] that supports profiling for tflite models
with detailed per-layer runtime breakdown.

Runtime model: To train the inference runtime model, we
record the runtime per layer (MBConv operations breakdown)
by profiling ConvNets with all different MBConv types (12)–
(17). To evaluate the runtime-prediction accuracy of the model,
we generate 100 randomly designed ConvNets (with se = 0)
and we measure their runtime on the device. As illustrated in
Fig. 4 (left), our predictive model is accurate: the Root Mean
Squared Error (RMSE) is 1.32 ms, which corresponds to an
average 1.76% prediction error.

Superkernels implementation: We use Keras to imple-
ment our trainable “superkernels.” Specifically, we define a
custom Keras-based depthwise convolution kernel where the
output is a function of both the weights and the threshold-
based decisions (2)–(3). Our custom layer also returns the
effective runtime of the layer (12)–(17). We document our
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TABLE I
SINGLE-PATH NAS ACHIEVES STATE-OF-THE-ART IMAGE CLASSIFICATION ACCURACY (%) ON IMAGENET FOR SIMILAR ON-DEVICE LATENCY SETTING COMPARED

TO PREVIOUS NAS METHODS (∼80 ms ON PIXEL 1), WITH UP TO 5, 000× REDUCED SEARCH COST IN TERMS OF NUMBER OF EPOCHS

implementation in our project GitHub repository: https://github.
com/dstamoulis/single-path-nas, with detailed steps on how to
reproduce the results.

V. STATE-OF-THE-ART RUNTIME-CONSTRAINED

IMAGENET CLASSIFICATION

We apply our method to design ConvNets for the Pixel 1
phone with an overall target latency around ∼80 ms. We train
the derived Single-Path NAS model for 350 epochs, following
the MnasNet training schedule [2]. We compare our method with
mobile ConvNets designed by human experts and state-of-the-
art NAS methods in Table I, in terms of classification accuracy,
search cost and hardware efficiency (inference latency on Pixel
1). To ensure a fair comparison, we retrain the baseline models
following the same schedule (in fact, we find that the MnasNet-
based training schedule improves the top1 accuracy compared
to what is reported in several previous methods). Similarly, we
profile the models on the same Pixel 1 device. For prior work
that does not optimize for Pixel 1, we retrain and profile their
model closest to the MnasNet baseline (e.g., the FBNet-B and
ChamNet-B networks [15], [45], since the authors use these
ConvNets to compare against the MnasNet model). Finally, we
directly report the number of epochs reported per method, hence
canceling out the effect of different hardware systems (GPU vs.
TPU hours).

ImageNet classification: Table I shows that our Single-Path
NAS achieves top-1 accuracy of 75.62%, which is the new state-
of-the-art ImageNet accuracy among hardware-efficient NAS
methods. More specifically, our method achieves better top-1
accuracy than ProxylessNAS by almost 1%, while maintaining
on par target latency of ∼80 ms on the same target platform.
Overall, we note that Single-Path NAS outperforms prior NAS
methods in this mobile latency range [2], [15], [45], as well
as manually designed models (MobileNetV2 [21]) and Con-
vNets that combine both AutoML and manual-design expertise
(MobileNetV3 [1]), e.g., better than MnasNet-A1 (+0.42%),
FBNet-B (+1.52%), and MobileNetV3 (+0.42%).

Search cost: Single-Path NAS has orders of magnitude re-
duced search cost compared to all previous hardware-efficient
NAS methods. Specifically, MnasNet reports that the controller

Fig. 5. Single-Path NAS search progress: Progress of both objective terms,
i.e., cross entropy CE (left) and runtime R (right) during NAS search.

uses 8 k sampled models, each trained for 5 epochs, for a total of
40 k train epochs. In turn, ChamNet trains an accuracy predictor
on 240 samples, which assuming an aggressively fast training
schedule of five epochs per sample (same as in MnasNet),
corresponds to a total search cost of 1.2 k epochs. ProxylessNAS
reports 200× search cost improvement over MnasNet, hence
the overall cost is the TPU-equivalent of 200 epochs. Finally,
FBNet reports 90 epochs of training on a proxy dataset (10% of
ImageNet). While the number of images per epoch is reduced,
we found that a TPU can accommodate a FBNet-like supermodel
with maximum batch size of 128, hence the number of steps per
FBNet epoch are still 8× more compared to the steps per epoch
in our method.1

In comparison, Single-Path NAS has a total cost of eight
epochs, which is 5,000× faster than MnasNet, 25× faster than
ProxylessNAS, and 11× faster than FBNet. In particular, we
use an aggressive training schedule similar to the few-epochs
schedule used in MnasNet to train the individual ConvNet
samples [2]. Overall, we visualize the search efficiency of our
method in Fig. 5, where we show the progress of both CE and
R terms of (9). Earlier during our search (first six epochs), we
employ dropout across the different subsets of the kernel weights

1Table I: *The search cost in epochs is estimated based on the claim that
ProxylessNAS is 200× faster than MnasNet, following the one-shot solver
setup reported in the paper [16]. ‡ChamNet does not detail the model derived
under runtime constraints [45] so we cannot retrain or measure the latency.
† For MobileNetV3, we report the version that matches the MnasNet space
backbone, since some additional manual enhancements in the network head
are directly applicable to all other ConvNets considered. Overall, the reported
epochs correspond to the best search cost following the search setup reported
per method.§ For FBNet, besides the discussion about the batch size to fit the
TPU, we consider the solver optimizer setup as reported in the paper [15].
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Fig. 6. Hardware-efficient ConvNet found by Single-Path NAS, with top-1 accuracy of 75.62% on ImageNet and inference time of 81.84 ms on Pixel 1 phone.
Compared to our previous NAS result without SE [18], some of the earlier 5× 5 MBConvs have been replaced with smaller 3× 3− 3 MBConvs, and instead
Single-Path NAS selects SE paths with SE ratio of se = 0.5 in the last layers. Overall, our NAS enhancement with fully searchable SE improves the accuracy-runtime
trade-off of mobile ConvNets.

(Fig. 5, right). Dropout is a common technique in NAS methods
to prevent the supernet from learning as an ensemble. Unlike
prior art that employs this technique over the separate paths of
the multi-path supernet, we directly drop randomly the subsets
of the superkernel in our single-path search space. We search
for ∼10 k steps (8 epochs with a batch size of 1024), which
corresponds to total wall-clock time of 2.45 hours on a TPUv3
(i.e., 24 TPU-hours).

Enhancing accuracy-runtime trade-off: Our derived Con-
vNet architecture is shown in Fig. 6. Our goal is to understand
the better accuracy-runtime trade-off achieved by the searchable
SE. To this end, a comparison against the earlier version of our
work [18], [49] without SE can give insightful observations. In
particular, we observe that, compared to the ConvNet previously
derived in [18], some of the earlier MBConv types with either
5× 5 kernels or expansion ration 6, have been replaced with
smaller 3× 3− 3 MBConvs, and instead the Single-Path NAS
flow selects SE paths with SE ratio of se = 0.5 in the last few lay-
ers. Compared to the previous result without SE (74.96% [18]),
we confirm that the use of SE improves the accuracy-runtime
trade-off of mobile ConvNets, as attested by the top1 accuracy
improvement while remaining around the same latency setting
∼80 ms.

In addition, to understand the NAS choices related to the SE
paths in our ConvNet, we report the relative runtime increase
per MBConv types for each layer in Fig. 4 (right). We can make
the following observations. First, we observe that the relative
increase in the MBConv’s runtime (scaling factor sk,e,0.25 in (17)
is closer to 1.0 for the last 4 layers. This is to be expected, since
the squeeze 1× 1 convolution is performed on input feature
maps with reduced spatial dimensions. Indeed, we observe that
Single-Path NAS appends SE paths in these last layers. Second,
we notice that the difference in the relative runtime increase from
using either SE ratios (0.25 or 0.5) is negligible, i.e., sik,e,0.25 ≈
sik,e,0.5. This is important in the context of NAS, since prior
work only searches over the binary decision of using se = 0.25
or not, without searching for the se value. Indeed, Single-Path
NAS selects se = 0.5 for all the SE paths when included.

Comparison with random search: An increasing amount
of recent methods appeal to the practicality of random search
as a simple, parameter-free NAS alternative [50]. It is therefore
important to have a comparison of our result against random
search. Specifically, we randomly sample ten ConvNets with
predicted runtime from 75 ms to 80 ms (simple sampling by

Fig. 7. Single-Path NAS outperforms MobileNetV2 [21] and Proxyless-
NAS [16] across various channel size scales.

rejection). The average accuracy and runtime of the random
samples are reported in Table I. We observe that, while random
search does not outperform NAS methods, the overall accuracy
is comparable to MobileNetV2. This result highlights that the
effectiveness of NAS methods heavily relies upon the properties
of the MobileNetV2-based design space. We provide an exten-
sive analysis in Section VII-B, where we comprehensively study
the variance in solutions from differentiable NAS and random
search methods.

Channel scaling: Next, we follow a typical analysis [15],
[16], by rescaling the networks using a width multiplier [21].
As shown in Fig. 7, we observe that our model consistently
outperforms prior methods under varying runtime settings. For
instance, Single-Path NAS with 81.84 ms is 1.44× faster than
the MobileNetV2 scaled model of similar accuracy.

A. Ablation Study: Kernel-Based Accuracy-Efficiency
Trade-off

Single-Path NAS searches over subsets of the convolutional
kernel weights. Hence, we conduct experiments to highlight how
kernel-weight subsets can capture accuracy-efficiency trade-
off effectively. To this end, we use the MobileNetV2 macro-
architecture as a backbone (we maintain the location of stride-2
layers as default). As two baseline networks, we consider the
default MobileNetV2 with MBConv-3× 3-6 blocks (i.e., w3×3

kernels for all depthwise convolutions), and a network with
MBConv-5× 5-6 blocks (i.e., w5×5 kernels).

Next, to capture the subset-based training of weights dur-
ing a Single-Path NAS search, we consider a ConvNet with
MBConv-5× 5-6 blocks, where we compute the loss of the
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TABLE II
SEARCHING ACROSS SUBSETS OF KERNEL WEIGHTS: CONVNETS WITH

WEIGHT VALUES TRAINED OVER SUBSETS OF THE KERNELS (3× 3 AS SUBSET

OF 5× 5) ACHIEVE PERFORMANCE (TOP-1 ACCURACY) SIMILAR TO

CONVNETS WITH INDIVIDUALLY TRAINED KERNELS

model over two subsets, (i) the inner w3×3 weights, and (ii)
by also using the remaining w5×5\3×3 weights. For each loss
computed over these subsets, we accumulate back-propagated
gradients and update the respective weights, i.e., gradients are
being applied separately to the inner and to the entire kernel
per layer. We follow training steps similar to the “switchable”
training across channels as in [51] (for the remaining training
hyper-parameters we use the same setup as the default MnasNet).
As shown in Table II, we observe the final accuracy across
the kernel granularity, i.e., with the inner w3×3 and the entire
w5×5 = w3×3 +w5×5\3×3 kernels, follows an accuracy change
relative to ConvNets with individually trained kernels.

Such finding is significant in the context of NAS, since
choosing over subsets of kernels can effectively capture the
accuracy-runtime trade-offs similar to their individually trained
counterparts. We therefore conjecture that our efficient
superkernel-based design search can be flexibly adapted and
benefit the guided search space exploration in other RL-based
NAS methods. Beyond the NAS literature, our finding is closely
related to Slimmable networks [51] (SlimmableNets limit how-
ever their analysis across the channel dimension).

VI. COCO OBJECT DETECTION PERFORMANCE

In this Section, we assess the performance of Single-Path
NAS as a feature extractor for object detection application. In
particular, we use our network as a drop-in replacement for the
backbone featurizer in the Mask-RCNN model [52], which is
based on Feature Pyramid Network (FPN) [53] as head and our
network as a backbone. Similarly, we train the model and we
compare with other backbones networks, i.e., based on back-
bones from models designed from earlier mobile NAS methods.
We train our model on the COCO dataset [54].

We use the open-source implementation of TPU-trained
Mask-RCNN2 for experiments. The models are trained on TPUs
with batch size of 64. We train the different models on COCO
train2017 and we evaluate them on COCO val2017. Fol-
lowing typical the typical FPN flow [55], we attach the last
feature extractor to the detection head. It is worth noticing
that FPN is less hardware efficient compared to MobileNet-like
alternatives such as SSDLite [21]. Nonetheless, the focus of this
analysis is to assess the various NAS designs are feature extractor
while assuming the head design (ergo, the latency) fixed. Indeed,

2[Online]. Available: https://cloud.google.com/tpu/docs/tutorials/mask-rcnn

TABLE III
COCO OBJECT DETECTION PERFORMANCE

in Table III we observe that Single-Path NAS outperforms other
designs in terms of Average-precision (AP) and across all scales.

VII. HYPERPARAMETER OPTIMIZATION OF

DIFFERENTIABLE NAS

A. Architecture Distribution in Differentiable NAS

While NAS literature has been traditionally driven by strong
empirical results, the AutoML community has motivated studies
to understand the properties of NAS solvers, their limitations,
how and why they yield strong performance [6]. Hence, we find
important to investigate the following questions: “How do the
different NAS formulations, e.g., the encoding of NAS choices
across multiple paths or a single path, affect the differentiable
NAS performance?” This is an important first step towards
analyzing single-path formulations.

Moreover, prior work on mobile NAS [15], [16] lacks a
detailed intra-level analysis on the statistics of differentiable
methods, so a valid question to ask is: “By how much does the
quality of the ConvNet design vary across multiple runs of the
same NAS search?” For instance, Stochastic NAS [14] investi-
gated the entropy of architecture distributions, but the analysis is
limited to cell-based designs [12] and does not consider mobile
AutoML.

To quantitatively answer these two questions, we consider the
following differentiable NAS formulations:

1) Multi-path with sigmoid: This implementation solves the
bilevel, multi-path formulation of (8). We implement a vanilla
differentiable multi-path NAS solver [16]. While our implemen-
tation replicates prior work’s methodology [15], we adjust the
solver to the aggressive few-epoch schedule used in [2]. This
allows us to assess whether existing multi-path methods can
reach a high-performing ConvNet within the same number of
epochs as Single-Path NAS.

Specifically, we set the number of total steps to eight epochs
and we update the warm-up and learning rate schedules ac-
cordingly. We slim down the multi-path supernet by a width-
multiplier factor of 0.5 (recent NAS work also employs such
search on a scaled-down model [56]). Similar to [15], we gen-
erate a proxy dataset (i.e., subset of ImageNet with 100 classes)
to search on. We deploy our implementation on TPUs.

Next, we investigate various single-path-based formulations:
2) Single-path with sigmoid: this is the default implementa-

tion detailed in Section III. That is, during search (backpropaga-
tion over the supernet) we approximate the indicator functions
(e.g., 1(‖w5×5\3×3‖2 > tk=5)) with sigmoid functions σ().

3) Single-path with STE: during search we approximate
the indicator functions (e.g., 1(‖w5×5\3×3‖2 > tk=5)) with the
straight-through estimator (STE) [57], [58].
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Fig. 8. “How do the differentiable Mobile NAS formulation assumptions affect the overall performance (accuracy and runtime) of the AutoML-designed ConvNet?”
Statistics (mean and variance) for the (proxy) accuracy (top 1%) and the runtime of ConvNets designed via various formulations across 20 runs; for intra-run
statistics, we pick the Pareto optimal ConvNet out of the 20 samples and we train another 20 ConvNets sampled from the softmax distribution.

4) Single-path with softmax: This implementation is a
hybrid between the single-path encoding of the design space
and the use of softmax, i.e., we encode the NAS choice of
selecting across superkernel subsets using a softmax function
parameterized by τ , i.e., softmax(τ). For instance, we represent
the kernel-level decision as:

wk =
exp(τ3×3)∑

j exp(τj)
·w3×3

+
exp(τ5×5)∑

j exp(τj)
· (w3×3 +w5×5\3×3) (18)

To update the kernel-level softmax(τ) choices, we formu-
late the Single-Path search as a bilevel optimization problem
min
τ

min
wτ

L(τ,wτ ), where the steps for updating the NAS τ

parameters and the ConvNet weights occur interchangeably.
5) Random search: Parameter-free random search via con-

strained sampling. That is, we employ simple sampling by
rejection, i.e., we keep the samples with runtimes within the
range of interest ∼80 ms.

For all the aforementioned methods, we find the λ value that
achieves the desired accuracy trade-off ∼80 ms (to tune λ, we
use the hyperparameter-tuning scheduler presented in the next
Subsection VII-B). We repeat the same NAS search experiment
20 times and we measure the mean and (inter-) variance across
the 20 runs for both objective terms, i.e., validation accuracy and
runtime of the AutoML-designed ConvNet, denoted as inter-run.
In addition, to capture the (intra-) variance within a single search
in softmax-based methods, we pick the best result among the 20
runs, and we train 20 new samples from the softmax distribution
(in fact, similar selection is used in [15] where 10 ConvNets are
sampled and trained to pick the best). We denote the latter variant
as intra-run. We train each ConvNet for a few epochs to obtain
a representative proxy-accuracy value, following the aggressive
training used in Mnasnet to study their RL method [2]. We
summarize our results in Fig. 8.

Comparison vs. random search: This result is particularly
interesting, since there has been recent discussion within the
NAS community on whether simple random search could find
designs with performance comparable to those of more complex
methods [59]. Indeed, we observe that random search performs
on par with multi-path cases, which confirms similar observa-
tions by recent work [50], [60]. Nonetheless, it is important to

note that random search is still inferior compared to Single-Path
NAS in terms of the (proxy) accuracy around the target latency
range ∼80 ms.

Furthermore, the nearly-zero search cost of random search
is not necessarily representative: to avoid training all random,
constraint-satisfying samples, an AutoML practitioner would
employ an evaluation on the proxy task, by training each sample
for few epochs and by picking the one with highest accuracy.
Hence, the actual search cost for random search is not negligible.
In fact, the low search cost of our method (8 epochs) is compara-
ble to the number of training epochs during the aforementioned
selection process. Given that Single-Path NAS gives ConvNets
with superior performance than random search at comparable
cost, we argue that NAS remains a better AutoML option than
random search methods.

Softmax intra-run variance: Next, we note the variance
inherent to all the softmax-based cases. That is, we observe that
sampling the softmax of the best NAS search (selected from
the 20 NAS repetitions) yields high-variance in terms of both
accuracy and runtime. This finding confirms a recent analysis
that shows the high entropy in the architecture distribution for
cell-based multi-path designs [14].

Different single-path variants: Moreover, we compare our
original Single-Path NAS (single-path sigmoid) method against
its two variants (i) with STE and (ii) with softmax (inter-run).
First, once again we note that the softmax version has higher
variance compared to both the sigmoid and the STE versions.
For the STE version, while the variance appears smaller than
sigmoid, it is important to note that we had to repeat the
process multiple times to reach 20 completed searches due to
encountered numerical instability issues with STE (exploding
gradients). A deeper study on the STE is an interesting direction
for future NAS work, similar to recent STE analysis in the
context of hardware-aware quantization [57].

Single-Path NAS vs. prior work: Last, we highlight the
advantage of using our proposed method (single-path sigmoid)
vs. existing methods [15], [16] (multi-path softmax, inter-run).
We observe that the variance across different Single-Path NAS
runs is smaller than the variance of softmax-based methods (both
inter- and intra-run).

Overall, we observe that multi-path softmax methods sample
either low accuracy ConvNets (many layers skipped, which
is another issue previously observed [14]) or higher accuracy
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Fig. 9. Left: Progress of various hyperparameter optimization solvers with respect to the overall reward. Right: Visualizing the objective value (19) across
multiple fidelities (y-axis) and hyperparameter values (x-axis) via grid search. Interestingly, low-cost function evaluations (middle, right) that reach the Pareto point
around the target latency faster, tend to “overshoot” beyond this point towards over-constrained, suboptimal designs (bottom, right).

ones that violate the constraint. We hypothesize that the inferior
solutions are due to the fact that the bilevel problem (8) is an
intrinsically more complex optimization problem to solve, as
also discussed in [12]. That is, it is difficult for the multi-path
solver to reach a high quality solution within a few epochs, while
our proposed Single-Path NAS for the same number of steps is
as costly as training a compact model.

Besides the optimization complexity, one would argue that
the performance of multi-path methods is decided by several
hyperparameters. Indeed, we extensively experimented with nu-
merous settings by varying the number of epochs between the in-
terleaved steps (NAS vs. ConvNet weights updates), the learning
rates for each update step, the batch size, the parameterization
of the Gumbel-softmax [15], to name a few. Given that running
each solver parameterization is expensive (hundreds of epochs),
this highlights another limitation related to the tuning cost for
all the hyperparameters involved, making our proposed method
even more appealing to use. In fact, in the next subsection,
we aim to fully erase this engineering cost for the AutoML
practitioner, by automatically tuning the hyperparameters of
Single-Path NAS.

B. Hypertuning the NAS Hyperparameterizer

NAS methods approximate Pareto solutions by a customized
weighted objective parameterized by a trade-off parameter λ [2],
but this value is manually picked. For instance, Mnasnet employs
an empirical rule based on “prior” runtime-accuracy trade-off
knowledge [2], while FBNet [15] and ProxylessNAS [16] do
not provide details on the λ value used or how it was picked.
Hence, we aim to answer the question: “Instead of empirically
tuning the trade-off hyperparameter, can we automatically find
it for a target runtime given by the hardware engineers?”

To this end, we formulate the tuning of λ (10) as a hyper-
parameter optimization problem itself. Specifically, we solve
for the λ value that maximizes the validation accuracy around
runtime target RT . For a representative analysis, we use the
weighted objective introduced in [2] that approximates Pareto
optimal solutions, allowing our approach to traverse the Pareto
front while solving for λ. Specifically, we write:

max
λ

Accvalid(λ|w, tk, te, tse) ·
[
R(λ|w, tk, te, tse)

RT

]w

with w =

{
0, if R(λ|w, tk, te, tse) ≤ RT

−1, otherwise
(19)

We would like to stress here that each evaluation of (19)
corresponds to new NAS search. Therefore, solving this hy-
perparameter optimization problem would be impractical with
previous NAS methods where each function evaluation would
cost hundreds of hours. Instead, we exploit the efficiency of
Single-Path NAS and we investigate various black-box hyperpa-
rameter optimization techniques. Specifically, we consider the
following methods:

1) Bayesian optimization [61]: Vanilla Bayesian optimiza-
tion, as implemented in the Dragonfly tool [62], available
online.3 The method fits a Gaussian process (GP) [63] (prob-
abilistic model) to the objective (19) by points sampled across
the hyperparameter λ.

2) Multi-fidelity optimization [64]: Enchanced Bayesian
optimization method where the GP fits both the hyperparameter
space (λ values) and the fidelity (budget) space. The intuition is
that low-fidelity evaluations could offer a good view of the func-
tion manifold at lower cost. We use discrete budget choices from
two up to eight epochs (eight epochs is the default maximum in
the vanilla case) as multiple fidelities. We use the multi-fidelity
method from Dragonfly [62] which, for each new sample to
evaluate, suggests the λ value and the sample budget (epochs).

3) Random search [65]: Parameter-free random search that
randomly samples λ values.

We extend our AutoML framework to support hyperparameter
optimization. Our implementation automates the process of
launching multiple (sequential or parallel) runs on cloud TPUs
and calls the black-box optimization solver that suggests the
next sample to evaluate. Our goal is to find the trade-off λ value
that yields Pareto-optimal designs around the target runtime of
RT = 80 ms. We run each solver for five runs with a total budget
of 400 epochs and we track the current-best objective value. In
Fig. 9 (left), we report the objective value per hyperparameter
optimization method, where we plot the average-best and the
variance across the five runs.

Vanilla vs. multi-fidelity Bayesian optimization: We ob-
serve that vanilla Bayesian optimization outperforms the multi-
fidelity counterpart by reaching the near-optimal region faster
and by converging to final solutions with higher reward. This
is an interesting finding, since prior work shows that, for other
hyperparameter settings (e.g., learning rate) multi-fidelity en-
hances the optimization process [64].

3[Online]. Available: https://github.com/dragonfly/dragonfly/
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To fully investigate why this occurs, we employ a grid search
across the budget epochs (from two to eight) and different
λ values, and we plot the objective value (19) of each grid
point in Fig. 9 (right). Indeed, we can observe that the main
assumption that “low-cost samples give a representative view of
the space” [64] does not fully hold. As highlighted in the Figure,
we observe that initially promising λ values (brighter objective
values obtained after four or five epochs, middle right) become
suboptimal (darker, bottom right).

From a NAS design standpoint, the larger values λ penalize
the runtime term more so they approach the Pareto point around
the target latency faster, but they tend to “overshoot” beyond
this point towards over-constrained designs. We find this result
interesting, since we postulate that other black-box optimization
techniques that rely on low-cost (early) approximation (e.g.,
Hyperband [66]) would encounter the same issue. Studying this
hyperparameter optimization problem is an interesting research
direction currently under-explored, so we aim to delve into this
problem in future work.

Comparison vs. random search: We find that random
search, while never outperforming the Bayesian optimization
result, has a relatively good performance at tuning λ. Interest-
ingly, recent work shares similar observation when tuning NAS
scaling hyperparameters via grid search [56]. We hope that our
analysis would foster exploration towards this direction.

VIII. CONCLUSION

In this paper, we proposed Single-Path NAS, a NAS method
that reduces the search cost for designing hardware-efficient
ConvNets to less than 3 hours. The key idea is to revisit the
one-shot supernet design space with a novel single-path view,
by formulating the NAS problem as finding which subset of
kernel weights to use in each ConvNet layer. We enhanced the
accuracy-runtime trade-off in differentiable NAS by treating the
Squeeze-and-Excitation path as a fully searchable operation with
our single-path encoding. Single-Path NAS achieved 75.62%
top-1 accuracy on ImageNet, which is state-of-the-art accu-
racy compared to NAS methods around similar latency setting
(∼80 ms). More importantly, we reduced the NAS search cost
down to only 8 epochs (24 TPU-hours), which is up to 5,000×
faster compared to prior work.

Moreover, we exploited the efficiency of our method to answer
questions related to the effectiveness of differentiable NAS. In
particular, we studied how different NAS formulation choices
affect the performance of the designed ConvNets. Last, we
explored whether we can automatically find the NAS hyper-
parameters that yield the desired accuracy-runtime trade-off, by
formulating the tuning of the NAS solver as a hyperparameter
optimization problem itself.
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