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Abstract

In recent years, Convolutional Neural Networks (CNNs)
have shown superior capability in visual learning tasks.
While accuracy-wise CNNs provide unprecedented perfor-
mance, they are also known to be computationally inten-
sive and energy demanding for modern computer systems.
In this paper, we propose Virtual Pooling (ViP), a model-
level approach to improve speed and energy consumption of
CNN-based image classification and object detection tasks,
with a provable error bound. We show the efficacy of ViP
through experiments on four CNN models, three represen-
tative datasets, both desktop and mobile platforms, and two
visual learning tasks, i.e., image classification and object
detection. For example, ViP delivers 2.1x speedup with less
than 1.5% accuracy degradation in ImageNet classification
on VGGI6, and 1.8x speedup with 0.025 mAP degrada-
tion in PASCAL VOC object detection with Faster-RCNN.
ViP also reduces mobile GPU and CPU energy consump-
tion by up to 55% and 70%, respectively. As a comple-
mentary method to existing acceleration approaches, ViP
achieves 1.9x speedup on ThiNet leading to a combined
speedup of 5.23x on VGGI16. Furthermore, ViP provides
a knob for machine learning practitioners to generate a
set of CNN models with varying trade-offs between system
speed/energy consumption and accuracy to better accom-
modate the requirements of their tasks. Code is available at
https://github.com/cmu-enyac/VirtualPooling.

1. Introduction

Deep Convolutional Neural Networks (CNNs) have
gained tremendous traction in recent years thanks to their
outstanding performance in visual learning tasks, e.g., im-
age classification and object detection [28, 2, 26]. How-
ever, CNNs are often considered very computationally in-
tensive and energy demanding [20, 13, 1]. With the preva-
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Figure 1. Illustration of virtual pooling [22]. By using a larger
stride, we save computation in conv layers and, to recover the out-
put size, we use linear interpolation which is fast to compute.

lence of mobile devices, being able to run CNN-based vi-
sual tasks efficiently, in terms of both speed and energy, be-
comes a critical enabling factor of various important appli-
cations, e.g., augmented reality, self-driving cars, Internet-
of-Things, etc, which all heavily rely on fast and low en-
ergy CNN computation. To alleviate the problem, engineers
and scientists proposed various solutions, including sparsity
regularization, connection pruning, model quantization, low
rank approximation, efc. In this work, we propose an com-
plementary approach, called Virtual Pooling (ViP), which
takes advantage of pixel locality and redundancy to reduce
the computation cost originating from the most computa-
tionally expensive part of CNN: convolution layers (conv
layers). As illustrated in Fig.1, ViP reduces computation
cost by computing convolution with a larger (2x) stride size.
While naturally this operation quickly shrinks the output
feature map, and thus can only be done a few times before
the image vanishes, we overcome this problem by recov-
ering the feature map via linear interpolation with prov-
able error bound. The succeeding layer hence observes the
same size of input with or without ViP, and no architec-
tural change is needed. Our experimental results on differ-
ent CNN models and tasks show that we can achieve 2.1x
speedup with 1.5% accuracy degradation in image classifi-
cation, compared to the 1.9x speedup with 2.5% drop from
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the prior work [9], and 1.8x speedup with 0.025 mAP drop
in object detection.

2. Related Work and Contributions

There are several prior works targeting CNN accelera-
tion [13, 30, 9, 7]. Model compression [13, 30, 15, 16] is
a popular approach of reducing CNN memory requirement
and runtime via weight pruning. [13] proposed to prune
connections and finetune the network progressively which
results in high compression rate. However, due to the non-
structured sparsity generated by this method, it also needs
specialized hardware to realize high speedup [11]. In light
of this, [30] used group lasso to generate structured sparsity
and speed up CNNs on general-purpose processors.

CNN model binarization or quantization methods [3, 4,
7,31, 32, 33] quantize CNN weights and/or activations into
low-precision fewer-bit representations. Thereafter, they
are able to both reduce memory cost and speedup com-
putation by using efficient hardware units. [3] uses bi-
nary weights rather than continuous-valued weights in CNN
models, which is not only able to save memory space, but
also greatly speedup convolution via replacing multiply-
accumulate operations by simple accumulations. Ding et
al., [7] reduces the number of bits of CNN weights through
its binary representation, which can be sped up by us-
ing shift-add operation rather than expensive multipliers on
hardware. [4, 25] further quantize the CNN intermediate ac-
tivations, resulting in both binary weight and input, which
can be further accelerated via efficient XNOR operation.

Low rank approximation methods [17, 20, 6] speed up
convolution computation by exploiting the redundancies of
the convolutional kernel using low-rank tensor decomposi-
tions. The original conv layer is then replaced by a sequence
of conv layers with low-rank filters, which have a much
lower total computational cost. [17] exploit cross-channel
or filter redundancy to construct rank-one basis of filters in
the spatial domain. [20] use non-linear least squares to com-
pute a low-rank CP-decomposition of the filters into fewer
rank-one tensors and then finetune the entire network.

The closest work to ours is PerforatedCNNSs [9] which,
inspired by the idea of loop perforation [27], reduces the
computation cost in conv layers by exploiting the spatial
redundancy. Nevertheless, PerforatedCNNs use a dataset
dependent method to generate an irregular output mask that
determines which neuron should be computed exactly. In
addition, PerforatedCNNs need a mask at runtime (hence
introducing overhead) to determine the value for interpo-
lation. In contrast, ViP only depends on the intermediate
activations of the CNN layer without extra parameters. Fi-
nally, PerforatedCNNs also consider the use of a pooling-
structured mask, but that can only be applied to the layers
immediately preceding a pooling layer; also, the associated
interpolation method is nearest neighbor. In contrast, our

method can be applied to any conv layer in the network.
Furthermore, we show that the ViP method achieves higher
speedup with lower accuracy degradation. To the best of our
knowledge, our work makes the following contributions:

1. We are the first to propose and implement the Virtual
Pooling (ViP) method with provable error bound. ViP
is independent of the dataset and can be applied to ac-
celerate any conv layer.

2. Plug-and-play: ViP is a self-contained custom layer.
Without modifying the deep learning framework, it
works simply by doubling the stride of the conv layer
and inserting the ViP layer after it.

3. ViP can be combined with existing model acceleration
methods, e.g., model compression, quantization, efc.,
to squeeze more performance out of the CNN models.

4. More than providing a single CNN configuration, ViP
generates a set of models with varying speedup/energy
and accuracy trade-offs from which a machine learning
practitioner can select for the task at hand.

5. Most CNN acceleration techniques consider only the
image classification task, while they lack evidence on
how their performance may translate to the object de-
tection task, which has its own unique properties. In
this work, we conduct experiments to show that ViP
also works well under the state-of-the-art faster-rcnn
object detection framework.

The remainder of this paper is organized as follows. Section
3 introduces the details of the virtual pooling method. In
Section 4, we conduct extensive experiments with different
CNN models on both desktop and mobile platforms, and we
apply ViP to speed up both image classification and object
detection tasks. Finally, we conclude our work in Section 5.

3. Methodology

Virtual Pooling (ViP) relies on the idea of reducing CNN
computation cost by taking advantage of pixel spatial local-
ity and redundancy. CNNs are often comprised of multiple
conv layers interleaved with pooling layers. Pooling layers
are considered essential for reducing spatial resolution such
that computation cost is reduced and robustness to small
distortions in images is enhanced. However, the widely-
used stride-two non-overlapping pooling method [28, 14]
reduces image size by half in each of the two dimensions,
and thus quickly shrinks the image. As a result, the max-
imum number of pooling operations that can be done in a
CNN is limited by the size of the input image. For example,
an input image of size 224 x 224 is shrunk to size 7 * 7 after
only five pooling layers in VGG16, while the current state-
of-the-art CNNs usually have several tens to hundreds of
layers [28, 14]. There is an opportunity to reduce computa-
tion further if we can bridge the gap between the number of
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pooling-like operations we can do and the number of layers
in the network.

3.1. ViP Layer

To this end, we propose ViP, a method that can maintain
the output size of each layer, while using a larger-stride con-
volution. Consequently, we can have as many ViP layers as
possible while not encountering the problem of diminishing
image size in the real pooling operation. While it is possible
to increase the stride of an early layer and remove a later
pooling layer to achieve a similar effect, our experiments
show that ViP is consistently better than pooling removal
with 1.42% higher accuracy on average. Furthermore, this
method can only reduce computation in consecutive conv
layers prior to pooling, while ViP works in any order (as we
will show later, accuracy sensitivity is non-monotonic with
the network layer) which gives a better accuracy-speedup
curve. As shown in Fig.1, ViP saves computation by per-
forming a larger stride convolution in the layer before ViP,
and then recovers the output size by linear interpolation
which is very computationally efficient. For example, we
can double the stride of all conv layers in VGG16 to reduce
computation, while the succeeding layer observes the input
of exactly the same size after linear interpolation. The theo-
retical speedup of this approach is 4x as we halve the num-
ber of convolutions in two dimensions. Though transposed
convolution (Deconv) [23] is also an upsampling method,
to speedup the network, its overhead must be sufficiently
small so it does not offset the reduced latency. In the sup-
plementary material we show that ViP is very efficient and
its computation is only 0.016% of Deconv.

To be more specific, let’s use Z to denote the input to
conv layer and O to denote the output. Without loss of
generality, although Z and O are often four-dimensional,
we omit the first dimension of batch index because ViP ap-
plies to all images in the batch independently, and there-
fore, Z. p,.» and Og p, ., both have three dimensions: chan-
nel ¢ € [1,C], height h € [1, H], and width w € [1,W].
We consider convolution filters, W/ ¢ m »n, With the same
height and width with odd values M as are commonly used
in CNNs [28, 14], and with ¢’ representing the index of the
filter. For the purpose of simplicity, we further assume H
and W are even numbers, e.g., input image size of Ima-
geNet is usually 224 x 224, and in the case of odd numbers,
we have special cases only on the boundaries of the image
that are easy to deal with. Furthermore, we use ngﬁw
to represent the output of the original stride-s convolution
without ViP, and O}’  to denote the output of using ViP
method, i.e., the output of stride-2s convolution plus linear
interpolation. A smaller ||ng,ff’w — OV ||z indicates a
smaller perturbation of the truth output and hence, less ac-
curacy degradation for the ViP method. According to the
definition of convolution:

c L&)
Ori
Obw=2_ 2
c=1 — | M
mn=—| |
If we double the stride, we have an output with reduced size:
c L&)
057@}?,“; = Z Z Ic,25»h7m,25»w7n * Wc’,c,m,n (2)

=l mn=—| 4|

Ic,s»hfm,&wfn * Wc/,c,m,n (1)

For ease of explanation, we use an auxiliary function

OZere which is zero-spaced to enlarge O%%¢ to the same
. Orig - . .
size of O, ", in the following way:
Red
Zero _ Ou%2.wy2 T w are even numbers 3)
. =
o 0 Otherwise

We approximate the output with the ViP method OY*” by

c h,w
using the mean of its immediate non-expanding-zero neigh-

bors (including itself, if computed exactly) in Oge{;‘;j
1 Z
ViP __ Zm,nzfl Oc’,e;znim,wjtn (4)
chyw ™ 1 Ze
Zm,nzfl ]l(oc/flsim,ern # 0)

This is actually a convolution with 3 x 3 filters, but with
variable weight values depending on the number of non-
expanding-zero neighbors. We can simplify the above com-
putation by considering four cases similar to Eq.3:

O??ﬁ/g,w/g h even, w even

1 Red Red
0% = | gt 2 T e o e
o = 502, w2y + Oz fwyz)  heven, wodd
1 h=ns2) or tny21 OFG ) hodd, wodd
w=|w/2] or [w/2]
(©)

The above equations are embarrassingly parallel and hence
fast to compute on GPU. We implemented our custom ViP
layer based on Eq.5.

We can further provide an error bound, considering the
case where we apply ViP to layer /.
Proposition 1. Assume the output of layer s (hence input to
layer lsy1), OUs) s L-Lipschitz continuous [21] on height
and width dimensions (h,w), i.e.,
1O = ity wal < Lll(h1,w1) — (B2 wy)

¢,hywy ¢ ha,wa
Vhi, he € [1, H],wl,wg S [1, W]
Assume that ¥, 1, the ¢'-th convolutional filter of the l-th

layer, denoted as WO, has a bounded l5-norm: HWC(,” |2 =

c/ ’
\/meanQ(Wc(f)) + stdQ(Wc(,l)) < BU. Then, the lo-norm
of the output error is bounded by:

2 for

HO(ZE)VZ'P _ O(le)OrigH2

l
e 6
<V2LAN 1) {1 W ) H Voo yuhph, ©®)

I=ls+1

where CY and MY are the number of input channels and
kernel size of the l-th layer, respectively, and C'(<) is the
number of output channels of the l.-th layer.
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Algorithm 1 Virtual Pooling (ViP)
1: Input: model Net
2: Output: ViP model ViPNET, Accuracy ViP A, Runtime
ViPR
: // Sensitivity analysis
1 =0
V1P Layers =[]
: for cin Net.ConvLayers do
A = evaluate(Net.ViP(c))
ViP Layers.append((c, Ac))
9: end for
10: ViPLayers.sorted(key = A., descending’)
11: //Progressively interpolate and finetune
12: ViPA =[], ViPR =]
13: for j = 0 : len(ViPLayers) do
14: Net = Finetune(Net.ViP(0 : 7))
15:  ViPA.append(evaluate(Net))
16:  ViPR.append(time(Net))
17: end for
18: Return ViPNET = Net, ViPA, ViPR

e A

Proof. Deferred to Appendix. O

IfVl > 1, VCOMOBWO > 1, the upper-bound will
keep increasing when the output goes through multiple lay-
ers. This indicates that earlier ViP layers with more suc-
ceeding layers may have a bigger impact on the final output
of the network and hence higher accuracy drop without fine-
tuning. This actually reflects the intuition that perturbations
from early layers will lead to higher error on the output as
they propagate through the network. We will see this effect
in both VGG16 (Fig.2) and ResNet-50 (Fig.5).

3.2. ViP Algorithm

While speeding up CNNs can be achieved with ViP, it
may also lead to some accuracy drop since interpolation is
a method of approximation. Therefore, we propose the fol-
lowing procedure, as shown in Algorithm 1, as part of the
ViP method to reduce the accuracy degradation while max-
imizing the speedup we can achieve. We first do sensitivity
analysis to detect which layers are less sensitive, in terms
of the accuracy of the network, to ViP (Line 6-9). For each
conv layer ¢, we insert ViP after it, and evaluate the network
accuracy A, without finetuning. The sensitivity is measured
as the accuracy drop with respect to the original accuracy.
Lower A, leading to a larger accuracy drop means that the
layer is more sensitive to ViP, so we sort A, in descending
order as shown in Line 10. We insert ViP layer after ReLU
which follows the conv layer, as both our experiments and
prior work [9] show that inserting after ReLU gives better
results. Our intuition is that by applying ViP before ReLU,
we obtain less activations than the original without ViP and
the network becomes less likely to identify smaller activa-
tion regions. Therefore, throughout the paper, whenever we
mention inserting ViP after conv layer, we mean inserting it

after the ReLU layer that follows immediately.

Based on the sorted sensitivity ViPLayers, we in-
sert ViP layers progressively, and finetune the network to
achieve a set of models with different speedup-accuracy
trade-offs (Line 13-17). For example, we add ViP af-
ter Vi P Layers|0], finetune the model and obtain the first
model, and then we add ViP after both Vi P Layers[0] and
ViiPLayers|[1], finetune the model and obtain the second
model, and so on so forth. In this fashion, we will gener-
ate len(ViP Layers) models (len(ViP Layers) is the to-
tal number of conv layers that we apply ViP to), all with
different accuracy and runtime. However, repetitively fine-
tuning the model len (Vi P Layers) times can be quite time-
consuming, especially for large CNN models. To alleviate
this problem, we conduct grouped finetuning, in which we
insert several ViP layers at a time (still based on sensitivity
values). This results in fewer rounds, and hence less time, of
finetuning, and both per-layer and grouped finetuning meth-
ods can generate different accuracy-speedup trade-offs for
the baseline model. An example of applying ViP to appli-
cations, such as a face detector in a mobile camera system
is given in the supplementary material.

4. Experimental Results

In this section, we first describe the hardware and soft-
ware setup of our experiments, and then present results to
show the effectiveness of ViP method under:

1. Four CNN models: VGG16 [28], ResNet-50 [14], All-
CNN [29], Faster-RCNN with VGG16 backbone [26].

2. Three datasets: ImageNet [5], CIFAR-10 [19],

PASCAL-VOC [8].
3. Two hardware platforms: Desktop and Mobile.

4. Two visual learning tasks: Image classification and ob-
ject detection.

4.1. Experimental Setup

Throughout the experiments, we use Caffe [18] as our
deep learning platform since its correctness has been val-
idated by numerous research works. For fast training and
inference, we implement a self-contained custom ViP layer
in CUDA and integrate it into Caffe. The ViP layer in-
serts interpolated points between both columns and rows.
The row and column size is doubled after interpolation and
the resultant image size is enlarged four times. Interpola-
tion is performed independently on points. This process is
therefore embarrassingly parallel and can be easily accel-
erated by GPU. Each thread launched by the CUDA ker-
nel processes one interpolated element. The thread block
dimension order from fastest- to slowest-changing are col-
umn, row, channel, and batch to match the data layout in
Caffe. Based on their position in the interpolated image, the
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Table 1. System Configurations for desktop and mobile platforms.

DESKTOP

INTEL CORE-17 / 32GB
NVIDIA TITAN X / 12GB
CAFFE ON UBUNTU 14

CPU/MAIN MEMORY
GPU/MEMORY
DL PLATFORM

MOBILE (NVIDIA JETSON TX1)

CPU/MAIN MEMORY QuAD ARM A57 /4GB
GPU NVIDIA MAXWELL ARCH
DL PLATFORM CAFFE ON UBUNTU 14

points to be interpolated are classified into four types and
estimated using Eq.5.

CNNs are now widely deployed and used in both cloud
services and mobile phones, therefore we experiment with
both a high-end desktop machine and a mobile platform
with low power and energy profile. The detailed config-
urations are shown in Table 1. The desktop computer is
equipped with high-end Intel Core-i7 CPU and Nvidia Titan
X GPU, while the mobile platform is the Jetson TX1 com-
prised of efficient Quad-core ARM A57 CPU and Nvidia
GPU with Maxwell architecture and 256 CUDA cores.

4.2. Image Classification

We first apply the ViP method to speedup and reduce the
energy consumption of the image classification task.

4.2.1 Accuracy and Speed

We experiment with state-of-the-art VGG16 and ResNet-50
models using the ImageNet dataset. The pre-trained models
have single-crop top-5 accuracy of 88.5% and 91.2%, re-
spectively. We run each of the models 50 times and report
the Noise-to-Signal Ratio (NSR) defined as the standard de-
viation of the measurement divided by mean. NSR mea-
sures the relative variance of the experiments and demon-
strates the statistical significance of our results. We first
apply the ViP method on VGG16 as described in Algorithm
1 in Section 3. We conduct sensitivity analysis to deter-
mine the per-layer sensitivity as shown in Fig.2. The z-axis
labels provide the names of the layers being interpolated
and we explicitly append “pool” in the name of the layers
that are immediately preceding a pooling layer. As we can
see, (1) after ViP insertion, different accuracy degradations
without finetuning are obtained (shown on y-axis in Fig.2),
(2) all layers immediately preceding a pooling layer exhibit
the least sensitivity to ViP operation, which was also discov-
ered by [9]. The reason for this is that, although ViP loses
information due to interpolation, many of those interpolated
values are discarded by the pooling layer, and as a result,
ViP has less impact on the final output of the network. And
(3) besides the pooling layers, we can see a general trend of
decreasing sensitivity when we insert ViP in later-stage lay-
ers. This follows the intuition that early perturbations lead
to high error on the output when propagating through mul-

tiple layers, which is mathematically shown in Eq.6. The
next step is to do model finetuning with progressively in-
serted ViP layers. We use grouped finetuning in the case
of VGG16 to save training time. Specifically, we have four
rounds of finetuning according to the sensitivity of the lay-
ers: (1) in round one, we insert ViP after conv layers 13, 12,
10, 7, 2 and 4; (2) in round two, we further insert ViP after
conv layers 11, 9 and 8; (3) in round three, we further in-
sert ViP after conv layer 1; (4) in the final round, we insert
ViP layers after the remaining conv layers. Each round is
initialized with the trained model from the previous round,
because this (1) gives slightly higher accuracy than using
the baseline model and (2) saves training time.

Furthermore, we plot the training curve to illustrate how
test accuracy recovers during grouped finetuning across
four rounds, as shown in Fig.3. The zero line indicates the
accuracy of the baseline network, and the y-axis is the ac-
curacy improvement (degradation if negative) during fine-
tuning. For fair comparison, we use top-5 accuracy for Im-
ageNet throughout the paper as also reported in [9]. The
z-axis is the number of training iterations. We can see that
after the initial insertion of ViP layers, there is a huge drop
in accuracy. However, this gradually recovers during the
finetuning step and even surpasses the original accuracy in
round one. We conjecture that this is similar to the effect
observed in [12], where linear interpolation serves as a type
of regularization that improves network generalization.

After four rounds of grouped finetuning, we obtain four
models of different speedup-accuracy trade-offs. A posi-
tive value for accuracy change means improvement, while a
negative value means accuracy drop. Speedup is measured
as the ratio of the inference time of the original model over
the inference time of the model with ViP. We finetune the
model with ViP on the desktop machine, because (1) stor-
age of the mobile platform is insufficient for holding the
entire ImageNet dataset, (2) training on desktop machine is
significantly faster and the trained model can be evaluated
on both desktop and mobile platforms for runtime analy-
sis, and (3) model accuracy is platform-independent, which
means once a model is obtained, its test accuracy remains
the same on any platform. Accordingly, we can report ac-
curacy and speedup on both desktop and mobile platforms,
while we only train the model on the desktop machine once.

We plot the results in Fig.4 along with the result of
the previous state-of-the-art PerforatedCNNs [9]. Our
method achieves 2.1x speedup with less than 1.5% accuracy
drop, while PerforatedCNNs can theoretically achieve 1.9x
speedup with 2.5% accuracy degradation. The measured
speedup of PerforatedCNNs is 2x when considering the re-
duced memory cost through implicit interpolation in Matlab
[9]. In the same way, ViP can also reduce memory transfer
cost between layers thanks to the smaller-sized intermediate
outputs by using larger-stride convolution. Unfortunately,
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ViP Sensitivity Analysis - VGG16 - ImageNet
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Figure 2. ViP sensitivity analysis of VGG16 model under ImageNet dataset. For each of the conv layers, we insert ViP immediately after
it, and evaluate the network accuracy without finetuning. The sensitivity is measured as the accuracy degradation.

ViP Grouped Finetuning - VGG16 - ImageNet
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Figure 3. Four rounds of grouped finetuning of VGG16 network
using ImageNet dataset.

Speedup-Accuracy Trade-off
VGG16 on ImageNet

~8-Desktop GPU

~e-Desktop CPU

-#-Mobile GPU

~#-Mobile CPU

# PerforatedCNN
Desktop GPU

—o—PerforatedCNN
Desktop CPU

Accuracy change (%)

Figure 4. Speedup-Accuracy trade-off obtained by applying ViP
on VGG16 model with ImageNet dataset.

Caffe does not support implicit interpolation and hence no
memory saving of intermediate outputs as pointed out by
PerforatedCNNs [10]. For fair comparison, we eliminate
the effect of memory saving in both implementations and
use the theoretical upper-limit for PerforatedCNN's speedup
since they did not report speedup on Caffe. We expect
ViP method to achieve even higher speedup in implementa-
tions that support implicit interpolation which saves mem-
ory transfer cost. Comparing ViP and PerforatedCNNs on
desktop CPU, we can see that ViP (blue curve) is better than
PerforatedCNNs (orange line) in terms of Pareto optimality,

because models closer to upper-right corner deliver better
trade-off between low accuracy drop and high speedup. In
the case of mobile CPU, ViP is able to speed up the CNN by
3.16x with less than 1.5% accuracy drop. NSR of VGG16
latency on CPU and GPU is 0.6% and 0.1%, respectively,
which is negligible and shows that our speedup results are
reliable. Besides, what ViP can obtain is a set of mod-
els with different speedup-accuracy trade-offs rather than
a single configuration, CNN practitioners can pick any of
the models in Fig.4 that meets their need. Similarly, we
apply ViP on ResNet-50 under ImageNet dataset. Fig.5
shows the results on sensitivity analysis and again we see
the trend of decreasing sensitivity in later-stage layers. We
have in total 53 conv layers because there are 49 conv lay-
ers on the primary branch and four on the bypass branches.
Initially, we apply three rounds of grouped finetuning on
ResNet-50. However, the final round, consisting of layers
with the highest sensitivity, results in a steep accuracy drop,
from —0.7% to —3.94%, we decide to use per-layer fine-
tuning for the 12 layers in the last round to demonstrate the
fine-grained progressive change in both accuracy and speed.
Fig.6 shows the results. As expected, there is a clear trend
of increasing speedup with higher accuracy drop when we
insert more ViP layers. The speedup of mobile GPU and
desktop GPU almost overlaps, and they both achieve 1.53x
speedup with less than 4% accuracy degradation. Mean-
while, mobile CPU obtains 2.3x speedup at same level of
accuracy. NSR of Resnet-50 latency on CPU and GPU is
0.5% and 0.05%, respectively, which is again negligible and
shows that our speedup results are reliable.

Our results on the AII-CNN network [29] show a 1.77x
speedup on the desktop GPU and up to 3.03x speedup on
the mobile CPU, while the top-1 accuracy drop is within
4%. Details are provided in the supplementary material.

4.2.2 Power and Energy

More and more mobile apps start to utilize CNNs to im-
prove their image classification and object detection func-
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Figure 5. ViP sensitivity analysis of ResNet-50 model under ImageNet dataset. For each of the conv layers, we insert ViP immediately
after it, and evaluate the network accuracy without finetuning. The sensitivity is measured as the accuracy degradation.
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Figure 6. Speedup-Accuracy trade-off obtained by applying ViP
on ResNet-50 model with ImageNet dataset.
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Figure 7. Power/Energy-Accuracy trade-off obtained by applying
ViP on VGG16 model with ImageNet dataset.

tions. Other than speed, power and energy are the most crit-
ical constraints on mobile platforms. Therefore, we further
conduct experiments to show how ViP improves the power
and energy profile on mobile platforms running CNN.

We first port both Caffe and our custom ViP layer to
Jetson TX1. We use the on-board sensor to measure the
power consumption of CNNs with and without ViP, and
obtain the energy consumption by multiplying power by
CNN latency. We test on all CNNs used previously, i.e.,
All-CNN, VGG16 and ResNet-50 (Detailed results on All-

Power/Energy-Accuracy Trade-off
ResNet-50 on ImageNet
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Figure 8. Power/Energy-Accuracy trade-off obtained by applying
ViP on ResNet-50 model with ImageNet dataset.

CNN are included in the supplementary material). Each
test is run 50 times and we report the mean power/energy-
accuracy trade-off curves in Figures 7 and 8, respectively.
In each of the figures, we show four curves for power and
energy consumption of either running on mobile CPU or
mobile GPU. With ViP applied, both models show power
reduction on mobile GPU, with VGG16 saving up to 21%.
VGG16 and ResNet-50 achieve up to 55% and 38 % mobile
GPU energy reduction, respectively. Furthermore, VGG16
achieves up to 70% CPU energy reduction while ResNet-
50 tops at around 60%. In terms of measurement variance,
NSR of ResNet-50 power/energy on mobile CPU and GPU
is 3.2% and 9.8%, respectively, while the NSR of VGG16
power/energy on mobile CPU and GPU is 2.9% and 12.1%
respectively. As the variance on CPU is negligible, and
also small enough on GPU, with high confidence, ViP saves
power and energy on both platforms.

4.2.3 ViP for Compressed CNNs

To demonstrate that ViP is complementary to other ac-
celeration approaches, we apply ViP to ThiNet [24], a
compressed VGG16 via state-of-the-art filter level pruning
method, and show greater speedup and energy saving can
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be achieved when applying both ViP and network compres-
sion. ThiNet is only 6% the size of the original VGG16
[24] and our measured latency on desktop GPU shows a
2.75x speedup over VGG16 with minor accuracy drop. We
apply ViP on top of ThiNet, and three rounds of finetuning
are carried out after the sensitivity analysis. Fig.9 shows the
results of speedup and accuracy drop on desktop GPU, rel-
ative to ThiNet, after each round of finetuning. We can see
that ViP achieves 30% speedup with 1.3% accuracy drop
and can reach up to 1.9x speedup on top of the already
heavily compressed ThiNet. By combining both ViP and
compression, we can drastically speedup CNN by a factor
of 5.23x. Fig.10 shows the normalized power and energy
consumption on both mobile CPU and GPU after applying
ViP on ThiNet. ViP further reduces the energy consump-
tion of ThiNet by up to 60% when running on mobile GPU.
These results demonstrate that ViP is indeed a complemen-
tary method to the existing acceleration approaches, and
when we apply both compression and ViP, we can achieve
greater speedup and energy saving.

Speedup-Accuracy Trade-off
ThiNet (compressed VGG-16) on ImageNet

Accuracy change (%)
Figure 9. Speedup-Accuracy trade-off obtained by applying ViP
on ThiNet (compressed VGG16) model with ImageNet dataset.
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Figure 10. Power/Energy-Accuracy trade-off obtained by applying
ViP on ThiNet (compressed VGG16) with ImageNet dataset.

4.3. Object Detection

Much of the prior work on CNN acceleration only stud-
ies image classification [30, 7, 20], while object detection
is often a more practical and interesting application. Al-
though the two tasks share some common features, object

detection has its unique components and challenges, e.g.,
region proposal, bounding box regression, efc. Thus, with-
out experimental results, it is hardly convincing to infer that
methods excel on classification can also work well on de-
tection tasks. Accordingly, in this section, we further test
ViP on object detection and show that it works across both
important tasks.

Speedup-Accuracy Trade-off
Faster-RCNN on PASCAL VOC
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Figure 11. Speedup-Accuracy trade-off obtained by applying ViP
on faster-rcnn with VGG16 backbone under PASCAL VOC 2007.

We use the Caffe implementation of the state-of-the-art
object detection framework faster-rcnn [26] with PASCAL
VOC 2007 dataset, and integrate it with our custom ViP
layer. The pre-trained faster-rcnn, with VGG16 as back-
bone, has an accuracy of 69.5% mAP. We conduct four
rounds of grouped finetuning after sensitivity analysis (de-
tailed in supplementary material), and as expected, with
more layers followed by ViP operation, we are able to
achieve higher speedup but with higher mAP degradation
as shown in Fig.11. In the end, we apply ViP to all conv
layers and achieve 1.8x speedup with 0.025 mAP drop.

5. Conclusion

In this work, we propose the Virtual Pooling (ViP)
method that combines downsampling, efficient upsampling
and sensitivity-based grouped finetuning, with a provable
bound for speeding up CNNs with low accuracy drop.
We validate our method extensively on four CNN models,
three representative datasets, both desktop and mobile
platforms, and on both image classification and object
detection tasks. ViP is able to speedup VGG16 by 2.1x
with less than 1.5% accuracy drop, and speedup faster-rcnn
by 1.8x with 0.025 mAP degradation. Combining ViP and
model compression leads to a 5.23x speedup on VGG16.
Furthermore, ViP generates a set of models with different
speedup-accuracy trade-offs. This provides CNN prac-
titioners a tool for finding the model best suiting their needs.

This research was supported in part by National Science
Foundation CNS Grant No. 1564022. Zhuo Chen acknowl-
edges support from Qualcomm Innovation Fellowship.
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