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Abstract—In this paper, we introduce SCRAMBLE, as a
novel logic locking solution for sequential circuits while the
access to the scan chain is restricted. The SCRAMBLE could be
used to lock an FSM by hiding its state transition graph (STG)
among a large number of key-controlled false transitions.
Also, it could be used to lock sequential circuits (sequential
datapath) by hiding the timing paths’ connectivity among a
large number of key-controlled false connections. Besides, the
structure of SCRAMBLE allows us to engage this scheme as
a new scan chain locking solution by hiding the correct scan
chain sequence among a large number of the key-controlled
false sequences. We demonstrate that the proposed scheme
resists against both (1) the 2-stage attacks on FSM, and (2) SAT
attacks integrated with unrolling as well as bounded-model-
checking. We have discussed two variants of SCRAMBLE:
(I) Connectivity SCRAMBLE (SCRAMBLE-C), and (b) Logic
SCRAMBLE (SCRAMBLE-L). The SCRAMBLE-C relies on
the SAT-hard and key-controlled modules that are built us-
ing near non-blocking logarithmic switching networks. The
SCRAMBLE-L uses input multiplexing techniques to hide a
part of the FSM in a memory. In the result section, we describe
the effectiveness of each variant against state-of-the-art attacks.

Keywords-Reverse Engineering, Logic Locking, Sequential
Locking, FSM Locking, Scan Chain Locking

I. INTRODUCTION

Due to the ever-increasing cost of IC manufacturing,

many design houses have been forced to become fabless.

Outsourcing the manufacturing stages, including fabrica-

tion/testing/packaging, to potentially untrusted entities raises

multiple forms of security threats such as IC overproduction,

Trojan insertion, reverse engineering (RE), intellectual prop-

erty (IP) theft, and counterfeiting [1], [2].

Among many active and passive design-for-trust (DfT)

techniques, logic locking [3], [4], as a proactive solution,

hides the functionality of the netlist by inserting additional

programmable gates (key gates), whose programming values

(key values) are stored in tamper-proof memories. However,

the strength of logic locking solutions was seriously chal-

lenged in recent years by the Boolean satisfiability (SAT)

attack [5], [6].

Although the SAT attack (and many of its derivatives)

only works on combinational circuits [7], having access

to the scan chain allows an adversary to apply the SAT

attack on each combinational logic part of sequential circuits

separately. Accordingly, the adversary can target sequential

circuits using the SAT attack. Hence, few recent studies

investigated the possibility of restricting the scan chain using

scan chain locking/blocking [9]–[11]. Also, considering that

the access to the scan chain is restricted/locked, several

studies investigated the possibility of applying the logic lock-

ing to the whole sequential circuits [14], [15], particularly

FSMs [14]–[19]. However, further research revealed that

new attacks could be formulated for these locking solutions

even while access to the scan chain is restricted/locked.

In case of FSM locking [16]–[18], [21], a new attack,

without oracle access, denoted as 2-stage attacks on FSM
(2-stage) was formulated [14], [19]. Also, in case of se-

quential (datapath) or scan chain locking [9]–[11], [14],

[15], a new breed of SAT-based attacks, referred as

unrolling-based SAT attack (UB-SAT) as well as SAT at-

tacks integrated with bounded-model-checking (BMC) was

formulated [22]–[24], challenging the validity of these solu-

tions.

To defend against UB-SAT or BMC, and to break 2-stage

attacks on FSMs, we introduce a new state, connectivity and

routing augmentation model for building logic encryption

(SCRAMBLE). SCRAMBLE is designed to add and max-

imize (a) the false transitions within STG when FSM is

targeted for locking, (b) the false connections between

datapath flip flops (FFs) when sequential datapath locking

is targeted, (c) the false sequences’ possibilities in scan FFs

(SFFs) when the scan chain is targeted. SCRAMBLE, with

2 variants, can resist both 2-stage attacks on FSM as well

as UB-SAT or BMC attacks on sequential datapath or scan

chain locking.

II. BACKGROUND AND RELATED WORK

A. FSM, Sequential Datapath, and Scan Chain Locking

In FSM locking [16]–[18], [21], few extra sets (modes) of

states are added to the original state transition graph (STG),

such as locking/authentication mode states or black holes.

The traversal sequence of locking/authentication modes is

the locking/authentication key, and a correct traversal that

reaches the initial state of the original STG unlocks the

FSM. Also, the output generated by the correct traversal

of authentication states serves as a watermark. In addition

to these groups, a set of studies focuses on locking the STG

without adding any extra state. However, the complexity and

overhead (area) of this approach is higher compared to other

schemes [14].

153

2020 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)

2159-3477/20/$31.00 ©2020 IEEE
DOI 10.1109/ISVLSI49217.2020.00037

Authorized licensed use limited to: George Mason University. Downloaded on October 13,2020 at 02:37:13 UTC from IEEE Xplore.  Restrictions apply. 



In sequential datapath locking or scan chain locking,

XOR- or MUX-based locking has been added into timing

paths or the scan chain. For instance, in scan chain locking

solutions, the scan chain has been blocked or locked to

prevent the scan chain loading and readout (shift/load) for

protecting the logic against the SAT attacks. For example,

the Encrypt Flip-Flop solution [9] adds key-programmable

MUXes on the outputs of SFFs enabling the negation of the

SFFs when the scan chain locking key is incorrect.

B. Attacks on FSM, Sequential, and Scan Chain Locking

To assess the strength of FSM locking solutions, many

studies evaluated the possibility of deploying 2-stage at-

tacks, as an oracle-less attack, on locked FSMs [14],

[19]. The 2-stage attacks on FSM are composed of: (1)

(stage 1): topological analysis (described in line 2-13 of

Algorithm 1), which is a detection algorithm to find FFs

that are responsible for storing the state values (separating

them from datapath FFs), and (stage 2): functional analysis
(described in line 14-21 of Algorithm 1) that finds the

STG based on the list of FFs found in (stage 1). In such

an attack, the topological analysis, which is derived from

[25], identifies FFs whose input contains a combinational

feedback path from their output. Then, it reduces the set

of possible state FFs by (a) grouping the FFs controlled by

the same set of signals, and (b) finding strongly connected

components (SCC) using Tarjan’s algorithm [14], [19], [26],

[27]. In the functional analysis stage (stage 2), the attacker

attempts to extract/re-draw the STG. This is done by first

attempting to find the initial state, and then identifying

the reachable states by creating a reduced binary decision

diagram (BDD) or using a SAT solver. After re-drawing STG

by using a 2-stage attack, in most FSM locking solutions,

the adversary can readily distinguish the original part of the

FSM from either extra added states or extra state transitions,

leading to extracting the original FSM. Fig. 1 illustrates two

examples of FSM locking. As shown, the original part of

the FSM is easily distinguishable from extra locked states

in these solutions.

In UB-SAT or BMC [22]–[24] on the other hand, as a

much stronger attack that is applicable to all FSM locking,

sequential datapath locking, and scan chain locking, the

adversary does not need to have access to the scan chain. In

these attacks, the adversary unrolls the reverse-engineered

netlist n times and then creates a double circuit similar to

the SAT attack. Then, the adversary uses a SAT solver to

find a sequence of n inputs and two key values such that

the output of the meter (double) circuit detects a mismatch.

Such an input sequence is denoted as a discriminating input
sequence (DIS). The attacker increases the unrolling depth

(n) until a termination condition is met. The overall flow of

this breed of attacks is captured in Algorithm 2. By using this

structure, the adversary can target and attack any sequential

logic locking solution even while the access to the scan chain
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Figure 1. FSM Obfuscation Solutions.

is restricted. Also, as an enhanced version of this group

of attacks, KC2 [22], accelerates the original UB-SAT [23]

by using some additional simplification steps. Some of the

added features include (a) integrating BMC with SAT, (b)

model conversion to BDD to simplify the circuit represen-

tation, and (c) constraint simplification using key-sweeping.

Similarly, the ScanSAT [24] is another unrolling-based SAT

attack that only focuses on scan chain locking solutions,

which is applicable to both statically and dynamically scan

chain locking solutions.

Algorithm 1 2-stage on FSM Locking [14], [19]

1: function FSM EXTRACT(Circuit CL)
2: SFF ← []; � State Flip Flops
3: RS ← classify(FFs); � Classifying FFs into Register Sets
4: for each set ∈ RS do
5: set ← set - notSCC(set); � Keeps Strongly Connected

Components
6: if is splittable(set) then
7: RS ← {RS - set} ∪ split(set);
8: CLFP ← find feedback circuits(CL, Reg Sets);
9: for each set ∈ RS do

10: set ← set - notInfDep(set); � Keeps Intersected
Influence/Dependence

11: set ← set - InputIndependt(set); � Check Control Metrics
12: update(CLFP);
13: SFF ← SFF ∪ set;
14: S0 ← initial state(state regs); SQ ← []; � State Queue
15: SQ ← SQ ∪ S0; STF ← []; � State Transition Table
16: while SQ �= [] do
17: state ← SQ.dequeue();
18: for each DIP do � DIP found by SAT
19: if eval(state regs, DIP, state) /∈ SQ then
20: SQ.enqueue(nx state);
21: STF ← STF ∪ {state, DIP, nx state, PO}

return SQ, S0, STF; � States, Initial, Transition Func.
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Algorithm 2 UB-SAT on Sequential/Scan Locking [22]–

[24]
1: function UB SAT(Circuit C)
2: b ← initial boundary;
3: Terminated ← False;
4: MCcircuit ← C(X, K1, Y1) ∧ C(X, K2, Y2) ∧ (Y1 �= Y2);
5: while !Terminated do
6: while (XDIS , K1, K2) ← BMC(MCcircuit, b) = T do
7: Yf ← CBlackBox(XDI );
8: MCcircuit =∧ C(XDIS , K1, Yf ) ∧ C(XDIS , K2, Yf );

9: if not BMC(MCcircuit, b) then � UC
10: Terminated = True;
11: else if not BMC(MCcomb circuit, b) then � CE
12: Terminated = True;
13: else if UMC(MCcircuit, b) then � UMC
14: Terminated = True;
15: else
16: b ← b + boundary step;

17: KeyGenCircuit = DIVC ∧ (K1 = K2)
18: Key ← BMC(emphKeyGenCircuit, b)

III. PROPOSED SCHEME: SCRAMBLE

In SCRAMBLE, we engage the term augmentation to

refer to the process illustrated in Fig. 2. Augmentation in

SCRAMBLE adds false state transitions in case of FSM

locking, or adds false FF-to-FF timing paths in case of se-

quential datapath locking, or adds false scan chain sequence

in case of scan chain locking. SCRAMBLE is proposed in

two variants: (1) The first variant is connectivity SCRAM-

BLE (SCRAMBLE-C) that hides the connectivity to the

targeted FFs using logarithmic switching network. (2) The

second variant is logic SCRAMBLE (SCRAMBLE-L) that

hides the logic by implementing part(s) of the logic within

memory. The SCRAMBLE-C could be used for locking

either FSMs, sequential datapath, or scan chains, to protect

the locked design against all UB-SAT and BMC attacks,

such as KC2 or ScanSAT. SCRAMBLE-L, on the other

hand, is mostly applicable to FSMs to provide resilience

against 2-stage attacks [14], [19].

A. SCRAMBLE-C
The overall structure of SCRAMBLE-C has been illus-

trated in Fig. 3. In SCRAMBLE-C, the connectivity between

the targeted FFs and their fan-in-cones (FiCs) (combina-

tional logic cones) is locked. Hence, before connecting the

output of corresponding FiCs to the FFs, a configurable
routing and logic block (CRLB) has been inserted to control

the connections. For instance, in Fig. 3, a CRLB with
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Figure 2. Augmentation for (a) FSM Locking, (b) Sequential Datapath
Locking, and (c) Scan Chain Locking. (Black Lines: Original. Red lines:
False by SCRAMBLE.)

size 8 has been inserted before a combination of FSM

FFs and datapath FFs. The CRLB, which must be inserted

between the targeted FFs and their corresponding FiCs, is

a key-programmable switching network that is built using

self-routing logarithmic (log2(N)) networks [28], [29]. The

log2(N) networks, compared to the existing and well-known

switching networks, such as mesh, crossbar, etc., incur

less area overhead. Also, we demonstrate that due to its

cascading structure, log2(N) networks could improve the

robustness against the SAT attack.

As shown in Fig. 3, the CRLB is built using key-

programmable 2x2 switch-boxes (swij). Based on its key,

a sw saves or changes the order of inputs while connecting

them to output pins. Also, the connection between the

layers of sws is fixed. This inter-layer connection determines

the topology of the log2(N) network. For instance, the

architecture of a sample CRLB (shuffle topology) with size

8 has been demonstrated in Fig. 3. Also, as shown in this

example, to add the capability of logic programmability, we

add one extra key-controlled (XOR) inversion layer, as the

final layer of CRLB, to twist routing locking with logic

locking. The addition of the inversion layer allows the CRLB

to not only permute the inputs, but it also negates them based

on the keys of the inversion layer.

In SCRAMBLE-C, the CRLB must be inserted before

the targeted FFs. When FSM locking or sequential datapath

locking is targeted, during either the physical design or

after DFT synthesis step, the CRLB is placed on wires

that connect the outputs of FiCs to the data-in (DI) pin of

targeted FSM FFs or datapath FFs. When scan chain locking

is targeted, after DFT synthesis, the CRLB is placed in scan
network before the scan-in (SI) pin of the targeted SFFs.

Although engaging self-routing log2(N) networks pro-

vides a low-overhead routing locking solution, we have to

address a few issues: (1) The size of the log2(N) circuit

grows exponentially as the input size grows. (2) The nature

of log2(N) networks is blocking, and many of the input per-

mutations cannot be routed. Hence, the number of false tran-

sitions/connections/sequences in FSM/datapath/scan would

be very limited. Hence, the wires (N ) as the inputs of

CRLB must be small enough to make the network overhead

reasonable; and large enough to make it resistant against

SAT-driven attacks, i.e. UB-SAT or BMC. It raises two

questions: (1) which N FFs must be selected? and (2) How

we can minimize N?

1) Selection of N FFs: The selection of FFs (to insert

CRLB before them) in SCRAMBLE-C could significantly

impact its locking strength, particularly in FSM locking. For

example, let us consider the engaging of SCRAMBLE-C for

an FSM presented in Fig. 4(b), which is generated using

Binary encoding of 4 FFs. In this example, if we select

two least significant bits (LSB) FFs to insert a CRLB with

size 2 before them (Circuit of Fig. 4(a)), the locked FSM

is demonstrated in Fig. 4(c). Fig. 4(a) shows how the false
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Figure 3. Augmentation via Inserting CRLB (shuffle-based) in
SCRAMBLE-C.

transitions in Fig. 4(c) have been generated for some of the

original transitions. As shown in 4(c), when 2 LSBs are

selected, a limited number of false transitions are added,

and only one extra (unreachable) state is visited. However,

if we select two most significant bits (MSB) FFs, it will

visit all extra states and generates a large number of false

transitions demonstrated in Fig. 4(d). Since 2-stage attacks

are applicable to FSM locking, maximizing false transitions

as well as extra states makes SCRAMBLE-C more robust

against this attack. Accordingly, being aware of the encoding

style of FSM will impact its locking strength. For instance,

in Binary encoding, a synthesis tool usually encodes the

states from low to high (0 to 2N−1). Hence, using the N FFs

representing the MSB of state value results in the inclusion

of the largest number of previously unreachable states and

false transitions in the locked FSM. Also, Fig. 4(e) shows

locked FSM when three LSB FFs are selected. It shows that

even increasing the size of CRLB by one adds numerous

false state transitions into the locked FSM. Note that unlike

FSM locking, the selection of N FFs has no impact on

locking strength when sequential datapath locking or scan

chain locking is targeted.

2) Reducing N by making CRLBs near non-blocking:
The implementation of blocking log2(N) network revealed

that even a 256-input CRLB could be broken by SAT attack

in less than an hour. Hence, to address the blocking nature

of CRLB and to resist against UB-SAT or BMC attacks

(with a small CRLB), we expand the log2(N) network

towards non-blocking via adding extra (cascaded) stages.

The expanded log2(N) network with strictly non-blocking

structure is generalized under the notation LOG2(N,M,P ),
where N denotes the number of inputs, M is the number of

extra (cascaded) stages, and P indicates that there are P −1
additional copies (of whole network) vertically cascaded
[28]. However, For a network with an arbitrary N , the min-

imum value of M and P to make the network strictly non-

blocking are extremely large. For instance, with N = 64 the

choice of M and P should be 3 and 6 respectively, resulting

in 5x area overhead compared to a blocking log2(N) [28].

Hence, strictly non-blocking incurs almost prohibited area

overhead.

To move close enough towards non-blocking nature with-

out incurring large area overhead, we used the ”near non-
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Figure 4. Using SCRAMBLE-C for FSM Locking (a) FSM circuit and
transitions generation, (b) the original FSM, (c) 2 LSBs are inputs to
SCRAMBLE-C, (d) 2 MSBs are inputs to SCRAMBLE-C, (e) 3 LSBs
are inputs to SCRAMBLE-C.

blocking” structure [28]. In near non-blocking, not all but

almost all permutations are feasible, while it could be

implemented using a LOG2(N, log2(N) − 2, 1), meaning

it has only M = log2(N) − 2 extra stages and no addi-

tional copy (P = 1). The CRLB depicted in Fig. 3 is an

example of a near non-blocking CRLB for 8 inputs. Our

implementation shows that a 32-input near non-blocking

network (LOG2(32, 3, 1)) is far stronger against SAT attack

compared to a 256-input blocking network log2(256), while

it is 8x smaller.

B. SCRAMBLE-L
In SCRAMBLE-L, which is proposed for FSM locking

against 2-stage attacks, the logic before the targeted FFs

is locked using in-memory computation. As shown in Fig.

5, a small part of the combinational logic in the FiCs of

the targeted FFs is replaced with a one-cycle read memory,

such as SRAM. As an example, FiC2 and FiC4 are replaced
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with equivalent memories. The content of the memories must

provide the same output compared to that of FiC2 and FiC4

while the triggering input is the same. Hence, the truth table

corresponded to those FiCs must be generated and stored in

the memories. The memories would be initialized during

boot-up from a tamper-proof NVM which serves as the key

storage. To avoid additional delay incurred by memories, the

selection of FFs must be done with respect to their available

timing slack.

SCRAMBLE-L makes 2-stage attacks almost impractical.

Considering that the adversary has no access to the contents

of memories after reverse engineering, there is no equiva-

lent logic for the memories, and the BDD- or SAT-based

functional analysis (stage 2) cannot be accomplished on the

locked circuit. Also, similar to Fig. 5(b), if the designer

selects a combination of datapath FFs and FSM FFs, the

adversary cannot distinguish between them when deploying

topological analysis (stage 1) of the 2-stage attack, resulting

in the inclusion of an extremely large number of non-FSM

FFs in the candidate FSM FFs. Hence, none of the existing

2-stage attacks can be applied to SCRAMBLE-L.

The big challenge with the SCRAMBLE-L is the size of

the memory for implementing the selected FiCs. However,

since SCRAMBLE-L is proposed for FSM locking, this

problem could be easily addressed by engaging the FSM

input multiplexing (FSMIM) techniques [30]. In this tech-

nique, considering that the next state and the outputs of the

FSM are a function of a subset of the inputs (not all), a set

of multiplexers has been used to select only those signals

that affect the next state and the output. Hence, the designer

is able to minimize the number of inputs to the memories

(as address width), resulting in a significant decrease in the

size of memory. The main difference between traditional

FSM implementation, memory-based FSM, and FSMIM has

shown in Fig. 6.

In FSMIM, multiplexers could be controlled using two

different strategies: (1) using the value of the current state,

(2) using code-words stored in the memory. The first option

is more efficient in terms of memory size reduction; how-

ever, the second method has better efficiency in reducing
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Figure 6. FSM Implementation (a) Traditional, (b) Memory-based, (c)
Memory-based with Input Multiplexing using Current State, (d) Memory-
based with Input Multiplexing using Code-word stored in Memory.

Table I
SIMPLIFICATION RATIO OF INPUT MULTIPLEXING (FSMIM).

FSM
Required Memory Size and Additional MUXes

Traditional Input MUXing Input MUXing + State Reduce

SizeKb SizeKb MUX Reduction SizeKb MUX Reduction

s510 435,500 5.5 14, 5 ∼99.9% 2.5 14, 7 ∼99.9%

s820 195,000 255 5, 4, 3, 2 ∼99.9% 38 7, 6, 4, 4, 2, 2. 2 ∼99.9%

s832 200,000 262.5 5, 4, 3, 2 ∼99.9% 69 5, 4, 4, 4, 2 ∼99.9%

s1488 408,000 110,500 2, 2 73% 16,000 4, 4, 2, 2, 2 92.5%

s1494 408,000 110,500 2, 2 73% 16,000 4, 4, 2, 2, 2 92.5%

the multiplexers complexity. Hence, the first option has

been used in SCRAMBLE-L to minimize the area overhead

of the memories. Our evaluation in Table I illustrates the

effectiveness of FSMIM when applied to the ISCAS-89

benchmarks, resulting in memory size reduction above 90%.

IV. DISCUSSION

Table II shows the effectiveness of each variant of

SCRAMBLE against 2-stage and UB-SAT or BMC attacks.

Although the main aim of SCRAMBLE-C is to protect the

design against UB-SAT and BMC, it also breaks 2-stage

attacks. Similar to SCRAMBLE-L, if we use a combination

of both datapath FFs and FSM FFs as input to SCRAMBLE-

C (Similar to Fig. 3), topological analysis (stage 1) of 2-stage

attack cannot detect the correct set of FSM FFs. Therefore,

the functional analysis (stage 2) has to generate the STG

using an incorrect set of FFs (extremely larger set), resulting

in a significant increase in the attack time with respect to

the number of additional (datapath) FFs included in the set.

Also, the extracted STG is constructed using a combination

of datapath FFs and FSM FFs, which leads to an incorrect

STG, and the adversary is not able to extract the original

FSM from the extracted STG.

Although SCRAMBLE-L protects the design against 2-

stage attacks by hiding the logic within memory, the ad-

versary can generate the equivalent logic of the memory

(X input (address width) and Y outputs (word size)) by

replacing it with Y of X-input LUTs, which is a fully

configurable logic, and then using SAT attack. However,
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Figure 7. The Impact of Address Width of the Memory on the Execution
Time of its LUT-based Equivalent Model.

increasing the input size of the LUTs exponentially increases

the run time of BDD-based or SAT-based attacks. Fig. 7

shows that by increasing the address width (from 2 bits

to 14 bits), when we replace the memory with the same

size LUTs, SAT execution time increases exponentially [31].

In addition, due to the unrolling structure of UB-SAT or

BMC, these LUTs must be replicated per each iteration (per

each unrolling), which makes them almost unresolvable by

SAT-driven attacks. We demonstrate that UB-SAT or BMC

cannot reveal the correct functionality of a design even while

SCRAMBLE-L has been used with only one 256 words

(address width is 8) memory.

V. EXPERIMENTAL RESULTS

We evaluated the strength of SCRAMBLE on two sets

of benchmark circuits: (1) sequential ISCAS-89 benchmark

circuits and (2) few well-known small-scale ASICs to large-

scale microprocessors. We have deployed a 2-stage attack

according to Algorithm 1 to assess the strength of SCRAM-

BLE in FSM locking. For sequential datapath locking, we

deployed an integrated BMC with SAT [23] accelerated

using stages described in KC2 [22]. Finally, to assess the

effectiveness of scan chain locking, we implemented the

ScanSAT as described in [24]. All attacks are carried on

a Dell PowerEdgeR620 with Intel Xeon E5-2670 2.50GHz

and 64GB of RAM.

Table III captures the execution time of scanSAT [24] (for

scan locking) and accelerated BMC [22], [23] (for sequential

datapath locking) while SCRAMBLE-C is used on ISCAS-

89 benchmarks. The maximum runtime of attack is set to

106 seconds, and attack will time-out (� in tables) if attack

time exceeds the limit. Note that in some cases, the number

of required FFs is limited. For instance, in s1196, with 18

FFs, the maximum possible size of CRLB is only 16. As

illustrated, by utilizing the CRLB with size 16, for almost

all benchmark circuits, both attacks cannot retrieve the keys.

Also, Table III reports the power, performance, and area
Table II

THE EFFECTIVENESS OF VARIANTS OF SCRAMBLE IN CASE OF

FSM/SEQUENTIAL/SCAN OBFUSCATION.

Variants SCRAMBLE-C SCRAMBLE-L

Attacks 2-stage UB-SAT or BMC 2-stage UB-SAT or BMC

FSM � � � �
Sequential Datapath N/A � N/A �∗

Scan-chain N/A � N/A �∗

∗: Requires large augmentation model incurring area overhead.

(PPA) overhead of SCRAMBLE-C with a CRLB of size 16.

While the CRLB size is fixed, the area overhead is constant

and the percentage area overhead reduces when the size of

the benchmark circuits increases. As shown, for even mid-

size ISCAS-89 benchmark circuits, the area overhead is less

than 10%.

To assess the robustness of SCRAMBLE for FSM locking,

both SCRAMBLE-C and SCRAMBLE-L have been used

on the second group of circuits. Also, the locked circuits

have been evaluated using both BMC and 2-stage attacks.

As illustrated in Table IV, BMC can break SCRAMBLE-

C while the CRLB size is up to 16. However, for none of

the circuits, BMC cannot retrieve the correct key while the

CRLB size is 32. Also, in case of BMC, only utilizing a

memory with 256 words (address width = 8) is enough to

make the locked circuit resilient against BMC.

Unlike BMC, which can break SCRAMBLE for small-

size CRLBs and memories, 2-stage attacks are far weaker.

As shown in Fig. 4, since the number of false paths is

extremely larger, after re-drawing the FSM using 2-stage,

there is no chance for the adversary to extract the original

part of the FSMs. Hence, as shown in Table IV, 2-stage

attacks completely fail against SCRAMBLE.

Since the minimum size of CRLB in SCRAMBLE-C

(memory in SCRAMBLE-L), which provides a resilient

FSM locking against BMC, is 32 (256 words), we reported

the PPA overhead of these sizes for second groups of the

circuits in Table V. As shown, even for mid-size 32b RSA
circuit, the overhead is less than 5%. Also, the impact

of increasing the size of CRLB or memory on the PPA

overhead for different sizes has been illustrated in Table

VI. As shown, in both SCRAMBLE-C and SCRAMBLE-L,

increasing either the size or address width, approximately

doubles the overhead. However, compared to ISCAS-89

benchmark circuits, such as s15850 or s38584, the incurred

overhead is reasonable.

VI. CONCLUSION

In this paper, we introduce SCRAMBLE, as a com-

prehensive obfuscation solution for protecting FSMs, se-
Table III

THE ATTACK TIME FOR BREAKING SCRAMBLE-C USED FOR SCAN

CHAIN LOCKING AND SEQUENTIAL DATAPATH LOCKING OF ISCAS-89
BENCHMARKS.

Attack Time (second) Datapath Locking

scanSAT BMC PPA overhead of

CRLB Size CRLB Size 16-input CRLB

Circuit #FF #Gate In/Out 8 16 32 8 16 32 Power Delay Area

s1196 18 529 14/14 2029 � N/A 1109 � N/A 26.3% 36.5% 24.1%
s1423 74 657 17/5 3441 � � 438.6 9356 � 25.8% 28.1% 23%
s5378 179 2779 35/49 6406 � � 6921 � � 8.9% 18.5% 7.1%
s9234 211 5597 36/39 1801 � � 1548 � � 5.1% 14.8% 3.9%
s15850 534 9772 77/150 5882 � � 7097 � � 3.1% 12.9% 2.4%
s35932 1728 16065 35/320 8604 � � 7110 � � 1.1% 6.5% 0.9%
s38584 1426 19253 38/304 4072 � � 6287 � � 1.2% 5.7% 0.9%

� : Timeout = 106 Seconds
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Table IV
THE BMC AND 2-STAGE ATTACK TIME FOR BREAKING SCRAMBLE-C

AND SCRAMBLE-L USED FOR FSM LOCKING.

Attack Time (second)

BMC 2-stage

SCRAMBLE-C SCRAMBLE-L SCRAMBLE-C SCRAMBLE-L
CRLB Size Mem Addr CRLB Size Mem Addr

Circuit #FF #Gate 8 16 32 7 8 9 8 16 32 7 8 9

RS232 168 59 2.7 2029 � 35.7 � � ...�... � � ...�... � �
32b RSA 555 2139 1.4 3441 � 45.8 � � ..�.. � � � � �
MC8051 578 6590 47.7 6406 � 50.1 � � � � � � � �
SPARC 120K 233K 938 � � 288.2 � � � � � � � �

� : Timeout = 106 Seconds

Table V
THE PPA OVERHEAD FOR BUILDING A LOCKED FSM RESISTANT TO

BMC ATTACK USING SCRAMBLE-C AND SCRAMBLE-L

SCRAMBLE-C SCRAMBLE-L
(Resilient with CRLB Size = 32) (Resilient with SRAM Size = 28×8)

Circuit RS232 32b RSA MC8051 SPARC RS232 32b RSA MC8051 SPARC

Area (%) 38.5% 4.5% 1.2% 0.05% 173% 17.8% 5.1% 0.1%

Power (%) 44.8% 5.6% 1.7% 0.1% 224% 26.8% 7.2% 0.3%

Delay (%) 48.4% 10.8% 11.4% 9.7% 22.7% 5.5% 6.8% 3.9%

quential circuits, and scan chains against IP piracy and

reverse engineering. The proposed solution, SCRAMBLE,

resist against both (1) the 2-stage attacks on FSM, and

(2) unrolling-based SAT attacks while sequential or scan

obfuscation is targeted. We have discussed two variants of

SCRAMBLE: (a) SCRAMBLE-C, and (b) SCRAMBLE-

L. The SCRAMBLE-C relies on the SAT-hard and key-

controlled modules that are constructed using the near non-

blocking logarithmic switching network. The SCRAMBLE-

L uses input multiplexing techniques to hide a part of the

FSM in a memory. In our result section, we illustrated that

attack time could be made unreasonably long using any of

these techniques.
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