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a b s t r a c t 

Many of the purported virtues of Multi-Principal Element Alloys (MPEAs), such as corrosion, high- 

temperature oxidation and irradiation resistance, are highly sensitive to vacancy diffusivity. Similarly, so- 

lute interdiffusion is governed by vacancy diffusion. It is also often unclear whether MPEAs are truly 

stable or effectively stabilized by slow interdiffusion. The considerable composition space afforded to 

these alloys makes optimizing for desired properties a daunting task; theoretical and computational tools 

are necessary to guide alloy development. For diffusion, such tools depend on both a knowledge of the 

vacancy migration barriers within a given alloy and an understanding of how these barriers influence 

vacancy diffusivity. We present a generalized theory of vacancy diffusion in rugged energy landscapes, 

paired with Kinetic Monte Carlo simulations of MPEA vacancy diffusion. The barrier energy statistics are 

informed by nudged elastic band calculations in the equiatomic CoNiCrFeMn alloy. Theory and simula- 

tions show that vacancy diffusion in solid-solution MPEAs is not necessarily sluggish, but can potentially 

be tuned, and that trap models are an insufficient explanation for sluggish diffusion in the CoNiCrFeMn 

HEA. These results also show that any model that endeavors to faithfully represent diffusion-related phe- 

nomena must account for the full nature of the energy landscape, not just the migration barriers. 

© 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. 
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1. Introduction 

In recent years, there has been considerable interest in design-

ing novel structural alloys by combining multiple elements in high

concentrations, resulting in the so-called multi-principal element

alloys (MPEAs) (also referred to as high-entropy alloys or complex

concentrated alloys). These alloys have been shown to exhibit ex-

ceptional properties, including novel mechanical properties [1,2] ,

fracture toughness [3,4] , creep resistance [5–8] , radiation damage

resistance [9–13] , and oxidation resistance [14–16] . The property

enhancements in MPEAs, as well as their thermal stability, are usu-

ally attributed to four core properties: (a) high mixing entropy, (b)

lattice distortions, (c) sluggish diffusion, and (d) cocktail effects

[17] . Among these effects, sluggish diffusion is poorly understood

and may be the most controversial in the MPEA community. It was

long assumed that slow diffusion was an inevitable consequence of

traps and obstacles that arise from the disordered lattice [18] ; dis-

ordered (or rough) energy landscapes have indeed proven capable

of inducing sluggish kinetics [19–21] , but recent experimental data

has suggested that not all MPEAs exhibit slow diffusion [22,23] . 
∗ Corresponding authors. 
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Quantifying atomic diffusion in MPEAs is important, as the

olid-solution phase with the highest mixing entropy does not al-

ays have the lowest Gibbs free energy [24] and complex phases

ay precipitate in MPEAs after annealing treatments. For example,

tto et al. found phase precipitation in the CoNiCrFeMn alloy at

emperatures of 50 0 ◦ − 70 0 ◦ C, over 500 days of annealing [25] ,

uggesting that the apparent stability of this prototypical FCC al-

oy is likely due to slow phase transformation kinetics. This high-

ights the importance of understanding diffusion in evaluating the

tability of solid solutions in these alloys., Cheng et al. [26,27] at-

ribute the remarkable thermal stability of the amorphous struc-

ure in Ge x TiZrNbTa and BTiZrNbTa thin films to the combination

f high entropy, significant atomic size differences, and sluggish

iffusion. In [28] , Zhao et al. studied the coarsening of L1 2 pre-

ipitates in a face-centered-cubic (NiCoFeCr) 94 Ti 2 Al 4 MPEA at tem-

eratures ranging between 750 ◦ and 825 ◦C. They concluded that,

wing to sluggish diffusion, L1 2 precipitate coarsening was much

lower in the MPEA than in conventional Ni-based alloys. 

Beyond thermal stability, understanding the role of structural

isorder on diffusivity is also important for the performance of

PEAs. For example, high-entropy alloy nitrides have been pro-

osed to be effective diffusion barrier coatings [29] ; the reduced

iffusivity of these materials is attributed to lattice distortions

aused by multiple principal elements. MPEAs have also been pro-

https://doi.org/10.1016/j.actamat.2020.06.022
http://www.ScienceDirect.com
http://www.elsevier.com/locate/actamat
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osed as replacements for conventional alloys in high temperature

pplications [30] and in advanced nuclear reactors [31,32] . Under

xtreme environments, the diffusivity of point-defects (vacancies)

overns the performance and the microstructural stability of

PEAs. Therefore, determination of the kinetics of phase transfor-

ations and operating temperatures for these alloys demands a

horough understanding of the transport coefficients [33] . 

In this article, we investigate the diffusivity of vacancies in

odel MPEAs. More often than not, diffusion in crystalline solids is

ediated by vacancy point defects. Therefore, the kinetics of phase

ransformations and microstructural evolution will be greatly in-

uenced by vacancy diffusivity [34] in MPEAs. From a theoreti-

al standpoint, as far as the authors are aware of, the models for

alculating diffusion coefficients in MPEAs are primarily based on

he formulation of linear irreversible thermodynamics and Onsager

oefficients [35–38] . These frameworks are developed for multi-

omponent alloys and are purported to be valid over a wide range

f compositions. However, these models make the underlying as-

umption that there is a constant exchange rate (i.e a constant

igration barrier) between any two diffusing species present in

he alloys. The theoretical results are then validated using Kinetic

onte Carlo simulations with the same underlying assumptions,

.e. the exchange rates are fixed and constant. A similar multi-

requency model has also been used to fit experimental concen-

ration profiles in interdiffusion experiments in the Cr-Co-Fe-Ni

edium entropy alloy [39] . However, it is also true that the ran-

omness in the energy landscape plays a crucial role in influencing

ransport coefficients as evidenced in solid-state and biological sys-

ems [40–45] . In MPEAs, the migration barrier energies for vacan-

ies (or self-interstitials) are randomly distributed (e.g. as shown

n Fig. 3 of Ref. [46] ). The nature of this distribution will play an

mportant role in determining the diffusion coefficients in MPEAs. 

The objective of the present article is to provide a random-

alk-type analytical results for understanding vacancy diffusivity in

he presence of chemical disorder on the ordered lattice of MPEAs.

andom-walk approaches provide the atomistic detail necessary to

ccount for the disorder (or roughness) present in the migration

arrier energies. In Section 2 , we present some background on dif-

usion models in the presence of disorder (roughness) in energy

andscapes. In Section 3 , we provide the statistics of vacancy mi-

ration barrier energies for a model MPEA that will motivate the

MC simulations ( Section 4 ) and theoretical analysis ( Section 5 ).

he theoretical results presented in this article are anticipated to

rovide the necessary foundation for understanding diffusion in

ulti-component solid solutions. 

. Background 

The analytical investigation of random energy landscapes and

ransport coefficients originates in Robert Zwanzig’s work on pro-

ein dynamics [21] . Zwanzig showed that the diffusivity in a ran-

omly rough potential U is D = D ◦ exp 

(
−(ε/k B T ) 

2 
)
, where D ◦ is

he diffusion coefficient in a landscape with uniform barriers and
2 = 〈 U 

2 〉 . Zwanzig’s theory suggests an exponential reduction in

he diffusion coefficient with the (squared)-amplitude of rough-

ess. While this result is elegant and simple, Zwanzig also in-

oked certain assumptions (e.g. local averaging of the rough land-

cape) that may not always be valid. Additionally, these assump-

ions break down when correlations in the random-walks are con-

idered. 

Analyses of random walks in disordered lattices has also been

f considerable interest with applications in solid-state physics

40–42] , biology [43–45] , and in amorphous materials [47] . These

nvestigations use the Effective Medium Approximation (EMA) to

olve for a mean transition rate that satisfies the self-consistency

ondition [20,42] for a given energy landscape. These landscapes
re often broken into two categories – random-trap models, and

andom-barrier models (see Fig. 1 ). 

Random-trap (RT) models refer to energy landscapes where the

ransition-state (saddle-point) energies s are fixed to a constant

alue and the site-energies w are assumed to follow a Gaussian

istribution (see Fig. 1 (a)) with a given standard deviation σ w 

. Di-

ect integration (comparing the average transition rate to a uni-

orm distribition of barriers with the same mean) yields D/D ◦ =
xp (−x w 

) , where x w 

= (σw 

/k B T ) 
2 , mirroring Zwanzig’s model. In-

uitively, the reduction in diffusivity can be explained as the trap-

ing of the diffusing species in low energy sites. A defining char-

cteristic of RT models is that, from a given state, every transition

ut of that state has the same barrier E . 

Random-barrier (RB) models correspond to energy landscapes

here the site-energies w have the same fixed value and the

ransition-state energies s are randomly distributed (see Fig. 1 (b)).

or example, effective medium solutions were proposed for elec-

ron transport, employing landscapes with a uniform distribution

f barriers from 0 to some critical energy E c [48] . In this study, it

as shown that a wider distribution of barriers yields a smaller

iffusion constant, but this is obvious as the mean barrier is also

ncreasing. Mussawsade et al. applied the EMA to a Gaussian-

istributed random barrier model [47] . Here, the mean barrier was

hosen for a given distribution such that 95% of the distribution

as positive (as negative barriers are unphysical). Naturally, they

lso showed slower diffusion with an increasing distribution width

s the mean barrier was also increasing. Symmetry is a defining

eature of RB models - If E A → B is the energy of a transition from

tate A to B, then in the RB model, E A → B = E B → A . 

It is plausible that some of the initial justifications for sluggish

iffusion in MPEAs were inspired by the analytical results sum-

arized above. The idea of sluggish diffusion, however, is brought

nto question recently with many research groups convinced that

luggish diffusion is not one of the core properties of MPEAs that

undamentally distinguishes them from conventional alloys. While

his could very well be true, the diffusion of atomic species and

acancies has been invoked in various recent studies that report

roperty enhancements in MPEAs. It is necessary, therefore, to de-

ermine the nature of the energy landscape in an MPEA and in-

estigate its role in influencing transport properties. It is essential

hat we investigate these aspects not just for the long-term de-

elopment of MPEAs, but also for the short-term creation of com-

utational tools. For example, it is traditional to assume that va-

ancy diffusivity can be described by simply computing the mi-

ration energy barriers in the MPEA. However, the present work

trongly suggests that this is only a partial picture. 

. Determination of vacancy migration barrier energies 

When a vacancy swaps with an atom, the migration barrier will

epend on the species of that atom, as well as those of neighbor-

ng atomic sites. The chemical disorder of the alloy then implies

 distribution of migration barriers. Before an analysis of transport

n MPEAs can be conducted, we must actually compute these bar-

iers to vacancy migration in a sample MPEA. We performed 2971

udged Elastic Band (NEB) [49–52] calculations of vacancy migra-

ion between nearest-neighbor sites, using a MEAM potential for

he CoCrFeMnNi High Entropy Alloy [53] and the LAMMPS atom-

stic simulation software [54] . 

First, we generated a random equiatomic face-centered cubic

FCC) single crystal MPEA consisting of 32,0 0 0 atoms. We then al-

ernated between performing 10 0,0 0 0 monte carlo swaps [55] at

273 K and relaxing the system via conjugate-gradient (CG) en-

rgy minimization [56,57] . This procedure was repeated 500 times

o capture any tendency for short-range ordering. After 20 million

waps, there was partial ordering, according to the short-range or-
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Fig. 1. Energy landscapes with (a) random traps, (b) random barriers, and (c) the general case. 

Fig. 2. Distribution of vacancy migration barrier energies in CoNiFeCrMn MPEA [53] )(a) over all transitions and (b) separated by migrating species. Transitions computed 

using 2971 Nudged Elastic Band (NEB) calculations. The barriers are Gaussian distributed; mean and standard deviations, determined from the fit (red) are given in a). (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. (a) Definition of E + and E −, the symmetric and anti-symmetric barrier components. For a reference energy equal to the mean of the energies of the initial and final 

state, s = E + and w i = −w f = E − . b) Distribution of E − and E + for the CoNiFeCrMn HEA [53] computed from 2971 NEB calculations. 
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der (SRO) parameters [58] . The SRO parameters did not change sig-

nificantly over the next 30 million swaps. 

Once this initial configuration was generated, we iterated

through atoms in the system. For each iteration, we removed the

target atom and relaxed the system, again by CG minimization. In

the FCC crystal, each vacancy site has twelve neighbors. For each

neighbor, a post-migration configuration was created by swapping

that neighbor with the vacancy, followed by another relaxation.

These served as the initial and final images for the NEB calcula-

tions, which were performed with a spring constant of 1 eV/ ̊A(we

verified this choice with a parametric study; the results were in-

sensitive to the choice of spring constant within a range of.1 and

10 eV/ ̊A). 
The vacancy migration barrier energies, obtained from the NEB

alculations, are shown in Fig. 2 a. A Gaussian fit to this distribution

ields a mean barrier of 0.81 eV with a standard deviation of 0.32

V. We also note in Fig. 2 b that Mn tends toward the smallest bar-

iers ( μ = 0 . 47 eV, σ = 0 . 18 eV), while Co tends toward the largest

 μ = 1 . 07 eV, σ = 0 . 22 eV), though there is substantial overlap.

he MPEA does indeed provide a rough energy landscape for va-

ancy migration, but to connect this to transport, we need more

nformation than this, namely the extent to which this distribu-

ion is described by a random barrier (RB) or a random trap (RT)

odel. Fig. 3 a gives the result of one NEB calculation. The leftmost

oint is the energy of the initial state, the rightmost the energy

f the final state. The intermediate points are the energy of mid-
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Table 1 

Barrier properties and associated variance. These expressions are valid if s and w 

are independent, randomly distributed variables. 

Quantity var( X ) 

E = s − w var (s ) + var (w ) 

E + = s − 1 
2 
(w A + w B ) var (s ) + 

1 
2 

var (w ) 

E − = 

1 
2 
(w B − w A ) 

1 
2 

var (w ) 
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ransition states, relaxed as the vacancy migrates, and the highest

oint corresponds to the saddle point of the transition. 

There are two primary effects of randomness in the distribu-

ion of barrier heights and well-depths. First, it affects the av-

rage transition rate. Second, it introduces correlations between

ubsequent hops. For example, in a purely RB model, a vacancy

hat just crossed a barrier with a small saddle energy s is more

ikely to jump backwards over that same small barrier in the next

op. While the RT and RB models are constructed in terms of s

nd w , they cannot be measured directly in a useful way. In the

PEA, there is no well-defined reference energy; both the w be-

ore and w after a transition are equally valid reference states,

nd many changes in the system (such as a swap between two

toms far away from the vacancy) can shift both s and w without

eaningfully altering the transition barrier. Instead, we consider

he symmetric and anti-symmetric components of the transition,

 + = (E A → B + E B → A ) / 2 and E − = (E A → B − E B → A ) / 2 , respectively. If

e choose a reference energy equal to the mean energy between

he initial and final states, then s = E + while w A = −w B = E −. These

re local descriptors of the transition barrier. If s and w are inde-

endent random variables, then the distributions of E − and E + are

elated to w and s in a predictable way (see Table 1 ). 

These relationships translate from global quantities like s and

 to local quantities that directly compare the transitions between

djacent states. Distributions of E + , and E − from the NEB calcula-

ions are given in Fig. 3 b. A few initial observations can be made

rom this data. First, σ+ = 0 . 314 ± 0 . 007 eV, is significantly greater

han σ− = 0 . 078 ± 0 . 001 eV. This is more consistent with an RB-

ike landscape, but there is still an RT component that cannot be

gnored. There are also a substantial number of transitions with

ery small barriers ( E + ≈ 0 ). While states with “zero barriers” can

e disregarded as unstable states, there are a large number of

tates that are stable, but with very small non-zero barriers. This

mplies a small barrier for the vacancy to hop between two sites in

ither direction. Intuitively, one can imagine a vacancy rapidly hop-

ing back and forth between the two sites. As a result, we should

xpect highly correlated vacancy migration and a theory for dif-

usion in this system must account for such correlations . 

These NEB calculations illustrate the nature of the energy land-

cape in this particular MPEA. However, it is not clear how σ w 

nd σ s affect diffusion kinetics. In the next section, we present

inetic Monte Carlo results that predict the diffusion constant as

 function of σ w 

and σ s and inform the development of a theo-

etical model. In the development of this model, we are interested

rimarily in the effect of this distribution of energies on vacancy

iffusivity. We will therefore consider the overall distributions of

he energies instead of species-specific energies (e.g. as shown in

ig. 2 b). 

. KMC simulations 

The NEB calculations provide the full distribution of transition

nergies s and well depths w in the CoNiFeCrMn MPEA. To under-

tand the role of the distribution widths ( σ s amd σ w 

) on the va-

ancy diffusivity, we performed lattice Kinetic Monte Carlo (KMC)

imulations. In KMC, we can directly specify the energy landscape

nd control the distribution of barriers. While s and w are not

lobally independent in real systems, we can construct a model

ystem in which they are and use the relations in Table 1 to pick

s and σ w 

such that E + and E − follow distributions observed in

EB calculations and reflect the local character of the MPEA. 

While setting up a traditional KMC simulation with a fixed dis-

ribution of s and w is trivial, the KMC set-up for MPEA vacancy

iffusivity needs subtle, but important, modifications. These modi-

cations are as follows: 
1. The energy landscape has to be dynamic. That is, one cannot

a priori assign the values of s and w on the lattice and keep

them fixed during the KMC simulation. This can be easily seen

by imagining a vacancy moving in a random solid-solution. If

a vacancy starts at a site i , completes a few hops, and returns

to its original site i , such that the local atomic configuration is

modified by the swapping of neighbors, then the site and bar-

rier energies also change. Therefore, a model that accounts for

this dynamic energy landscape has to be considered. 

2. If the local atomic configuration does not change, then the site

energy remains unchanged. That is, if a local atomic environ-

ment (consider the first nearest-neighbor shell around the va-

cancy) remains unchanged, then the site energy should remain

the same. The same is true for the transition-state energies, ex-

cept that we need to consider the environments of the both the

initial and the final states. 

In this study, we developed an indexing approach (determined

y the nearest-neighbor configuration) to guarantee that the dy-

amic nature and the translational symmetry of the energy land-

cape are satisfied. Please refer to Supplementary Information for

 discussion the details of the KMC simulation set-up. It is impor-

ant to mention here that our indexing approach does not satisfy

nvariance with respect to rotation/inversion symmetries. However,

e do not anticipate this to change the results significantly be-

ause we are using a statistical model. By not considering the

otation/inversion symmetries, we simply add to the diversity of

he configurations. As we keep the underlying distributions the

ame, adding the rotation/inversion symmetries would be com-

utationally very expensive while not altering the results signifi-

antly. Other than the symmetries mentioned above, this method

s also truly random and ignorant of any chemical effects or corre-

ations between barriers in similar environments. 

Once the transition rates are calculated according to the w and

 arrays, the simulation proceeds via the Bortz-Kalos-Lebowitz al-

orithm [59] . For each transition j from a site i , the rate is 

 i j = ν exp (−(s i j − w i ) / k B T ) , (1)

here ν is an attempt frequency, E i j = s i j − w i is the migration bar-

ier, and a transition is chosen randomly with a probability propor-

ional to its rate. The vacancy site is then occupied by the target

eighbor atomic species and the neighbor is then occupied by the

acancy and the time is incremented by 

t = 

1 

R 

ln (1 /ε) , (2) 

here R is the sum of all transition rates and ε is a number cho-

en from a uniform distribution ε ∈ (0, 1]. This process is repeated

or each step of the simulation. The diffusion constant can then

e computed by measuring the mean-square displacement as a

unction of time, averaged over many runs of the simulation (i.e.,

 x 2 〉 = 6 Dt). 

The results of KMC simulations at a fixed temperature 1273 K

nd mean barrier μ = 0 . 81 eV (corresponding to the NEB measure-

ents) over a range of σ w 

and σ s are given in Fig. 4 . It is immedi-

tely apparent that while diffusivity decreases with increasing σ w 

,

t increases with increasing σ s . For σ s and σ w 

chosen to match
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Fig. 4. Diffusion constant D , computed via KMC simulation over a range of σ w and 

σ s at a temperature of 1273 K and scaled by D 0 , the diffusion constant for a uniform 

barrier distribution equal to the mean barrier 0.81 eV. The black circle denotes σ w 

and σ s chosen to match σ− and σ+ as measured via NEB for the CoNiFeCrMn MPEA 

(see Table 1 ). 
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E + and E − for the CoNiFeCrMn MPEA, one would expect approxi-

mately a three-fold enhancement in vacancy diffusivity relative to

a material with a uniform barrier distribution. This makes intuitive

sense; for a random trap model (large σ w 

), the time is dominated

by the vacancy’s residence in deep energy wells. For a random bar-

rier model, large barriers do not impede migration of the vacancy

if there are alternative short barriers that it can traverse instead. 

This can be understood by analogy to resistors. For a random

trap model, the roughness in the potential corresponds to a vari-

ation between subsequent hops; the total resistance of a series of

resistors is given by the sum of resistances, which is dominated

by the largest resistances. For a random barrier model, the rough-

ness in the potential corresponds to a variation between alternate

transitions out of a given state; the resistance of a set of resistors

in parallel is given by the inverse of the sum of conductivities, for

which small resistances dominate. One cannot decrease resistance

by adding a weak resistor in series no more than one can increase

the resistance by adding a strong resistor in parallel. To fully ex-

plain these results and make future predictions, we next present a

statistical theory of vacancy migration in disordered energy land-

scapes. 

5. Theory 

The KMC simulations provide the foundational observation that

random trap landscapes impede diffusion while random barrier

landscapes enhance it. An analytical theory is necessary to explain

these observations and make intuitive predictions. A rough energy

landscape can have two effects on diffusion. First, it can change

the average transition rate � (analogous to the effective rates com-

puted in prior work [21,43–45,47] ). Second, it can introduce corre-

lations between hops. Consider a rough landscape given by ran-

dom, independent distributions of well-energies w and transition

saddle-point-energies s , with means μw 

and μs and standard de-

viations σ w 

and σ s . The diffusion constant D can be expressed as

D 

D ◦
= 

�(σs , σw 

, μ) F (σs , μ) 

�◦
, (3)

where D ◦ and �◦ are the diffusion constant and jump frequency

for a random walker in a landscape with constant vacancy migra-

tion barrier energy μ = μs − μw 

and F is the effect of correlations.

When the vacancy migration barrier is a constant value, there are

no correlations and F = 1 . It is important to note that F depends

only on the distribution of saddle-point energies and not on the
istribution of well-energies. That is, for a purely random trap en-

rgy landscape F = 1 . This is because w is the property of the lat-

ice site and all jumps out of that site are equally likely (refer to

ig. 1 (a)). Therefore, the randomness in the well-energies will not

ffect which transition is selected and hence cannot influence cor-

elations between subsequent hops. Therefore, we omit the depen-

ence of σ w 

for F in Eq. (3) . In the following, we will derive the

nalytical form for the jump frequency �( σ s , σ w 

, μ) and the ef-

ect of correlations F (σs , μ) in the disordered energy landscape.

he derivation will include the following steps: 

• First, we will show that the contributions of the disorder in

well-energies can be separated from those in the saddle-point

energies. That is, the mixed model can be simplified into two

independent contributions arising from a pure random-trap and

a pure random-barrier model. 

• The random trap contribution is equivalent to the expression

derived by Zwanzig [21] . For the random-barrier contribution,

we outline the steps required to compute the average transition

rate �( σ s , μ) for a random barrier model. The key insight that

we will develop here is that the distribution of barriers-crossed

(hops) is not the same as the distribution of barriers present in

the system. 

• Finally, we derive the effect of correlations F (σs , μ) in the ran-

dom barrier model. As the well-energy distributions do not

contribute to F (as discussed above), it suffices to simply com-

pute the correlations for the pure RB model. 

.1. Separation of the random trap (RT) and random barrier (RB) 

ontributions 

Assuming vacancy migration is thermally-activated with an at-

empt frequency ν , the rate of a transition, from state i to j , is

iven by �i j = ν exp (−E i j /k B T ) , where E i j = s i j − w i . The average

ime 〈 τ 〉 that a vacancy resides in state i is therefore 

 τ 〉 = 

〈 ( 

z ∑ 

j 

νe 
− E i j 

k B T 

) −1 〉 

= ν−1 

〈 

e 
−w i 
k B T 

( 

z ∑ 

j 

e 
− s i j 

k B T 

) −1 〉 

, (4)

here z is the coordination number and the number of possible

umps for the vacancy. If w i and s ij are independent random vari-

bles, their corresponding terms can be separated. That is, 

= 〈 τ 〉 −1 = 

ν〈 exp (−w i /k B T ) 〉 −1 〈 (∑ z 
j exp (−s i j /k B T ) 

)−1 
〉 . (5)

The average 〈〉 is over all hops (i.e,. all chosen transitions),

ather than all possible transitions. As the choice of a transition

s independent of w i , an average over w i encountered by the va-

ancy is simply the system-wide normal distribution of w and the

rrhenius part of the RT component is 

 RT = 

〈 
exp 

(
− w i 

k B T 

)〉 −1 

= exp 

(
μw 

k B T 

)
exp 

[
−
(

σw 

k B T 

)2 
]
, (6)

dentical to Zwanzig’s result [21] . Here, we introduce the symbol

 for the Arrhenius part of the jump frequency. The remaining RB

omponent, 

�

A RT 

= ν

〈 [ 

z ∑ 

j=1 

exp 

(
− s i j 

k B T 

)] −1 〉 

−1 

= νA RB , (7)

s independent of w . That is, we can solve the case of the mixed

nergy model as independent contributions of a pure random-

rap model, A RT ( Eq. (6) ), and a pure random-barrier model A RB 

 Eq. (7) ), that is � = νA A . 
RT RB 
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Fig. 5. P c and P 1 (inset) distributions, as computed by theory (solid) and from KMC 

(points). The distributions are plotted as a function of the barrier energy u = s/k B T . 
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.2. Computing the jump frequency for a pure random-barrier model 

To compute the arrhenius part, A RB in Eq. (7) , we have to de-

ermine the distribution of the barriers crossed by the vacancy in

he random-walk trajectory. This is different from the distribution

f the barriers present in the system as the vacancy prefers to

ump over smaller barriers. For a uniform landscape, where the mi-

ration energy barrier is given by μ = μs − μw 

and σw 

= σs = 0 ,

he Arrhenius parts of the jump frequency are given by A 

◦
RB =

xp (−μs /k B T ) and A 

◦
RT 

= exp (μw 

/k B T ) . The jump frequency, in the

niform barrier case, has the form �◦ = νA 

◦
RT 

A 

◦
RB 

= ν exp (−μ/k B T ) .

hat is, while A RB and A RT are sensitive to the choice of reference

nergies (e.g., choosing ( μs , μw 

) = ( μ, 0 ) or ( μs , μw 

) = ( 0 , −μ) ),

he product A RB A RT is not. In the disordered energy landscape,

 RB is independent of the distribution of well-energies, w , and it

an be calculated by fixing w to a constant value, i.e. w = μw 

.

or clarity, we choose a reference energy such that μw 

= −μ and

s = 0 and adopt a reduced notation u = s/k B T , u 0 = −μ/k B T , and

 = ( σs /k B T ) 
2 
. u is drawn from a truncated normal distribution: 

 1 (u, μ, x ) = N 1 (μ, x ) e −
u 2 

2 x , (8)

ver the domain u ≥ u 0 . N 1 ( μ, x ) is a normalization constant. From

 given lattice site, the probability p of selecting a given transition

s 

p = 

e −u 

e −u + 

∑ z−1 
j e −v j 

, (9) 

here u is the barrier of the target transition and v j represent all

f the other transition barriers. 

If the vacancy jumps over a small barrier u , it is likely to hop

ackwards across that same barrier (for the random-barrier en-

rgy landscape). This means that the distribution of u encountered

y the vacancy should be biased towards smaller barriers relative

o the system-wide barrier distribution, P 1 . The distribution of cho-

en barriers P c ( u ) is 

 c (u ) = P 1 

∞ ∑ 

i =1 

p i = N(x, u 0 ) e 
− (u + x ) 2 

2 x , (10)

here N ( x, u 0 ) is a normalization constant. Eq. (10) can be under-

tood as follows: the probability that a barrier first encountered by

he vacancy has height u is given by P 1 ( Eq. (8 )). The probability of

he vacancy crossing that barrier once is given by p ( Eq. (9) ), cross-

ng twice is given by p 2 , etc. The sum of these probabilities is then

 c . This distribution (with P 1 inset), compared with KMC results, is

hown in Fig. 5 . The P c distribution is nearly identical to the KMC

esults. 

The Arrhenius part of the random barrier model, A RB , is re-

ated to the inverse of the average of residence times (as shown
n Eq. (7) ). That is, the jump frequency for the RB model can be

xpressed as �RB = νA RB where A RB = [ ν〈 τ 〉 ] −1 
. Here the residence

ime, τ of the vacancy in the lattice-site i is given by: 

τ = 

[ 

z ∑ 

j=1 

exp 

(
− s i j 

k B T 

)] −1 

(11) 

here s ij is the saddle-point energy for the hop from state i to

tate j . Suppose the vacancy arrives at state i by hopping over

 barrier given by the non-dimensionalized variable u . The bar-

iers that the vacancy now observes, from state i , are u and v j 
 j = 1 , . . . , z − 1 ). We use two different variables u and v to denote

he barriers from state i to emphasize the fact that they are drawn

rom two distinct probability distributions. Since the vacancy just

opped over the barrier u , the corresponding distribution is given

y P c ( Eq. (10) . The distributions of the remaining z − 1 barriers,

efined by random variables v j , correspond to the system-wide

unction, P 1 ( Eq. (8 )). The residence time, τ , can be re-written in-

erms of the non-dimensional variables, u and v j , as: 

τ = 

[ 

exp ( −u ) + 

z−1 ∑ 

j=1 

exp 

(
−v j 

)] −1 

(12) 

The mean of the residence times, ν〈 τ 〉 , can be obtained by a

welve-fold integral of the rate terms, e −u and e −v j , multiplied by

he appropriate distribution functions, P c and P 1 , respectively. Un-

ortunately, there are no analytical solutions for the integration of

he rate terms, e −v j , when the random variable v j is described by

 truncated normal distribution. 

Instead, we introduce approximate probability distributions 

or the summation of rates, defined using the variable r k =
 k 
j=1 exp 

(
−v j 

)
, where v j is a random variable drawn from a trun-

ated normal distribution. r k is now a random variable, defined

s the sum of rates over k barriers, with a probability distribu-

ion ρk ( r k ). The determination of the distributions, ρk , is similar

o the Fenton-Wilkinson approximation [70] and is described in

upplementary Information . Equipped with the distribution func-

ions, ρk , we can now simplify the computation of the average res-

dence time ν〈 τ 〉 . The residence time, for site i , can be re-written

s ντ = ( e −u + r z−1 ) 
−1 

and the average residence time can simply

e computed as a two-fold integral over the random variables u

nd r z−1 , multiplied by the appropriate distribution functions P c 
nd ρz−1 , respectively. Therefore, the Arrhenius part, A RB , can be

ritten in terms of a two-fold integral as: 

 RB = [ ν〈 τ 〉 ] −1 = 

[ ∫ ∫ (
e −u + r z−1 

)−1 P c (u, μ, σ ) ρz−1 ( r z−1 ) d ud r 

]
(13) 

hich can be evaluated numerically. As mentioned above, the bar-

ier that the vacancy most recently hopped is drawn from the P c 
istribution ( Fig. 5 ). As P c favors smaller barriers, the average rate

n the RB model will be higher than that for a uniform distribu-

ion. This also implies correlations between subsequent hops - if

he vacancy hops over a particularly short barrier, it is more likely

o hop backwards in the direction opposite the previous hop. 

.3. Computing the correlation factor between hops 

The j th correlation factor f j = 〈 � v i · � v i + j 〉 is the average cosine

etween a given hop i and j hops subsequent. If the hops are com-

letely uncorrelated, then f j = 0 . In a vein similar to the derivation

f the A RB , we will suppose that a vacancy reaches site i by hop-

ing over a barrier u . Let us also denote the barrier over a hop

n the same direction as the previous jump as v . Then the average
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Fig. 6. a) Marginal distribution 〈 α1 ( u ) 〉 as a function of previously-hopped barrier u for different values of σ s , compared with measurements from KMC (points). b) The 

correlation factors f i in the random-barrier model. 
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cosine for the next hop from site i is given by: 

α1 (u, v , r z−2 ) = 

e −v − e −u 

e −v + e −u + r z−2 

, (14)

where r z−2 is the sum of the rate terms of the remaining barriers,

i.e. r z−2 = 

∑ z−2 
j=1 e 

−v j . This expression can be rationalized as follows:

(i) the e −u term reflects the possibility that the vacancy hops back-

wards over the same barrier u (corresponding to a cosine of −1 ),

(ii) the e −v term corresponds to a hop in the same direction as the

previous hop (corresponding to a cosine of 1), and on average, the

cosine terms of all other hops cancel out in the numerator. (iii)

In the denominator, we have the summation of the probabilities

of all possible jumps, given by e −u , e −v and r z−2 (for the remaining

z − 2 jumps). As discussed in Supplementary Information , r z−2 is a

random-variable whose distribution is given by the function ρz−2 . 

The first correlation factor f 1 is then obtained by integrating

over the distributions u, v and r z−2 as: 

f 1 = 

∫ ∫ ∫ 
P (u, v , r z−2 , x ) α1 (u, v , r z−2 ) d ud v d r, (15)

where 

P (u, v , r z−2 , x ) = P c (u, x ) P 1 (v , x ) ρz−2 (r z−2 , x ) . (16)

These integrals can be easily evaluated using numerical inte-

gration techniques. In Fig. 6 (a), we plot the marginal distribution

〈 α1 ( u ) 〉 defined as: 

〈 α1 (u ) 〉 = 

∫ ∫ 
P 1 (v , x ) ρz−2 (r z−2 , x ) α1 (u, v , r z−2 ) d v d r, (17)

Shown in Fig. 6 (a), is a close match between 〈 α1 ( u ) 〉 and the

KMC simulations for three different values of σ s . Note the conver-

gence of 〈 α1 ( u ) 〉 to −1 as u decreases. For smaller barriers u , it is

very highly likely that the vacancy will jump back over that small

barrier. This results in an angle of 180 ◦ between subsequent hops

and the average cosine will converge to −1 . 

For higher order correlations f i (i.e., the correlation between a

hop and the i th subsequent hop), one must determine correspond-

ing αi terms (see Supplementary Information 3). The first eight

correlation factors ( f 1 , f 2 , . . . , f 8 ) are plotted in Fig. 6 b, compared

directly with measurements from KMC simulations. The theory is

nearly an exact match to the simulations, except for the high-order

correlation factors at large x . This is discussed further in Supple-

mentary Information. The effect of correlation factors on the diffu-

sion coefficient, up to the n th correlation factor, is given by 

F = 1 + 2 〈 v i · v i + j 〉 = 1 + 

2 

n 

n ∑ 

j 

(n − j + 1) f j . (18)
This is a modification of the common random walker solution

ith correlated hops for finite sums [60] ; if, for example, we con-

ider up to the 8th correlation factor, then we sample from an ini-

ial hop up to 9 hops in the future. This means that 8 instances of

 1 count toward the average, 7 instances of f 2 , etc. We note here

hat it is common in the theory of correlated random walks to

pproximate F = (1 + f 1 ) / (1 − f 1 ) [60] ; this is only valid if every

tate is equivalent, such that f j = f 
j 

1 
. That is not true in this case,

s evidenced by Fig. 6 . 

. Results and discussion 

The analytical diffusivity (the ratio D / D ◦, where D ◦ is the diffu-

ivity when σw 

= σs = 0 ) is plotted as a function of ( σ w 

/ k B T ) 
2 and

 σ s / k B T ) 
2 in Fig. 7 a, and the error between the theory and KMC is

iven in Fig. 7 b. The theory and KMC produce nearly identical re-

ults, except when both σ w 

and σ s are large. This is because while

he random barrier model does not allow the s component of tran-

ition energy to be less than μw 

, it does not account for the effect

f particularly deep wells, which could allow stable configurations

here s < μw 

as long as s > w . This is, however, only a prob-

em when σ w 

and/or σ s are much greater than measured for the

oNiFeCrMn HEA. 

These plots show that vacancy diffusivity can either be retarded

 D / D ◦ ~ 0.5 if σw 

= k B T 
√ 

2 and σs = k B T ) or accelerated ( D / D ◦ ~ 2 if

w 

= k B T and σs = 

√ 

5 k B T ) depending on the widths of the distri-

utions of site energies ( w ) and transition-state energies ( s ). This

aptures the full breadth of behaviors observed in more recent ex-

erimental results, while perhaps explaining the assumed univer-

ality of sluggish diffusion in MPEAs. The KMC simulations and

heoretical model presented here provide insight to the relation-

hip between the energy landscape and the resulting transport

roperties. In the most general terms, a large σ s (or σ+ ) yields en-

anced diffusion, while a large σ w 

(or σ−) produces sluggish diffu-

ion. Diffusion constants may be difficult to measure directly, but

he method presented here, to compute E + and E − distributions,

s amenable to automated survey that can be used to probe the

igh-dimensional compositional space of MPEAs. 

The model also allows us to directly quantify the influence of

orrelations between hops and barrier selection on diffusion in

 random energy landscape. Fig. 8 shows a comparison between

MC and Theory for the pure random barrier model and a simpli-

ed model. In the simplified KMC, all transitions from a given state

re given equal probability 1/ z , irrespective of the barrier energy,

t each time step. In the simplified theory, we equate the probabil-

ty of hopped barriers to the system-wide distribution of transition

tate energies, i.e. P c = P . Under these conditions, the averaging
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Fig. 7. a) D / D ◦ as calculated via analytical theory with mean barrier μ = μs − μw = 0 . 81 eV and temperature 1273 K. b) Percent error between analytical theory and KMC. D 

is the diffusion constant, while D ◦ is the constant for a landscape with uniform barriers of height μ. The black circle denotes σw = 0 . 11 eV and σs = 0 . 30 eV, corresponding 

to the E + and E − distributions measured for the CoNiFeCrMn MPEA, as measured by NEB. 

Fig. 8. Diffusion constant for theory and KMC (red) for a pure RB model, compared 

with a model in which all transitions have equal probability (blue). For these cal- 

culations, μ = 0 . 81 eV. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 
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ver all chosen vacancy hops ( Eq. (7) ) can be computed by simply

veraging over the entire energy landscape, making it more similar

o the Effective Medium approximation common in existing litera-

ure [19,20,42,45,47,48] . The two cases are very similar due to the

ompeting effects of preferential small-barrier selection and hop

orrelation. For example, when σs = 0 . 34 eV, � is approximately

2.3 times larger than in the equal-probability case but the cor- 

elation factor F ≈ 0 . 3 . Therefore, the difference between the two

cenarios (as shown in Fig. 8 ) is not very large. However, this is

ot guaranteed for different temperatures and mean barriers. It is

mportant to identify the correct theory for modeling the random

nergy landscape if we wish to accurately model diffusion in dis-

rdered materials. 

We note this theory, like the KMC simulations, assumes that

ll barriers are randomly generated unless the vacancy follows a

losed path that preserves the positions of each atomic species. Ir-

espective of the assumptions that went into this KMC and theoret-

cal model, it is clear that the random barrier/trap character of the

nergy landscape can profoundly influence diffusion, potentially al-

ering the effective diffusion constant by at least an order of mag-

itude; these details are necessary to predict diffusion behaviors

n disordered systems and must be considered in future models.

o summarize, we have developed a theoretical model that sheds
ight on two important aspects that are currently missing in the

nalysis of diffusion in multi-component alloy systems: 

1. The explicit treatment of both the well- and saddle-point en-

ergies: The randomness in migration barriers is generally in-

voked in the MPEA community as a qualitative measure to jus-

tify sluggish diffusion. However, we show that the distributions

of both the well- and the saddle-point energies influence dif-

fusion. For example, in a recent study involving the diffusion of

interstitial atoms in a binary Ni-Fe solid solutions, Osetsky et al.

[61] show that the tracer diffusion coefficient can be reduced

by tuning the local defect energy (i.e. the well-energy). These

results can be understood from our model as the contribution

of the random-trap component to diffusivity. 

2. Discrete vs. continuous energy distributions : Most continuum

theoretical models, that utilize mean-field theories and Onsager

relationships, consider a discrete set of barriers (referred to as

multi-frequency models) to evaluate solute diffusivities in alloy

systems [35,37,38,62–64] . While these models have shown re-

markable success in simplified systems (either dilute or binary

alloys), we show that the width of the distributions also plays

an important role in determining transport coefficients. As far

as the authors are aware, this is the first study quantifying the

role of the distribution widths, σ , on diffusion in solid-solution

alloys. 

The KMC model and the random-walk theory developed in

his article incorporate enough complexity to be useful to pre-

ict trends in diffusivity of complex solid solutions. However, these

odels are also meant to be simple enough (i.e. they depend only

n the distributions of saddle-points and well energies that can

e measured and predicted for MPEAs) to be useful for design-

ng novel multi-component alloy systems. That said, our models

an be augmented to consider the effect of species-specific kinet-

cs; for example, one many consider changing the concentration

f elements that exchange more easily with a vacancy than oth-

rs. In our KMC and the random walk models, we draw the en-

rgies from a single distribution (e.g. corresponding to Fig. 2 (a)).

owever, as shown in Fig. 2 (b), the distributions depend on the el-

ment with which the vacancy exchanges its position. This will

ntroduce effects that are specific to the chemical species and, if

onsidered, will allow for an understanding of the variation in dif-

usivities with concentration. For example, in a recent study, Oset-

ky et al. [65] computed diffusion coefficients in binary Ni-Fe al-

oys and showed that increasing the concentration, up-to a certain
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extent, of the faster species (Fe) decreases the overall atomic dif-

fusion. The composition dependence has a minimum near the site

percolation threshold, corresponding to ~ 20 at.%Fe. For the alloy

we investigated in this article, Mn atoms have low barrier for va-

cancy migration (as shown in Fig. 2 (b)) and it has also been shown

that Mn containing alloys exhibit sluggish diffusion [22] . Qualita-

tively, this rather surprising observation can be understood as a

result of increased correlation effect on diffusion - if a vacancy ex-

changes with an easily-migrating atom (e.g. with Fe in the Ni-Fe

alloy [65] or with Mn in alloys investigated in Ref. [22] ), it can

swap back with that atom, similar to the correlations investigated

in this article. This will effectively result in traps up to a certain

concentration of the faster species, after which, a percolation of

low-barriers will lead to increase in the diffusion coefficient. 

To gain a more quantitative understanding of such effects, we

could extend our KMC model to explicitly include the chemical

effects by sim ply drawing from a different w and s distributions,

depending on the migrating species. By tracking a specific atom

instead of the vacancy, the atom-specific self-diffusion coefficients

can be computed as a means to understand experimental observa-

tions. Modifications to the random-walker model, so as to include

species-specific kinetics and concentration dependence, would be

non-trivial. One strategy would be to extend the existing Onsager-

type continuum and multi-frequency models [35,37,38,62–64] . A

model recently developed by Vaks et al. [36] is promising. It in-

dependently considers saddle point and well energies and predicts

diffusivity as a function of concentration. However, only mean-

values are used in this model and it has only been validated for

binary alloys, where we expect the distributions to be narrower

and more discrete due to the smaller configuration space. These

models can be extended by considering species-specific distribu-

tions for site- and saddle-point energies, as was done for vacancy

diffusivity in this article. 

7. Conclusions 

The set of experimentally synthesized alloys cover only a small

region of the high-dimensional compositional space that has been

identified as thermodynamically plausible for MPEAs [66,67] . To

sample this high-dimensional space in an efficient manner and to

design novel MPEAs with targeted properties, the need for new

theoretical and computational tools has been highlighted [68] . In

this current study, we focused on developing analytical tools for

predicting diffusion kinetics, which are time consuming to mea-

sure either using experiments or atomistic simulations. For diffu-

sivity in MPEAs, the computational tools require a foundation of a)

characterization of the kinetic barriers to diffusion, b) a means of

simulating diffusion in a model system faithful to the observed en-

ergy landscape, and c) a theoretical framework for understanding

how the underlying energy landscape relates to diffusion. 

In this article, we presented a complete cross-section of dif-

fusion in rough energy landscapes, where the disorder is repre-

sentative of solid-solution MPEAs. We developed a flexible KMC

protocol where the distributions of the disordered well and the

saddle-point energies can be independently controlled. To better

understand the KMC results and to develop predictive models, we

presented a theoretical framework for vacancy diffusivity in dis-

ordered energy landscapes. While the statistics used in the KMC

simulations are informed by the direct computation of the migra-

tion barriers for a CoNiFeCrMn EAM potential, the developed the-

ory spans a wide-range of distributions that one may observe in

generic MPEAs. Therefore, for a given alloy system, equipped with

knowledge of the well and saddle-point energy distributions, sim-

ulations and theoretical results provided in this article can be used

to predict transport properties. The theory itself lends a simple in-

tuition regarding transport; wider distributions of saddle-point en-
rgies enhance diffusion while wider distributions of well depths

tifle diffusion. If these distributions can be connected to alloy

hemistry and compositions, this can serve to aid the development

f designer MPEAs with optimized transport properties. 

This statistical investigation of vacancy diffusion provides a

uilding block for future navigational tools in the vast MPEA sea.

n the near term, it should also serve as a guide for what compu-

ational tools currently in development must do correctly. The po-

ential that we used [53] is a laudable effort - a necessary step for

he atomistic modeling of these complex alloys. However, for un-

erstanding vacancy diffusivity, it is insufficient to match just the

acancy migration barriers. The present work suggests that these

andom landscapes can indeed produce trap environments that

roduce sluggish diffusion (as has been recently reaffirmed [69] ),

ut that this is not the full picture. Holding the distribution of bar-

iers steady, one can change the diffusion constant by orders of

agnitude. MPEA potentials, mean field theories, and other meth-

ds cannot be relied upon for diffusion-related problems if they do

ot capture the full nature of the energy landscape. 

eclaration of Competing Interest 

The authors declare that they have no known competing finan-

ial interests or personal relationships that could have appeared to

nfluence the work reported in this paper. 

cknowledgements 

This work is supported by the U.S. National Science Foundation

nder Grant No. CMMI-1826173 . 

upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at doi: 10.1016/j.actamat.2020.06.022 

eferences 

[1] O.N. Senkov , G. Wilks , J. Scott , D.B. Miracle , Mechanical properties of

Nb 25 Mo 25 Ta 25 W 25 and V 20 Nb 20 Mo 20 Ta 20 W 20 refractory high entropy alloys, In-

termetallics 19 (5) (2011) 698–706 . 
[2] A. Gali , E.P. George , Tensile properties of high-and medium-entropy alloys, In-

termetallics 39 (2013) 74–78 . 
[3] B. Gludovatz , A. Hohenwarter , D. Catoor , E.H. Chang , E.P. George , R.O. Ritchie ,

A fracture-resistant high-entropy alloy for cryogenic applications, Science 345
(6201) (2014) 1153–1158 . 

[4] Z. Zhang , M. Mao , J. Wang , B. Gludovatz , Z. Zhang , S.X. Mao , E.P. George , Q. Yu ,

R.O. Ritchie , Nanoscale origins of the damage tolerance of the high-entropy
alloy CrMnFeCoNi, Nature Commun. 6 (2015) 10143 . 

[5] D.-H. Lee , M.-Y. Seok , Y. Zhao , I.-C. Choi , J. He , Z. Lu , J.-Y. Suh , U. Ramamurty ,
M. Kawasaki , T.G. Langdon , et al. , Spherical nanoindentation creep behavior

of nanocrystalline and coarse-grained CoCrFeMnNi high-entropy alloys, Acta
Mater. 109 (2016) 314–322 . 

[6] Y. Ma , Y. Feng , T.T. Debela , G. Peng , T. Zhang , Nanoindentation study on the

creep characteristics of high-entropy alloy films: FCC versus BCC structures,
Int. J. Refract. Met. Hard Mater 54 (2016) 395–400 . 

[7] L. Zhang , P. Yu , H. Cheng , H. Zhang , H. Diao , Y. Shi , B. Chen , P. Chen , R. Feng ,
J. Bai , et al. , Nanoindentation creep behavior of an Al 0.3 CoCrFeNi high-entropy

alloy, Metallurg. Mater. Trans. A 47 (12) (2016) 5871–5875 . 
[8] T. Cao , J. Shang , J. Zhao , C. Cheng , R. Wang , H. Wang , The influence of Al el-

ements on the structure and the creep behavior of Al x CoCrFeNi high entropy

alloys, Mater Lett. 164 (2016) 344–347 . 
[9] T. Egami , W. Guo , P. Rack , T. Nagase , Irradiation resistance of multicomponent

alloys, Metallurg. Mater. Trans. A 45 (1) (2014) 180–183 . 
[10] S.-q. Xia , W. Zhen , T.-f. Yang , Y. Zhang , Irradiation behavior in high entropy

alloys, J. Iron Steel Res. In. 22 (10) (2015) 879–884 . 
[11] S. Xia , X. Yang , T. Yang , S. Liu , Y. Zhang , Irradiation resistance in Al x CoCrFeNi

high entropy alloys, Jom 67 (10) (2015) 2340–2344 . 
[12] F. Granberg , K. Nordlund , M.W. Ullah , K. Jin , C. Lu , H. Bei , L. Wang ,

F. Djurabekova , W. Weber , Y. Zhang , Mechanism of radiation damage reduc-

tion in equiatomic multicomponent single phase alloys, Phys. Rev. Lett. 116
(13) (2016) 135504 . 

[13] N.K. Kumar , C. Li , K. Leonard , H. Bei , S. Zinkle , Microstructural stability and me-
chanical behavior of FeNiMnCr high entropy alloy under ion irradiation, Acta

Mater. 113 (2016) 230–244 . 

https://doi.org/10.13039/501100001809
https://doi.org/10.1016/j.actamat.2020.06.022
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0001
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0001
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0001
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0001
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0001
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0002
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0002
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0002
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0003
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0003
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0003
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0003
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0003
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0003
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0003
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0004
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0004
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0004
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0004
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0004
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0004
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0004
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0004
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0004
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0004
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0005
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0005
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0005
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0005
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0005
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0005
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0005
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0005
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0005
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0005
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0005
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0005
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0006
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0006
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0006
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0006
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0006
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0006
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0007
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0007
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0007
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0007
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0007
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0007
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0007
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0007
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0007
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0007
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0007
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0007
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0008
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0008
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0008
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0008
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0008
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0008
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0008
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0009
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0009
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0009
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0009
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0009
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0010
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0010
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0010
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0010
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0010
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0011
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0011
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0011
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0011
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0011
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0011
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0012
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0012
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0012
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0012
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0012
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0012
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0012
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0012
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0012
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0012
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0012
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0013
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0013
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0013
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0013
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0013
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0013


S.L. Thomas and S. Patala / Acta Materialia 196 (2020) 144–153 153 

 

 

 

 

 

 

 

[  

 

[  

 

[  

 

 

[  

 

[  

 

 

[  

 

[  

[  

 

[  

 

 

 

 

[  

 

 

[  

 

 

 

 

[  

[  

[  

 

[  

[  

[  

 

[  

 

[  

 

[  

[  

 

[  

 

 

 

[  

 

[  

 

[  

[  

 

[  

 

[  

 

[  

[

 

 

[  

 

[  

[  

[  

 

[  

 

 

[  

[  

 

 

 

[14] G.R. Holcomb , J. Tylczak , C. Carney , Oxidation of CoCrFeMnNi high entropy al-
loys, Jom 67 (10) (2015) 2326–2339 . 

[15] W. Kai , C. Li , F. Cheng , K. Chu , R. Huang , L. Tsay , J. Kai , The oxidation behavior
of an equimolar FeCoNiCrMn high-entropy alloy at 950 ◦c in various oxygen–

containing atmospheres, Corros Sci 108 (2016) 209–214 . 
[16] G. Laplanche , U. Volkert , G. Eggeler , E. George , Oxidation behavior of the CrM-

nFeCoNi high-entropy alloy, Oxid. Met. 85 (5–6) (2016) 629–645 . 
[17] D.B. Miracle , High-entropy alloys: a current evaluation of founding ideas and

core effects and exploring nonlinear alloys, Jom 69 (11) (2017) 2130–2136 . 

[18] K.-Y. Tsai , M.-H. Tsai , J.-W. Yeh , Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-en-
tropy alloys, Acta Mater 61 (13) (2013) 4 887–4 897 . 

[19] A. Ansari , J. Berendzen , S.F. Bowne , H. Frauenfelder , I. Iben , T.B. Sauke ,
E. Shyamsunder , R.D. Young , Protein states and proteinquakes, Proc. Natl. Acad.

Sci. 82 (15) (1985) 50 0 0–50 04 . 
20] J.W. Haus , K.W. Kehr , Diffusion in regular and disordered lattices, Phys. Rep.

150 (5–6) (1987) 263–406 . 

[21] R. Zwanzig , Diffusion in a rough potential, Proc. Natl. Acad. Sci. 85 (7) (1988)
2029–2030 . 

22] J. Dabrowa , M. Zajusz , W. Kucza , G. Cie ́slak , K. Berent , T. Czeppe , T. Kulik ,
M. Danielewski , Demystifying the sluggish diffusion effect in high entropy al-

loys, J. Alloys Compd. 783 (2019) 193–207 . 
23] D. Miracle , High entropy alloys as a bold step forward in alloy development,

Nat. Commun. 10 (1) (2019) 1805 . 

[24] F. Zhang , C. Zhang , S.-L. Chen , J. Zhu , W.-S. Cao , U.R. Kattner , An understand-
ing of high entropy alloys from phase diagram calculations, Calphad 45 (2014)

1–10 . 
25] F. Otto , A. Dlouh ̀y , K.G. Pradeep , M. Kub ̌enová, D. Raabe , G. Eggeler , E.P. George ,

Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after pro-
longed anneals at intermediate temperatures, Acta Mater. 112 (2016) 40–52 . 

26] C.-Y. Cheng , J.-W. Yeh , High thermal stability of the amorphous structure of

Ge x nbtatizr (x = 0.5, 1) high-entropy alloys, Mater Lett. 181 (2016) 223–226 . 
[27] C.-Y. Cheng , J.-W. Yeh , High-entropy BNbTaTiZr thin film with excellent thermal

stability of amorphous structure and its electrical properties, Mater Lett. 185
(2016) 456–459 . 

28] Y. Zhao , H. Chen , Z. Lu , T. Nieh , Thermal stability and coarsening of coher-
ent particles in a precipitation-hardened (NiCoFeCr) 94 Ti 2 Al 4 high-entropy al-

loy, Acta Mater 147 (2018) 184–194 . 

29] P. Kumar , S. Avasthi , Diffusion barrier with 30-fold improved performance us-
ing AlCrTaTiZrN high-entropy alloy, J. Alloys Compd. 814 (2020) 151755 . 

30] S. Praveen , H.S. Kim , High-entropy alloys: potential candidates for high-tem-
perature applications–an overview, Adv. Eng.Mater 20 (1) (2018) 1700645 . 

[31] Y. Lu , H. Huang , X. Gao , C. Ren , J. Gao , H. Zhang , S. Zheng , Q. Jin , Y. Zhao , C. Lu ,
et al. , A promising new class of irradiation tolerant materials: Ti 2 ZrHfV 0.5 Mo 0.2 

high-entropy alloy, J. Mater. Sci. Technol. 35 (3) (2019) 369–373 . 

32] C.M. Barr , J.E. Nathaniel II , K.A. Unocic , J. Liu , Y. Zhang , Y. Wang , M.L. Taheri ,
Exploring radiation induced segregation mechanisms at grain boundaries in

equiatomic cocrfenimn high entropy alloy under heavy ion irradiation, Scr.
Mater. 156 (2018) 80–84 . 

[33] H. Jeong , H. Park , K. Park , T. Na , W. Kim , High-temperature deformation mech-
anisms and processing maps of equiatomic cocrfemnni high-entropy alloy,

Mater. Sci. Eng. A 756 (2019) 528–537 . 
34] R.W. Balluffi, S.M. Allen , W.C. Carter , Kinetics of Materials, John Wiley & Sons,

2005 . 

[35] L. Moleko , A. Allnatt , E. Allnatt , A self-consistent theory of matter transport in
a random lattice gas and some simulation results, Philos. Mag. A 59 (1) (1989)

141–160 . 
36] V. Vaks , A.Y. Stroev , I. Pankratov , K.Y. Khromov , A. Zabolotskiy , I. Zhuravlev ,

Statistical calculations of tracer and intrinsic diffusion coefficients in concen-
trated alloys and estimates of microscopic parameters of diffusion from exper-

imental data, Philos. Mag. 95 (14) (2015) 1536–1572 . 

[37] A. Allnatt , T. Paul , I. Belova , G. Murch , A high accuracy diffusion kinetics for-
malism for random multicomponent alloys: application to high entropy alloys,

Philos. Mag. 96 (28) (2016) 2969–2985 . 
38] D.R. Trinkle , Variational principle for mass transport, Phys. Rev. Lett. 121 (23)

(2018) 235901 . 
39] A. Durand , L. Peng , G. Laplanche , J. Morris , E. George , G. Eggeler , Interdiffusion

in Cr–fe–Co–Ni medium-entropy alloys, Intermetallics 122 (2020) 106789 . 

40] S. Summerfield , Effective medium theory of AC hopping conductivity for ran-
dom-bond lattice models, Solid State Commun. 39 (3) (1981) 401–402 . 

[41] T. Odagaki , M. Lax , Coherent-medium approximation in the stochastic trans-
port theory of random media, Phys. Rev. B 24 (9) (1981) 5284 . 
42] I. Webman , Effective-medium approximation for diffusion on a random lattice,
Phys. Rev. Lett. 47 (21) (1981) 1496 . 

43] S. Banerjee , R. Biswas , K. Seki , B. Bagchi , Diffusion on a rugged energy land-
scape with spatial correlations, J. Chem. Phys. 141 (12) (2014) 124105 . 

44] K. Seki , B. Bagchi , Relationship between entropy and diffusion: a statistical me-
chanical derivation of rosenfeld expression for a rugged energy landscape, J.

Chem. Phys. 143 (19) (2015) 194110 . 
45] K. Seki , K. Bagchi , B. Bagchi , Anomalous dimensionality dependence of dif-

fusion in a rugged energy landscape: how pathological is one dimension? J.

Chem. Phys. 144 (19) (2016) 194106 . 
46] Y.N. Osetsky , L.K. Béland , R.E. Stoller , Specific features of defect and mass

transport in concentrated FCC alloys, Acta Mater. 115 (2016) 364–371 . 
[47] K. Mussawisade , T. Wichmann , K. Kehr , Combination of random-barrier and

random-trap models, J. Phys. Condens. Matter 9 (6) (1997) 1181 . 
48] H. Ambaye , K.W. Kehr , Asymptotic diffusion coefficient of particles in a random

medium, Phys. Rev. E 51 (5) (1995) 5101 . 

49] G. Henkelman , B.P. Uberuaga , H. Jónsson , A climbing image nudged elastic
band method for finding saddle points and minimum energy paths, J. Chem.

Phys. 113 (22) (20 0 0) 9901–9904 . 
50] G. Henkelman , H. Jónsson , Improved tangent estimate in the nudged elastic

band method for finding minimum energy paths and saddle points, J. Chem.
Phys. 113 (22) (20 0 0) 9978–9985 . 

[51] A. Nakano , A space–time-ensemble parallel nudged elastic band algorithm

for molecular kinetics simulation, Comput. Phys. Commun. 178 (4) (2008)
280–289 . 

52] E. Maras , O. Trushin , A. Stukowski , T. Ala-Nissila , H. Jonsson , Global transition
path search for dislocation formation in Ge on Si (001), Comput. Phys. Com-

mun. 205 (2016) 13–21 . 
53] W.-M. Choi , Y.H. Jo , S.S. Sohn , S. Lee , B.-J. Lee , Understanding the physical met-

allurgy of the CoCrFeMnNi high-entropy alloy: an atomistic simulation study,

NPJ Comput. Mater. 4 (1) (2018) 1 . 
54] S. Plimpton , Fast parallel algorithms for short-range molecular dynamics, J.

Comput. Phys. 117 (1) (1995) 1–19 . 
55] B. Sadigh , P. Erhart , A. Stukowski , A. Caro , E. Martinez , L. Zepeda-Ruiz , Scal-

able parallel monte carlo algorithm for atomistic simulations of precipitation
in alloys, Phys. Rev. B 85 (18) (2012) 184203 . 

56] E. Bitzek , P. Koskinen , F. Gähler , M. Moseler , P. Gumbsch , Structural relaxation

made simple, Phys. Rev. Lett. 97 (17) (2006) 170201 . 
[57] D. Sheppard , R. Terrell , G. Henkelman , Optimization methods for finding min-

imum energy paths, J. Chem. Phys. 128 (13) (2008) 134106 . 
58] A. Fernández-Caballero , J. Wróbel , P. Mummery , D. Nguyen-Manh , Short-range

order in high entropy alloys: theoretical formulation and application to Mo-N-
b-Ta-VW system, J. Phase Equilibr. Diffus. 38 (4) (2017) 391–403 . 

59] A.B. Bortz , M.H. Kalos , J.L. Lebowitz , A new algorithm for monte carlo simula-

tion of ising spin systems, J. Comput. Phys. 17 (1) (1975) 10–18 . 
60] P. Shewmon , Diffusion in Solids, Springer, 2016 . 

[61] Y. Osetsky , A.V. Barashev , L.K. Béland , Z. Yao , K. Ferasat , Y. Zhang , Tunable
chemical complexity to control atomic diffusion in alloys, NPJ Comput. Mater.

6 (1) (2020) 1–8 . 
62] S.D. Druger , A. Nitzan , M.A. Ratner , Dynamic bond percolation theory: a mi-

croscopic model for diffusion in dynamically disordered systems. i. definition
and one-dimensional case, J. Chem. Phys. 79 (6) (1983) 3133–3142 . 

63] L. Perondi , R. Elliott , K. Kaski , I. tracer diffusion in bond-disordered square lat-

tices, J. Phys. Condens. Matter 9 (38) (1997) 7933 . 
64] L. Perondi , R. Elliott , K. Kaski , II. Tracer diffusion in a system with randomly

distributed traps, J. Phys. Condens. Matter 9 (38) (1997) 7949 . 
65] Y.N. Osetsky , L.K. Béland , A.V. Barashev , Y. Zhang , On the existence and origin

of sluggish diffusion in chemically disordered concentrated alloys, Curr. Opin.
Solid State Mater. Sci. 22 (3) (2018) 65–74 . 

66] O. Senkov , J. Miller , D. Miracle , C. Woodward , Accelerated exploration of mul-

ti-principal element alloys with solid solution phases, Nat. Commun. 6 (2015)
6529 . 

[67] D.B. Miracle , O.N. Senkov , A critical review of high entropy alloys and related
concepts, Acta Mater. 122 (2017) 448–511 . 

68] E.P. George , D. Raabe , R.O. Ritchie , High-entropy alloys, Nat. Rev. Mater. (2019)
1 . 

69] J. Kottke , D. Utt , M. Laurent-Brocq , A. Fareed , D. Gaertner , L. Perrière , Ł. Rogal ,

A. Stukowski , K. Albe , S.V. Divinski , et al. , Experimental and theoretical study
of tracer diffusion in a series of (cocrfemn) 100- xnix alloys, Acta Mater (2020) .

[70] L. Fenton , The sum of log-normal probability distributions in scatter transmis-
sion systems, IRE Trans. Commun. Syst. 8 (1) (1960) 57–67 . 

http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0014
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0014
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0014
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0014
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0015
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0015
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0015
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0015
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0015
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0015
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0015
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0015
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0016
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0016
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0016
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0016
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0016
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0017
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0017
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0018
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0018
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0018
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0018
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0019
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0019
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0019
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0019
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0019
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0019
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0019
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0019
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0019
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0020
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0020
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0020
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0021
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0021
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0022
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0022
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0022
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0022
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0022
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0022
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0022
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0022
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0022
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0023
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0023
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0024
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0024
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0024
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0024
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0024
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0024
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0024
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0025
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0025
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0025
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0025
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0025
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0025
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0025
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0025
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0026
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0026
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0026
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0027
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0027
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0027
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0028
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0028
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0028
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0028
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0028
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0029
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0029
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0029
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0030
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0030
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0030
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0031
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0031
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0031
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0031
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0031
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0031
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0031
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0031
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0031
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0031
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0031
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0031
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0032
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0032
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0032
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0032
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0032
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0032
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0032
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0032
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0033
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0033
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0033
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0033
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0033
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0033
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0034
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0034
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0034
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0034
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0035
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0035
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0035
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0035
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0036
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0036
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0036
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0036
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0036
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0036
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0036
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0037
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0037
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0037
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0037
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0037
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0038
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0038
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0039
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0039
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0039
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0039
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0039
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0039
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0039
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0040
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0040
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0041
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0041
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0041
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0042
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0042
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0043
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0043
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0043
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0043
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0043
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0044
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0044
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0044
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0045
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0045
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0045
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0045
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0046
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0046
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0046
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0046
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0047
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0047
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0047
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0047
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0048
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0048
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0048
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0049
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0049
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0049
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0049
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0050
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0050
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0050
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0051
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0051
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0052
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0052
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0052
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0052
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0052
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0052
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0053
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0053
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0053
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0053
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0053
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0053
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0054
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0054
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0055
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0055
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0055
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0055
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0055
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0055
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0055
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0056
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0056
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0056
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0056
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0056
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0056
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0057
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0057
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0057
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0057
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0058
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0058
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0058
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0058
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0058
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0059
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0059
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0059
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0059
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0060
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0060
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0061
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0061
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0061
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0061
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0061
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0061
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0061
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0062
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0062
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0062
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0062
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0063
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0063
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0063
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0063
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0064
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0064
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0064
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0064
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0065
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0065
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0065
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0065
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0065
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0066
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0066
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0066
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0066
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0066
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0067
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0067
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0067
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0068
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0068
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0068
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0068
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0069
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0069
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0069
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0069
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0069
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0069
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0069
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0069
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0069
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0069
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0069
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0069
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0070
http://refhub.elsevier.com/S1359-6454(20)30454-7/sbref0070

	Vacancy diffusion in multi-principal element alloys: The role of chemical disorder in the ordered lattice
	1 Introduction
	2 Background
	3 Determination of vacancy migration barrier energies
	4 KMC simulations
	5 Theory
	5.1 Separation of the random trap (RT) and random barrier (RB) contributions
	5.2 Computing the jump frequency for a pure random-barrier model
	5.3 Computing the correlation factor between hops

	6 Results and discussion
	7 Conclusions
	Declaration of Competing Interest
	Acknowledgements
	Supplementary material
	References


