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ABSTRACT

Many of the purported virtues of Multi-Principal Element Alloys (MPEAs), such as corrosion, high-
temperature oxidation and irradiation resistance, are highly sensitive to vacancy diffusivity. Similarly, so-
lute interdiffusion is governed by vacancy diffusion. It is also often unclear whether MPEAs are truly
stable or effectively stabilized by slow interdiffusion. The considerable composition space afforded to
these alloys makes optimizing for desired properties a daunting task; theoretical and computational tools
are necessary to guide alloy development. For diffusion, such tools depend on both a knowledge of the
vacancy migration barriers within a given alloy and an understanding of how these barriers influence
vacancy diffusivity. We present a generalized theory of vacancy diffusion in rugged energy landscapes,
paired with Kinetic Monte Carlo simulations of MPEA vacancy diffusion. The barrier energy statistics are
informed by nudged elastic band calculations in the equiatomic CoNiCrFeMn alloy. Theory and simula-
tions show that vacancy diffusion in solid-solution MPEAs is not necessarily sluggish, but can potentially
be tuned, and that trap models are an insufficient explanation for sluggish diffusion in the CoNiCrFeMn
HEA. These results also show that any model that endeavors to faithfully represent diffusion-related phe-

nomena must account for the full nature of the energy landscape, not just the migration barriers.

© 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, there has been considerable interest in design-
ing novel structural alloys by combining multiple elements in high
concentrations, resulting in the so-called multi-principal element
alloys (MPEAs) (also referred to as high-entropy alloys or complex
concentrated alloys). These alloys have been shown to exhibit ex-
ceptional properties, including novel mechanical properties [1,2],
fracture toughness [3,4], creep resistance [5-8], radiation damage
resistance [9-13], and oxidation resistance [14-16]. The property
enhancements in MPEAs, as well as their thermal stability, are usu-
ally attributed to four core properties: (a) high mixing entropy, (b)
lattice distortions, (c) sluggish diffusion, and (d) cocktail effects
[17]. Among these effects, sluggish diffusion is poorly understood
and may be the most controversial in the MPEA community. It was
long assumed that slow diffusion was an inevitable consequence of
traps and obstacles that arise from the disordered lattice [18]; dis-
ordered (or rough) energy landscapes have indeed proven capable
of inducing sluggish kinetics [19-21], but recent experimental data
has suggested that not all MPEAs exhibit slow diffusion [22,23].
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Quantifying atomic diffusion in MPEAs is important, as the
solid-solution phase with the highest mixing entropy does not al-
ways have the lowest Gibbs free energy [24]| and complex phases
may precipitate in MPEAs after annealing treatments. For example,
Otto et al. found phase precipitation in the CoNiCrFeMn alloy at
temperatures of 500° — 700° C, over 500 days of annealing [25],
suggesting that the apparent stability of this prototypical FCC al-
loy is likely due to slow phase transformation kinetics. This high-
lights the importance of understanding diffusion in evaluating the
stability of solid solutions in these alloys., Cheng et al. [26,27] at-
tribute the remarkable thermal stability of the amorphous struc-
ture in GexTiZrNbTa and BTiZrNbTa thin films to the combination
of high entropy, significant atomic size differences, and sluggish
diffusion. In [28], Zhao et al. studied the coarsening of L1, pre-
cipitates in a face-centered-cubic (NiCoFeCr)g4TiyAl4; MPEA at tem-
peratures ranging between 750° and 825 °C. They concluded that,
owing to sluggish diffusion, L1, precipitate coarsening was much
slower in the MPEA than in conventional Ni-based alloys.

Beyond thermal stability, understanding the role of structural
disorder on diffusivity is also important for the performance of
MPEAs. For example, high-entropy alloy nitrides have been pro-
posed to be effective diffusion barrier coatings [29]; the reduced
diffusivity of these materials is attributed to lattice distortions
caused by multiple principal elements. MPEAs have also been pro-
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posed as replacements for conventional alloys in high temperature
applications [30] and in advanced nuclear reactors [31,32]. Under
extreme environments, the diffusivity of point-defects (vacancies)
governs the performance and the microstructural stability of
MPEAs. Therefore, determination of the kinetics of phase transfor-
mations and operating temperatures for these alloys demands a
thorough understanding of the transport coefficients [33].

In this article, we investigate the diffusivity of vacancies in
model MPEAs. More often than not, diffusion in crystalline solids is
mediated by vacancy point defects. Therefore, the kinetics of phase
transformations and microstructural evolution will be greatly in-
fluenced by vacancy diffusivity [34] in MPEAs. From a theoreti-
cal standpoint, as far as the authors are aware of, the models for
calculating diffusion coefficients in MPEAs are primarily based on
the formulation of linear irreversible thermodynamics and Onsager
coefficients [35-38]. These frameworks are developed for multi-
component alloys and are purported to be valid over a wide range
of compositions. However, these models make the underlying as-
sumption that there is a constant exchange rate (i.e a constant
migration barrier) between any two diffusing species present in
the alloys. The theoretical results are then validated using Kinetic
Monte Carlo simulations with the same underlying assumptions,
i.e. the exchange rates are fixed and constant. A similar multi-
frequency model has also been used to fit experimental concen-
tration profiles in interdiffusion experiments in the Cr-Co-Fe-Ni
medium entropy alloy [39]. However, it is also true that the ran-
domness in the energy landscape plays a crucial role in influencing
transport coefficients as evidenced in solid-state and biological sys-
tems [40-45]. In MPEAs, the migration barrier energies for vacan-
cies (or self-interstitials) are randomly distributed (e.g. as shown
in Fig. 3 of Ref. [46]). The nature of this distribution will play an
important role in determining the diffusion coefficients in MPEAs.

The objective of the present article is to provide a random-
walk-type analytical results for understanding vacancy diffusivity in
the presence of chemical disorder on the ordered lattice of MPEAs.
Random-walk approaches provide the atomistic detail necessary to
account for the disorder (or roughness) present in the migration
barrier energies. In Section 2, we present some background on dif-
fusion models in the presence of disorder (roughness) in energy
landscapes. In Section 3, we provide the statistics of vacancy mi-
gration barrier energies for a model MPEA that will motivate the
KMC simulations (Section 4) and theoretical analysis (Section 5).
The theoretical results presented in this article are anticipated to
provide the necessary foundation for understanding diffusion in
multi-component solid solutions.

2. Background

The analytical investigation of random energy landscapes and
transport coefficients originates in Robert Zwanzig’s work on pro-
tein dynamics[21]. Zwanzig showed that the diffusivity in a ran-
domly rough potential U is D = D.exp (—(e/ksT)?), where D, is
the diffusion coefficient in a landscape with uniform barriers and
€2 = (U?). Zwanzig's theory suggests an exponential reduction in
the diffusion coefficient with the (squared)-amplitude of rough-
ness. While this result is elegant and simple, Zwanzig also in-
voked certain assumptions (e.g. local averaging of the rough land-
scape) that may not always be valid. Additionally, these assump-
tions break down when correlations in the random-walks are con-
sidered.

Analyses of random walks in disordered lattices has also been
of considerable interest with applications in solid-state physics
[40-42], biology [43-45], and in amorphous materials [47]. These
investigations use the Effective Medium Approximation (EMA) to
solve for a mean transition rate that satisfies the self-consistency
condition [20,42] for a given energy landscape. These landscapes

are often broken into two categories - random-trap models, and
random-barrier models (see Fig. 1).

Random-trap (RT) models refer to energy landscapes where the
transition-state (saddle-point) energies s are fixed to a constant
value and the site-energies w are assumed to follow a Gaussian
distribution (see Fig. 1(a)) with a given standard deviation o . Di-
rect integration (comparing the average transition rate to a uni-
form distribition of barriers with the same mean) yields D/D, =
exp(—xy), where x,, = (ow/kgT)2, mirroring Zwanzig’s model. In-
tuitively, the reduction in diffusivity can be explained as the trap-
ping of the diffusing species in low energy sites. A defining char-
acteristic of RT models is that, from a given state, every transition
out of that state has the same barrier E.

Random-barrier (RB) models correspond to energy landscapes
where the site-energies w have the same fixed value and the
transition-state energies s are randomly distributed (see Fig. 1(b)).
For example, effective medium solutions were proposed for elec-
tron transport, employing landscapes with a uniform distribution
of barriers from O to some critical energy E. [48]. In this study, it
was shown that a wider distribution of barriers yields a smaller
diffusion constant, but this is obvious as the mean barrier is also
increasing. Mussawsade et al. applied the EMA to a Gaussian-
distributed random barrier model [47]. Here, the mean barrier was
chosen for a given distribution such that 95% of the distribution
was positive (as negative barriers are unphysical). Naturally, they
also showed slower diffusion with an increasing distribution width
as the mean barrier was also increasing. Symmetry is a defining
feature of RB models - If E4 _, g is the energy of a transition from
state A to B, then in the RB model, E4_, g = Eg_, 4.

It is plausible that some of the initial justifications for sluggish
diffusion in MPEAs were inspired by the analytical results sum-
marized above. The idea of sluggish diffusion, however, is brought
into question recently with many research groups convinced that
sluggish diffusion is not one of the core properties of MPEAs that
fundamentally distinguishes them from conventional alloys. While
this could very well be true, the diffusion of atomic species and
vacancies has been invoked in various recent studies that report
property enhancements in MPEAs. It is necessary, therefore, to de-
termine the nature of the energy landscape in an MPEA and in-
vestigate its role in influencing transport properties. It is essential
that we investigate these aspects not just for the long-term de-
velopment of MPEAs, but also for the short-term creation of com-
putational tools. For example, it is traditional to assume that va-
cancy diffusivity can be described by simply computing the mi-
gration energy barriers in the MPEA. However, the present work
strongly suggests that this is only a partial picture.

3. Determination of vacancy migration barrier energies

When a vacancy swaps with an atom, the migration barrier will
depend on the species of that atom, as well as those of neighbor-
ing atomic sites. The chemical disorder of the alloy then implies
a distribution of migration barriers. Before an analysis of transport
in MPEAs can be conducted, we must actually compute these bar-
riers to vacancy migration in a sample MPEA. We performed 2971
Nudged Elastic Band (NEB) [49-52] calculations of vacancy migra-
tion between nearest-neighbor sites, using a MEAM potential for
the CoCrFeMnNi High Entropy Alloy [53] and the LAMMPS atom-
istic simulation software [54].

First, we generated a random equiatomic face-centered cubic
(FCC) single crystal MPEA consisting of 32,000 atoms. We then al-
ternated between performing 100,000 monte carlo swaps [55] at
1273 K and relaxing the system via conjugate-gradient (CG) en-
ergy minimization [56,57]. This procedure was repeated 500 times
to capture any tendency for short-range ordering. After 20 million
swaps, there was partial ordering, according to the short-range or-
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Fig. 1. Energy landscapes with (a) random traps, (b) random barriers, and (c) the general case.
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Fig. 2. Distribution of vacancy migration barrier energies in CoNiFeCrMn MPEA [53] )(a) over all transitions and (b) separated by migrating species. Transitions computed
using 2971 Nudged Elastic Band (NEB) calculations. The barriers are Gaussian distributed; mean and standard deviations, determined from the fit (red) are given in a). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

0.8 . : . .

0.6[F S Br -

0.4f . :

0.2;_ El- ’ E+ @ Ez 1

Energy

. lE_ .

™
:(—9
L

02+ ) ) ) ) )
0.0 0.2 04 0.6 0.8 1.0
Reaction Coordinate

(a)

of 4, =0.81eV
Al o, =031eV =itk
> — E,
e u_ =0.00eV
@ 3t
é’_ o_ =0.08eV
i 2
1L
0 Ees N L 1
0.0 05 1.0 15
Energy (eV)

(b)

Fig. 3. (a) Definition of E; and E_, the symmetric and anti-symmetric barrier components. For a reference energy equal to the mean of the energies of the initial and final
state, s = E, and w; = —wy = E_. b) Distribution of E_ and E, for the CoNiFeCrMn HEA [53] computed from 2971 NEB calculations.

der (SRO) parameters [58]. The SRO parameters did not change sig-
nificantly over the next 30 million swaps.

Once this initial configuration was generated, we iterated
through atoms in the system. For each iteration, we removed the
target atom and relaxed the system, again by CG minimization. In
the FCC crystal, each vacancy site has twelve neighbors. For each
neighbor, a post-migration configuration was created by swapping
that neighbor with the vacancy, followed by another relaxation.
These served as the initial and final images for the NEB calcula-
tions, which were performed with a spring constant of 1 eV/A(we
verified this choice with a parametric study; the results were in-
sensitive to the choice of spring constant within a range of.1 and
10 eV/A).

The vacancy migration barrier energies, obtained from the NEB
calculations, are shown in Fig. 2a. A Gaussian fit to this distribution
yields a mean barrier of 0.81 eV with a standard deviation of 0.32
eV. We also note in Fig. 2b that Mn tends toward the smallest bar-
riers (u = 0.47 eV, o = 0.18 eV), while Co tends toward the largest
(u=1.07 eV, 0 =0.22 eV), though there is substantial overlap.
The MPEA does indeed provide a rough energy landscape for va-
cancy migration, but to connect this to transport, we need more
information than this, namely the extent to which this distribu-
tion is described by a random barrier (RB) or a random trap (RT)
model. Fig. 3a gives the result of one NEB calculation. The leftmost
point is the energy of the initial state, the rightmost the energy
of the final state. The intermediate points are the energy of mid-
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transition states, relaxed as the vacancy migrates, and the highest
point corresponds to the saddle point of the transition.

There are two primary effects of randomness in the distribu-
tion of barrier heights and well-depths. First, it affects the av-
erage transition rate. Second, it introduces correlations between
subsequent hops. For example, in a purely RB model, a vacancy
that just crossed a barrier with a small saddle energy s is more
likely to jump backwards over that same small barrier in the next
hop. While the RT and RB models are constructed in terms of s
and w, they cannot be measured directly in a useful way. In the
MPEA, there is no well-defined reference energy; both the w be-
fore and w after a transition are equally valid reference states,
and many changes in the system (such as a swap between two
atoms far away from the vacancy) can shift both s and w without
meaningfully altering the transition barrier. Instead, we consider
the symmetric and anti-symmetric components of the transition,
Ei = (Eap+Ep_a)/2 and E_ = (Ea_,p — Eg_.4)/2, respectively. If
we choose a reference energy equal to the mean energy between
the initial and final states, then s = E, while wy = —wp = E_. These
are local descriptors of the transition barrier. If s and w are inde-
pendent random variables, then the distributions of E_ and E, are
related to w and s in a predictable way (see Table 1).

These relationships translate from global quantities like s and
w to local quantities that directly compare the transitions between
adjacent states. Distributions of E,, and E_ from the NEB calcula-
tions are given in Fig. 3b. A few initial observations can be made
from this data. First, o, = 0.314 4+ 0.007 eV, is significantly greater
than o_ = 0.078 £0.001 eV. This is more consistent with an RB-
like landscape, but there is still an RT component that cannot be
ignored. There are also a substantial number of transitions with
very small barriers (E; ~ 0). While states with “zero barriers” can
be disregarded as unstable states, there are a large number of
states that are stable, but with very small non-zero barriers. This
implies a small barrier for the vacancy to hop between two sites in
either direction. Intuitively, one can imagine a vacancy rapidly hop-
ping back and forth between the two sites. As a result, we should
expect highly correlated vacancy migration and a theory for dif-
fusion in this system must account for such correlations.

These NEB calculations illustrate the nature of the energy land-
scape in this particular MPEA. However, it is not clear how o
and o affect diffusion kinetics. In the next section, we present
Kinetic Monte Carlo results that predict the diffusion constant as
a function of oy and o and inform the development of a theo-
retical model. In the development of this model, we are interested
primarily in the effect of this distribution of energies on vacancy
diffusivity. We will therefore consider the overall distributions of
the energies instead of species-specific energies (e.g. as shown in
Fig. 2b).

4. KMC simulations

The NEB calculations provide the full distribution of transition
energies s and well depths w in the CoNiFeCrMn MPEA. To under-
stand the role of the distribution widths (o5 amd o) on the va-
cancy diffusivity, we performed lattice Kinetic Monte Carlo (KMC)
simulations. In KMC, we can directly specify the energy landscape
and control the distribution of barriers. While s and w are not
globally independent in real systems, we can construct a model
system in which they are and use the relations in Table 1 to pick
os and oy such that E; and E_ follow distributions observed in
NEB calculations and reflect the local character of the MPEA.

While setting up a traditional KMC simulation with a fixed dis-
tribution of s and w is trivial, the KMC set-up for MPEA vacancy
diffusivity needs subtle, but important, modifications. These modi-
fications are as follows:

Table 1
Barrier properties and associated variance. These expressions are valid if s and w
are independent, randomly distributed variables.

Quantity var(X)

E=s—-w
E. =s— 1 (ws+wp)
E_ = 5 (wg—wa)

var(s) + var(w)
var(s) + Jvar(w)
1var(w)

1. The energy landscape has to be dynamic. That is, one cannot
a priori assign the values of s and w on the lattice and keep
them fixed during the KMC simulation. This can be easily seen
by imagining a vacancy moving in a random solid-solution. If
a vacancy starts at a site i, completes a few hops, and returns
to its original site i, such that the local atomic configuration is
modified by the swapping of neighbors, then the site and bar-
rier energies also change. Therefore, a model that accounts for
this dynamic energy landscape has to be considered.

2. If the local atomic configuration does not change, then the site
energy remains unchanged. That is, if a local atomic environ-
ment (consider the first nearest-neighbor shell around the va-
cancy) remains unchanged, then the site energy should remain
the same. The same is true for the transition-state energies, ex-
cept that we need to consider the environments of the both the
initial and the final states.

In this study, we developed an indexing approach (determined
by the nearest-neighbor configuration) to guarantee that the dy-
namic nature and the translational symmetry of the energy land-
scape are satisfied. Please refer to Supplementary Information for
a discussion the details of the KMC simulation set-up. It is impor-
tant to mention here that our indexing approach does not satisfy
invariance with respect to rotation/inversion symmetries. However,
we do not anticipate this to change the results significantly be-
cause we are using a statistical model. By not considering the
rotation/inversion symmetries, we simply add to the diversity of
the configurations. As we keep the underlying distributions the
same, adding the rotation/inversion symmetries would be com-
putationally very expensive while not altering the results signifi-
cantly. Other than the symmetries mentioned above, this method
is also truly random and ignorant of any chemical effects or corre-
lations between barriers in similar environments.

Once the transition rates are calculated according to the w and
s arrays, the simulation proceeds via the Bortz-Kalos-Lebowitz al-
gorithm [59]. For each transition j from a site i, the rate is

rij = vexp(—(s;j — w;)/kgT), (1)

where v is an attempt frequency, E;; = s;; — w; is the migration bar-
rier, and a transition is chosen randomly with a probability propor-
tional to its rate. The vacancy site is then occupied by the target
neighbor atomic species and the neighbor is then occupied by the
vacancy and the time is incremented by

1
At = Eln(l/e), (2)

where R is the sum of all transition rates and € is a number cho-
sen from a uniform distribution € < (0, 1]. This process is repeated
for each step of the simulation. The diffusion constant can then
be computed by measuring the mean-square displacement as a
function of time, averaged over many runs of the simulation (i.e.,
(x2) = 6Dt).

The results of KMC simulations at a fixed temperature 1273K
and mean barrier 4 = 0.81 eV (corresponding to the NEB measure-
ments) over a range of o and o are given in Fig. 4. It is immedi-
ately apparent that while diffusivity decreases with increasing o,
it increases with increasing o. For o5 and oy chosen to match
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Fig. 4. Diffusion constant D, computed via KMC simulation over a range of o, and
o at a temperature of 1273 K and scaled by Dy, the diffusion constant for a uniform
barrier distribution equal to the mean barrier 0.81 eV. The black circle denotes o,
and o chosen to match o_ and o, as measured via NEB for the CoNiFeCrMn MPEA
(see Table 1).

E. and E_ for the CoNiFeCrMn MPEA, one would expect approxi-
mately a three-fold enhancement in vacancy diffusivity relative to
a material with a uniform barrier distribution. This makes intuitive
sense; for a random trap model (large o), the time is dominated
by the vacancy’s residence in deep energy wells. For a random bar-
rier model, large barriers do not impede migration of the vacancy
if there are alternative short barriers that it can traverse instead.

This can be understood by analogy to resistors. For a random
trap model, the roughness in the potential corresponds to a vari-
ation between subsequent hops; the total resistance of a series of
resistors is given by the sum of resistances, which is dominated
by the largest resistances. For a random barrier model, the rough-
ness in the potential corresponds to a variation between alternate
transitions out of a given state; the resistance of a set of resistors
in parallel is given by the inverse of the sum of conductivities, for
which small resistances dominate. One cannot decrease resistance
by adding a weak resistor in series no more than one can increase
the resistance by adding a strong resistor in parallel. To fully ex-
plain these results and make future predictions, we next present a
statistical theory of vacancy migration in disordered energy land-
scapes.

5. Theory

The KMC simulations provide the foundational observation that
random trap landscapes impede diffusion while random barrier
landscapes enhance it. An analytical theory is necessary to explain
these observations and make intuitive predictions. A rough energy
landscape can have two effects on diffusion. First, it can change
the average transition rate I' (analogous to the effective rates com-
puted in prior work [21,43-45,47]). Second, it can introduce corre-
lations between hops. Consider a rough landscape given by ran-
dom, independent distributions of well-energies w and transition
saddle-point-energies s, with means v and s and standard de-
viations o, and o. The diffusion constant D can be expressed as

D _ I (05, ow, W)F (05, (1)

D, I, 3)
where D, and I', are the diffusion constant and jump frequency
for a random walker in a landscape with constant vacancy migra-
tion barrier energy u = s — (4w and F is the effect of correlations.
When the vacancy migration barrier is a constant value, there are
no correlations and F = 1. It is important to note that F depends
only on the distribution of saddle-point energies and not on the

distribution of well-energies. That is, for a purely random trap en-
ergy landscape F = 1. This is because w is the property of the lat-
tice site and all jumps out of that site are equally likely (refer to
Fig. 1(a)). Therefore, the randomness in the well-energies will not
affect which transition is selected and hence cannot influence cor-
relations between subsequent hops. Therefore, we omit the depen-
dence of o for F in Eq. (3). In the following, we will derive the
analytical form for the jump frequency I'(os, ow, 1) and the ef-
fect of correlations F(os, 1) in the disordered energy landscape.
The derivation will include the following steps:

- First, we will show that the contributions of the disorder in
well-energies can be separated from those in the saddle-point
energies. That is, the mixed model can be simplified into two
independent contributions arising from a pure random-trap and
a pure random-barrier model.

The random trap contribution is equivalent to the expression
derived by Zwanzig [21]. For the random-barrier contribution,
we outline the steps required to compute the average transition
rate I'(os, @) for a random barrier model. The key insight that
we will develop here is that the distribution of barriers-crossed
(hops) is not the same as the distribution of barriers present in
the system.

Finally, we derive the effect of correlations F(os, ) in the ran-
dom barrier model. As the well-energy distributions do not
contribute to F (as discussed above), it suffices to simply com-
pute the correlations for the pure RB model.

5.1. Separation of the random trap (RT) and random barrier (RB)
contributions

Assuming vacancy migration is thermally-activated with an at-
tempt frequency v, the rate of a transition, from state i to j, is
given by I'j; = vexp(—E;j/kgT), where Ej;; =s;; —w;. The average
time (t) that a vacancy resides in state i is therefore

z Eij - - (2L sy -
(T)y=( D ve ®r =v el | Y e kT , (4)
J J
where z is the coordination number and the number of possible
Jjumps for the vacancy. If w; and s;; are independent random vari-
ables, their corresponding terms can be separated. That is,

v{exp(-wi/ksT))"!
<(Z§ eXD(—Sij/kBT))_l)

The average () is over all hops (i.e,. all chosen transitions),
rather than all possible transitions. As the choice of a transition
is independent of w;, an average over w; encountered by the va-
cancy is simply the system-wide normal distribution of w and the
Arrhenius part of the RT component is

exp (V2 ﬂ) _(Lw)z
Aar = (exp ( kBT)> = exp (kBT exp [ T) | (6)
identical to Zwanzig's result [21]. Here, we introduce the symbol

A for the Arrhenius part of the jump frequency. The remaining RB
component,

F=(r)'= (5)

1, —1
r z Sij )
— =V ex -
Agr ng p( kBT

is independent of w. That is, we can solve the case of the mixed
energy model as independent contributions of a pure random-
trap model, Agr (Eq. (6)), and a pure random-barrier model Agg
(Eq (7)), thatis I' = VART Agp.

= VAgg, (7)
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5.2. Computing the jump frequency for a pure random-barrier model

To compute the arrhenius part, Agg in Eq. (7), we have to de-
termine the distribution of the barriers crossed by the vacancy in
the random-walk trajectory. This is different from the distribution
of the barriers present in the system as the vacancy prefers to
jump over smaller barriers. For a uniform landscape, where the mi-
gration energy barrier is given by @ = ys — uw and oy =05 =0,
the Arrhenius parts of the jump frequency are given by ARB =
exp(—us/kpT) and Ag = exp(uw/kgT). The jump frequency, in the
uniform barrier case, has the form I', = VA A%y = v exp(—u/kgT).
That is, while Agg and Agr are sensitive to the choice of reference
energies (e.g., choosing (us, w) = (i, 0) or (s, ww) = (0, —p)),
the product AggAgr is not. In the disordered energy landscape,
Agp is independent of the distribution of well-energies, w, and it
can be calculated by fixing w to a constant value, i.e. W= [y.
For clarity, we choose a reference energy such that uy = —p and
s = 0 and adopt a reduced notation u = s/kgT, ug = —u/kgT, and
X = (as/kBT)z. u is drawn from a truncated normal distribution:

2
Py (u, 1, %) = Ny (. x)e” =, (8)
over the domain u > ug. Ny(u, x) is a normalization constant. From
a given lattice site, the probability p of selecting a given transition
is
e—u

ety Z§71 evi’
where u is the barrier of the target transition and v; represent all
of the other transition barriers.

If the vacancy jumps over a small barrier u, it is likely to hop
backwards across that same barrier (for the random-barrier en-
ergy landscape). This means that the distribution of u encountered
by the vacancy should be biased towards smaller barriers relative
to the system-wide barrier distribution, P;. The distribution of cho-
sen barriers Pc(u) is

(9)

P(u) =P Y p' = N(x, up)e &
i=1

(10)

where N(x, ug) is a normalization constant. Eq. (10) can be under-
stood as follows: the probability that a barrier first encountered by
the vacancy has height u is given by P; (Eq. (8)). The probability of
the vacancy crossing that barrier once is given by p (Eq. (9)), cross-
ing twice is given by p2, etc. The sum of these probabilities is then
Pc. This distribution (with P; inset), compared with KMC results, is
shown in Fig. 5. The P; distribution is nearly identical to the KMC
results.

The Arrhenius part of the random barrier model, Agg, is re-
lated to the inverse of the average of residence times (as shown
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in Eq. (7)). That is, the jump frequency for the RB model can be
expressed as ['gg = VAgg Where Agg = [v(r)]’l. Here the residence
time, t of the vacancy in the lattice-site i is given by:

Z &P ( kBT)

where s; is the saddle-point energy for the hop from state i to
state j. Suppose the vacancy arrives at state i by hopping over
a barrier given by the non-dimensionalized variable u. The bar-
riers that the vacancy now observes, from state i, are u and v;
(j=1,...,z—1). We use two different variables u and v to denote
the barriers from state i to emphasize the fact that they are drawn
from two distinct probability distributions. Since the vacancy just
hopped over the barrier u, the corresponding distribution is given
by P: (Eq. (10). The distributions of the remaining z— 1 barriers,
defined by random variables vj, correspond to the system-wide
function, P; (Eq. (8)). The residence time, 7, can be re-written in-
terms of the non-dimensional variables, u and v;, as:

(11)

-1
z-1

vT = [exp(—u)+ Y exp(-v)

j=1

(12)

The mean of the residence times, v(t), can be obtained by a
twelve-fold integral of the rate terms, e * and e~"/, multiplied by
the appropriate distribution functions, P. and P;, respectively. Un-
fortunately, there are no analytical solutions for the integration of
the rate terms, e~V/, when the random variable v; is described by
a truncated normal distribution.

Instead, we introduce approximate probability distributions
for the summation of rates, defined using the variable r, =
Z’]L] exp (—U]-), where vjisa random variable drawn from a trun-
cated normal distribution. r, is now a random variable, defined
as the sum of rates over k barriers, with a probability distribu-
tion py(ry). The determination of the distributions, p, is similar
to the Fenton-Wilkinson approximation [70] and is described in
Supplementary Information . Equipped with the distribution func-
tions, py, we can now simplify the computation of the average res-
idence time v(t). The residence time, for site i, can be re-written
as vt = (e7¥ +rz,1)71 and the average residence time can simply
be computed as a two-fold integral over the random variables u
and r,_;, multiplied by the appropriate distribution functions P
and p,_;, respectively. Therefore, the Arrhenius part, Agg, can be
written in terms of a two-fold integral as:

e <[f [l

which can be evaluated numerically. As mentioned above, the bar-
rier that the vacancy most recently hopped is drawn from the P
distribution (Fig. 5). As P, favors smaller barriers, the average rate
in the RB model will be higher than that for a uniform distribu-
tion. This also implies correlations between subsequent hops - if
the vacancy hops over a particularly short barrier, it is more likely
to hop backwards in the direction opposite the previous hop.

Y 1 ]PC(u’ W, 0) -1 (rz—l)dudr]
(13)

5.3. Computing the correlation factor between hops

The jth correlation factor f; = (#;-#;;;) is the average cosine
between a given hop i and j hops subsequent. If the hops are com-
pletely uncorrelated, then f; = 0. In a vein similar to the derivation
of the Agg, we will suppose that a vacancy reaches site i by hop-
ping over a barrier u. Let us also denote the barrier over a hop
in the same direction as the previous jump as v. Then the average

-1

)
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correlation factors f; in the random-barrier model.

cosine for the next hop from site i is given by:
eV —et
eVret4r,,’
where r,_, is the sum of the rate terms of the remaining barriers,
ie.r,_ 5= Z;j e~ Vi, This expression can be rationalized as follows:
(i) the e~* term reflects the possibility that the vacancy hops back-
wards over the same barrier u (corresponding to a cosine of —1),
(ii) the e~V term corresponds to a hop in the same direction as the
previous hop (corresponding to a cosine of 1), and on average, the
cosine terms of all other hops cancel out in the numerator. (iii)
In the denominator, we have the summation of the probabilities
of all possible jumps, given by e, e~V and r,_, (for the remaining
z — 2 jumps). As discussed in Supplementary Information , r,_, is a
random-variable whose distribution is given by the function p,_,.
The first correlation factor f; is then obtained by integrating
over the distributions u, v and r,_5 as:

a (U, v, 1) = (14)

fi= f / / P(u, V. 1o, X)ot; (11, V. To_p)dudvdr, (15)
where
P(u,v,1,-2,%) = P(u, X)Py (U, X) 0,2 (T;—2, X). (16)

These integrals can be easily evaluated using numerical inte-
gration techniques. In Fig. 6(a), we plot the marginal distribution
(o¢q(u)) defined as:

oy (u)) = / / Py (1, %) 03— Tz, )0ty (U, V. T )dvdr, (17)

Shown in Fig. 6(a), is a close match between (oq(u)) and the
KMC simulations for three different values of o;. Note the conver-
gence of (a((u)) to —1 as u decreases. For smaller barriers u, it is
very highly likely that the vacancy will jump back over that small
barrier. This results in an angle of 180° between subsequent hops
and the average cosine will converge to —1.

For higher order correlations f; (i.e., the correlation between a
hop and the ith subsequent hop), one must determine correspond-
ing o; terms (see Supplementary Information 3). The first eight
correlation factors (f7, fo,..., fg) are plotted in Fig. 6b, compared
directly with measurements from KMC simulations. The theory is
nearly an exact match to the simulations, except for the high-order
correlation factors at large x. This is discussed further in Supple-
mentary Information. The effect of correlation factors on the diffu-
sion coefficient, up to the nth correlation factor, is given by

F=14200u) =142 Y (- j+ D (18)
J

This is a modification of the common random walker solution
with correlated hops for finite sums [60]; if, for example, we con-
sider up to the 8th correlation factor, then we sample from an ini-
tial hop up to 9 hops in the future. This means that 8 instances of
fi1 count toward the average, 7 instances of f,, etc. We note here
that it is common in the theory of correlated random walks to
approximate F = (1 + f1)/(1 — f;) [60]; this is only valid if every
state is equivalent, such that f; = f{. That is not true in this case,
as evidenced by Fig. 6.

6. Results and discussion

The analytical diffusivity (the ratio D/D,, where D, is the diffu-
sivity when oy, = o5 = 0) is plotted as a function of (o w/kgT)? and
(0s/kgT)? in Fig. 7a, and the error between the theory and KMC is
given in Fig. 7b. The theory and KMC produce nearly identical re-
sults, except when both o and o are large. This is because while
the random barrier model does not allow the s component of tran-
sition energy to be less than puy, it does not account for the effect
of particularly deep wells, which could allow stable configurations
where s < uw as long as s > w. This is, however, only a prob-
lem when o, and/or o are much greater than measured for the
CoNiFeCrMn HEA.

These plots show that vacancy diffusivity can either be retarded
(D/D,, ~ 0.5 if oy = kgT+/2 and o5 = kgT) or accelerated (DD, ~ 2 if
ow = kgT and o5 = v/5kgT) depending on the widths of the distri-
butions of site energies (w) and transition-state energies (s). This
captures the full breadth of behaviors observed in more recent ex-
perimental results, while perhaps explaining the assumed univer-
sality of sluggish diffusion in MPEAs. The KMC simulations and
theoretical model presented here provide insight to the relation-
ship between the energy landscape and the resulting transport
properties. In the most general terms, a large o (or o, ) yields en-
hanced diffusion, while a large o (or o_) produces sluggish diffu-
sion. Diffusion constants may be difficult to measure directly, but
the method presented here, to compute E; and E_ distributions,
is amenable to automated survey that can be used to probe the
high-dimensional compositional space of MPEAs.

The model also allows us to directly quantify the influence of
correlations between hops and barrier selection on diffusion in
a random energy landscape. Fig. 8 shows a comparison between
KMC and Theory for the pure random barrier model and a simpli-
fied model. In the simplified KMC, all transitions from a given state
are given equal probability 1/z, irrespective of the barrier energy,
at each time step. In the simplified theory, we equate the probabil-
ity of hopped barriers to the system-wide distribution of transition
state energies, i.e. P = P;. Under these conditions, the averaging
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over all chosen vacancy hops (Eq. (7)) can be computed by simply
averaging over the entire energy landscape, making it more similar
to the Effective Medium approximation common in existing litera-
ture [19,20,42,45,47,48]. The two cases are very similar due to the
competing effects of preferential small-barrier selection and hop
correlation. For example, when o5 =0.34 eV, I" is approximately
~ 2.3 times larger than in the equal-probability case but the cor-
relation factor F ~ 0.3. Therefore, the difference between the two
scenarios (as shown in Fig. 8) is not very large. However, this is
not guaranteed for different temperatures and mean barriers. It is
important to identify the correct theory for modeling the random
energy landscape if we wish to accurately model diffusion in dis-
ordered materials.

We note this theory, like the KMC simulations, assumes that
all barriers are randomly generated unless the vacancy follows a
closed path that preserves the positions of each atomic species. Ir-
respective of the assumptions that went into this KMC and theoret-
ical model, it is clear that the random barrier/trap character of the
energy landscape can profoundly influence diffusion, potentially al-
tering the effective diffusion constant by at least an order of mag-
nitude; these details are necessary to predict diffusion behaviors
in disordered systems and must be considered in future models.
To summarize, we have developed a theoretical model that sheds

light on two important aspects that are currently missing in the
analysis of diffusion in multi-component alloy systems:

1. The explicit treatment of both the well- and saddle-point en-
ergies: The randomness in migration barriers is generally in-
voked in the MPEA community as a qualitative measure to jus-
tify sluggish diffusion. However, we show that the distributions
of both the well- and the saddle-point energies influence dif-
fusion. For example, in a recent study involving the diffusion of
interstitial atoms in a binary Ni-Fe solid solutions, Osetsky et al.
[61] show that the tracer diffusion coefficient can be reduced
by tuning the local defect energy (i.e. the well-energy). These
results can be understood from our model as the contribution
of the random-trap component to diffusivity.

2. Discrete vs. continuous energy distributions: Most continuum
theoretical models, that utilize mean-field theories and Onsager
relationships, consider a discrete set of barriers (referred to as
multi-frequency models) to evaluate solute diffusivities in alloy
systems [35,37,38,62-64]. While these models have shown re-
markable success in simplified systems (either dilute or binary
alloys), we show that the width of the distributions also plays
an important role in determining transport coefficients. As far
as the authors are aware, this is the first study quantifying the
role of the distribution widths, o, on diffusion in solid-solution
alloys.

The KMC model and the random-walk theory developed in
this article incorporate enough complexity to be useful to pre-
dict trends in diffusivity of complex solid solutions. However, these
models are also meant to be simple enough (i.e. they depend only
on the distributions of saddle-points and well energies that can
be measured and predicted for MPEAs) to be useful for design-
ing novel multi-component alloy systems. That said, our models
can be augmented to consider the effect of species-specific kinet-
ics; for example, one many consider changing the concentration
of elements that exchange more easily with a vacancy than oth-
ers. In our KMC and the random walk models, we draw the en-
ergies from a single distribution (e.g. corresponding to Fig. 2(a)).
However, as shown in Fig.2(b), the distributions depend on the el-
ement with which the vacancy exchanges its position. This will
introduce effects that are specific to the chemical species and, if
considered, will allow for an understanding of the variation in dif-
fusivities with concentration. For example, in a recent study, Oset-
sky et al. [65] computed diffusion coefficients in binary Ni-Fe al-
loys and showed that increasing the concentration, up-to a certain
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extent, of the faster species (Fe) decreases the overall atomic dif-
fusion. The composition dependence has a minimum near the site
percolation threshold, corresponding to ~ 20 at.%Fe. For the alloy
we investigated in this article, Mn atoms have low barrier for va-
cancy migration (as shown in Fig. 2(b)) and it has also been shown
that Mn containing alloys exhibit sluggish diffusion [22]. Qualita-
tively, this rather surprising observation can be understood as a
result of increased correlation effect on diffusion - if a vacancy ex-
changes with an easily-migrating atom (e.g. with Fe in the Ni-Fe
alloy [65] or with Mn in alloys investigated in Ref. [22]), it can
swap back with that atom, similar to the correlations investigated
in this article. This will effectively result in traps up to a certain
concentration of the faster species, after which, a percolation of
low-barriers will lead to increase in the diffusion coefficient.

To gain a more quantitative understanding of such effects, we
could extend our KMC model to explicitly include the chemical
effects by simply drawing from a different w and s distributions,
depending on the migrating species. By tracking a specific atom
instead of the vacancy, the atom-specific self-diffusion coefficients
can be computed as a means to understand experimental observa-
tions. Modifications to the random-walker model, so as to include
species-specific kinetics and concentration dependence, would be
non-trivial. One strategy would be to extend the existing Onsager-
type continuum and multi-frequency models [35,37,38,62-64]. A
model recently developed by Vaks et al. [36] is promising. It in-
dependently considers saddle point and well energies and predicts
diffusivity as a function of concentration. However, only mean-
values are used in this model and it has only been validated for
binary alloys, where we expect the distributions to be narrower
and more discrete due to the smaller configuration space. These
models can be extended by considering species-specific distribu-
tions for site- and saddle-point energies, as was done for vacancy
diffusivity in this article.

7. Conclusions

The set of experimentally synthesized alloys cover only a small
region of the high-dimensional compositional space that has been
identified as thermodynamically plausible for MPEAs [66,67]. To
sample this high-dimensional space in an efficient manner and to
design novel MPEAs with targeted properties, the need for new
theoretical and computational tools has been highlighted [68]. In
this current study, we focused on developing analytical tools for
predicting diffusion kinetics, which are time consuming to mea-
sure either using experiments or atomistic simulations. For diffu-
sivity in MPEAs, the computational tools require a foundation of a)
characterization of the kinetic barriers to diffusion, b) a means of
simulating diffusion in a model system faithful to the observed en-
ergy landscape, and c) a theoretical framework for understanding
how the underlying energy landscape relates to diffusion.

In this article, we presented a complete cross-section of dif-
fusion in rough energy landscapes, where the disorder is repre-
sentative of solid-solution MPEAs. We developed a flexible KMC
protocol where the distributions of the disordered well and the
saddle-point energies can be independently controlled. To better
understand the KMC results and to develop predictive models, we
presented a theoretical framework for vacancy diffusivity in dis-
ordered energy landscapes. While the statistics used in the KMC
simulations are informed by the direct computation of the migra-
tion barriers for a CoNiFeCrMn EAM potential, the developed the-
ory spans a wide-range of distributions that one may observe in
generic MPEAs. Therefore, for a given alloy system, equipped with
knowledge of the well and saddle-point energy distributions, sim-
ulations and theoretical results provided in this article can be used
to predict transport properties. The theory itself lends a simple in-
tuition regarding transport; wider distributions of saddle-point en-

ergies enhance diffusion while wider distributions of well depths
stifle diffusion. If these distributions can be connected to alloy
chemistry and compositions, this can serve to aid the development
of designer MPEAs with optimized transport properties.

This statistical investigation of vacancy diffusion provides a
building block for future navigational tools in the vast MPEA sea.
In the near term, it should also serve as a guide for what compu-
tational tools currently in development must do correctly. The po-
tential that we used [53] is a laudable effort - a necessary step for
the atomistic modeling of these complex alloys. However, for un-
derstanding vacancy diffusivity, it is insufficient to match just the
vacancy migration barriers. The present work suggests that these
random landscapes can indeed produce trap environments that
produce sluggish diffusion (as has been recently reaffirmed [69]),
but that this is not the full picture. Holding the distribution of bar-
riers steady, one can change the diffusion constant by orders of
magnitude. MPEA potentials, mean field theories, and other meth-
ods cannot be relied upon for diffusion-related problems if they do
not capture the full nature of the energy landscape.
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