Large-Scale Storage of Whole Slide Images and Fast Retrieval
of Tiles Using DRAM

Daniel E. Lopez Barron®, Praveen Rao®, Deepthi Rao®, Ossama Tawfik®, and Arun Zachariah®

#University of Missouri-Kansas City, Kansas City, MO, USA
bUniversity of Missouri-Columbia, Columbia, MO, USA*
°Saint Luke’s Hospital of Kansas City, MO, USA

ABSTRACT

The U.S. Food and Drug Administration (FDA) has approved two digital pathology systems for primary diagno-
sis. These systems produce and consume whole slide images (WSIs) constructed from glass slides using advanced
digital slide scanners. WSIs can greatly improve the workflow of pathologists through the development of novel
image analytics software for automatic detection of cellular and morphological features and disease diagnosis
using histopathology slides. However, the gigabyte size of a WSI poses a serious challenge for storage and re-
trieval of millions of WSIs. In this paper, we propose a system for scalable storage of WSIs and fast retrieval
of image tiles using DRAM. A WSI is partitioned into tiles and sub-tiles using a combination of a space-filling
curve, recursive partitioning, and Dewey numbering. They are then stored as a collection of key-value pairs in
DRAM. During retrieval, a tile is fetched using key-value lookups from DRAM. Through performance evaluation
on a 24-node cluster using 100 WSIs, we observed that, compared to Apache Spark, our system was three times
faster to store the 100 WSIs and 1,000 times faster to access a single tile achieving millisecond latency. Such fast
access to tiles is highly desirable when developing deep learning-based image analytics solutions on millions of
WSIs.

Keywords: Whole slide imaging, scalable storage, fast retrieval, DRAM, image analytics

1. INTRODUCTION AND OBJECTIVE

Whole slide imaging is touted as a disruptive technology in digital pathology and can produce a gigapixel image
(or WSI) in a few minutes by scanning a glass slide with near-optical resolution.! There continues to be growing
interest in using WSIs for primary diagnosis and consultation? as they can greatly improve the workflow of
pathologists. From a regulatory perspective, Philips and Leica Biosystems have received FDA clearance to
market their digital pathology systems for primary diagnosis in the US.** This is a major step forward to enable
widespread adoption of WSIs for primary diagnosis; however, the technical barriers due to gigabyte-sized WSIs
pose a serious challenge for large-scale storage and retrieval of WSIs. In fact, the Memorial Sloan Kettering
Cancer Center plans to scan 40,000 slides per month and expects to produce millions of WSIs in the next few
years;® this will create several petabytes of WSI data. Fast access to small portions of WSIs is highly desirable
for next-generation image analytics on histopathology slides using deep learning. Thus, developing an effective
solution for large-scale storage and retrieval of WSIs is a critical challenge.

Recently, Yildirim et.al.® studied the use of parallel file systems, Apache Hadoop,” and Amazon Web Services
(AWS) cloud storage to enable scalable data access of WSIs. Their focus, however, was on retrieving the full
(tiled) image of a particular resolution in a WSI. Motivated by the need for fast random access to small portions
of a WSI, our previous work® showed that using a space-filling curve for data partitioning and Apache Spark®-a

*Part of this work was done when P.Rao and A. Zachariah were employed by University of Missouri-Kansas City.
Further author information: (Send correspondence to P. Rao)

D. Lopez Barron.: Email: d1544@mail.umkc.edu

P. Rao.: E-mail: praveen.rao@missouri.edu

D. Rao.: E-mail: raods@health.missouri.edu

O. Tawfik.: Email: ossama.tawfik@gmail.com

A. Zachariah.: Email: azachariah@mail.missouri.edu

To appear in SPIE Defense + Commerical Sensing: Big Data Il: Learning, Analytics, and Applications Conference 2020 Conference, Anaheim, CA

Copyright 2020 (year) Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for
personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial
purposes, or modification of the content of the paper are prohibited

1500

1000

Disk Read (MB)

o 500 1000 1500 2000 2500 3000
Time (min)
(a) Small dataset (b) Large dataset

Figure 1. Disk read pattern during the training phase

popular in-memory cluster computing framework—can enable fast retrieval of (small) tiles in WSIs. Our system’s
latency to retrieve a title was in seconds. This is because data may need to be fetched from secondary storage
at times and move through several software layers. Given the large amount of DRAM in a commodity cluster,
can we reduce the tile access latency if data are always kept in and fetched from DRAM? Our work precisely
attempts to answer this question.

2. MOTIVATION

To understand the IO access pattern during deep learning, we conducted a simple experiment. We trained an
autoencoder'’ on the MS COCO dataset!! containing 123K images of common everyday scenes. We ran the
training on CloudLab'? using a machine with Intel Core i9-9980XE CPU (3.00 GHz), 64 GB RAM, NVIDIA
GeForce RTX 2080 Ti GPU (11 GB), and 2 TB hard disk. The original dataset was 19 GB; we created a larger
dataset by replicating the original dataset 6 times (119 GB). We used the dstat command in Linux to measure
the IO per second and then aggregated the IO per minute. In Figure 1, we report the read cost in MB per
minute during the training of the autoencoder for 3 epochs on the two datasets. Figure 1(a) shows the amount of
disk read for the 19 GB dataset. As expected after initially loading the dataset into main memory, the training
phase used the cached files resulting in a total disk read of 20 GB. However, on the large dataset as shown in
Figure 1(b), disk reads continued to occur during the training phase as the entire dataset could not be cached.
The total disk read was 680 GB — 5.7 times the size of the large dataset. Thus, disk IO can become a bottleneck
when training deep learning models on large datasets. Faster access to image tiles in the data can therefore
reduce the training time leading to an improved image analytics pipeline.

3. BACKGROUND ON RAMCLOUD

Ousterhout et al. proposed RAMCloud,'? a storage system that utilizes DRAM to store large datasets with
low-latency access. RAMCloud provides strong consistency and organizes data in the form of a key-value store
on thousands of servers. Data are kept in DRAM at all times. RAMCIloud requires microsecond latency for
performing reads (e.g., 5 us) and writes of small objects. It uses a log-structured approach to manage the DRAM
of the servers and employs secondary storage for backup and fault-tolerance. It relies on high-speed networking
(e.g., Infiniband) that is becoming common in data centers, and uses polling and kernel bypass to achieve low
latency and high throughput. In terms of performance, RAMCloud has outperformed state-of-the-art in-memory
key-value stores and main-memory databases.'

Next, we describe RAMCloud’s data model and processing primitives. RAMCloud organizes data in tables
and is a key-value store. Each key can be up to 64 KB in size. The size of the value can be at most 1 MB.
When a table is created with a name, it returns a unique ID. Using the ID, a key-value pair can be written
to the table. Given a key, its value can be fetched from the table. RAMCloud supports multi-writes, wherein
a set of key-value pairs can be written (into multiple tables) in a single user-invoked operation. Similarly, it
supports multi-reads, wherein given a set of keys (and tables), their respective values can be fetched from the

corresponding tables in a single user-invoked operation. All key-value pairs in a table can be enumerated. A
table is split into tablets (by hashing the keys in it) and stored across the DRAM of the servers. Data are always
served from DRAM leading to low latency accesses.

4. OUR PROPOSED SYSTEM

Our system is designed to enable scalable storage of WSIs and fast retrieval of tiles in them. It uses a set of
techniques to partition a WSI so that it can stored in a distributed manner across of cluster of machines. As
a result, small portions of a WSI can be efficiently retrieved with millisecond latency. Our system is built atop
RAMCIloud and uses its key-value data model. It is illustrated in Figure 2.

Storing WSIs: A WSI contains an image pyramid with differ-
ent resolutions. The highest resolution is represented by a Level
mage (e.g., 400X magnification) and is the largest in size com-
ed to lower resolution images at higher levels. As a Level 0
age can be several GBs in size, our system partitions it into
bs using a space-filling curve.!* A space-filling curve (e.g., Z-
ler curve, Hilbert curve) provides a mathematical function to

(Imﬂge ;ﬂﬂl)gfics : p points in a higher dimensional space (e.g., 2D) to 1D, while
&g, using ceep bserving spatial proximity of points in the higher dimension.

learning
: Tile and key r system is designed for fast image analytics where rectangu-
regions of WSIs (containing one or more tiles) are randomly
essed. Thus, based on the space-filling curve, each tile in a
el 0 image is assigned an index from 1 to 2", where r is a
er of 2. Neighboring tiles tend be closer in terms of their in-
Master RAMCloud k values, which is ideal when nearby tiles are to be retrieved.
sed on the desired maximum size of a tile, a Level 0 image is
titioned using different iterations of the space-filling curve. (A
examples are shown later in Section 5.) A similar partitioning

proach can be applied to a Level 1 image. A tile of a WSI is
. e | racted using OpenSlide.'?

Reader | | Weriter |

Our system maintains a table (in RAMCloud) called Master
to store metadata required to retrieve tiles and sub-tiles at dif-
ferent levels of a WSI. Suppose we use Z-order curves for par-
titioning. For each WSI identified by fileID, a key-value pair
(k,v) is stored in Master, where k is fileID.imagelevel and v is (ZIteration, DeweyLevel, imageHeight,
imageWidth), where ZIteration is the iteration of the Z-order curve, and DeweyLevel is based on the Dewey
numbering scheme.!® A DeweyLevel is 0 if the tiles created by the space-filling curve are less than 1 MB in
size; hence, they are not recursively partitioned. Otherwise, a tile is partitioned into create sub-tiles until each
sub-tile is less than 1 MB.

For each WSI, a table is created (in RAMCloud) with fileID as the name. This table will store the actual
tiles and sub-tiles of a WSI. Given an image level, each tile is denoted by a key-value pair (k,v): The key
k is imageLevel.tileIndex, where imageLevel is the image level and tileIndex is the index based on the
Z-order curve. An example of creating tile indexes from 0 to 63 is shown in Figure 3(a). The value v is a tuple
(tileWidth, tileHeight, tileBytes), where tileWidth is the width of the tile, tileHeight is the height of
the tile, and tileBytes is actual tile content (e.g., in TIFF). If a tile does not contain any tissue section (see
Figure 3(a)), then it’s value is a magic string to indicate a blank tile. We employ a nuclei detection technique!”
to identify tiles with zero cell count. As long as a tile is under 1 MB in size, it can be directly stored in a
RAMCloud table.

Figure 2. System architecture

If a non-blank tile is greater than 1
MB in size, it must be partitioned recur-
sively into sub-tiles. Consider the tile with
tileIndex of 15 as shown in Figure 3(b).
Suppose the size of this tile is greater than
1 MB. We first partition the tile into 4
equal quadrants. If each quadrant is still
more than 1 MB, it must be partitioned
again into 4 quadrants. Suppose each sub-
o tile is now less than 1 MB. Thus, the tile is
T - = — partitioned into 16 sub-tiles. Each sub-tile

/ is identified by a Dewey number as shown

ZIE in Figure 3(b). For example, the top left

sub-tile is denoted by 15.1.1. The bottom
right sub-tile is denoted by 15.4.4. This
approach enables us to generate keys de-
terministically once we keep track of the
number of levels of recursive partitioning,
which we refer to as the Dewey level. Re-
call that DeweyLevel is stored in Master
for each WSI’s image level. Each sub-tile
is stored using imageLevel.DeweyID as the
key, where DeweyID is the Dewey number
of the sub-tile. To enable fast storage of

62 | 63

Keys generated using the
Dewey numbering scheme

(b) Dewey numbering for sub-tiles

Figure 3. (a) WSI partitioning (b) Recursive partition-
ing into sub-tiles (Sources: https://portal.gdc.cancer.gov,
https://en.wikipedia.org/wiki/File:Four-level Z.svg)

tiles and sub-tiles in a WSI, we use RAM-
Cloud’s multi-write operation.

Querying Tiles of a WSI: A query
is defined by a rectangular bounding box
[z1,91,22,y2] on a WSI with a given
fileID and imageLevel. We map this

bounding box into a set of tile indexes.

We first fetch the metadata (such as
DeweyLevel) from Master using fileID.imageLevel as the key. For each tile, we generate the Dewey IDs
based on DeweyLevel. Using RAMCloud’s multi-read operation, we retrieve all sub-tiles from the table £ileID
in a single call. The sub-tiles are then written to local storage.

5. PRELIMINARY RESULTS

We implemented our system using Scala, Python, and C++ APIs of RAMCloud. We conducted the performance
evaluation of our system using a 24-node cluster on CloudLab,'? a testbed for cloud computing research. Each
node was installed with Ubuntu Linux 16.04.10 and had a 10-core Intel processor, 480 GB local SSD storage,
250 GB block storage, and 64 GB RAM. For the experiments, we used 100 WSIs (in SVS format) from The
Cancer Genome Atlas (TCGA).'® The total size of the WSIs was 273 GB. The SVS file sizes ranged from 2.4
GB to 3.8 GB. In Figure 4, we report the average tile size (in TIFF format) for a WSI’s Level 0 image based on
partitioning with different iterations of the Z-order curve. For our evaluation on 100 WSIs, we chose 7 iterations
of the Z-order curve to ensure that the sub-tiles were under 1 MB with DeweyLevel of 1.

5.1 Storage Performance:

For each SVS file, we partitioned the Level 0 image data into 16,384 tiles. On an average, there were 5056 blank
tiles per Level 0 image. These blank tiles were stored in an optimized way as discussed in Section 4. A non-blank
tile was partitioned into 4 sub-tiles using DeweyLevel of 1. Both the tiles and sub-tiles were in TIFF format, and

Z-order # of Avg. = 10 # of Avg. size
iteration | tiles | tile size E 8 tiles of data

3 64 616 MB E 6 retrieved | retrieved

1 956 | 154 MB T 4 1 0.93 MB

5 1,024 | 39 MB g 2 3 2.85 MB

6 4,096 | 9.7 MB o0 T s s . 5 4.76 MB

7 16,384 | 2.5 MB 7 6.66 MB

of tiles retrieved

Figure 4. Partitioning into tiles Figure 6. Avg. retrieval size

Figure 5. Retrieval performance

hence, required more storage than the original SVS files. (In fact, JPEG would reduce the tile size.) The total
DRAM storage consumed by the 100 WSIs was 1.18 TB. It took an average of 18.22 secs to store each SVS file
in our system. On the other hand, storing a single SVS file using Apache Spark took over 70 secs on an average.
Our system built atop RAMCloud was three times faster than using Apache Spark for storing WSIs.®

5.2 Tile Retrieval Performance:

To understand the tile retrieval performance of our system, we generated queries to retrieve 1, 3, 5, or 7 tiles
from each of the 100 WSIs. The multiread operation of RAMCloud was used to retrieve tiles/sub-tiles. Figure 5
shows the average elapsed time to retrieve different number of tiles. The average amount of data retrieved by a
query is shown in Figure 6. The retrieval cost increased linearly with increase in the number of tiles. Clearly, our
system build atop RAMCloud achieved millisecond latency to fetch tiles from WSIs. Compared to using Apache
Spark and Spark SQL, our system was 1,000 times faster to retrieve a single tile. Such fast access to WSI tiles
can enable fast training of deep learning algorithms on large-scale WSI data.

6. CONCLUSIONS

We presented a system for scalable storage of WSIs and fast retrieval of tiles using DRAM. Our system partitions
WSIs into tiles and sub-tiles using a combination of space-filling curves, recursive partitioning, and Dewey
numbering. These are stored as key-value pairs using RAMCloud, which is a cluster-based system that uses
DRAM to store large datasets with low-latency access. Through performance evaluation on a 24-node cluster,
we observed that our system can achieve millisecond latency to fetch single tiles. Such fast access to WSI tiles
will be essential for large-scale deep learning on millions of WSIs for next generation diagnostic pathology.

7. ACKNOWLEDGMENTS

The first author was supported by the Mexican Council for Science and Technology (CONACyT) under scholar-
ship 264829. The second author would like to acknowledge the partial support of NSF Grant No. 1841752. We
thank CloudLab for providing computing resources to conduct the experiments.

REFERENCES

[1] Ghaznavi, F., Evans, A., Madabhushi, A., and Feldman, M., “Digital Imaging in Pathology: Whole-Slide
Imaging and Beyond,” Annual Review of Pathology: Mechanisms of Disease 8, 339-351 (2013).

[2] Pantanowitz, L., Sinard, J. H., Henricks, W. H., Fatheree, L. A., Carter, A. B., Contis, L., Beckwith,
B. A., Evans, A. J., Lal, A.; and Parwani, A. V., “Validating whole slide imaging for diagnostic purposes in
pathology: guideline from the College of American Pathologists Pathology and Laboratory Quality Center,”
Archives of Pathology and Laboratory Medicine 137(12), 1710-1722 (2013).

[3] “FDA allows marketing of first whole slide imaging system for digital pathology.” https://www.fda.gov/
NewsEvents/Newsroom/PressAnnouncements/ucmb52742.htm.

[4] “FDA Clears Leica Biosystems Digital Pathology System.” https://www.fdanews.com/articles/
191523-fda-clears-leica-biosystems-digital-pathology-system.

[5]

=

]

[13]

=
O

-
>,

[17]

[18]

“Computational Pathology — In the Midst of a Revolution: How Computational Pathology is Trans-
forming Clinical Practice and Biomedical Research.” http://on-demand.gputechconf.com/gtc/2017/
presentation/s7603-thomas-fuchs-in-the-midst-of-revolution.pdf.

Yildirim, E. and Foran, D. J., “Parallel Versus Distributed Data Access for Gigapixel-Resolution Histology
Images: Challenges and Opportunities,” IEEE Journal of Biomedical and Health Informatics 21, 1049-1057
(July 2017).

White, T., [Hadoop: The Definitive Guide], O'Reilly Media, Inc., 1st ed. (2009).

Barron, D. L., Yarlagadda, D. V. K., Rao, P., Tawfik, O., and Rao, D., “Scalable storage of whole slide
images and fast retrieval of tiles using Apache Spark,” in [Proc. SPIE 10581, Medical Imaging 2018: Digital
Pathology], 10581, 1-6 (2018).

Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., and Stoica, 1., “Spark: Cluster Computing
with Working Sets,” in [Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud Computing],
HotCloud’10, 10-10 (2010).

“Convolutional Autoencoder.” https://github.com/0liverEdholm/Convolutional-Autoencoder.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollar, P., and Zitnick, C. L.,
“Microsoft COCO: Common objects in context,” in [Computer Vision — ECCV 2014], 740755, Springer
International Publishing, Cham (2014).

Duplyakin, D., Ricci, R., Maricq, A., Wong, G., Duerig, J., Eide, E., Stoller, L., Hibler, M., Johnson, D.,
Webb, K., Akella, A., Wang, K., Ricart, G., Landweber, L., Elliott, C., Zink, M., Cecchet, E., Kar, S., and
Mishra, P., “The Design and Operation of CloudLab,” in [Proceedings of the USENIX Annual Technical
Conference (ATC)], 1-14 (July 2019).

Ousterhout, J., Gopalan, A., Gupta, A., Kejriwal, A., Lee, C., Montazeri, B., Ongaro, D., Park, S. J., Qin,
H., Rosenblum, M., Rumble, S., Stutsman, R., and Yang, S., “The RAMCloud Storage System,” ACM
Transactions on Computer Systems 33(3), 7:1-7:55 (2015).

Sagan, H., [Space-Filling Curves|, Springer Verlag (1994).

“OpenSlide.” https://openslide.org (2017).

Tatarinov, 1., Viglas, S. D., Beyer, K., Shanmugasundaram, J., Shekita, E., and Zhang, C., “Storing
and Querying Ordered XML Using a Relational Database System,” in [Proc. of the 2002 ACM SIGMOD
Conference], 204-215 (2002).

“Nuclei Detection with OpenCV.” https://www.kaggle.com/javidimail/
nuclei-detection-with-opencv (2018).

“The Cancer Genome Atlas.” https://www.cancer.gov/tcga (2019).

