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Abstract

We analyze the Biot system solved with a fixed-stress split, Enriched Galerkin (EG) discretization for the flow equation,
and Galerkin for the mechanics equation. Residual-based a posteriori error estimates are established with both lower and upper
bounds. These theoretical results are confirmed by numerical experiments performed with the Mandel’s problem. The efficiency
of these a posteriori error estimators to guide dynamic mesh refinement is demonstrated with a prototype unconventional
reservoir model containing a fracture network. We further propose a novel stopping criterion for the fixed-stress iterations
using the error indicators to balance the fixed-stress split error with the discretization errors. The new stopping criterion does
not require hyperparameter tuning and demonstrates efficiency and accuracy in numerical experiments.
c⃝ 2020 Elsevier B.V. All rights reserved.
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1. Introduction

Applications arising in the geosciences and biosciences such as subsidence events, carbon sequestration,
groundwater remediation, hydrocarbon production, and hydraulic fracturing, enhanced geothermal systems, solid
waste disposal, and biomedical heart modeling, are driving the development of numerical models coupling flow
and poromechanics. In this paper, we focus on deriving a posteriori error indicators for the Biot model that consists
of a poromechanics equation coupled to a flow model with the displacement and pressure as unknowns. In contrast
to solving the Biot system fully implicitly, we consider fixed stress iterative scheme that allows the decoupling
of the flow and mechanics equations. The decoupling scheme offers several attractive features such as the use of
existing flow and mechanics codes, use of appropriate preconditioners and solvers for the two models, and ease of
implementation. The design of this approach which is currently quite popular is important in the formulation of
efficient, convergent, and robust schemes.

In the fixed-stress split algorithm, the flow problem is solved first followed by the mechanics problem, and a
constant mean total stress is assumed during the flow solve. Kim et al. [1] demonstrated stability for fixed stress
and in [2–4] Mikelić and Wheeler established contractive property of the scheme. Besides, we note here that this
approach can be interpreted as a preconditioner technique for solving the fully coupled system. For instance, the
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work of Gai et al. [5] and Gai [6] involved interpreting this scheme as a physics-based preconditioning strategy
applied to a Richardson fixed-point iteration. The same preconditioning technique was applied to the fully coupled
system in the work of Castelletto et al. [7,8].

Several extensions of the fixed-stress split scheme have been studied. Almani et al. [9] and Kumar et al. [10]
extended the fixed-stress split to the multirate case, in which flow takes multiple fine time steps within one coarse
mechanics time step. Borregales [11] extended the fixed-stress split to a nonlinear case. Dana et al. [12,13] studied
a multiscale extension of the fixed-stress split to a poroelastic–elastic system where the poromechanics equation is
solved on a larger domain with a coarse grid and the flow equation is solved on a small domain with finer grid.
Moreover, Bause et al. [14] and Borregales et al. [15] explored space–time methods of the fixed-stress split, and the
work of Rodrigo et al. [16] considered the stability analysis of the discretization schemes. Storvik et al. [17] studied
the optimal choice of the stabilization parameter used in the fixed-stress split. Lu and Wheeler [18] have recently
extended the fixed-stress split to a three-way coupling, an adaptive asynchronous coupling scheme that allows over
97.5% reduction in poromechanics computational time due to not requiring the displacement to be computed for
every time step.

Here we restrict our attention to the fixed-stress iterative coupling, analyze the enriched Galerkin method (EG)
for flow and Galerkin for elasticity. This is an extension of the previous work on Galerkin and/or mixed finite element
methods for flow [19] to EG. In the early works of Gai [6] and Wang [20] for two phase Biot system, it was observed
that local mass conservation for flow was essential. In Biot studies in fractured porous media, Lee et al. [21] have
demonstrated that EG is locally conservative and robust in treating fracture networks including quasi Newtonian
flows arising in proppant stimulation. Choo and Lee [22] showed that local mass conservation can also be crucial
to accurate simulation of deformation processes in fluid-infiltrated porous materials. Therefore, EG is an attractive
method for flow discretization, locally mass conservative, giving rise to inexpensive residual error indicators that
are easily incorporated in the code. Mixed methods are also well suited to local mass conservation. Recently,
Ahmed et al. derived a posteriori estimates for fully mixed formulations of Biot model for both the monolithic
scheme and the fixed-stress split scheme [23,24]. Their approach requires solving local auxiliary problems which are
computationally costly. Li and Zikatanov [25] derived residual-based a posteriori error estimates of mixed methods
for monolithic three-field Biot’s consolidation model that does not require the calculation of local problems, which
is promising to be extended for fixed-stress split schemes.

In this paper, we derive error equalities for each iteration of the fixed-stress algorithm at each time step,
followed by residual-based a posteriori error estimates. These estimates are based on separate results extended
to EG from [19]: contraction mapping, stability estimates and a priori error estimates for the discretized problem
that incorporate convergence of the iteration at each time step. Here both lower bound (efficiency) and upper bound
estimates (reliability) are obtained, but they are non-optimal in terms of efficiency in the sense that the lower
bounds involve weak residual errors that cannot be computed numerically, see Section 6. The upper bound estimates
represent an extension of Ern et al. [26] for the monolithic Biot system based on Galerkin approximations. In [26]
no lower bounds were derived and as far as the authors are aware none have been derived to date for Galerkin
schemes. In our theoretical work, it is clear that obtaining lower bounds for a posteriori errors is difficult, technical,
and requires weak error terms that unfortunately do not lead to obtaining the effectivity index easily. This is further
aggravated by the imbalance in the constants multiplying the pressure in the flow and displacement equations, see
Section 8.1.

While the analysis presented here applies to the poroelastic system, a novel feature of this work involves a
generalized poroelastic–elastic system that represents the coupled flow and poromechanics phenomena arising from
hydrocarbon production or geological carbon sequestration in deep subsurface reservoirs. The reason for this choice
is that in these phenomena the spatial domain in which fluid flow occurs is generally much smaller than the
spatial domain over which significant deformation occurs. It also improves standard approaches. Indeed, the typical
approaches model the same physics over one domain, either considers only the reservoir with an overburden pressure
imposed directly or models the entire reservoir and surrounding rocks with zero permeability in the surrounding
rocks. The former approach may misrepresent the mechanics boundary conditions and precludes the study of land
subsidence or uplift whereas the latter approach is computationally prohibitive.

This work is organized as follows. In the subsection below we establish notation. In Section 2, a continuous-
time model involving the decoupling of the model into elastic and poroelastic domains with interface conditions is
formulated in primal variational form. The primal formulation, complete with the fixed-stress splitting algorithm,
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is fully discretized with EG for flow and Galerkin for mechanics in Section 3. The a posteriori error equalities are
derived in Section 4, and the error indicators are inferred from them. Section 5 is devoted to an upper bound for
the total error. Section 6 introduces auxiliary weak residual errors. The lower bounds are discussed in Section 7.
Computational results are presented in Section 8. Numerical results on the Mandel problem confirm these upper and
lower error bounds. Moreover, the efficiency of using the a posteriori indicators to guide dynamic mesh adaptation
and a novel stopping criterion for the fixed-stress iterations are presented. Finally, Section 9 draws some conclusions.

1.1. Notation

To be specific, the notation is expressed in three dimensions in a bounded connected open set Ω ⊂ R3. The
scalar product of L2(Ω ) is denoted by (·, ·)Ω

∀ f, g ∈ L2(Ω ), ( f, g)Ω =
∫
Ω

f (x)g(x)dx,

and the index Ω is omitted when the domain of integration is clear from the context. For any non-negative integer
m, the classical Sobolev space H m(Ω ) is defined by (cf. [27] or [28]),

H m(Ω ) = {v ∈ L2(Ω ) : ∂kv ∈ L2(Ω )∀ |k| ≤ m},

where

∂kv =
∂ |k|v

∂xk1
1 ∂xk2

2 ∂xk3
3

,

equipped with the following seminorm and norm for which it is a Hilbert space:

|v|Hm (Ω) =

⎡⎣∑
|k|=m

∫
Ω

|∂kv|
2

dx

⎤⎦ 1
2

, ∥v∥Hm (Ω) =

⎡⎣ ∑
0≤|k|≤m

|v|2Hk (Ω)

⎤⎦ 1
2

.

This definition is extended to any real number s = m + s ′ for an integer m ≥ 0 and 0 < s ′ < 1 by defining in
dimension d the fractional semi-norm and norm, see [29] and [30],

|v|H s (Ω) =

⎛⎝∑
|k|=m

∫
Ω

∫
Ω

|∂kv(x)− ∂kv(y)|2

|x− y|d+2 s′
dx dy

⎞⎠ 1
2

, ∥v∥H s (Ω) =
(
∥v∥2

Hm (Ω) + |v|
2
H s (Ω)

) 1
2 .

These fractional order spaces are often used for traces. The following trace property holds in a domain Ω with a
Lipschitz continuous boundary ∂Ω : If v belongs to H s(Ω ) for some s ∈ ] 1

2 , 1], then its trace on ∂Ω belongs to
H s− 1

2 (∂Ω ) and there exists a constant Cs such that

∀v ∈ H s(Ω ) , ∥v∥
H s− 1

2 (∂Ω)
≤ Cs∥v∥H s (Ω). (1.1)

In particular, H
1
2 (∂Ω ) is the trace space of H 1(Ω ), with norm

|v|
H

1
2 (Γ )
=
(∫

Γ

∫
Γ

|v(x)− v(y)|2

|x− y|d
dx dy

) 1
2 ,

and H−
1
2 (∂Ω ) is the dual space of H

1
2 (∂Ω ). Finally, if Γ is a subset of ∂Ω with positive measure, |Γ | > 0, we

say that a function g in H
1
2 (Γ ) belongs to H

1
2

00(Γ ) if its extension by zero to ∂Ω belongs to H
1
2 (∂Ω ). It is a proper

subspace of H
1
2 (Γ ), and is normed by

∥v∥
H

1
2

00 (Γ )
=

(
|v|2

H
1
2 (Γ )
+

∫
Γ

|v(x)|2
dx

d(x,Γ )

) 1
2
, (1.2)

where d(x,Γ ) denotes the distance to Γ .
We also recall Korn’s and Poincaré’s inequalities both valid for all functions v in H 1(Ω )3 that vanish on Γ :

|v|H1(Ω) ≤ K∥ε(v)∥L2(Ω), (1.3)
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∥v∥L2(Ω) ≤ P|v|H1(Ω), (1.4)

where ε(v) is the strain tensor, and K and P are constants depending only on Ω and Γ . These imply

∥v∥H1(Ω) ≤ C1∥ε(v)∥L2(Ω), C1 = K
(
1+ P2) 1

2 . (1.5)

A trace inequality for all functions v in H 1(Ω )3 that vanish on Γ can be obtained by combining the interpolation
inequality

∀v ∈ H 1(Ω ) , ∥v∥L2(Γ ) ≤ C(Ω )∥v∥
1
2
L2(Ω)
∥v∥

1
2
H1(Ω)

,

with (1.4) and (1.3),

∥v∥L2(Γ ) ≤ C2∥ε(v)∥L2(Ω), C2 = C(Ω )
(
KPC1

) 1
2 . (1.6)

As usual, for handling time-dependent problems, it is convenient to consider measurable functions defined on a
time interval ]a, b[ with values in a functional space, say X (cf. [29]). More precisely, let ∥ · ∥X denote the norm
of X ; then for any number r , 1 ≤ r ≤ ∞, we define

Lr (a, b; X ) = { f measurable in ]a, b[ :
∫ b

a
∥ f (t)∥rX dt <∞},

equipped with the norm

∥ f ∥Lr (a,b;X ) =

(∫ b

a
∥ f (t)∥rX dt

) 1
r

,

with the usual modification if r = ∞. It is a Banach space if X is a Banach space, and for r = 2, it is a Hilbert
space if X is a Hilbert space. Derivatives with respect to time are denoted by ∂t and we define for instance

H 1(a, b; X ) = { f ∈ L2(a, b; X ) : ∂t f ∈ L2(a, b; X )}.

2. Governing equations and formulation

Let Ω be a bounded, connected, Lipschitz domain in R3. We are interested in the situation where a poro-elastic
model holds in a connected subset Ω1 of Ω (the pay-zone), completely embedded into Ω , while an elastic model
holds in Ω2 (the nonpay-zone), see Fig. 1, where

Ω2 = Ω \ Ω1.

Let Γ12 denote the boundary of Ω1, assumed to be Lipschitz, and let n12 be the unit normal on Γ12 exterior to
Ω1. In the examples we have in mind, Ω1 is much smaller than Ω . This work extends readily to more general
configurations, but for simplicity, we focus on this situation. Let the boundary of Ω , ∂Ω , be partitioned into two
disjoint open regions not necessarily connected, but with a finite number of connected components, each with
Lipschitz-continuous boundaries,

∂Ω = ΓD ∪ ΓN .

We denote by nΩ the unit outward normal vector to ∂Ω . To simplify, we assume that the measure of ΓD is positive:
|ΓD| > 0.

Let σ be the effective linear elastic stress tensor,

σ (u) = 2Gε(u)+ λ(∇ · u)I, (2.1)

where ε(u) = 1
2

(
∇ u + ∇ t u

)
is the symmetric gradient tensor, I the identity tensor, and λ > 0 and G > 0 are the

Lamé coefficients. Let σ por be the linear poro-elastic stress tensor

σ por(u, p) = σ (u)− α p I, (2.2)

where α > 0 is the Biot–Willis coefficient. Let f be the body force in Ω . In the nonpay-zone, i.e., a.e. in Ω2×]0, T [,
the governing equations for the displacement u are those of linear elasticity. In the pay-zone Ω1, the equations are
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Fig. 1. Pay-zone with surrounding rock.

those of Biot’s consolidation model for a linear elastic, homogeneous, isotropic, porous solid saturated with a
slightly compressible single-phase fluid. The unknowns are the solid’s displacement u and the fluid’s pressure p.
This model is based on a quasi-static assumption, namely it assumes that the material deformation is much slower
than the flow rate, and hence the second time derivative of the displacement (i.e., the acceleration) is zero. After
linearization and simplifications, it leads to the following system of equations in Ω × ]0, T [,

−∇ · (λ(∇ · u)I + 2Gε(u)− αp I) = f in Ω1 × ]0, T [,
−∇ · (λ(∇ · u)I + 2Gε(u)) = f in Ω2 × ]0, T [,

∂t

(
1
M

p + α∇ · u
)
−

1
µ f
∇ ·

(
κ(∇ p − ρ f,r g∇ η)

)
= q in Ω1 × ]0, T [,

−
1

µ f
κ(∇ p − ρ f,r g∇η) · n12 = 0 on ∂Ω1 × ]0, T [,

[u] = 0 on ∂Ω1 × ]0, T [,
[σ (u)]n12 = α p n12 on ∂Ω1 × ]0, T [,

u = 0 on ΓD × ]0, T [,
σ nΩ = t N on ΓN × ]0, T [,
p(0) = p0 in Ω1,

(2.3)

where M > 0 is the Biot modulus, µ f the fluid’s viscosity, κ the permeability tensor, g the gravity constant, ρ f,r the
reference density, η a signed distance in the vertical direction, q a given volumetric fluid source or sink term, and
t N a given normal traction. At initial time, u(0) is defined by the above system with p(0) = p0, except of course,
the third and fourth equations. Note that the only boundary conditions on the pressure p are transmission conditions
since Ω1 has no exterior boundary. The tensor κ is assumed to be independent of time, symmetric, bounded and
uniformly positive definite in space, with largest eigenvalue λmax and smallest eigenvalue λmin > 0,

a.e. x ∈ Ω1 , λmin ≤ λi (x) ≤ λmax, i = 1, 2, 3. (2.4)

For the sake of simplicity, we assume in addition that the coefficients of κ belong locally to some finite-dimensional
space, such as a polynomial space. This assumption can be avoided by a suitable approximation of κ , but it
complicates the analysis, see for instance [31].

To simplify the notation, the density indices f and r will be dropped and ρ f,r will be replaced from now on
by ρ.

The mean stress σ̄ that will be used in the algorithm is defined by

σ̄ = Kb∇ · u− α p, (2.5)

where Kb is the drained bulk modulus, Kb = λ+ 2
3 G.
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2.1. Primal variational formulation

Define the spaces:

H 1
0D(Ω ) = {v ∈ H 1(Ω ) : v|ΓD = 0}, W = H 1

0D(Ω )d . (2.6)

As shown by Girault et al. [32], problem (2.3) has the following equivalent variational formulation, for every solution
belonging to the spaces below:

Find u ∈ L∞(0, T ;W ) and p ∈ L∞(0, T ; L2(Ω1)) ∩ L2(0, T ; H 1(Ω1)) solving a. e. in ]0, T [

2µ(ϵ(u), ϵ(v))Ω + λ(∇ · u,∇ · v)Ω = ( f , v)Ω + α(p,∇ · v)Ω1 + (t N , v)ΓN , ∀v ∈ W , (2.7)

(
∂t

(
1
M

p + α∇ · u
)

, θ

)
Ω1

+
1

µ f

(
κ(∇ p − ρ g∇ η),∇θ

)
Ω1
= (q, θ)Ω1 , ∀θ ∈ H 1(Ω1), (2.8)

with the initial condition

p(0) = p0 in Ω1. (2.9)

This problem has a unique solution for all sufficiently smooth data, say f ∈ H 1(0, T ; L2(Ω )d ), q ∈ L2(Ω× ]0, T [),
t N ∈ H 1(0, T ; H−

1
2 (ΓN )d ), see [33]. The scalar product on ΓN in (2.7) stands for the duality pairing between

H−
1
2 (ΓN )d and H

1
2

00(ΓN )d .

3. Enriched Galerkin approximation

3.1. Mesh and spaces

For h > 0, let Th be a regular family of conforming simplicial meshes of the domain Ω , with h the maximum
element diameter. The family of meshes is regular in the sense of Ciarlet [34]: there exists a constant σ > 0,
independent of h, such that

hE

ϱE
≤ σ, ∀E ∈ Th, (3.1)

where hE is the diameter of E and ϱE the diameter of the ball inscribed in E . We assume that

Th = T 1
h ∪ T 2

h ,

where T 1
h is a conforming simplicial mesh of Ω1 and T 2

h a conforming simplicial mesh of Ω2. Let Eh denote the
set of all interior faces of Th and E∂

h the set of all its boundary faces. For any e in Eh , ωe denotes the union of the
elements adjacent to e. We suppose that

E∂
h = ED,∂

h ∪ EN ,∂
h ,

where ED,∂
h is the set of all faces lying on ΓD and EN ,∂

h those lying on ΓN . The set of all faces interior to Ω1 is E1
h

and that interior to Ω2 is E2
h . Finally, the set of faces on Γ12 is E12

h . A unit normal vector ne is attributed to each e
in Eh and E∂

h ; its direction can be freely chosen. Here, the following rule is applied: if e ∈ E∂
h , then ne = nΩ , the

exterior normal to Ω ; if e is in E1
h or E2

h , then ne points from Ei to E j , where Ei and E j are the two elements of
Th adjacent to e and the number of Ei is smaller than that of E j . Finally, if e ∈ E12

h , then ne = n12, the outward
normal to Ω1. The jumps and averages of any function f on e ∈ Eh (smooth enough to have a trace) are defined by

[ f (x)]e := f (x)|Ei − f (x)|E j , when ne points from Ei to E j ,

{ f (x)}e :=
1
2

(
f (x)|Ei + f (x)|E j

)
.

When e ∈ E∂
h , the jump and average coincide with the trace on e.

Let k ≥ 1 and m ≥ 1 be two integers. On this mesh, we introduce first the following standard finite element
spaces:

Wh := {v ∈ W : v|E ∈ Pm(E)d ,∀E ∈ Th}, (3.2)
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Qh = {q ∈ H 1(Ω1) : q|E ∈ Pk(E),∀E ∈ T 1
h }. (3.3)

Next, the space Qh is enriched by piecewise constants in each cell, whence the name enriched,

Mh = Qh + {q ∈ L2(Ω1) : q|E ∈ P0(E),∀E ∈ T 1
h }. (3.4)

The displacement will be discretized in Wh and the pressure in Mh , and because of the discontinuous constants
in Mh , the discrete flow equations will be locally mass conservative. Their structure will be the same as that of a
discontinuous Galerkin formulation, but as the jumps involve only constants, their coding will be simpler.

As the exact solution is not necessarily smooth, it is approximated by Scott & Zhang interpolants (see [35]),

Rh ∈ L(W, Wh), Πh ∈ L(H 1(Ω1), Qh). (3.5)

Considering the degree of the polynomial functions in Wh and Qh , these interpolants have the following quasi-local
approximation errors:

∀E ∈ Th,∀v ∈ H s(E)d , |v− Rh(v)|H j (E) ≤ C hs− j
E |v|H s (∆E ) , 1 ≤ s ≤ m + 1, 0 ≤ j ≤ s, (3.6)

∀E ∈ T 1
h ,∀q ∈ H s(E) , |q −Πh(q)|H j (E) ≤ C hs− j

E |q|H s (∆E ) , 1 ≤ s ≤ k + 1, 0 ≤ j ≤ s, (3.7)

with constants C independent of E and hE , where ∆E is a small patch of elements including E containing the
values used in computing the approximation.

Regarding approximation in time, the interval [0, T ] is divided into N equal subintervals with length ∆ t and
endpoints tn = n∆ t . The choice of equal time steps is a simplification; the material below extends readily to
variable time steps. The data is assumed to be continuous in time, and we set a.e. in Ω

f n(x) = f (x, tn), qn(x) = q(x, tn), tnN (x) = tN (x, tn). (3.8)

3.2. Fixed-stress iterative coupling

With these spaces, the fully discrete split problem is:
Initialization. Set

p0
h = Πh(p0). (3.9)

Compute u0
h ∈ Wh and σ̄ 0

h by solving

∀vh ∈ Wh , 2G
(
ε(u0

h), ε(vh)
)
Ω
+ λ

(
∇ · u0

h,∇ · vh
)
Ω
= α

(
p0

h,∇ · vh
)
Ω1
+ (f 0, vh)Ω +

(
t0N , vh

)
ΓN

, (3.10)

and setting

σ̄ 0
h = Kb∇ · u0

h − α p0
h . (3.11)

Time step n ≥ 1.

1. Set pn,0
h = pn−1

h , un,0
h = un−1

h , and σ̄
n,0
h = σ̄ n−1

h .
2. For ℓ ≥ 1, compute

(a) pn,ℓ
h ∈ Mh by solving

∀θh ∈ Mh,
( 1

M
+

α2

Kb

) 1
∆ t

(
pn,ℓ

h − pn−1
h , θh

)
Ω1
+

1
µ f

∑
E∈T 1

h

(
κ(∇ pn,ℓ

h − ρg∇ η),∇ θh
)

E

−
1

µ f

∑
e∈E1

h

((
{κ(∇ pn,ℓ

h − ρg∇ η) · ne}e, [θh]e
)

e + τp
(
{κ∇ θh · ne}e, [pn,ℓ

h ]e
)

e

)
+

1
µ f

∑
e∈E1

h

γe

he

(
[pn,ℓ

h ]e, [θh]e
)

e = −
α

Kb

1
∆t

(
σ̄

n,l−1
h − σ̄ n−1

h , θh
)
Ω1
+ (qn, θh)Ω1;

(3.12)
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(b) the predictor of the difference in fluid content δ
p
φ by

δ
p
φ :=

( 1
M
+

α2

Kb

)
(pn,ℓ

h − pn,ℓ−1
h ); (3.13)

(c) un,ℓ
h ∈ Wh by solving for all vh ∈ Wh ,

2G
(
ε(un,ℓ

h ), ε(vh)
)
Ω
+ λ

(
∇ · un,ℓ

h ,∇ · vh
)
Ω
= α

(
pn,ℓ

h ,∇ · vh
)
Ω1
+
(
f n, vh

)
Ω
+
(
tnN , vh

)
ΓN
; (3.14)

(d) σ̄
n,ℓ
h by

σ̄
n,ℓ
h = Kb∇ · un,ℓ

h − αpn,ℓ
h ; (3.15)

(e) the corrector of the difference in fluid content δc
φ by

δc
φ := α∇ · (un,ℓ

h − un,ℓ−1
h )+

1
M

(pn,ℓ
h − pn,ℓ−1

h ). (3.16)

If δc
φ − δ

p
φ


L∞(Ω1)

> ε,

set ℓ← ℓ+ 1 and return to (a);
else, set

ℓn := ℓ, pn
h := pn,ℓn

h , un
h := un,ℓn

h , σ̄ n
h := σ̄

n,ℓn
h , (3.17)

march in time n← n + 1 and return to 1.

Note that

δc
φ − δ

p
φ =

α

Kb

(
σ̄

n,ℓ
h − σ̄

n,ℓ−1
h

)
,

and hence the stopping criterion rests on the difference between two iterates of the mean stress. The choice of
parameter τp leads to different EG schemes. For example, τp = 1 leads to the Symmetric Interior Penalty Galerkin
(SIPG) scheme, τp = 0 leads to the Incomplete Interior Penalty Galerkin (IIPG) scheme, and τp = −1 results in
the Non-symmetric Interior Penalty Galerkin (NIPG) scheme. For the sake of brevity, we shall mostly focus here
on the SIPG scheme. Through the choice of parameters γe > 0, the penalty jump term in (3.12) has the effect of
determining the allowable amount of discontinuity across an edge. The parameters can also be modified to take into
account the variation of κ as in [36], but, as this option complicates the a posteriori analysis, it has not been chosen
here. Considering the uniform positive definiteness of the permeability tensor κ , the parameters γe can be tuned
so that the system (3.12) has one and only one solution for each right-hand side, see Lemma 2 in Appendix. On
the other hand, owing to Korn’s inequality, (3.14) is always uniquely solvable for each right-hand side. Thus this
algorithm generates a unique sequence. As expected, the approach of [3] can be extended to establish unconditional
geometric convergence of the algorithm in the case of NIPG, and conditional geometric convergence, when the
parameters γe are sufficiently large, in the case of SIPG or IIPG (see Lemma 2 and (A.13) in the Appendix). Under
the same conditions, stability estimates and optimal a priori error bounds can be derived, similar to those in [19].

4. A posteriori error equations

In this section, we derive error equalities that bring forth residuals arising during computations. At this stage,
the data is assumed to be as smooth as needed.

For a posteriori estimates, it is convenient to interpolate the discrete sequences in time. Thus, for any discrete
function in time vn , let

vn
τ = vn−1

+
t − tn−1

∆t
(vn
− vn−1), t ∈ [tn−1, tn]. (4.1)
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For the sake of conciseness, we shall use the following bilinear forms on the space H 1(Ω )+ Mh :

∀p, θ ∈ H 1(Ω )+ Mh, Jh(p, θ) :=
∑
e∈E1

h

γe

he

(
[p]e, [θ ]e

)
e,

∀p, θ ∈ H 1(Ω )+ Mh,
(

p, θ
)

h :=
∑

E∈T 1
h

(
κ ∇ p,∇ θ

)
E ,

∀p, θ ∈ H 1(Ω )+ Mh, ((p, θ))h :=
(

p, θ
)

h + Jh(p, θ),

together with the seminorm

∀θ ∈ H 1(Ω )+ Mh, |θ |h :=
(
θ, θ

) 1
2
h , (4.2)

and norm

∀θ ∈ H 1(Ω )+ Mh, ∥θ∥h := ((θ, θ ))
1
2
h . (4.3)

The subscript E (resp. ωe) is added when these quantities are restricted to E (resp. ωe).

4.1. Flow error equation

The idea is to derive an error equality tested with an arbitrary function θ in a suitable Sobolev space. The
beginning of the following derivation is classical.

With the above notation, the discrete flow equation (3.12) reads in each interval ]tn−1, tn]

∀θh ∈ Mh,
( 1

M
+

α2

Kb

)(
∂t pn,ℓ

hτ , θh
)
Ω1
+

1
µ f

(
((pn,ℓ

h , θh))h −
∑

E∈T 1
h

(
ρgκ∇ η,∇ θh

)
E

)
−

1
µ f

∑
e∈E1

h

((
{κ(∇ pn,ℓ

h − ρg∇ η) · ne}e, [θh]e
)

e + τp
(
{κ∇ θh · ne}e, [pn,ℓ

h ]e
)

e

)
= −

α

Kb

(
∂t σ̄

n,ℓ−1
hτ , θh

)
Ω1
+ (qn, θh)Ω1 .

(4.4)

Hence, assuming that p belongs to H 1+ε(Ω1) for some ε > 0, and ∂t p and ∇ · (∂t u) are sufficiently smooth in each
interval ]tn−1, tn], the flow’s error equation, tested with θh , is

∀θh ∈ Mh,
( 1

M
+

α2

Kb

)(
∂t (p − pn,ℓ

hτ ), θh
)
Ω1
+

1
µ f

((p − pn,ℓ
h , θh))h

−
1

µ f

∑
e∈E1

h

((
{κ∇(p − pn,ℓ

h ) · ne}e, [θh]e
)

e + τp
(
{κ∇ θh · ne}e, [p − pn,ℓ

h ]e
)

e

)
+

α

Kb

(
∂t (σ̄ − σ̄

n,ℓ−1
hτ ), θh

)
Ω1
= (q − qn, θh)Ω1 .

(4.5)

On the other hand, for all E ∈ T 1
h , let θ |E belong to H 1+ε(E), for some ε > 0. The exact flow equation (2.8) tested

with θ − θh reads in each interval ]tn−1, tn],

∀θh ∈ Mh,
( 1

M
+

α2

Kb

)
(∂t p, θ − θh)Ω1 +

1
µ f

(
((p, θ − θh))h −

∑
E∈T 1

h

(
ρgκ∇ η,∇(θ − θh)

)
E

)
−

1
µ f

∑
e∈E1

h

((
{κ(∇ p − ρg∇ η) · ne}e, [θ − θh]e

)
e + τp

(
{κ∇(θ − θh) · ne}e, [p]e

)
e

)
= −

α

Kb

(
∂t σ̄ , θ − θh

)
Ω1
+ (q, θ − θh)Ω1 .

(4.6)
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Therefore, by writing θ = θ − θh + θh and using (4.4) and (4.6), the flow error tested with any θ |E ∈ H 1+ε(E) for
all E ∈ T 1

h , becomes for all θh ∈ Mh , in each interval ]tn−1, tn],

( 1
M
+

α2

Kb

)
(∂t (p − pn,ℓ

hτ ), θ)Ω1 +
1

µ f
((p − pn,ℓ

h , θ))h

−
1

µ f

∑
e∈E1

h

((
{κ∇(p − pn,ℓ

h ) · ne}e, [θ ]e
)

e + τp
(
{κ∇ θ · ne}e, [p − pn,ℓ

h ]e
)

e

)
+

α

Kb

(
∂t (σ̄ − σ̄

n,ℓ−1
hτ ), θ

)
Ω1

= (q, θ − θh)Ω1−

[ ( 1
M
+

α2

Kb

)
(∂t pn,ℓ

hτ , θ − θh)Ω1 +
1

µ f

((
(pn,ℓ

h , θ − θh
)
)h −

∑
E∈T 1

h

(
ρgκ∇ η,∇(θ − θh)

)
E

)
−

1
µ f

∑
e∈E1

h

((
{κ(∇ pn,ℓ

h − ρg∇ η) · ne}e, [θ − θh]e
)

e + τp
(
{κ∇(θ − θh) · ne}e, [pn,ℓ

h ]e
)

e

)
+

α

Kb

(
∂t σ̄

n,l−1
hτ , θ − θh

)
Ω1

]
+(q − qn, θh)Ω1 .

(4.7)

This equality is modified first by observing that

(qn, θh)Ω1 = (qn
h , θh)Ω1 and (q, θ − θh)Ω1 + (q − qn

h , θh)Ω1 = (q − qn
h , θ)Ω1 + (qn

h , θ − θh)Ω1 ,

where qh denotes the L2 projection on Pk in each cell E ; and next by applying Green’s formula in each cell E

−

∑
E∈T 1

h

(
κ(∇ pn,ℓ

h − ρg∇ η),∇(θ − θh)
)

E =
∑

E∈T 1
h

(
∇ · (κ(∇ pn,ℓ

h − ρg∇ η)), θ − θh
)

E

−

∑
e∈E1

h

((
[κ(∇ pn,ℓ

h − ρg∇η) · ne]e, {θ − θh}e
)

e +
(
{κ(∇ pn,ℓ

h − ρg∇η) · ne}e, [θ − θh]e
)

e

)
−

∑
e∈E12

h

(
κ(∇ pn,ℓ

h − ρg∇η) · n12, θ − θh
)

e

Then (4.7) becomes for all θ |E ∈ H 1+ε(E) for all E ∈ T 1
h , all θh ∈ Mh , and in each interval ]tn−1, tn],

( 1
M
+

α2

Kb

)
(∂t (p − pn,ℓ

hτ ), θ)Ω1 +
1

µ f

(
(p − pn,ℓ

h , θ
)
)h

−
1

µ f

∑
e∈E1

h

((
{κ∇(p − pn,ℓ

h ) · ne}e, [θ ]e
)

e + τp
(
{κ∇ θ · ne}e, [p − pn,ℓ

h ]e
)

e

)
+

α

Kb

(
∂t (σ̄ − σ̄

n,ℓ−1
hτ ), θ

)
Ω1

= (q − qn
h , θ)Ω1

+

∑
E∈T 1

h

(
qn

h −
( 1

M
+

α2

Kb

)
∂t pn,ℓ

hτ +
1

µ f
∇ ·

(
κ(∇ pn,ℓ

h − ρg∇ η)
)
−

α

Kb
∂t σ̄

n,ℓ−1
hτ , θ − θh

)
E

−
1

µ f

∑
e∈E1

h

((
[κ(∇ pn,ℓ

h − ρg∇η) · ne]e, {θ − θh}e
)

e − τp
(
{κ∇(θ − θh) · ne}e, [pn,ℓ

h ]e
)

e

)
−

1
µ f

∑
e∈E12

h

(
κ(∇ pn,ℓ

h − ρg∇η) · n12, θ − θh
)

e −
1

µ f
Jh(pn,ℓ

h , θ − θh).

(4.8)

Up to this point, the approach presented above is similar to that of [26] for a monolithic scheme. But now, we
want to bring forth the effect of the algorithmic error. To this end, we express the time derivative in the left-hand
side of (4.8) as it appears in (2.8). By means of formula (2.5) for the mean stress σ̄ , this gives the following version
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of the flow error equality:(
∂t
( 1

M
(p − pn,ℓ

hτ )+ α∇ · (u− un,ℓ
hτ )
)
, θ
)
Ω1
+

1
µ f

(
(p − pn,ℓ

h , θ
)
)h

= (q − qn
h , θ)Ω1 +

∑
E∈T 1

h

(
qn

h − ∂t (
1
M

pn,ℓ
hτ + α∇ · un,ℓ

hτ )+
1

µ f
∇ ·

(
κ(∇ pn,ℓ

h − ρg∇ η)
)
, θ − θh

)
E

+
1

µ f

∑
e∈E1

h

((
{κ∇(p − pn,ℓ

h ) · ne}e, [θ ]e
)

e + τp
(
{κ∇ θ · ne}e, [p − pn,ℓ

h ]e
)

e

)
−

1
µ f

∑
e∈E1

h

((
[κ(∇ pn,ℓ

h − ρg∇η) · ne]e, {θ − θh}e
)

e − τp
(
{κ∇(θ − θh) · ne}e, [pn,ℓ

h ]e
)

e

)
−

1
µ f

∑
e∈E12

h

(
κ(∇ pn,ℓ

h − ρg∇η) · n12, θ − θh
)

e −
1

µ f
Jh(pn,ℓ

h , θ − θh)−
α

Kb

(
∂t (σ̄

n,ℓ
hτ − σ̄

n,ℓ−1
hτ ), θh

)
Ω1

.

(4.9)

4.2. Elasticity error equation

Again, the idea is to derive an error equality tested with an arbitrary function v in a suitable Sobolev space. We
proceed as above, with the exception of the last step. First, we interpolate linearly in time (3.14) in each subinterval
and use the L2 projection fh of f on P3

m in each cell E and the L2 projection tN ,h of tN on P3
m in each face e of

EN ,∂
h . Then the discrete elasticity error equation reads in each interval ]tn−1, tn]

∀vh ∈ Wh, 2G
(
ε(un,ℓ

hτ − u), ε(vh)
)
Ω
+ λ

(
∇ · (un,ℓ

hτ − u),∇ · vh
)
Ω
− α

(
pn,ℓ

hτ − p,∇ · vh
)
Ω1

=
(
f n
hτ − f , vh

)
Ω
+
(
tnN ,hτ − tN , vh

)
ΓN

.
(4.10)

Next, the exact elasticity equation (2.7), tested with v− vh , for all v in W at any time gives

∀vh ∈ Wh, 2G(ϵ(u), ϵ(v − vh))Ω + λ(∇ · u,∇ · (v − vh))Ω − α(p,∇ · (v − vh))Ω1

= ( f , v − vh)Ω + (t N , v − vh)ΓN .
(4.11)

Therefore, we infer from (4.10) and (4.11) the following elasticity error equation in each interval ]tn−1, tn]:

∀vh ∈ Wh, 2G(ϵ(u − un,ℓ
hτ ), ϵ(v))Ω + λ(∇ · (u − un,ℓ

hτ ),∇ · v)Ω − α(p − pn,ℓ
hτ ,∇ · v)Ω1

= ( f − f n
hτ , vh)Ω + (t N − tn

N ,hτ , vh)ΓN + ( f , v − vh)Ω + (t N , v − v)ΓN

−

[
2G(ϵ(un,ℓ

hτ ), ϵ(v − vh))Ω + λ(∇ · (un,ℓ
hτ ),∇ · (v − vh))Ω − α(pn,ℓ

hτ ,∇ · (v − vh))Ω1

]
.

(4.12)

Finally, (4.12) is modified by using

(f , v− vh)Ω + (f − f n
hτ , vh)Ω = (f − f n

hτ , v)Ω + (f n
hτ , v− vh)Ω ,

a similar expression for tN , and Green’s formula in each cell E . This yields in each interval ]tn−1, tn], for all v in
W

∀vh ∈ Wh, 2G(ϵ(u − un,ℓ
hτ ), ϵ(v))Ω + λ(∇ · (u − un,ℓ

hτ ),∇ · v)Ω − α(p − pn,ℓ
hτ ,∇ · v)Ω1

= (f − f n
hτ , v)Ω + (tN − tnN ,hτ , v)ΓN

+

∑
E∈T 1

h

(f n
hτ +∇ · σ (un,ℓ

hτ )− α∇ pn,ℓ
hτ , v− vh)E +

∑
E∈T 2

h

(f n
hτ +∇ · σ (un,ℓ

hτ ), v− vh)E

−

∑
e∈Eh

(
[σ (un,ℓ

hτ )]ene, v − vh
)

e + α
∑

e∈E1
h∪E

12
h

(
[pn,ℓ

hτ ]e, (v− vh) · ne
)

e

−
(
σ (un,ℓ

hτ )nΩ − tnN ,hτ , v− vh
)
ΓN

.

(4.13)
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Note that (4.13) is valid at initial time (i.e. when n = 0). Note also that when the data and solution are smooth
enough, (4.13) can be differentiated with respect to time,(

σ (∂t (u− un,ℓ
hτ )), ε(v)

)
Ω
− α

(
∂t (p − pn,ℓ

hτ ),∇ · v
)
Ω1
=
(
∂t (f − f n

hτ ), v
)
Ω
+
(
∂t (tN − tnN ,hτ ), v

)
ΓN

+

∑
E∈T 1

h

(
∂t f n

hτ +∇ · σ (∂t un,ℓ
hτ )− α∇ ∂t pn,ℓ

hτ , v− vh
)

E +
∑

E∈T 2
h

(
∂t f n

hτ +∇ · σ (∂t un,ℓ
hτ ), v− vh

)
E

−

∑
e∈Eh

(
[σ (∂t un,ℓ

hτ )]ene, v− vh
)

e + α
∑

e∈E1
h∪E

12
h

(
∂t [pn,ℓ

hτ ]e, (v− vh) · ne
)

e

−
(
σ (∂t un,ℓ

hτ )nΩ − ∂t tnN ,hτ , v− vh
)
ΓN

.

(4.14)

4.3. Final error equation

In the spirit of [26,37], an upper bound for the error is obtained by testing, in each interval, (4.9) with
θ = p − pn,ℓ

hτ , (4.13) with v = ∂t (u − un,ℓ
hτ ) and substituting the expression for

−α(p − pn,ℓ
hτ ,∇ · ∂t (u − un,ℓ

hτ ))Ω1 ,

into the resulting error flow equation. This gives an equation in each subinterval with left-hand side

LHS :=
1

2M
d
dt
∥p − pn,ℓ

hτ ∥
2
L2(Ω1) + G

d
dt
∥ε(u− un,ℓ

hτ )∥2
L2(Ω) +

λ

2
d
dt
∥∇ · (u− un,ℓ

hτ )∥2
L2(Ω)

+
1

µ f
∥p − pn,ℓ

hτ ∥
2
h,

(4.15)

and right-hand side for all θh ∈ H 1(0, T ;Mh) and all vh ∈ H 1(0, T ;Wh),

RHS :=
1

µ f
((pn,ℓ

h − pn,ℓ
hτ , p − pn,ℓ

hτ ))h −
α

Kb

(
∂t (σ̄

n,ℓ
hτ − σ̄

n,ℓ−1
hτ ), θh

)
Ω1

+

∑
E∈T 1

h

(
qn

h − ∂t (
1
M

pn,ℓ
hτ + α∇ · un,ℓ

hτ )+
1

µ f
∇ ·

(
κ(∇ pn,ℓ

h − ρg∇ η)
)
, p − pn,ℓ

hτ − θh
)

E

+
1

µ f

∑
e∈E1

h

((
{κ∇(p − pn,ℓ

h ) · ne}e, [p − pn,ℓ
hτ ]e

)
e + τp

(
{κ∇(p − pn,ℓ

hτ ) · ne}e, [p − pn,ℓ
h ]e

)
e

)
−

1
µ f

∑
e∈E1

h

( (
[κ(∇ pn,ℓ

h − ρg∇η) · ne]e, {p − pn,ℓ
hτ − θh}e

)
e

− τp
(
{κ∇(p − pn,ℓ

hτ − θh) · ne}e, [pn,ℓ
h ]e

)
e

)
−

1
µ f

∑
e∈E12

h

(
κ(∇ pn,ℓ

h − ρg∇η) · n12, p − pn,ℓ
hτ − θh

)
e −

1
µ f

Jh(pn,ℓ
h , p − pn,ℓ

hτ − θh)

+

∑
E∈T 1

h

(
f n
hτ +∇ · σ (un,ℓ

hτ )− α∇ pn,ℓ
hτ , ∂t (u− un,ℓ

hτ − vh)
)

E

+

∑
E∈T 2

h

(
f n
hτ +∇ · σ (un,ℓ

hτ ), ∂t (u− un,ℓ
hτ − vh)

)
E −

∑
e∈Eh

(
[σ (un,ℓ

hτ )]ene, ∂t (u− un,ℓ
hτ − vh)

)
e

+ α
∑

e∈E1
h∪E

12
h

(
[pn,ℓ

hτ ]e, ∂t (u− un,ℓ
hτ − vh) · ne

)
e −

(
σ (un,ℓ

hτ )nΩ − tnN ,hτ , ∂t (u− un,ℓ
hτ − vh)

)
ΓN

+
(
q − qn

h , p − pn,ℓ
hτ

)
Ω1
+
(
f − f n

hτ , ∂t (u− un,ℓ
hτ )
)
Ω
+
(
tN − tnN ,hτ , ∂t (u− un,ℓ

hτ )
)
ΓN

.

(4.16)

For each n and ℓ, in each interval ]tn−1, tn], the usual choice of function vh is

vh = Rh(u− un,ℓ
hτ ), (4.17)
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whereas the simplest choice for θh , considering that Mh contains the constant functions, is the integral mean value
in each cell E ,

θh |E = m E (p − pn,ℓ
hτ ) :=

1
|E |

∫
E

(p − pn,ℓ
hτ ). (4.18)

As the surface terms involving κ∇ p · n cannot be controlled by the left-hand side, we apply the argument
introduced in [38]. It consists in extracting the problematic surface terms from the consistency error Eq. (4.5) and
thus expressing them as functions of quantities that can be estimated. Since these terms depend on the choice of
parameter τp, to simplify the discussion, we choose from now on τp = 1 (i.e., the case SIPG), the other cases
are slightly simpler because they involve less terms. With θh defined by (4.18), the sum of these surface terms
is

1
µ f

∑
e∈E1

h

(
{κ∇(p − pn,ℓ

h ) · ne}e, [−pn,ℓ
hτ ]e

)
e = −

1
µ f

∑
e∈E1

h

(
{κ∇(p − pn,ℓ

h ) · ne}e, [pn,ℓ
hτ − θ ]e

)
e, (4.19)

for any function θ in H 1(0, T ; Q1
h), where Q1

h denotes the space Qh defined in (3.3) with degree k = 1 (thus having
no jump). Then the flow error Eq. (4.5) tested with pn,ℓ

hτ − θ ∈ Mh yields

−
1

µ f

∑
e∈E1

h

(
{κ∇(p − pn,ℓ

h ) · ne}e, [pn,ℓ
hτ − θ ]e

)
e = −

( 1
M
+

α2

Kb

)(
∂t (p − pn,ℓ

hτ ), pn,ℓ
hτ − θ

)
Ω1

−
1

µ f
((p − pn,ℓ

h , pn,ℓ
hτ − θ))h +

1
µ f

∑
e∈E1

h

(
{κ∇(pn,ℓ

hτ − θ ) · ne}e, [p − pn,ℓ
h ]e

)
e

−
α

Kb

(
∂t (σ̄ − σ̄

n,ℓ−1
hτ ), pn,ℓ

hτ − θ
)
Ω1
+ (q − qn

h , pnℓ
hτ − θ )Ω1 .

Bringing forth the algorithmic error, this can be written

−
1

µ f

∑
e∈E1

h

(
{κ∇(p − pn,ℓ

h ) · ne}e, [pn,ℓ
hτ − θ ]e

)
e = −

(
∂t
( 1

M
(p − pn,ℓ

hτ )+ α∇ · (u− un,ℓ
hτ )
)
, pn,ℓ

hτ − θ
)
Ω1

−
1

µ f
((p − pn,ℓ

h , pn,ℓ
hτ − θ ))h +

1
µ f

∑
e∈E1

h

(
{κ∇(pn,ℓ

hτ − θ ) · ne}e, [p − pn,ℓ
h ]e

)
e

−
α

Kb

(
∂t (σ̄

n,ℓ
hτ − σ̄

n,ℓ−1
hτ ), pn,ℓ

hτ − θ
)
Ω1
+ (q − qn

h , pnℓ
hτ − θ )Ω1 .

Considering that θ does not jump, the double scalar product has the expression

−
1

µ f
((p − pn,ℓ

h , pn,ℓ
hτ − θ ))h = −

1
µ f

(
p − pn,ℓ

h , pn,ℓ
hτ − θ

)
h +

1
µ f

Jh(pn,ℓ
h , pn,ℓ

hτ ).

Thus

−
1

µ f

∑
e∈E1

h

(
{κ∇(p − pn,ℓ

h ) · ne}e, [pn,ℓ
hτ − θ ]e

)
e = −

(
∂t
( 1

M
(p − pn,ℓ

hτ )+ α∇ · (u− un,ℓ
hτ )
)
, pn,ℓ

hτ − θ
)
Ω1

−
1

µ f

(
p − pn,ℓ

h , pn,ℓ
hτ − θ

)
h +

1
µ f

Jh(pn,ℓ
h , pn,ℓ

hτ )+
1

µ f

∑
e∈E1

h

(
{κ∇(pn,ℓ

hτ − θ ) · ne}e, [p − pn,ℓ
h ]e

)
e

−
α

Kb

(
∂t (σ̄

n,ℓ
hτ − σ̄

n,ℓ−1
hτ ), pn,ℓ

hτ − θ
)
Ω1
+ (q − qn

h , pnℓ
hτ − θ )Ω1 .
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Therefore, by substituting this equality into (4.16) and (4.15), we derive

LHS =
1

µ f
((pn,ℓ

h − pn,ℓ
hτ , p − pn,ℓ

hτ ))h −
1

µ f

(
p − pn,ℓ

h , pn,ℓ
hτ − θ

)
h +

1
µ f

Jh(pn,ℓ
h , 2pn,ℓ

hτ + θh)

−
α

Kb

(
∂t (σ̄

n,ℓ
hτ − σ̄

n,ℓ−1
hτ ), θh

)
Ω1
−

α

Kb

(
∂t (σ̄

n,ℓ
hτ − σ̄

n,ℓ−1
hτ ), pn,ℓ

hτ − θ
)
Ω1

+

∑
E∈T 1

h

(
qn

h − ∂t (
1
M

pn,ℓ
hτ + α∇ · un,ℓ

hτ )+
1

µ f
∇ ·

(
κ(∇ pn,ℓ

h − ρg∇ η)
)
, p − pn,ℓ

hτ − θh
)

E

−
1

µ f

∑
e∈E1

h∪E
12
h

( (
[κ(∇ pn,ℓ

h − ρg∇η) · ne]e, {p − pn,ℓ
hτ − θh}e

)
e

+
1

µ f

∑
e∈E1

h

(
{κ∇(pn,ℓ

hτ − θ ) · ne}e, [p − pn,ℓ
h ]e

)
e

+
(
q − qn

h − ∂t
( 1

M
(p − pn,ℓ

hτ )+ α∇ · (u− un,ℓ
hτ )
)
, pn,ℓ

hτ − θ
)
Ω1
+
(
q − qn

h , p − pn,ℓ
hτ

)
Ω1

+

∑
E∈T 1

h

(
f n
hτ +∇ · σ (un,ℓ

hτ )− α∇ pn,ℓ
hτ , ∂t (u− un,ℓ

hτ − vh)
)

E

+

∑
E∈T 2

h

(
f n
hτ +∇ · σ (un,ℓ

hτ ), ∂t (u− un,ℓ
hτ − vh)

)
E −

∑
e∈Eh

(
[σ (un,ℓ

hτ )]ene, ∂t (u− un,ℓ
hτ − vh)

)
e

+ α
∑

e∈E1
h∪E

12
h

(
[pn,ℓ

hτ ]e, ∂t (u− un,ℓ
hτ − vh) · ne

)
e −

(
σ (un,ℓ

hτ )nΩ − tnN ,hτ , ∂t (u− un,ℓ
hτ − vh)

)
ΓN

+
(
f − f n

hτ , ∂t (u− un,ℓ
hτ )
)
Ω
+
(
tN − tnN ,hτ , ∂t (u− un,ℓ

hτ )
)
ΓN

.

(4.20)

Note that this formulation requires that ∂t
( 1

M p + α∇ · u
)

be sufficiently smooth to be tested against piecewise
polynomial functions.

The functions vh and θh have been chosen by (4.17) and (4.18), respectively. To choose θ , recall that phτ =

pct
hτ + pdisc

hτ , where ct denotes its continuous part and disc its discontinuous constant part. Then we take

θ = pct
hτ + Sh(pdisc

hτ ), (4.21)

where Sh is an approximation operator of Scott & Zhang type [35] that is globally C0 and piecewise P1 in each
cell, see [39]. More precisely, for any node a of Ω̄1, we choose an element Ea in Ω̄1 with vertex a, set

Sh(pdisc
hτ )(a) = pdisc

hτ |Ea ,

and

∀x ∈ Ω̄1, Sh(pdisc
hτ )(x) =

∑
a

pdisc
hτ (Ea)φa(x), (4.22)

where φa is the standard piecewise P1 basis function and a runs over all vertices of elements in Ω̄1.
Now, for each n, we consider (4.20) for the last iterate ℓ = ℓn that achieves convergence of the discrete mean

stress so that we can drop everywhere the index ℓ except when it appears as ℓ− 1, i.e., pn
hτ := pn,ℓn

hτ , un
hτ := un,ℓn

hτ .
In addition, to avoid a multiplicity of notation, we denote by vn

h the step function in time that takes the value vn
h

in the interval ]tn−1, tn]. Then, we integrate both sides of (4.20) from 0 to t , 0 < t ≤ T , say tm−1 < t ≤ tm , and
again to simplify, this integral of the step function vn

h is denoted by
∫ t

0 vh . At this stage, we observe that the time
derivative of u − uhτ and p − phτ cannot be absorbed by the left-hand side; and hence will have to be integrated
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by parts. Thus, we derive the following error equality:

1
2M
∥(p − phτ )(t)∥2Ω1

+ G∥ε(u− uhτ )(t)∥2Ω +
λ

2
∥∇ · (u− uhτ )(t)∥2Ω +

1
µ f

∫ t

0
∥p − phτ ∥

2
h

=
1

µ f

∫ t

0
((ph − phτ , p − phτ ))h −

1
µ f

∫ t

0

(
p − ph , phτ − θ

)
h +

1
µ f

∫ t

0
Jh(ph , 2phτ + θh)

−
α

Kb

∫ t

0

(
∂t (σ̄hτ − σ̄ ℓ−1

hτ
), θh

)
Ω1
−

α

Kb

∫ t

0

(
∂t (σ̄hτ − σ̄ ℓ−1

hτ
), phτ − θ

)
Ω1

+

∫ t

0

∑
E∈T 1

h

(
qh − ∂t (

1
M

phτ + α∇ · uhτ )+
1

µ f
∇ ·

(
κ(∇ ph − ρg∇ η)

)
, p − phτ − θh

)
E

−
1

µ f

∫ t

0

∑
e∈E1

h∪E12
h

((
[κ(∇ ph − ρg∇η) · ne]e, {p − phτ − θh}e

)
e +

1
µ f

∫ t

0

∑
e∈E1

h

(
{κ∇(phτ − θ ) · ne}e, [p − ph]e

)
e

)

+

∫ t

0

((
q − qh , phτ − θ

)
Ω1
+
(
q − qh , p − phτ

)
Ω1

)
+

∫ t

0

( 1
M

(p − phτ )+ α∇ · (u− uhτ ), ∂t (phτ − θ )
)
Ω1

−

∫ t

0

∑
E∈T 1

h

(
∂t (fhτ +∇ · σ (uhτ )− α∇ phτ ), u− uhτ − vh

)
E

−

∫ t

0

∑
E∈T 2

h

(
∂t (fhτ +∇ · σ (uhτ )), u− uhτ − vh

)
E +

∫ t

0

∑
e∈Eh

(
[∂tσ (uhτ )ne]e, u− uhτ − vh

)
e

−

∫ t

0
α

∑
e∈E1

h∪E12
h

(
[∂t phτ ]e, (u− uhτ − vh) · ne

)
e +

∫ t

0

(
∂t (σ (uhτ )nΩ − tN ,hτ ), u− uhτ − vh

)
ΓN

−

∫ t

0

(
∂t (f − fhτ ), u− uhτ

)
Ω −

∫ t

0

(
∂t (tN − tN ,hτ ), u− uhτ

)
ΓN
+ Init+ IP(t)− IP(0),

(4.23)

where

Init :=
1

2M
∥p0 −Πh(p0)∥2

Ω1
+ G∥ε(u(0)− u0

h)∥2
Ω +

λ

2
∥∇ · (u(0)− u0

h)∥2
Ω , (4.24)

IP(t) = −
(
(

1
M

(p − phτ )+ α∇ · (u− uhτ ))(t), (phτ − θ )(t)
)
Ω1

+

∑
E∈T 1

h

(
(fhτ +∇ · σ (uhτ )− α∇ phτ )(t), (u− uhτ − vh)(t)

)
E

+

∑
E∈T 2

h

(
(fhτ +∇ · σ (uhτ ))(t), (u− uhτ − vh)(t)

)
E −

∑
e∈Eh

(
[σ (uhτ )(t)ne]e, (u− uhτ − vh)(t)

)
e

+ α
∑

e∈E1
h∪E

12
h

(
[phτ (t)]e, (u− uhτ − vh)(t) · ne

)
e −

(
σ (uh,τ (t))nΩ − tN ,hτ (t), (u− uhτ − vh)(t)

)
ΓN

+
(
(f − fhτ )(t), (u− uhτ )(t)

)
Ω
+
(
(tN − tN ,hτ )(t), (u− uhτ )(t)

)
ΓN

.

(4.25)

5. Basic upper bounds

Here we bound the expressions on the right-hand side of (4.23), in terms of the errors on its left-hand side,
the errors on the data, and what will be recognized as error indicators. Recall that this inequality is written for
tm−1 < t ≤ tm ≤ T , and ℓ is usually omitted because it is understood that at each time tn , ℓ = ℓn , the smallest
integer that achieves convergence. Of course the inequality is valid for any ℓ ≥ 1, and for the sake of clarity, the
indicators are all defined with the superscript ℓ. Below, Ĉ denote various constants that are independent of h, ∆ t ,
and ℓ. Recall that λmax and λmin > 0 are the largest and smallest eigenvalues of κ and recall that vn

h denotes the step
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function in time that takes the value vn
h in the interval ]tn−1, tn] and its integral is denoted by

∫ t
0 vh . To simplify, it

is understood that in min γe and max γe the minimum and maximum are taken over all faces e of E1
h . We consider

first the expressions not included in Init, or IP.

5.1. Expressions involving θh

Recall that θh is given in each E by m E (p − phτ ), see (4.18). There are four expressions, we treat each one in
their order of appearance. In the first one, we shall recognize the following indicator that measures the jump of
pn,ℓ

h on interfaces in each interval ]tn−1, tn],

ηn,ℓ
pen :=

(
∆ t
) 1

2
(γe

he

) 1
2
∥[pn,ℓ

h ]e∥L2(e). (5.1)

Note that∑
e∈E1

h

(
ηn,ℓ

pen

)2
= ∆ t Jh(pn,ℓ

h , pn,ℓ
h ).

Proposition 1. There exists a constant Ĉ such that for all constants δ1 > 0, we have

1
µ f

⏐⏐ ∫ t

0
Jh(ph, 2phτ + θh)

⏐⏐
≤

1
2µ f

[
δ1

∫ t

0
∥phτ − p∥2

h +
1
δ1

( m∑
n=1

∑
e∈E1

h

(
ηn

pen

)2
+ Ĉ2(d + 1)

) m∑
n=1

∑
e∈E1

h

γe

λmin,e

(
ηn

pen

)2
]
,

(5.2)

where λmin,e is the smallest eigenvalue of κ in the union of the two elements adjacent to e.

Proof. Let X = Jh(ph, 2phτ + θh) = Jh(ph, phτ )+ Jh(ph, phτ + θh). First, by Young’s inequality, for any δ1 > 0,
and since p does not jump⏐⏐Jh(ph, phτ )

⏐⏐ ≤ 1
2

(
δ1 Jh(phτ − p, phτ − p)+

1
δ1

Jh(ph, ph)
)
.

This will give the first part of (5.2). For the second part, by the definition (4.18) of θh , it follows from (A.4) that,
for E adjacent to e

∥phτ− p+θh∥L2(e) = ∥phτ− p−m E (phτ− p)∥L2(e) ≤ Ĉh
1
2
E |phτ − p|H1(E) ≤ Ĉ

( hE

λmin,e

) 1
2
∥κ

1
2∇(phτ− p)∥L2(E).

Therefore, owing to the regularity of the mesh,

Jh(ph, phτ + θh) ≤
1
2

(
δ1|phτ − p|2h +

Ĉ2

δ1
(d + 1)

∑
e∈E1

h

γe

he
∥[ph]e∥

2
L2(e)

hE

he

γe

λmin,e

)

≤
1
2

(
δ1|phτ − p|2h +

Ĉ2

δ1
(d + 1)

∑
e∈E1

h

γe

he
∥[ph]e∥

2
L2(e)

γe

λmin,e

)
,

After integration in time, this will give the other part of (5.2). □

In the second expression, we recognize the algorithmic error indicator defined in each interval ]tn−1, tn] by

η
n,ℓ
fs =

(
∆ t
) 1

2
 1
∆ t

(
σ̄

n,ℓ
h − σ̄

n,ℓ−1
h

)
L2(Ω1). (5.3)

Proposition 2. There exists a constant Ĉ such that, for any δ2 > 0,

α

Kb

⏐⏐⏐ ∫ t

0

(
∂t (σ̄hτ − σ̄ ℓ−1

hτ ), θh
)
Ω1

⏐⏐⏐ ≤ 1
2

[ δ2

M
∥phτ − p∥2

L∞(0,t;L2(Ω1)) +
M
δ2

( α

Kb

)2( m∑
n=1

(
∆ t
) 1

2 η
n,ℓ
fs

)2]
. (5.4)
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Proof. Let X = α
Kb

(
∂t (σ̄hτ − σ̄ ℓ−1

hτ ), θh
)
Ω1

. On any interval ]tn−1, tn],

X =
α

Kb

1
∆ t

(
σ̄

n,ℓ
h − σ̄

n,ℓ−1
h , θh

)
Ω1

,

and the definition of θh implies⏐⏐X ⏐⏐ ≤ 1
∆ t

α

Kb
∥σ̄

n,ℓ
h − σ̄

n,ℓ−1
h ∥L2(Ω1)∥phτ − p∥L2(Ω1).

Hence∫ tn

tn−1

|X | ≤
α

Kb

(
∆ t
) 1

2 η
n,ℓ
fs sup

t∈]0,t[
∥phτ − p∥L2(Ω1),

and (5.4) follows by summing this inequality over n and applying Young’s inequality. □

The third expression involves the following local interior residual flow error indicator in each interval ]tn−1, tn]
and all E of T 1

h :

η
n,ℓ
E,p := hE

(
∆ t
) 1

2
qn

h +
1

µ f
∇ ·
(
κ(∇ pn,ℓ

h −ρg∇ η)
)
−

1
M

1
∆ t

(pn,ℓ
h − pn−1

h )−α
1
∆ t
∇ · (un,ℓ

h −un−1
h )


L2(E). (5.5)

Proposition 3. There exists a constant Ĉ such that, for any δ3 > 0,⏐⏐⏐ ∫ t

0

∑
E∈T 1

h

(
qh − ∂t (

1
M

phτ + α∇ · uhτ )+
1

µ f
∇ ·

(
κ(∇ ph − ρg∇ η)

)
, p − phτ − θh

)
E

⏐⏐⏐
≤

1
2

[ 1
µ f

δ3

∫ t

0
|p − phτ |

2
h + µ f

1
δ3

Ĉ2
m∑

n=1

∑
E∈T 1

h

1
λmin,E

(
ηn

E,p

)2
]
,

(5.6)

where λmin,E is the smallest eigenvalue of κ in E.

Proof. Owing to (A.3), we have

∥p − phτ − θh∥L2(E) ≤
Ĉ

λ
1
2
min,E

hE∥κ
1
2∇(p − phτ )∥L2(E).

Then, the proof of (5.6) is a straightforward application of this bound and Young’s inequality. □

The last expression involves the following local jump flux error indicator, for each e in E1
h ∪E12

h and each interval
]tn−1, tn],

η
n,ℓ
flux,e :=

(
he∆ t

) 1
2
[κ(∇ pn,ℓ

h − ρg∇ η) · ne]e


L2(e). (5.7)

Proposition 4. There exists a constant Ĉ such that, for any δ3 > 0,

1
µ f

⏐⏐⏐ ∫ t

0

∑
e∈E1

h∪E
12
h

(
[κ(∇ ph − ρg∇η) · ne]e, {p − phτ − θh}e

)
e

⏐⏐⏐
≤

1
2µ f

[
δ3

∫ t

0
|p − phτ |

2
h +

1
δ3

Ĉ2(d + 1)
m∑

n=1

∑
e∈E1

h∪E
12
h

1
λmin,e

(
ηn

flux,e

)2
]
.

(5.8)

Proof. Note that (A.16) implies that θh also satisfies for e in E1
h ,

∥{p − phτ − θh}e∥
2
L2(e) ≤

Ĉ2

λmin,e
he
(
∥κ

1
2∇(p − phτ )∥2

L2(E1) + ∥κ
1
2∇(p − phτ )∥2

L2(E2)

)
,

with only one element E when e is on E12
h . This readily yields (5.8). □
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5.2. Expressions involving θ

Recall that θ is defined by (4.21) and (4.22). Here, there are five expressions, examined in their order of
appearance. In the first one, we shall recognize two time error indicators in each interval ]tn−1, tn], one for volumes,

ηn,ℓ
t,p :=

(∆ t
3

) 1
2
⏐⏐pn,ℓ

h − pn−1
h

⏐⏐
h, (5.9)

and one for jumps on each face e ∈ E1
h ,

η
n,ℓ
t,J :=

(∆ t
3

) 1
2
(γe

he

) 1
2
∥[pn,ℓ

h − pn−1
h ]e∥L2(e). (5.10)

Note that(
ηn,ℓ

t,p

)2
+

∑
e∈E1

h

(
η

n,ℓ
t,J

)2
=

∆ t
3
∥pn,ℓ

h − pn−1
h ∥

2
h .

Proposition 5. There exists a constant Ĉ such that, for any δ1 > 0,

1
µ f

⏐⏐⏐ ∫ t

0

(
p − ph,phτ − θ

)
h

⏐⏐⏐ ≤ 1
2µ f

[
2δ1

∫ t

0
∥p − phτ∥

2
h

+
1
δ1

Ĉ2(d + 1
d

)2(K − 1)2 λmax

min γe

m∑
n=1

(1
2

(
ηn

t,p

)2
+

∑
e∈E1

h

((
ηn

t,J

)2
+
(
ηn

pen

)2
)) ]

.
(5.11)

Proof. First, we deduce from (A.20) that

|phτ − θ |h ≤ Ĉ
d + 1

d
(K − 1)

( λmax

min γe

) 1
2

Jh(phτ , phτ )
1
2

≤ Ĉ
d + 1

d
(K − 1)

( λmax

min γe

) 1
2
(

Jh(phτ − ph, phτ − ph)
1
2 + Jh(ph, ph)

1
2

)
.

Next, we split p − ph into p − phτ + phτ − ph and set

X1 =
1

µ f

∫ t

0

(
p − phτ , phτ − θ

)
h, X2 =

1
µ f

∫ t

0

(
phτ − ph, phτ − θ

)
h .

The above inequality yields

|X1| ≤
1

µ f
Ĉ

d + 1
d

(K − 1)
( λmax

min γe

) 1
2

∫ t

0
|p − phτ |h

(
Jh(phτ − ph, phτ − ph)

1
2 + Jh(ph, ph)

1
2

)
.

With Young’s inequality, this becomes

|X1| ≤
1

2µ f

[
2δ1

∫ t

0
|p − phτ |

2
h +

1
δ1

Ĉ2(d + 1
d

)2(K − 1)2 λmax

min γe

m∑
n=1

∑
e∈E1

h

((
ηn

pen

)2
+
(
ηn

t,J

)2
)]

. (5.12)

Regarding X2, there is no need to split Jh(phτ , phτ ) because the first factor will be bounded by an indicator. Indeed,
in view of (5.9), we can write

|X2| ≤
1

2µ f

[
2δ1

∫ t

0
Jh(p − phτ , p − phτ )+

1
2δ1

Ĉ2(d + 1
d

)2(K − 1)2 λmax

min γe

m∑
n=1

(
ηn

t,p

)2
]
, (5.13)

and (5.11) is derived by adding (5.12) and (5.13). □

The second one uses η
n,ℓ
fs as follows:
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Proposition 6. There exists a constant Ĉ such that, for any δ3 > 0,

α

Kb

⏐⏐⏐ ∫ t

0

(
∂t (σ̄hτ − σ̄ ℓ−1

hτ ), phτ − θ
)
Ω1

⏐⏐⏐
≤

1
2

[ δ3

µ f

∫ t

0
Jh(p − phτ , p − phτ )+

µ f

δ3

( α

Kb

)2 1
min γe

Ĉ2(K − 1)2
m∑

n=1

h2(ηn
fs

)2
]
.

(5.14)

Proof. The estimate (A.19) implies

∥phτ − θ∥2
L2(Ω1) ≤ Ĉ2(K − 1)2 h2

min γe
Jh(phτ , phτ ).

From here, we infer (5.14) via Young’s inequality. □

The next proposition estimates the third expression.

Proposition 7. There exists a constant Ĉ such that, for any δ3 > 0,

1
µ f

⏐⏐⏐ ∫ t

0

∑
e∈E1

h

(
{κ∇(phτ − θ) · ne}e, [p − ph]e

)
e

⏐⏐⏐
≤

1
2µ f

[
δ3

∫ t

0
Jh(p − phτ , p − phτ )+

d + 1
2δ3

(d + 1
d

)2Ĉ2
( λmax

min γe

)2
(K − 1)2

n∑
m=1

∑
e∈E1

h

(
ηn

pen

)2
]
.

(5.15)

Proof. Since θ is a polynomial function, by combining the argument of Proposition 15 with that of (A.20), we
obtain for any δ > 0

1
µ f

⏐⏐⏐ ∑
e∈E1

h

(
{κ∇(phτ − θ) · ne}e, [ph]e

)
e

⏐⏐⏐
≤

1
2µ f

[
δ Jh(ph, ph)+

d + 1
2δ

(d + 1
d

)2Ĉ2
( λmax

min γe

)2
(K − 1)2 Jh(phτ , phτ )

]
,

Thus, the choice

δ3 =
d + 1

2δ

(d + 1
d

)2Ĉ2
( λmax

min γe

)2
(K − 1)2, i.e., δ =

d + 1
2δ3

(d + 1
d

)2Ĉ2
( λmax

min γe

)2
(K − 1)2,

leads to (5.15). □

The fourth expression is estimated by applying an easy variant of (A.19).

Proposition 8. There exists a constant Ĉ such that, for any δ3 > 0,⏐⏐⏐ ∫ t

0

(
q−qh, phτ−θ

)
Ω1

⏐⏐⏐ ≤ 1
2

[ δ3

µ f

∫ t

0
Jh(p− phτ , p− phτ )+

µ f

δ3
Ĉ2(K−1)2 h2

min γe

∫ t

0
∥q−qh∥

2
L2(Ω1)

]
. (5.16)

Finally, for the fifth expression, we shall use as indicator the jump of the pressure’s time derivative on each face
e ∈ E1

h and in each interval ]tn−1, tn],

η
n,ℓ
∂p,J := he∆ t

(γe

he

) 1
2
∥

1
∆ t

[pn,ℓ
h − pn−1

h ]e∥L2(e). (5.17)

The proof of the next proposition follows easily from (A.19).
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Proposition 9. There exists a constant Ĉ such that, for any δ2 > 0 and δ4 > 0,⏐⏐⏐ ∫ t

0

( 1
M

(p − ph,τ )+ α∇ · (u− uhτ ), ∂t (phτ − θ )
)
Ω1

⏐⏐⏐ ≤ 1
2

[ δ2

M
∥p − phτ∥

2
L∞(0,t;L2(Ω1))

+ λδ4∥∇ · (u− uhτ )∥2
L∞(0,t;L2(Ω1)) +

( 1
M

1
δ2
+

α2

δ4λ

)
Ĉ2 (K − 1)2

min γe

( m∑
n=1

(∑
e∈E1

h

(
ηn

∂p,J

)2) 1
2
)2 ]

.
(5.18)

5.3. Expressions involving vh

Recall that vh is defined by applying (4.17) with degree one to u−uhτ . Here, they can be combined so that there
are five expressions, and each one is estimated straightforwardly by using (3.6) with s = 1, either applied directly
or following a trace inequality. This leads to the following error indicators in each interval ]tn−1, tn]:

the time derivative of the displacement equilibrium in all E of T 1
h ,

η
n,ℓ
E,1,∂u := hE∆ t∥

1
∆ t

(
f n
h − f n−1

h +∇ · σ (un,ℓ
h − un−1

h )− α∇(pn,ℓ
h − pn−1

h )
)
∥L2(E), (5.19)

the time derivative of the displacement equilibrium in all E of T 2
h ,

η
n,ℓ
E,2,∂u := hE∆ t∥

1
∆ t

(
f n
h − f n−1

h +∇ · σ (un,ℓ
h − un−1

h )
)
∥L2(E), (5.20)

the time derivative of the stress tensor’s jump in the pay-zone and interface, i.e., all e ∈ E1
h ∪ E12

h ,

η
n,ℓ
e,1,∂σ := h

1
2
e ∆ t∥

1
∆ t

[(σ (un,ℓ
h − un−1

h )− α(pn,ℓ
h − pn−1

h )I)ne]e∥L2(e), (5.21)

the time derivative of the stress tensor’s jump in the interior of the nonpay-zone, i.e., e ∈ E2
h ,

η
n,ℓ
e,2,∂σ := h

1
2
e ∆ t∥

1
∆ t

[σ (un,ℓ
h − un−1

h )ne]e∥L2(e), (5.22)

the time derivative of the stress tensor error on e ∈ ΓN ,

η
n,ℓ
e,N ,∂σ := h

1
2
e ∆ t∥

1
∆ t

(
σ (un,ℓ

h − un−1
h )nΩ − (tnN ,h − tn−1

N ,h )
)
∥L2(e). (5.23)

For the sake of conciseness, p is extended by zero in Ω2. We obtain the following volume estimates for any δ > 0;
to simplify, the number of repetitions of an element is not specified and is incorporated in the constant Ĉ ,

2∑
i=1

⏐⏐⏐ ∫ t

0

∑
E∈T i

h

(
∂t (fhτ+∇ · σ (uhτ )− α∇ phτ ), u− uhτ − vh

)
E

⏐⏐⏐
≤

1
2

2∑
i=1

[
δ∥∇(u− uhτ )∥2

L∞(0,t;L2(Ωi )) +
1
δ

Ĉ2
( m∑

n=1

(∑
E∈T i

h

(
ηn

E,i,∂u
)2) 1

2
)2]

.

Note that by Korn’s inequality (1.3) with Γ = ΓD

2∑
i=1

∥∇(u− uhτ )∥2
L2(Ωi ) = ∥∇(u− uhτ )∥2

L2(Ω) ≤ K2
∥ε(u− uhτ )∥2

L2(Ω).

Therefore the two volume estimates can be combined as follows:
2∑

i=1

⏐⏐⏐ ∫ t

0

( ∑
E∈T i

h

(
∂t (fhτ +∇ · σ (uhτ )− α∇ phτ ), u− uhτ − vh

)
E

)⏐⏐⏐
≤

1
2

[
δ5G∥ε(u− uhτ )∥2

L∞(0,t;L2(Ω)) +
Ĉ2K2

δ5G

2∑
i=1

( m∑
n=1

(∑
E∈T i

h

(
ηn

E,i,∂u
)2) 1

2
)2]

.

(5.24)
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A similar argument leads to the interface estimates,⏐⏐⏐ ∫ t

0

(∑
e∈Eh

(
[∂t (σ (uhτ )− αphτ I)ne]e, u− uhτ − vh

)
e +

(
∂t (σ (uhτ )nΩ − tN ,hτ ), u− uhτ − vh

)
ΓN

)⏐⏐⏐
≤

1
2

[
δ5G∥ε(u− uhτ )∥2

L∞(0,t;L2(Ω)) +
Ĉ2K2

δ5G

(( m∑
n=1

(∑
e∈Eh

(
ηn

e,∂σ

)2) 1
2
)2
+

( m∑
n=1

( ∑
e∈EN ,∂

h

(
ηn

e,N ,∂σ

)2) 1
2
)2)]

,

(5.25)

where ηe,∂σ stands for ηe,1,∂σ in E1
h ∪ E12

h and ηe,2,∂σ in E2
h .

5.4. The first expression and the data errors

The first expression has a straightforward bound,

1
µ f

⏐⏐⏐ ∫ t

0
((ph − phτ , p − phτ ))h

⏐⏐⏐ ≤ 1
2µ f

[
δ1

∫ t

0
∥p − phτ∥

2
h +

1
δ1

m∑
n=1

((
ηn

t,p

)2
+

∑
e∈E1

h

(
ηn

t,J

)2
)]

. (5.26)

There remain the three data errors. We start with the error on q ,⏐⏐⏐ ∫ t

0

(
q − qh, p − phτ

)
Ω1

⏐⏐⏐ ≤ 1
2

[ δ2

M
∥phτ − p∥2

L∞(0,t;L2(Ω1)) +
M
δ2
∥q − qh∥

2
L1(0,t;L2(Ω1))

]
. (5.27)

And we finish with the error on the time derivative of the force and the given traction,⏐⏐⏐ ∫ t

0

(
∂t (f − fhτ ), u− uhτ

)
Ω

⏐⏐⏐
≤

1
2

[
δ5G∥ε(u− uhτ )∥2

L∞(0,t;L2(Ω)) +
P2K2

δ5G
∥∂t (f − fhτ )∥2

L1(0,t;L2(Ω))

]
,⏐⏐⏐ ∫ t

0

(
∂t (tN − tN ,hτ ), u− uhτ

)
ΓN

⏐⏐⏐
≤

1
2

[
δ5G∥ε(u− uhτ )∥2

L∞(0,t;L2(Ω)) +
C2

N C2
1

δ5G
∥∂t (tN − tN ,hτ )∥2

L1(0,t;H−1/2(ΓN ))

]
,

(5.28)

where C1 is the constant of (1.5) and CN is the constant of a trace inequality on ΓN , from H
1
2

00(ΓN )3 to W.

5.5. Bounds for IP(t)

The bounds in this subsection are derived in the interval ]tm−1, tm], 1 ≤ m ≤ N . They use the following error
indicators at time tn:

the pressure jump

η
n,ℓ
p,J := he

(γe

he

) 1
2 ∥[pn,ℓ

h ]e∥L2(e), (5.29)

for i = 1, 2, the displacement equilibrium in all E ∈ T i
h , with ph set to zero in Ω2

η
n,ℓ
E,i,u := hE∥f n

h +∇ · σ (un,ℓ
h )− α∇ pn,ℓ

h ∥L2(E), (5.30)

the stress tensor’s jump in the pay-zone and interface, i.e., all e ∈ E1
h ∪ E12

h ,

η
n,ℓ
e,1,σ := h

1
2
e ∥[

(
σ (un,ℓ

h )− αpn,ℓ
h I

)
ne]e∥L2(e), (5.31)

the stress tensor’s jump in the interior of the nonpay-zone, i.e., e ∈ E2
h ,

η
n,ℓ
e,2,σ := h

1
2
e ∥[σ (un,ℓ

h )ne]e∥L2(e) (5.32)

the stress tensor’s error on e ∈ ΓN ,

η
n,ℓ
e,N ,σ := h

1
2
e ∥σ (un,ℓ

h )nΩ − tnN ,h∥L2(e). (5.33)



22 V. Girault, X. Lu and M.F. Wheeler / Computer Methods in Applied Mechanics and Engineering 369 (2020) 113185

The first bound follows readily from (A.19): There exists a constant Ĉ such that, for any δ6 > 0 and δ7 > 0,⏐⏐⏐ ( (
1
M

(p − phτ )+ α∇ · (u− uhτ ))(t), (phτ − θ)(t)
)
Ω1

⏐⏐⏐
≤

1
2

[ δ6

M
∥(p − phτ )(t)∥2

L2(Ω1) + λδ7∥∇ · (u− uhτ )(t)∥2
L2(Ω1)

+ Ĉ2( 1
δ6 M
+

α2

δ7λ

)
(K − 1)2 1

min γe

∑
e∈E1

h

(
(1− s)(ηm−1

p,J )2
+ s(ηm

p,J )2) ],
(5.34)

where 0 ≤ s ≤ 1, in fact s = t−tm−1
∆ t since tm−1 < t ≤ tm . The remaining bounds are straightforward; they hold for

the above s and for any δ8 > 0. We have first the volume estimate,
2∑

i=1

⏐⏐⏐ ∑
E∈T i

h

(
(fhτ +∇ · σ (uhτ )− α∇ phτ )(t), (u− uhτ − vh)(t)

)
E

⏐⏐⏐
≤

1
2

[
δ8G∥ε(u− uhτ )(t)∥2

L2(Ω) +
Ĉ2K2

δ8G

2∑
i=1

∑
E∈T i

h

(
(1− s)

(
ηm−1

E,i,u
)2
+ s

(
ηm

E,i,u
)2
)]

.

(5.35)

Next, we have the interface estimate,⏐⏐⏐∑
e∈Eh

(
[(σ (uhτ )− αphτ I)(t)ne]e, (u− uhτ − vh)(t)

)
e +

(
σ (uhτ (t))nΩ − tN ,hτ (t), (u− uhτ − vh)(t)

)
ΓN

⏐⏐⏐
≤

1
2

[
δ8G∥ε(u− uhτ )(t)∥2

L2(Ω)

+
Ĉ2K2

δ8G

(∑
e∈Eh

(
(1− s)

(
ηm−1

e,σ

)2
+ s

(
ηm

e,σ

)2)
+

∑
e∈EN ,∂

h

(
(1− s)

(
ηm−1

e,N ,σ

)2
+ s

(
ηm

e,N ,σ

)2)) ]
.

(5.36)

Finally, the bound for the data terms is⏐⏐⏐((f − fhτ )(t), (u− uhτ )(t)
)
Ω
+
(
(tN − tN ,hτ )(t), (u− uhτ )(t)

)
ΓN

⏐⏐⏐ ≤ 1
2

[
δ8G∥ε(u− uhτ )(t)∥2

L2(Ω)

+
Ĉ2

δ8G

(
K2
∥f − fhτ∥

2
L∞(0,t;L2(Ω)) + C2

N C2
1∥tN − tN ,hτ∥

2
L∞(0,t;H−1/2(ΓN ))

) ]
.

(5.37)

5.6. The initial errors

Let us start with bounds for IP(0). At initial time, these bounds are simpler, mainly because p0
h has no jumps,

and hence (phτ − θ )(0) = 0. Hence a combination of (5.35)–(5.37) gives for all δ8 > 0⏐⏐IP(0)
⏐⏐ ≤ 1

2

[
3δ8G∥ε(u(0)− u0

h)∥2
L2(Ω)

+
Ĉ2

δ8G

(
K2

( 2∑
i=1

∑
E∈T i

h

(
η0

E,i,u
)2
+

∑
e∈E1

h∪E
2
h

(
η0

e,2,σ

)2
+

∑
e∈E12

h

(
η0

e,1,σ

)2
+

∑
e∈EN ,∂

h

(
η0

e,N ,σ

)2

+ ∥f − fhτ∥
2
L∞(0,t;L2(Ω))

)
+C2

1C2
N∥tN − tN ,hτ∥

2
L∞(0,t;H−1/2(ΓN ))

)]
.

(5.38)

Note that η0
e,1,σ only appears in the interface because p0

h does not jump.
Regarding the initial pressure and displacement errors, by definition the former is simply an interpolation error,

see (3.9) and (3.5). But the initial displacement is computed and its error stems from (4.13). By testing (4.13) at
n = 0 with v = u− u0

h , we readily derive by the above argument that

2G∥ϵ(u(0)− u0
h)∥2

L2(Ω) ≤
α2

4λ
∥p(0)− p0

h∥
2
L2(Ω1) +

⏐⏐IP(0)
⏐⏐.
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Hence the choice δ8 =
2
3 in (5.38) yields

G∥ϵ(u(0)− u0
h)∥2

L2(Ω) ≤
α2

4λ
∥p(0)− p0

h∥
2
L2(Ω1)

+
3
4

Ĉ2

G

(
K2

( 2∑
i=1

∑
E∈T i

h

(
η0

E,i,u
)2
+

∑
e∈E1

h∪E
2
h

(
η0

e,2,σ

)2
+

∑
e∈E12

h

(
η0

e,1,σ

)2
+

∑
e∈EN ,∂

h

(
η0

e,N ,σ

)2

+ ∥f − fhτ∥
2
L∞(0,t;L2(Ω))

)
+C2

1C2
N∥tN − tN ,hτ∥

2
L∞(0,t;H−1/2(ΓN ))

)
.

(5.39)

Similarly, the choice δ8 =
4
3 in (5.38) leads to

λ∥∇ · (u(0)− u0
h)∥2

L2(Ω) ≤
α2

λ
∥p(0)− p0

h∥
2
L2(Ω1)

+
3
4

Ĉ2

G

(
K2

( 2∑
i=1

∑
E∈T i

h

(
η0

E,i,u
)2
+

∑
e∈E1

h∪E
2
h

(
η0

e,2,σ

)2
+

∑
e∈E12

h

(
η0

e,1,σ

)2
+

∑
e∈EN ,∂

h

(
η0

e,N ,σ

)2

+ ∥f − fhτ∥
2
L∞(0,t;L2(Ω))

)
+C2

1C2
N∥tN − tN ,hτ∥

2
L∞(0,t;H−1/2(ΓN ))

)
.

(5.40)

5.7. The reliability bound

Let us substitute the above bounds in (4.23). Since there are many indicators, to simplify, they are grouped into
categories,
• the algorithmic errors,

ηm
alg :=

( m∑
n=1

(∆ t)
1
2 ηn

fs

)2
+

m∑
n=1

h2(ηn
fs

)2
, (5.41)

• the time errors,

ηm
time :=

m∑
n=1

((
ηn

t,p

)2
+

∑
e∈E1

h

(
ηn

t,J

)2
)
, (5.42)

• the flow errors,

ηm
flow :=

m∑
n=1

∑
E∈T 1

h

(
ηn

E,p

)2
+

m∑
n=1

∑
e∈E1

h∪E
12
h

(
ηn

flux,e

)2
, (5.43)

• the penalty jumps,

ηm
jump :=

m∑
n=1

∑
e∈E1

h

(
ηn

pen

)2
+

( m∑
n=1

(∑
e∈E1

h

(
ηn

∂p,J

)2) 1
2
)2
+

∑
e∈E1

h

((
ηm−1

p,J

)2
+
(
ηm

p,J

)2
)
, (5.44)

• the errors on the tensor’s time derivative,

ηm
E∂σ
:=

( m∑
n=1

( ∑
e∈E1

h∪E
12
h

(
ηn

e,1,∂σ

)2) 1
2
)2
+

( m∑
n=1

(∑
e∈E2

h

(
ηn

e,2,∂σ

)2) 1
2
)2
+

( m∑
n=1

( ∑
e∈EN ,∂

h

(
ηn

e,N ,∂σ

)2) 1
2
)2

, (5.45)

• the errors on the displacement’s time derivative,

ηm
T∂u
:=

2∑
i=1

( m∑
n=1

(∑
E∈T i

h

(
ηn

E,i,∂u
)2) 1

2
)2

, (5.46)

• the errors on the tensor at final time,

ηm
Eσ
:=

∑
e∈E1

h∪E
12
h

((
ηm−1

e,1,σ

)2
+
(
ηm

e,1,σ

)2
)
+

∑
e∈E2

h

((
ηm−1

e,2,σ

)2
+
(
ηm

e,2,σ

)2
)
+

∑
e∈EN ,∂

h

((
ηm−1

e,N ,σ

)2
+
(
ηm

e,N ,σ

)2
)
, (5.47)
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• the errors on the displacement at final time,

ηm
Tu :=

2∑
i=1

∑
E∈T i

h

((
ηm−1

E,i,u
)2
+
(
ηm

E,i,u
)2
)
, (5.48)

• the initial errors,

η0
:=

2∑
i=1

∑
E∈T i

h

(
η0

E,i,u
)2
+

∑
e∈E12

h

(
η0

e,1,σ

)2
+

∑
e∈E1

h∪E
2
h

(
η0

e,2,σ

)2
+

∑
e∈EN ,∂

h

(
η0

e,N ,σ

)2
. (5.49)

Then, we have the following theorem.

Theorem 1. The following reliability bound holds for all time t, tm−1 < t ≤ tm , 1 ≤ m ≤ N, with a constant Ĉ
independent of h, ∆ t , and t,

1
4M
∥p − phτ∥

2
L∞(0,t;L2(Ω1)) +

G
2
∥ε(u− uhτ )∥2

L∞(0,t;L2(Ω)) +
λ

4
∥∇ · (u− uhτ )∥2

L∞(0,t;L2(Ω))

+
1

2µ f

∫ t

0
∥p − phτ∥

2
h ≤ Ĉ

[
η0
+ ∥p(0)−Πh(p(0))∥2

L2(Ω1) + ∥q − qh∥
2
L1(0,t;L2(Ω1))

+ h2
∥q − qh∥

2
L2(Ω1)×]0,t[

+ ηm
alg + ηm

time + ηm
jump + ηm

flow + ηm
E∂σ
+ ηm

T∂u
+ ηm

Eσ
+ ηm

Tu

+ ∥∂t (f − fhτ )∥2
L1(0,t;L2(Ω)) + ∥∂t (tN − tN ,hτ )∥2

L1(0,t;H−1/2(ΓN ))

+ ∥f − fhτ∥
2
L∞(0,t;L2(Ω)) + ∥tN − tN ,hτ∥

2
L∞(0,t;H−1/2(ΓN ))

]
.

(5.50)

6. Weak residual error terms

We observe that several indicators involve time derivatives, whereas the left-hand side of the reliability bound
(5.50) does not. As a consequence, some indicators cannot be bounded by the error terms on this left-hand side.
Thus, when developing these bounds we are led to introduce several weak residual error terms, relative to derivation
in time, that arise in the subsequent section, namely,(

En,ℓn
f

)2
=

∫ tn

tn−1

sup
θh∈Mh/R

1
∥θh∥

2
h

×

⏐⏐⏐(qn
h − q + ∂t

( 1
M

(p − pn,ℓn
hτ )+ α∇ · (u− un,ℓn

hτ )
)
+

α

Kb
∂t (σ̄

n,ℓn
hτ − σ̄

n,ℓn−1
hτ ), θh

)
Ω1

⏐⏐⏐2, (6.1)

En,ℓn
E =

qn
h − q + ∂t

( 1
M

(p − pn,ℓn
hτ )+ α∇ · (u− un,ℓn

hτ )
)

L2(tn−1,tn ;H−1(E)), (6.2)

where E is any element of Ω1,

En,ℓn
E,i,∂σ =

∫ tn

tn−1

sup
v∈H1

0 (E)3

1
|v|H1(E)

⏐⏐⏐(∂tσ (u− un,ℓn
hτ ), ε(v)

)
E − α

(
∂t (p − pn,ℓn

hτ ),∇ · v
)

E −
(
∂t (f − f n

hτ ), v
)

E

⏐⏐⏐, (6.3)

where E ⊂ Ω i , i = 1, 2, and p is set to zero in Ω2,

En,ℓn
ωe,∂σ =

∫ tn

tn−1

sup
v∈H1

0 (ωe)3

1
|v|H1(ωe)

⏐⏐⏐(∂tσ (u−un,ℓn
hτ ), ε(v)

)
ωe
−α

(
∂t (p− pn,ℓn

hτ ),∇ · v
)
ωe
−
(
∂t (f − f n

hτ ), v
)
ωe

⏐⏐⏐, (6.4)

where e is an interior face of Ω , and again p is set zero in Ω2,

En,ℓn
e,N ,∂σ =

∫ tn

tn−1

sup
v∈H1

e (E)3

1
|v|H1(E)

⏐⏐⏐(∂tσ (u− un,ℓn
hτ ), ε(v)

)
E −

(
∂t (tN − tnN ,hτ ), v

)
e −

(
∂t (f − f n

hτ ), v
)

E

⏐⏐⏐, (6.5)
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where e is a face on ΓN , E is the element adjacent to e, and exceptionally,

H 1
e (E) = {z ∈ H 1(E) ; z = 0 on ∂ E \ e}.

Before estimating these terms, we introduce the notation for any function q in L1(0, T ),

m(q) =
1
∆t

∫ tn

tn−1

q(s)ds.

We shall also use an auxiliary regularizing operator Ph of Hermite type that will only serve for theoretical purposes,
Ph : H 1(Ω )→ Zh , where

Zh = {zh ∈ C1(Ω ) ; zh |E ∈ Pr (E),∀E ∈ T 1
h },

with r ≥ k sufficiently large to guarantee that the functions of Zh are globally in C1(Ω ) and satisfy the approximation
property (3.7), see for example [34,40,41]. With this operator, we associate the following interpolation error:

A1(p) = |Ph(p)− p|h + h
(∑

E∈T 1
h

∥∇ · (κ∇(Ph(p)− p))∥2
L2(E)

) 1
2
+ h

1
2 ∥κ∇(Ph(p)− p) · n12∥L2(Γ12). (6.6)

To alleviate notation, when there is no ambiguity, the superscript ℓn will be omitted.

Proposition 10. If the data κ and the unknown p are sufficiently smooth, we have

(
En,ℓn

f

)2
≤

Ĉ
µ2

f

[(
η

n,ℓn
t,p

)2
+

∫ tn

tn−1

∥pn,ℓn
hτ − p∥2

h +

∫ tn

tn−1

A1(p)2
]
. (6.7)

Proof. Set

X = qn
h − q + ∂t

( 1
M

(p − pn
hτ )+ α∇ · (u− un

hτ )
)
+

α

Kb
∂t (σ̄ n

hτ − σ̄
n,ℓn−1
hτ ). (6.8)

The a priori error equation for the pressure (4.5) reads for any θh in Mh ,

(
X, θh

)
Ω1
=

1
µ f

[
((pn

h − p, θh))h −
∑
e∈E1

h

(
{κ∇(pn

h − p) · ne}e, [θh]e
)

e −
∑
e∈E1

h

(
{κ∇ θh · ne}e, [pn

h − p]e
)

e

]
.

Note that this equality is unchanged when any global constant is added to θh on its right-hand side, thus justifying
the definition of En,ℓn

f . By inserting pn
hτ and Ph(p) on this right-hand side, we obtain

(
X, θh

)
Ω1
=

1
µ f

[
((pn

h − pn
hτ , θh))h + ((pn

hτ − p, θh))h −
∑
e∈E1

h

(
{κ∇(pn

h − Ph(p)) · ne}e, [θh]e
)

e

−

∑
e∈E1

h

(
{κ∇(Ph(p)− p) · ne}e, [θh]e

)
e −

∑
e∈E1

h

(
{κ∇ θh · ne}e, [pn

h − p]e
)

e

]
.

(6.9)

We infer from Green’s formula and the regularity of κ and Ph(p) that for all θ ∈ H 1(Ω1),

−

∑
e∈E1

h

(
{κ∇(Ph(p)− p) · ne}e, [θh]e

)
e = −

∑
E∈T 1

h

(
∇ · (κ∇(Ph(p)− p)), θh − θ

)
E

−
(
Ph(p)− p, θh − θ

)
h +

∫
Γ12

κ∇(Ph(p)− p) · n12(θh − θ ).
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Thus (6.9) reads for all θh in Mh and θ ∈ H 1(Ω1),(
X, θh

)
Ω1
=

1
µ f

[
((pn

h − pn
hτ , θh))h + ((pn

hτ − p, θh))h −
(
Ph(p)− p, θh − θ

)
h

−

∑
E∈T 1

h

(
∇ · (κ∇(Ph(p)− p)), θh − θ

)
E +

∫
Γ12

κ∇(Ph(p)− p) · n12(θh − θ)

−

∑
e∈E1

h

(
{κ∇(pn

h − Ph(p)) · ne}e, [θh]e
)

e −
∑
e∈E1

h

(
{κ∇ θh · ne}e, [pn

h − p]e
)

e

]
.

(6.10)

By applying to the last two terms the argument used in proving Proposition 15, we derive⏐⏐ ∑
e∈E1

h

(
{κ∇(pn

h − Ph(p)) · ne}e, [θh]e
)

e

⏐⏐ ≤ Ĉ
∑
e∈E1

h

(γe

he

) 1
2 ∥[θh]e∥e

(λmax

γe

) 1
2 ∥κ

1
2∇(pn

h − Ph(p))∥E

≤ Ĉ
( λmax

min γe

) 1
2 Jh(θh, θh)

1
2 |pn

h − Ph(p)|h .

Likewise,⏐⏐ ∑
e∈E1

h

(
{κ∇ θh · ne}e, [pn

h − Ph(p)]e
)

e

⏐⏐ ≤ Ĉ
( λmax

min γe

) 1
2 Jh(pn

h − Ph(p), pn
h − Ph(p))

1
2 |θh |h .

Hence, by substituting these two bounds into (6.10) and employing the estimates of Proposition 16, we obtain the
following bound for X :

|
(
X, θh

)
Ω1
| ≤

1
µ f

[ (
∥pn

h − pn
hτ∥h + ∥pn

hτ − p∥h + Ĉ
( λmax

min γe

) 1
2 ∥pn

h − Ph(p)∥h

)
∥θh∥h

+ ĈA1(p)Jh(θh, θh)
1
2

]
.

Thus

sup
θh∈Mh/R

(
X, θh

)2
Ω1

∥θh∥
2
h
≤

Ĉ
µ2

f

[
∥pn

h − pn
hτ∥

2
h + ∥pn

hτ − p∥2
h +A1(p)2

]
,

which implies (6.7). Note that the second term is an error bounded by Theorem 1. □

The bound (6.7) supposes that ∇ · κ∇ p ∈ L2(E×]tn−1, tn[). This only guarantees H−
1
2 regularity of the normal

trace of κ∇ p on the interface Γ12, see [42]; but its L2 regularity follows from the no flow condition.

Proposition 11. Let ηt,p,E denote the restriction of ηt,p defined in (5.9) to an element E. We have

(
En,ℓn

E

)2
≤ 3

[
C2(ηn,ℓn

E,p )2
+

λmax

µ2
f

(∫ tn

tn−1

|p − pn,ℓn
hτ |

2
h,E + (ηn,ℓn

t,p,E )2)]. (6.11)

with the constant C of (A.1).

Proof. For any element E in Ω1, take θ ∈ H 1
0 (E) arbitrary, non zero, and θh = 0 in the flow error Eq. (4.9). As

θ vanishes on the boundary of E , (4.9) reduces to(
qn

h − q + ∂t
( 1

M
(p − pn

hτ )+ α∇ · (u− un
hτ )

)
, θ
)

E = −
1

µ f

(
(p − pn

hτ , θ)h,E + (pn
hτ − pn

h , θ)h,E

)
+
(
qn

h − ∂t
( 1

M
pn

hτ + α∇ · un
hτ

)
+

1
µ f
∇ · (κ(∇ pn

h − ρg∇ η)), θ
)

E .



V. Girault, X. Lu and M.F. Wheeler / Computer Methods in Applied Mechanics and Engineering 369 (2020) 113185 27

Owing to the local Poincaré inequality (A.1), we have⏐⏐⏐(qn
h − ∂t

( 1
M

pn
hτ + α∇ · un

hτ

)
+

1
µ f
∇ · (κ(∇ pn

h − ρg∇ η)), θ
)

E

⏐⏐⏐
≤ ĈhE

qn
− ∂t

( 1
M

pn
hτ + α∇ · un

hτ

)
+

1
µ f
∇ · (κ(∇ pn

h − ρg∇ η))


L2(E)|θ |H1(E).

Then by dividing by |θ |H1(E), squaring, taking the supremum with respect to θ in H 1
0 (E), and integrating over

]tn−1, tn[, we recover (6.11). □

Take i = 1; for En,ℓn
E,1,∂σ , we test (4.14) with vh = 0 and v ∈ H 1

0 (E)3; this gives(
σ (∂t (u− un

hτ )), ε(v)
)

E − α
(
∂t (p − pn

hτ ),∇ · v
)

E −
(
∂t (f − f n

hτ ), v
)

E

=
(
∂t f n

hτ +∇ · σ (∂t un
hτ )− α∇ ∂t pn

hτ , v
)

E

Therefore, by (A.1), we obtain⏐⏐⏐(σ (∂t (u− un
hτ )), ε(v)

)
E−α

(
∂t (p − pn

hτ ),∇ · v
)

E −
(
∂t (f − f n

hτ ), v
)

E

⏐⏐⏐
≤ C hE∥∂t f n

hτ +∇ · σ (∂t un
hτ )− α∇ ∂t pn

hτ∥L2(E)|v|H1(E),

and by integrating in time, we derive a bound for En,ℓn
E,1,∂σ . A bound for En,ℓn

E,2,∂σ follows by the same argument, with
an analogous formula and we have with the constant C of (A.1),

En,ℓn
E,i,∂σ ≤ Cη

n,ℓn
E,i,∂u, i = 1, 2. (6.12)

Regarding En,ℓn
ωe,∂σ , assume for the moment that e is interior to Ω1, test (4.14) with vh = 0 and v ∈ H 1

0 (ωe)3. This
choice yields(

σ (∂t (u− un
hτ )), ε(v)

)
ωe
− α

(
∂t (p − pn

hτ ),∇ · v
)
ωe
−
(
∂t (f − f n

hτ ), v
)
ωe

=

∑
E⊂ωe

(
∂t f n

hτ +∇ · σ (∂t un
hτ )− α∇ ∂t pn

hτ , v
)

E −
(
[(σ (∂t un

hτ )− α∂t pn
hτ I)ne]e, v

)
e

≤

∑
E⊂ωe

∥∂t f n
hτ +∇ · σ (∂t un

hτ )− α∇ ∂t pn
hτ∥L2(E)∥v∥L2(E) + ∥[(σ (∂t un

hτ )− α∂t pn
hτ I)ne]e∥L2(e)∥v∥L2(e).

By applying (A.2) and (A.5), and dividing both sides by |v|H1(ωe), we deduce

1
|v|H1(ωe)

⏐⏐⏐(σ (∂t (u− un
hτ )), ε(v)

)
ωe
− α

(
∂t (p − pn

hτ ),∇ · v
)
ωe
−
(
∂t (f − f n

hτ ), v
)
ωe

⏐⏐⏐
≤ Ĉ

(
hωe

(∑
E⊂ωe

∥∂t f n
hτ +∇ · σ (∂t un

hτ )− α∇ ∂t pn
hτ∥

2
L2(E)

) 1
2
+ h

1
2
e ∥[(σ (∂t un

hτ )− α∂t pn
hτ I)ne]e∥L2(e)

)
.

After an integration in time and maximizing over v ∈ H 1
0 (ωe)3, this implies⏐⏐En,ℓn

ωe,∂σ

⏐⏐ ≤ Ĉ
[(∑

E⊂ωe

(
η

n,ℓn
E,1,∂u

)2
) 1

2
+ η

n,ℓn
e,1,∂σ

]
. (6.13)

When e lies on Γ12, the same argument leads to⏐⏐En,ℓn
ωe,∂σ

⏐⏐ ≤ Ĉ
[((

η
n,ℓn
E1,1,∂u

)2
+
(
η

n,ℓn
E2,2,∂u

)2
) 1

2
+ η

n,ℓn
e,1,∂σ

]
, (6.14)

where E1 ⊂ Ω1 and E2 ⊂ Ω2 are the two elements adjacent to e. When e is an interior face of Ω2, the relevant
bound is⏐⏐En,ℓn

ωe,∂σ

⏐⏐ ≤ Ĉ
[(∑

E⊂ωe

(
η

n,ℓn
E,2,∂u

)2
) 1

2
+ η

n,ℓn
e,2,∂σ

]
. (6.15)
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For En,ℓn
e,N ,∂σ , we proceed as above, but ωe is reduced to the element E adjacent to e and v vanishes on ∂ E \ e.

Then we easily derive⏐⏐En,ℓn
e,N ,∂σ

⏐⏐ ≤ Ĉ
(
η

n,ℓn
E,2,∂u + η

n,ℓn
e,N ,∂σ

)
. (6.16)

Remark 1. The weak residual error terms studied above will affect the effectivity index since they will be used
to estimate some of the indicators. Hence, evaluating the effectivity index requires their numerical computation or
approximation. Unfortunately, their computation is not straightforward.

7. Lower bounds

Here we bound below the error, i.e., we derive upper bounds for each indicator in terms of the errors on the
discrete solution and the data. Some of these bounds will be derived under the assumption that κ and the solution
are sufficiently smooth. As before, Ĉ denotes various constants independent of h, n, and ∆ t .

7.1. The algorithmic error indicator

Let us start with an arbitrary value of ℓ. First, the contraction property (A.14) yields

η
n,ℓ
fs ≤

(
∆ t
) 1

2
1

(β Kb)ℓ−1

 1
∆ t

(σ̄ n,1
h − σ̄ n−1

h )


L2(Ω1), (7.1)

where

σ̄
n,1
h − σ̄ n−1

h = Kb∇ · (un,1
h − un−1

h )− α(pn,1
h − pn−1

h ).

Next, a bound for the first term on this right-hand side reduces to a bound for the second term, as shown in the
next proposition.

Proposition 12. We have

∥∇ ·(un,1
h −un−1

h )∥2
L2(Ω1) ≤

α2

λ2 ∥pn,1
h − pn−1

h ∥
2
L2(Ω1)+

1
2Gλ

(
P2K2

∥f n
−f n−1

∥
2
L2(Ω)+C2

1C2
N∥t

n
N−tn−1

N ∥
2

H−
1
2 (ΓN )

)
.

(7.2)

Proof. By taking the difference between (3.14) at step n, ℓ = 1 and at step n−1, and testing with vh = un,1
h −un−1

h ,
we obtain, after applying Korn’s inequality, a trace inequality, and Young’s inequality

2G∥ε(un,1
h − un−1

h )∥2
L2(Ω) + λ∥∇ · (un,1

h − un−1
h )∥2

L2(Ω)

≤
1
2

(
λ∥∇ · (un,1

h − un−1
h )∥2

L2(Ω1) +
α2

λ
∥pn,1

h − pn−1
h ∥

2
L2(Ω1)

)
+ 2G∥ε(un,1

h − un−1
h )∥2

L2(Ω)

+
1

4G

(
P2K2

∥f n
− f n−1

∥
2
L2(Ω) + C2

1C2
N∥t

n
N − tn−1

N ∥
2

H−
1
2 (ΓN )

)
,

which reduces to (7.2). □

Thus

∥σ̄
n,1
h − σ̄ n−1

h ∥
2
L2(Ω1)

≤ 2α2(1+ K 2
b

λ2

)
∥pn,1

h − pn−1
h ∥

2
L2(Ω1) +

K 2
b

λG

(
P2K2

∥f n
− f n−1

∥
2
L2(Ω) + C2

1C2
N∥t

n
N − tn−1

N ∥
2

H−
1
2 (ΓN )

)
,

(7.3)

and we must find an estimate for pn,1
h − pn−1

h . This is the objective of the next lemma.
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Lemma 1. Suppose that the penalty parameters γe satisfy (A.12). Assuming that the solution and κ are sufficiently
smooth as in Proposition 10, we have for all n, 1 ≤ n ≤ N,

1
2∆ t

( 1
M
+

α2

Kb

)
∥pn,1

h − pn−1
h ∥

2
L2(Ω1) ≤ Ĉ

[
|pn−1

h − m(Ph(p))|
2
h + Jh(pn−1

h − m(p), pn−1
h − m(p))

+ ∆ t
∑

E∈T 1
h

∥∇ · (κ ∇ m(Ph(p)− p))∥2
L2(E) +

(
h +∆ t + h

1
2 + (∆ t)

1
2
)
∥κ ∇ m(Ph(p)− p) · n12∥

2
L2(Γ12)

+ ∥qn
− m(q)∥2

L2(Ω1×]tn−1,tn[)
+ ∥∂t

( 1
M

p + α∇ · u
)
∥

2
L2(Ω1×]tn−1,tn[)

]
.

(7.4)

Proof. By inserting pn−1
h and m(Ph(p)) in (3.12) at step ℓ = 1 with τp = 1, and recalling that Ph(p) does not

jump at interfaces, we derive for all θh ∈ Mh ,

( 1
M
+

α2

Kb

) 1
∆ t

(
pn,1

h − pn−1
h , θh

)
Ω1
+

1
µ f

((pn,1
h − pn−1

h , θh))h +
1

µ f
((pn−1

h − m(Ph(p)), θh))h

+
1

µ f

∑
E∈T 1

h

(
κ(∇ m(Ph(p))− ρg∇ η),∇ θh

)
E −

1
µ f

∑
e∈E1

h

(
{κ∇(pn,1

h − pn−1
h ) · ne}e, [θh]e

)
e

−
1

µ f

∑
e∈E1

h

(
{κ∇(pn−1

h − m(Ph(p))) · ne}e, [θh]e
)

e −
1

µ f

∑
e∈E1

h

(
{κ(∇ m(Ph(p))− ρg∇ η) · ne}e, [θh]e

)
e

−
1

µ f

∑
e∈E1

h

(
{κ∇ θh · ne}e, [pn,1

h − pn−1
h ]e

)
e −

1
µ f

∑
e∈E1

h

(
{κ∇ θh · ne}e, [pn−1

h ]e
)

e = (qn, θh)Ω1 .

With the choice θh = pn,1
h − pn−1

h , this becomes

( 1
M
+

α2

Kb

) 1
∆ t
∥pn,1

h − pn−1
h ∥

2
L2(Ω1) +

1
µ f
∥pn,1

h − pn−1
h ∥

2
h

−
2

µ f

∑
e∈E1

h

(
{κ∇(pn,1

h − pn−1
h ) · ne}e, [pn,1

h − pn−1
h ]e

)
e

= −
1

µ f
((pn−1

h − m(Ph(p)), pn,1
h − pn−1

h ))h +
1

µ f

∑
e∈E1

h

(
{κ∇(pn−1

h − m(Ph(p))) · ne}e, [pn,1
h − pn−1

h ]e
)

e

+
1

µ f

∑
e∈E1

h

(
{κ∇(pn,1

h − pn−1
h ) · ne}e, [pn−1

h ]e
)

e −
1

µ f

∑
E∈T 1

h

(
κ(∇ m(Ph(p))− ρg∇ η),∇(pn,1

h − pn−1
h )

)
E

+
1

µ f

∑
e∈E1

h

(
{κ(∇ m(Ph(p))− ρg∇ η) · ne}e, [pn,1

h − pn−1
h ]e

)
e

+ (qn
− m(q), pn,1

h − pn−1
h )Ω1 + (m(q), pn,1

h − pn−1
h )Ω1 .

Let us examine the terms containing ∇ m(Ph(p))− ρg∇ η. Since the gradient of Ph(p) does not jump at interfaces
and κ is supposed to be sufficiently smooth, by Greens’ formula applied in each E , we can write for any θh ∈ Mh ,

−

∑
E∈T 1

h

(
∇ · (κ(∇ m(Ph(p))− ρg∇ η)), θh

)
E =

∑
E∈T 1

h

(
κ(∇ m(Ph(p))− ρg∇ η),∇ θh

)
E

−

∑
e∈E1

h

(
{κ(∇ m(Ph(p))− ρg∇ η) · ne}e, [θh]e

)
e −

∫
Γ12

κ(∇ m(Ph(p))− ρg∇ η) · n12 θh .
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Hence

−
1

µ f

∑
E∈T 1

h

(
κ(∇ m(Ph(p))− ρg∇ η),∇ θh

)
E +

1
µ f

∑
e∈E1

h

(
{κ(∇ m(Ph(p))− ρg∇ η) · ne}e, [θh]e

)
e

=
1

µ f

∑
E∈T 1

h

(
∇ · (κ(∇ m(Ph(p))− ρg∇ η)), θh

)
E −

1
µ f

∫
Γ12

κ(∇ m(Ph(p))− ρg∇ η) · n12 θh

=
1

µ f

∑
E∈T 1

h

(
∇ · (κ ∇ m(Ph(p)− p)), θh

)
E −

1
µ f

∫
Γ12

κ ∇ m(Ph(p)− p) · n12 θh

+
1

µ f

∫
Ω1

∇ · (κ(∇ m(p)− ρg∇ η)) θh,

where the no flux interface condition in (2.3) is used in the next to last term. Finally, let us integrate in time the
flow equation in (2.3) from tn−1 and tn , divided by ∆ t . Considering that κ and ρg∇ η are independent of time, this
gives for any θh ∈ Mh

(m(q), θh)Ω1 +
1

µ f

(
∇ · (κ(∇ m(p)− ρg∇ η)), θh

)
Ω1
=

1
∆ t

∫ tn

tn−1

(
∂t
( 1

M
p + α∇ · u

)
, θh
)
Ω1

. (7.5)

By collecting these equalities, we obtain,

( 1
M
+

α2

Kb

) 1
∆ t
∥pn,1

h − pn−1
h ∥

2
L2(Ω1) +

1
µ f
∥pn,1

h − pn−1
h ∥

2
h

−
2

µ f

∑
e∈E1

h

(
{κ∇(pn,1

h − pn−1
h ) · ne}e, [pn,1

h − pn−1
h ]e

)
e

= −
1

µ f
((pn−1

h − m(Ph(p)), pn,1
h − pn−1

h ))h +
1

µ f

∑
e∈E1

h

(
{κ∇(pn−1

h − m(Ph(p))) · ne}e, [pn,1
h − pn−1

h ]e
)

e

+
1

µ f

∑
e∈E1

h

(
{κ∇(pn,1

h − pn−1
h ) · ne}e, [pn−1

h − m(p)]e
)

e +
1

µ f

∑
E∈T 1

h

(
∇ · (κ ∇ m(Ph(p)− p)), pn,1

h − pn−1
h

)
E

−
1

µ f

∫
Γ12

κ ∇ m(Ph(p)− p) · n12 (pn,1
h − pn−1

h )+
(
qn
− m(q), pn,1

h − pn−1
h

)
Ω1

+
1
∆ t

∫ tn

tn−1

(
∂t
( 1

M
p + α∇ · u

)
, pn,1

h − pn−1
h

)
Ω1

.

(7.6)

The assumption (A.12) on the penalty parameters γe implies that

1
µ f
∥pn,1

h − pn−1
h ∥

2
h −

2
µ f

∑
e∈E1

h

(
{κ∇(pn,1

h − pn−1
h ) · ne}e, [pn,1

h − pn−1
h ]e

)
e ≥

1
2µ f
∥pn,1

h − pn−1
h ∥

2
h .

With this, (7.4) is deduced from (7.6) by a straightforward variant of (A.9), suitable applications of Young’s
inequality, and the consequence (A.24) of the trace inequality on Γ12. □
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By substituting (7.4) into (7.3), by using (7.1), and recalling the definition (5.3) of the algorithmic error, and the
notation (A.15), we obtain the following bound for η

n,ℓ
fs

(
η

n,ℓ
fs

)2
≤

1
(β Kb)2ℓ−2

[ (
1+

K 2
b

λ2

)4Ĉ
β

(
|pn−1

h − m(Ph(p))|
2
h + Jh(pn−1

h − m(p), pn−1
h − m(p))

+

∑
E∈T 1

h

∥∇ · (κ ∇(Ph(p)− p))∥2
L2(E×]tn−1,tn[)

+
( h
∆ t
+ 1+

h
1
2

∆ t
+

1

(∆ t)
1
2

)
∥κ ∇(Ph(p)− p) · n12∥

2
L2(Γ12×]tn−1,tn[)

+ ∥qn
− q∥2

L2(Ω1×]tn−1,tn[)
+ ∥∂t

( 1
M

p + α∇ · u
)
∥

2
L2(Ω1×]tn−1,tn[)

)
+

K 2
b

Gλ

1
∆ t

(
P2K2

∥f n
− f n−1

∥
2
L2(Ω) + C2

1C2
N∥t

n
N − tn−1

N ∥
2

H−
1
2 (ΓN )

) ]
.

(7.7)

From the a posteriori point of view, this bound is not satisfactory because the three last terms cannot be interpreted
as errors, but just involve the solution and data; this is strikingly true of the first of these terms that has no reason
to be small. This reflects the inconsistency of the algorithm’s starting value at each time step, and this effect can
only be mitigated by iterating sufficiently, i.e., taking ℓn sufficiently large to guarantee a suitable estimate of the
error

m∑
n=1

√
∆ t ηn

fs,

in (5.50). To this end, we prescribe the condition for all n

1
(βKb)ℓn

≤ C∆ t, (7.8)

with a constant C independent of n, h, ∆ t (to simplify, we do not explicit this constant). The next theorem
summarizes this result.

Theorem 2. Assume that (7.8) holds at each time step and that (A.12) is satisfied. If the data and solution are
sufficiently smooth, we have

η
n,ℓn
fs ≤Ĉ

[
∆t |pn−1

h − m(Ph(p))|h +∆t Jh(pn−1
h − m(p), pn−1

h − m(p))
1
2

+ ∆t
( ∑

E∈T 1
h

∥∇ · (κ ∇(Ph(p)− p))∥2
L2(E×]tn−1,tn[)

) 1
2

+ (∆ t)
1
2
(
h

1
2 + (∆ t)

1
2 + h

1
4 + (∆ t)

1
4
)
∥κ ∇(Ph(p)− p) · n12∥L2(Γ12×]tn−1,tn[)

+ ∆ t∥qn
− q∥L2(Ω1×]tn−1,tn[) +∆ t∥∂t

( 1
M

p + α∇ · u
)
∥L2(Ω1×]tn−1,tn[)

+ (∆ t)
3
2

(
∥∂t f∥L∞(tn−1,tn ;L2(Ω)) + ∥∂t tN∥

L∞(tn−1,tn ;H
−

1
2 (ΓN ))

) ]
.

(7.9)

Remark 2. Observe that, if in addition to the assumptions of Theorem 2, the mesh size and time step are of the
same order, i.e.,

h ≤ Ĉ ∆t, (7.10)
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then (when ℓn achieves convergence)

N∑
n=1

(∆t)
1
2 ηn

fs ≤ Ĉ
[

(∆t)
1
2
( N∑

n=1

∆t(|pn−1
h − m(Ph(p))|

2
h + Jh(pn−1

h − p, pn−1
h − p))

) 1
2

+ ∆t
( ∑

E∈T 1
h

∥∇ · (κ ∇(Ph(p)− p))∥2
L2(E×]0,T [)

) 1
2

+ (∆t)
3
4 ∥κ ∇(Ph(p)− p) · n12∥L2(Γ12×]0,T [) +∆t∥qn

− q∥L2(Ω1×]0,T [)

+ ∆t
(
∥∂t
( 1

M
p + α∇ · u

)
∥L2(Ω1×]0,T [) + ∥∂t f∥L∞(0,T ;L2(Ω)) + ∥∂t tN∥

L∞(0,T ;H−
1
2 (ΓN ))

) ]
.

(7.11)

Under the same assumption, the other term in ηm
alg is much more favorable because it is bounded as follows( N∑

n=1

h2(ηn
fs

)2
)

1
2 ≤ Ĉ

[
(∆t)

3
2
( N∑

n=1

∆t(|pn−1
h − m(Ph(p))|

2
h + Jh(pn−1

h − p, pn−1
h − p))

) 1
2

+ (∆ t)2( ∑
E∈T 1

h

∥∇ · (κ ∇(Ph(p)− p))∥2
L2(E×]0,T [)

) 1
2

+ (∆ t)
7
4 ∥κ ∇(Ph(p)− p) · n12∥L2(Γ12×]0,T [) + (∆ t)2

∥qn
− q∥L2(Ω1×]0,T [)

+ (∆ t)2
(
∥∂t
( 1

M
p + α∇ · u

)
∥L2(Ω1×]0,T [) + ∥∂t f∥L∞(0,T ;L2(Ω)) + ∥∂t tN∥

L∞(0,T ;H−
1
2 (ΓN ))

) ]
.

(7.12)

7.2. The time errors indicator

A bound for the time errors indicators ηt,p and ηt,J , defined in (5.9) and (5.10),

η
n,ℓn
t,p =

(∆ t
3

) 1
2
⏐⏐pn,ℓn

h − pn−1
h

⏐⏐
h, η

n,ℓn
t,J =

(∆ t
3

) 1
2
(γe

he

) 1
2
∥[pn,ℓn

h − pn−1
h ]e∥L2(e),

is derived by much the same argument as in estimating En,ℓn
f .

Proposition 13. Under the assumptions of Theorem 2, we have(
η

n,ℓn
t,p

)2
+

∑
e∈E1

h

(
η

n,ℓn
t,J

)2
≤ 12µ2

f

[(
En,ℓn

f

)2
+
( Ĉ
µ f

)2
∫ tn

tn−1

(
∥pn,ℓn

hτ − p∥2
h +A1(p)2)], (7.13)

where the interpolation error A1(p) is defined in (6.6).

Proof. Proceeding as in the proof of Proposition 10, we define X by (6.8) and write
1

µ f

[
((pn

h − pn
hτ , θh))h −

∑
e∈E1

h

(
{κ∇(pn

h − pn
hτ ) · ne}e, [θh]e

)
e −

∑
e∈E1

h

(
{κ∇ θh · ne}e, [pn

h − pn
hτ ]e

)
e

]
=
(
X, θh

)
Ω1
+

1
µ f

[
((p − pn

hτ , θh))h +
∑
e∈E1

h

(
{κ∇(pn

hτ − Ph(p)) · ne}e, [θh]e
)

e

+

∑
e∈E1

h

(
{κ∇ θh · ne}e, [pn

hτ − p]e
)

e

+

∑
E∈T 1

h

(
∇ · (κ∇(Ph(p)− p)), θh − θ

)
E +

(
Ph(p)− p, θh − θ

)
h −

∫
Γ12

κ∇(Ph(p)− p) · n12(θh − θ )
]

.
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With the choice θh = pn
h − pn

hτ , we recognize in the above left-hand side ah(θh, θh) defined in (A.10). Assuming
(A.12), ah(θh, θh) is bounded below by (A.13). Thus, by applying to the last three terms the estimates of
Proposition 16, we derive

1
2µ f
∥pn

h − pn
hτ∥h ≤ sup

θh∈Mh/R

(
X, θh

)
Ω1

∥θh∥h
+

1
µ f

[
∥pn

hτ − p∥h + Ĉ
( λmax

min γe

) 1
2
(
∥pn

hτ − Ph(p)∥h + |Ph(p)− p|h
)

+
Ĉ

min γ
1
2

e

(
A1(p)− |Ph(p)− p|h

) ]
.

Note that

pn
hτ − Ph(p) = (pn

hτ − p)+ (p − Ph(p));

therefore, the argument in the third term can be replaced by pn
hτ − p and the contribution of p − Ph(p) can be

incorporated into A1(p). Then the proposition follows from

1
4µ2

f

∫ tn

tn−1

∥pn
h − pn

hτ∥
2
h ≤ 3

[(
En

f

)2
+
( Ĉ
µ f

)2
∫ tn

tn−1

(
∥pn

hτ − p∥2
h +A1(p)2)]. □

7.3. The local interior flow error indicator

Recall formula (5.5) for ηE,p,

η
n,ℓn
E,p = hE

(
∆ t
) 1

2
qn

h +
1

µ f
∇ ·

(
κ(∇ pn,ℓn

h − ρg∇ η)
)
− ∂t

( 1
M

pn,ℓn
hτ + α∇ · un,ℓn

hτ

)
L2(E)

.

The bound for ηn
E,p proceeds via a standard local argument in each element E ⊂ Ω1. To simplify, we assume

that restriction to each E of the density ρ and the components of the permeability tensor κ are polynomials. The
pressure error equation (4.9) is tested with θh = 0 and

θ |E = bE

(
qn

h +
1

µ f
∇ ·

(
κ(∇ pn

h − ρg∇ η)
)
− ∂t

( 1
M

pn
hτ + α∇ · un

hτ

))
|E ,

extended by zero outside E , where bE is the lowest degree unit bubble function in E . Thus θ ∈ H 1
0 (E) is a

polynomial function and

∥θ∥L2(E) ≤ ∥q
n
h +

1
µ f
∇ ·

(
κ(∇ pn

h − ρg∇ η)
)
− ∂t

( 1
M

pn
hτ + α∇ · un

hτ

)
∥L2(E).

Let

A =
(

qn
h +

1
µ f
∇ ·

(
κ(∇ pn

h − ρg∇ η)
)
− ∂t

( 1
M

pn
hτ + α∇ · un

hτ

)
, θ
)

E
.

On the one hand, as θ is a polynomial function, a familiar scaling argument leads to

A ≥ Ĉ
qn

h +
1

µ f
∇ ·

(
κ(∇ pn

h − ρg∇ η)
)
− ∂t

( 1
M

pn
hτ + α∇ · un

hτ

)2
L2(E).

On the other hand, (4.9) reduces to

A = (qn
h − q + ∂t

( 1
M

(p − pn
hτ )+ α∇ · (u− un

hτ )
)
, θ)E +

1
µ f

(
(p − pn

hτ , θ)h,E + (pn
hτ − pn

h , θ)h,E

)
.

By collecting the above inequalities and applying (A.6), we derive

hE
qn

h +
1

µ f
∇ ·

(
κ(∇ pn

h − ρg∇ η)
)
− ∂t

( 1
M

pn
hτ + α∇ · un

hτ

)
L2(E)

≤ Ĉ
( 1
µ f

λ
1
2
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(
|p − pn
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n
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h |h,E

)
+ ∥qn

h − q + ∂t
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M
(p − pn

hτ )+ α∇ · (u− un
hτ )
)
∥H−1(E)

)
.
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By squaring both sides, integrating in time over ]tn−1, tn[, and recalling the notation En,ℓn
E , we deduce an upper

bound for η
n,ℓn
E,p ,(

η
n,ℓn
E,p

)2
≤ 3Ĉ2

[(
En,ℓn

E

)2
+

1
µ2

f
λmax

(∫ tn

tn−1

|p − pn,ℓn
hτ |

2
h,E +

(
η

n,ℓn
t,p,E

)2
)]

. (7.14)

7.4. The local jump flow error indicator

Recall the local jumps ηpen defined in (5.1),

ηn,ℓn
pen =

(
∆ t
) 1

2
(γe

he

) 1
2
∥[pn,ℓn

h ]e∥L2(e).

By inserting pn,ℓn
hτ , ηn,ℓn

pen has the bound(
ηn,ℓn

pen

)2
≤2

∫ tn
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γe

he
∥[pn,ℓn

h − pn,ℓn
hτ ]e∥
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L2(e) + 2∆ t Jh(p − pn,ℓn

hτ , p − pn,ℓn
hτ )

= 2
(
η

n,ℓn
t,J

)2
+ 2

∫ tn

tn−1

Jh(p − pn,ℓn
hτ , p − pn,ℓn

hτ ).
(7.15)

This is an acceptable bound, since the first term is an indicator and the second one an error term.

7.5. The local jump flux error indicator

The local flux jump ηflux,e defined by (5.7) reads

η
n,ℓn
flux,e =

(
he∆ t

) 1
2
[κ(∇ pn,ℓn

h − ρg∇ η) · ne]e


L2(e).

The bound for ηn
flux,e is derived by a classical argument on each face e ∈ E1

h . To simplify, we restrict the discussion
to internal faces, the case of boundary faces (i.e., on Γ12) being simpler, since jumps on Γ12 are just traces. Thus,
let e be an internal face and let be be a unit bubble polynomial function of the lowest degree that vanishes on ∂e.
Let ê be a reference unit face and ω̂ê the union of two reference unit elements that share ê. By working first on
ω̂ê and then switching to ωe by a suitable transformation, we can construct an extension operator G, linear from

H
1
2

00(e) into H 1
0 (ωe) and uniformly continuous with respect to e and h, i.e.,

∀ f ∈ H
1
2

00(e), |G( f )|H1(ωe) ≤ Ĉ | f |
H

1
2

00 (e)
, (7.16)

with Ĉ independent of h, e, and ωe. The pressure error Eq. (4.9) is tested with θh = 0 and

θ |ωe = G
([

κ(∇ pn
h − ρg∇ η) · ne

]
ebe

)
.

Thus θ ∈ H 1
0 (ωe), hence has no jump through e, and θ |e ∈ H

1
2

00(e),

∥θ∥L2(e) ≤ ∥
[
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]

e∥L2(e).

Moreover, by the construction of G and the fact that the restriction of θ to e belongs to a finite dimensional space,
we have on the one hand,(
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On the other hand, (4.9) reduces to
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.
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Therefore,

1
µ f

[κ(∇ pn
h − ρg∇ η) · ne]e

2
L2(e) ≤ Ĉ

[
∥∂t
( 1

M
(p − pn

hτ )+ α∇ · (u− un
hτ )
)
− (q − qn

h )∥H−1(ωe)|θ |H1(ωe)

+

∑
E⊂ωe

∥qn
h − ∂t (

1
M

pn
hτ + α∇ · un

hτ )+
1

µ f
∇ · κ(∇ pn

h − ρg∇ η)∥L2(E)∥θ∥L2(E)

+
1

µ f

(
|p − pn

hτ |h,ωe
+ |pn

hτ − pn
h |h,ωe

)
|θ |h,ωe

]
.

Then, by applying (7.16), (A.1), and (A.8), we derive[κ(∇ pn
h − ρg∇ η) · ne]e


L2(e) ≤ Ĉ

[
µ f

( 1

h
1
2
e

∥∂t
( 1

M
(p − pn

hτ )+ α∇ · (u− un
hτ )
)
− (q − qn

h )∥H−1(ωe)

+ h
1
2
e
(∑

E⊂ωe

∥qn
h − ∂t (

1
M

pn
hτ + α∇ · un

hτ )+
1

µ f
∇ · κ(∇ pn

h − ρg∇ η)∥
2

L2(E)

) 1
2
)

+
(λmax

he

) 1
2
(
|p − pn

hτ |h,ωe
+ |pn

hτ − pn
h |h,ωe

) ]
.

By squaring both sides, multiplying by he, and integrating with respect to time, we obtain(
η

n,ℓn
flux,e

)2
≤ 3Ĉ

[
µ2

f

((
En,ℓn

ωe

)2
+

∑
E⊂ωe

(
η

n,ℓn
E,p

)2
)
+ 2λmax

((
η

n,ℓn
t,p,ωe

)2
+

∫ tn

tn−1

|p − pn,ℓn
hτ |

2
h,ωe

)]
. (7.17)

7.6. The time derivative pressure’s jump indicator

Recall formula (5.17) for η∂p,J ,

η
n,ℓn
∂p,J = he∆ t

(γe

he

) 1
2
∥

1
∆ t

[pn,ℓn
h − pn−1

h ]e∥L2(e).

By comparing with η
n,ℓn
t,J defined in (5.10), we see that

η
n,ℓn
∂p,J = he

( 3
∆t

) 1
2 η

n,ℓn
t,J . (7.18)

This is an acceptable upper bound if we assume that

h2
e ≤ Ĉ ∆t, (7.19)

a condition less restrictive than (7.10).

7.7. The time derivative of displacement balance indicators

Take i = 1 and consider the time derivative of the displacement equilibrium ηE,1,∂u given by (5.19),

η
n,ℓn
E,1,∂u = hE∆ t∥∂t f n

hτ +∇ · σ (∂t un,ℓn
hτ )− α∇ ∂t pn,ℓn

hτ ∥L2(E).

When Eq. (4.14) is tested with vh = 0 and

v|E = bE∂t
(
f n
hτ +∇ · σ (un

hτ )− α∇ pn
hτ

)
,

extended by zero outside E , it reduces to(
∂t f n

hτ +∇ · σ (∂t un
hτ )− α∇ ∂t pn

hτ , v
)

E =
(
σ (∂t (u− un

hτ )), ε(v)
)

E − α
(
∂t (p − pn

hτ ),∇ · v
)

E

−
(
∂t (f − f n

hτ ), v
)

E
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Thus, by proceeding as in Section 7.3, we deduce that

Ĉ
∂t f n

hτ +∇ · σ (∂t un
hτ )− α∇ ∂t pn

hτ

2
L2(E)

≤

( 1
|v|H1(E)

⏐⏐(σ (∂t (u− un
hτ )), ε(v)

)
E − α

(
∂t (p − pn

hτ ),∇ · v
)

E −
(
∂t (f − f n

hτ ), v
)

E

⏐⏐)|v|H1(E)

≤
Ĉ
hE

( 1
|v|H1(E)

⏐⏐(σ (∂t (u− un
hτ )), ε(v)

)
E − α

(
∂t (p − pn

hτ ),∇ · v
)

E −
(
∂t (f − f n

hτ ), v
)

E

⏐⏐)∥v∥L2(E),

where we have used (A.6). Therefore, by multiplying both sides with hE and integrating in time, this leads to

η
n,ℓn
E,1,∂u ≤ ĈEn,ℓn

E,1,∂σ . (7.20)

When i = 2, the treatment of ηE,2,∂u defined by (5.20) is the same and leads to the bound

η
n,ℓn
E,2,∂u ≤ ĈEn,ℓn

E,2,∂σ . (7.21)

7.8. The time derivative of stress tensor’s jump indicators

To bound the time derivative of the stress tensor’s jump on e ∈ E1
h ∪ E12

h given by (5.21),

η
n,ℓn
e,1,∂σ = h

1
2
e ∆ t∥[(σ (∂t un,ℓn

hτ )− α∂t pn,ℓn
hτ I)ne]e∥L2(e),

we proceed as for ηflux and use the same notation. Consider a face e in E1
h and test (4.14) with vh = 0 and

v|ωe = G
([(

σ (∂t un
hτ )− α∂t pn

hτ I
)
ne
]

ebe

)
.

The equality (4.14) becomes∫
e

be
⏐⏐ [( σ (∂t un

hτ )−α∂t pn
hτ I

)
ne
]

e
⏐⏐2 = ∑

E⊂ωe

(
∂t f n

hτ +∇ · σ (∂t un
hτ )− α∇ ∂t pn

hτ , v
)

E

−
(
σ (∂t (u− un

hτ )), ε(v)
)
ωe
+ α

(
∂t (p − pn

hτ ),∇ · v
)
ωe
+
(
∂t (f − f n

hτ ), v
)
ωe

.

Thus

Ĉ
[(σ (∂t un

hτ )− α∂t pn
hτ I
)
ne
]

e

2
L2(e)

≤

( 1
|v|H1(ωe)

⏐⏐− (σ (∂t (u− un
hτ )), ε(v)

)
ωe
+ α

(
∂t (p − pn

hτ ),∇ · v
)
ωe
+
(
∂t (f − f n

hτ ), v
)
ωe

⏐⏐)|v|H1(ωe)

+

∑
E⊂ωe

∥∂t f n
hτ +∇ · σ (∂t un

hτ )− α∇ ∂t pn
hτ∥L2(E)∥v∥L2(E)

≤ Ĉ
( 1

h
1
2
e

1
|v|H1(ωe)

⏐⏐− (σ (∂t (u− un
hτ )), ε(v)

)
ωe
+ α

(
∂t (p − pn

hτ ),∇ · v
)
ωe
+
(
∂t (f − f n

hτ ), v
)
ωe

⏐⏐
+ h

1
2
e
(∑

E⊂ωe

∥∂t f n
hτ +∇ · σ (∂t un

hτ )− α∇ ∂t pn
hτ∥

2
L2(E)

) 1
2
)
∥v∥L2(e),

where we have used (7.16), (A.2), and (A.8). By multiplying both sides with h
1
2
e and integrating in time we infer

η
n,ℓn
e,1,∂σ ≤ Ĉ

(
En,ℓn

ωe,∂σ +
(∑

E⊂ωe

(ηn,ℓn
E,1,∂u)2) 1

2
)
. (7.22)

When e lies on Γ12, (7.22) is replaced by

η
n,ℓn
e,1,∂σ ≤ Ĉ

(
En,ℓn

ωe,∂σ +
(
(ηn,ℓn

E1,1,∂u)2
+ (ηn,ℓn

E2,2,∂u)2) 1
2
)
, (7.23)

where E1 ⊂ Ω1 and E2 ⊂ Ω2 are the two elements adjacent to e. The case of ηe,2,∂σ defined by (5.22) is the same;
we obtain

η
n,ℓn
e,2,∂σ ≤ Ĉ

(
En,ℓn

ωe,∂σ +
(∑

E⊂ωe

(ηn,ℓn
E,2,∂u)2) 1

2
)
. (7.24)
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Finally, we consider ηe,N ,∂σ defined by (5.23),

η
n,ℓn
e,N ,∂σ = h

1
2
e ∆ t∥σ (∂t un,ℓn

hτ )nΩ − ∂t tnN ,hτ∥L2(e).

As e lies on ΓN , the jump reduces to the trace, ωe is the element adjacent to e, and the lifting function v defined
above vanishes on ∂ E \ e, i.e. belongs to H 1

e (E). Therefore, we readily obtain

η
n,ℓn
e,N ,∂σ ≤ Ĉ

(
En,ℓn

e,N ,∂σ + η
n,ℓn
E,2,∂u

)
, (7.25)

where the auxiliary error En,ℓn
e,N ,∂σ is defined by (6.5).

7.9. Indicator of the pressure jump at time tn

To bound ηp,J defined by (5.29),

η
n,ℓn
p,J = he

(γe

he

) 1
2 ∥[pn,ℓn

h ]e∥L2(e),

we compare it with ηpen defined by (5.1) and observe that

ηp,J =
he

(∆ t)
1
2
ηpen.

Therefore, under the assumption (7.19), we have

η
n,ℓn
p,J ≤ Ĉηn,ℓn

pen . (7.26)

7.10. Indicator of the displacement equilibrium errors at time tn

Recall the indicator of displacement equilibrium ηE,i,u in T i
h , see (5.30), with ph = 0 in Ω2,

η
n,ℓn
E,i,u = hE∥f n

h +∇ · σ (un,ℓn
h )− α∇ pn,ℓn

h ∥L2(E).

For E ∈ T 1
h , by testing the displacement error equation (4.13), at time tn , with vh = 0 and

v = bE
(
f n
h +∇ · σ (un

h)− α∇ pn
h

)
,

we obtain(
f n
h +∇ · σ (un

h)− α∇ pn
h , v

)
E = −(f − f n

h , v)E

+ 2G(ε(u − un
h), ε(v))E + λ(∇ · (u − un

h),∇ · v)E − α(p − pn
h ,∇ · v)E .

Hence (A.6) implies

Ĉ∥f n
h +∇ · σ (un

h)− α∇ pn
h∥

2
L2(E) ≤ ∥f − f n

h ∥H−1(E)|v|H1(E)

+ Ĉ
(

2G∥ε(u − un
h)∥L2(E) + λ∥∇ · (u − un

h)∥L2(E) + α∥p − pn
h∥L2(E)

)
|v|H1(E)

≤
Ĉ
hE

(
∥f − f n

h ∥H−1(E) + 2G∥ε(u − un
h)∥L2(E) + λ∥∇ · (u − un

h)∥L2(E) + α∥p − pn
h∥L2(E)

)
∥v∥L2(E).

The formula is similar when E ⊂ T 2
h , and we have for i = 1, 2, with p = ph = 0 when i = 2,

η
n,ℓn
E,i,u ≤ Ĉ

(
∥f − f n

h ∥H−1(E) + 2G∥ε(u − un,ℓn
h )∥L2(E) + λ∥∇ · (u − un,ℓn

h )∥L2(E) + α∥p − pn,ℓn
h ∥L2(E)

)
. (7.27)

7.11. Indicators of the stress tensor’s jumps at time tn

Here we consider the stress tensor’s jump on e ∈ E1
h ∪ E12

h defined by (5.31)

η
n,ℓn
e,1,σ = h

1
2
e ∥[

(
σ (un,ℓn

h )− αpn,ℓn
h I

)
ne]e∥L2(e),
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the one on e ∈ E2
h defined by (5.32)

η
n,ℓn
e,2,σ = h

1
2
e ∥[(σ (un,ℓn

h ))ne]e∥L2(e),

and the one on e ⊂ ΓN defined by (5.33),

η
n,ℓn
e,N ,σ = h

1
2
e ∥σ (un,ℓn

h )nΩ − tnN ,h∥L2(e).

Let us consider the first one; the treatment of the others being much the same. Let e be an interior face of E1
h , ωe

the union of the two elements sharing e, and test (4.13) at time tn with vh = 0 and

v = G
(
be[
(
σ (un

h)− αpn
h I
)
ne]e

)
.

This yields∫
e

be
⏐⏐[(σ (un

h)− αpn
h I
)
ne]e

⏐⏐2 ≤ ∑
E⊂ωe

∥f n
h +∇ · σ (un

h)− α∇ pn
h∥L2(E)∥v∥L2(E)

+ Ĉ
(

2G∥ε(u − un
h)∥L2(ωe) + λ∥∇ · (u − un

h)∥L2(ωe) + α∥p − pn
h∥L2(ωe) + ∥f − f n

h ∥H−1(ωe)

)
|v|H1(ωe)

≤ Ĉ
(

h
1
2
e

∑
E⊂ωe

∥f n
h +∇ · σ (un

h)− α∇ pn
h∥L2(E)

+
1

h
1
2
e

(
2G∥ε(u − un

h)∥L2(ωe) + λ∥∇ · (u − un
h)∥L2(ωe) + α∥p − pn

h∥L2(ωe) + ∥f − f n
h ∥H−1(ωe)

) )
∥v∥L2(e).

Then, after multiplying by h
1
2
e , we deduce

η
n,ℓn
e,1,σ ≤ Ĉ

(
2G∥ε(u − un,ℓn

h )∥L2(ωe) + λ∥∇ · (u − un,ℓn
h )∥L2(ωe) + α∥p − pn,ℓn

h ∥L2(ωe) + ∥f − f n
h ∥H−1(ωe)

+
(∑

E⊂ωe

(ηn,ℓn
E,1,u)2) 1

2
)

.

(7.28)

When e ⊂ Γ12, (7.28) becomes

η
n,ℓn
e,1,σ ≤ Ĉ

(
2G∥ε(u − un,ℓn

h )∥L2(ωe) + λ∥∇ · (u − un,ℓn
h )∥L2(ωe) + α∥p − pn,ℓn

h ∥L2(E1) + ∥f − f n
h ∥H−1(ωe)

+
(
(ηn,ℓn

E1,1,u)2
+ (ηn,ℓn

E2,2,u)2) 1
2
)
,

(7.29)

where E1 ⊂ Ω1 and E2 ⊂ Ω2 are adjacent to e. When e is interior to Ω2, (7.28) is replaced by

η
n,ℓn
e,2,σ ≤ Ĉ

(
2G∥ε(u − un,ℓn

h )∥L2(ωe) + λ∥∇ · (u − un,ℓn
h )∥L2(ωe) + ∥f − f n

h ∥H−1(ωe) +
(∑

E⊂ωe

(ηn,ℓn
E,2,u)2) 1

2
)
. (7.30)

Finally, when e ⊂ ΓN , there is only one element E adjacent to e and we have

η
n,ℓn
e,N ,σ ≤Ĉ

(
2G∥ε(u − un,ℓn

h )∥L2(ωe) + λ∥∇ · (u − un,ℓn
h )∥L2(ωe) + ∥f − f n

h ∥H−1(ωe)

+ ∥tN − tnN ,h∥H−
1
2 (e)
+ η

n,ℓn
E,2,u

)
.

(7.31)

8. Numerical results

In this section, we present numerical results that validate the theoretical analysis and the algorithmic improve-
ments built upon the a posteriori error indicators. All examples are computed with the open-source finite element
package deal.II [43].



V. Girault, X. Lu and M.F. Wheeler / Computer Methods in Applied Mechanics and Engineering 369 (2020) 113185 39

Fig. 2. The physical domain (left) and computational domain (right) of the Mandel’s problem [18].

8.1. The Mandel problem

In this section, we solve the Mandel’s problem to validate our solution algorithm and test the effectivity of
the a posteriori error indicators. The Mandel’s benchmark problem considers a 2a × 2b rectangular poroelastic
medium sandwiched between two impervious frictionless plates. At t = 0, the medium is loaded instantaneously
by a constant force 2F . Because of the bi-axial symmetry of the physical problem, the computational domain is
taken as a quarter of the physical domain, see Fig. 2. The governing equations are those of Biot’s system with no
gravity:

−∇ · (λ(∇ · u)I + 2Gε(u)− αp I) = 0 in Ω × ]0, T [,

∂t

(
1
M

p + α∇ · u
)
−

1
µ f
∇ · (κ∇ p) = 0 in Ω × ]0, T [,

(8.1)

where Ω = ]0, a[× ]0, b[ is the computational domain. Following the approaches in [4], the boundary and initial
conditions supplementing the governing equations are cast as

−
1

µ f
κ∇ p · n = 0, ux = 0, σxy = 0 on x = 0,

p = 0, σ n = 0 on x = a,

−
1

µ f
κ∇ p · n = 0, uy = 0, σxy = 0 on y = 0,

−
1

µ f
κ∇ p · n = 0, uy = Uy(b, t), σxy = 0 on y = b,

p|t=t0 = Pt0 (x, y).

(8.2)

Here Uy(b, t) is the analytical solution of the y-displacement at y = b and Pt0 (x, y) is the analytical pressure
solution at t = t0 > 0. Analytical pressure, displacement, and stress solutions are provided as infinite series, see,
e.g. [44].

The physical parameters used for the tests are listed in Table 1. We notice that the parameter α multiplying the
pressure in the first line of (8.1) is much larger than 1

M in the second line, hence the serious imbalance between
the two equations. Denote the energy norm of the displacement by

∥u − uh∥e :=

(
2G∥ε(u − uh)∥2

L2(Ω) + λ∥∇ · (u − uh)∥2
L2(Ω)

) 1
2
. (8.3)

Numerical convergence of the pressure solution measured in the L2 norm and the displacement solution measured
in the energy norm are performed under spatial refinement. Since the pressure solution lacks regularity at early
time [44], the simulations are run on the time interval [0.01, 0.0101] s. In order to mitigate the errors caused by
the time discretization and the fixed-stress split, a small time step ∆t= 1e−6 s and a small fixed-stress threshold
ε =1e−6 are used. The EG scheme is IIPG with a global penalty parameter of 1e5. The numerical errors are
measured at final time T = 0.0101 s and summarized in Table 2. These spacial refinement tests show that the rate
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Table 1
Parameters for Mandel’s problem.

Parameter Quantity Value

a x dimension 1 m
b y dimension 1 m
k permeability 1e−2 m2

µ f fluid viscosity 1.0 Pa·s
F point load intensity 2.0× 103 N/m
E Young’s modulus 1.0×104 Pa
ν Poisson’s ratio 0.2
α Biot’s coefficient 1
M Biot’s modulus 104 Pa

Table 2
Convergence of pressure and displacement solutions under spatial refinement.

Th ∥
1
√

M
(pN
− pN

h )∥L2(Ω) Rate ∥uN
− uN

h ∥e Rate

32 × 32 4.0447e−04 – 2.5745e−02 –
64 × 64 1.0507e−04 1.945 1.2872e−02 1.0001
128 × 128 3.4714e−05 1.7712 6.4361e−03 1.0000
256 × 256 1.5875e−05 1.5554 3.2180e−03 0.9967

of convergence of the pressure in L2 is between first- and second-order, and that of the displacement in the energy
norm is close to first-order, as predicted by theoretical estimates for the displacement and better for the pressure.

The a posteriori error indicators in (5.41)–(5.48) are adapted, without change of notation, to (8.1)–(8.2), namely,
the local error indicators on the interface of the pay-zone and the nonpay-zone E12

h , the faces in the nonpay-zone
E2

h , and the elements in the nonpay-zone T 2
h , are omitted. Regarding effectivity, considering the strong imbalance

between the displacement and the flow equations, we collect the indicators into two sums,

ηFLOW := ηalg + ηtime + ηflow + ηjump, (8.4)

ηMECH := ηE∂σ
+ ηEσ + ηT∂u + ηTu , (8.5)

and we associate respectively to ηFLOW and ηMECH the error norms,

|||(p, u)− (ph, uh)|||1 :=

(
1

4M
∥p − ph∥

2
L2(Ω) +

1
4
∥u − uh∥

2
e +

∆t
2µ f

N∑
n=1

∥p − ph∥
2
h

) 1
2

, (8.6)

|||(p, u)− (ph, uh)|||2 := 2G∥ε(u − uh)∥L2(Ω) + λ∥∇ · (u − uh)∥L2(Ω) + α∥p − ph∥L2(Ω). (8.7)

Then we define the effectivity indices

Ieff, FLOW =

√
ηFLOW

|||(p, u)− (ph, uh)|||1
, Ieff, MECH =

√
ηMECH

|||(p, u)− (ph, uh)|||2
. (8.8)

Given the assumption that the mesh size and time step are of the same order, see (7.10), we test the effectivity
of the a posteriori indicators under simultaneously spatial and temporal refinements. We performed two groups of
convergence tests to examine the effectivity indices. The first group of simulations are run from 0.01 s to 0.02 s
with a fixed-stress convergence tolerance ε =1e−6. The convergence of the individual error indicators in (5.41) to
(5.48) and the effectivity indices are summarized in Tables 3 and 4, respectively. All the individual error indicators
except ηalg and ηjump exhibit near second order convergence.

√
ηFLOW, |||(pN

h , uN
h ) − (pN , uN )|||1,

√
ηMECH, and

|||(pN
h , uN

h )− (pN , uN )|||2 all exhibit asymptotically first-order convergences, which gives converging Ieff, FLOW and
Ieff, MECH. In this group of tests, Ieff, FLOW is around 2.3 and Ieff, MECH around 1.8.

Another group of tests are performed with simulations from 0.001 s to 0.002 s using smaller time steps.
The convergence of the individual error indicators and the effectivity indices are summarized in Tables 5 and 6
respectively. We observe similar convergence behavior as demonstrated by the first group of tests with Ieff, FLOW
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Table 3
Convergence of individual a posteriori error indicators under simultaneous spatial and temporal refinement with simulations from 0.01 s to
0.02 s.

∆t,Th ηalg ηtime Rate ηflow Rate ηjump Rate

1e−3, 32× 32 1.3215e−02 – 1.7039e−04 – 2.6802e−05 –
5e−4, 64× 64 1.7100e−10 3.4323e−03 1.9449 4.4629e−05 1.9327 9.7493e−06 1.4589
2.5e−4, 128× 128 4.8416e−10 8.7498e−04 1.9583 1.1422e−05 1.9494 4.3753e−06 1.3074
1.25e−4, 256 × 256 2.3276e−09 2.2091e−04 1.9679 2.8891e−06 1.9612 2.1219e−06 1.2132

∆t,Th ηE∂σ
Rate ηEσ Rate ηT∂u Rate ηTu Rate

1e−3, 32× 32 6.9317e+01 – 5.2784e+01 – 7.1801e+01 – 5.4670e+01 –
5e−4, 64× 64 1.8223e+01 1.9274 1.2049e+01 2.1311 1.8542e+01 1.9532 1.2259e+01 2.1569
2.5e−4, 128× 128 4.6724e+00 1.9454 2.8727e+00 2.0998 4.7128e+00 1.9646 2.8975e+00 2.1189
1.25e−4, 256 × 256 1.1830e+00 1.9581 7.0101e−01 2.0771 1.1881e+00 1.9727 7.0402e−01 2.0917

Table 4
Effectivity indices under simultaneously spatial and temporal refinement with simulations from 0.01 s to 0.02 s.

∆t,Th
√

ηFLOW Rate |||(pN
h , uN

h )− (pN , uN )|||1 Rate Ieff, FLOW

1e−3, 32× 32 1.1581e−01 – 5.0968e−02 – 2.2722
5e−4, 64× 64 5.9048e−02 0.9717 2.5947e−02 0.9740 2.2757
2.5e−4, 128× 128 2.9845e−02 0.9780 1.3115e−02 0.9791 2.2757
1.25e−4, 256 × 256 1.5031e−02 0.9821 6.6144e−03 0.9822 2.2724

∆t,Th
√

ηMECH Rate |||(pN
h , uN

h )− (pN , uN )|||2 Rate Ieff, MECH

1e−3, 32× 32 1.5766e+01 – 8.2160e+00 – 1.9190
5e−4, 64 × 64 7.8149e+00 1.0125 4.2061e+00 0.9659 1.8580
2.5e−4, 128 × 128 3.8929e+00 1.0089 2.1283e+00 0.9743 1.8291
1.25e−4, 256 × 256 1.9432e+00 1.0066 1.0706e+00 0.9802 1.8150

Table 5
Convergence of individual a posteriori error indicators under simultaneous spatial and temporal refinement with simulations from 0.001 s to
0.002 s.

∆t,Th ηalg ηtime Rate ηflow Rate ηjump Rate

1e−4, 32× 32 3.2536e−11 1.3955e−03 – 4.0207e−04 – 1.6878e−04 –
5e−4, 64× 64 1.1379e−10 3.5982e−04 1.9554 1.0239e−04 1.9733 3.4890e−05 2.2742
2.5e−5, 128× 128 1.6658e−10 9.1408e−05 1.9661 2.5828e−05 1.9802 1.1203e−05 1.9565
1.25e−5 256 × 256 1.0063e−09 2.3039e−05 1.9738 6.4856e−06 1.9849 4.8081e−06 1.7039

∆t,Th ηE∂σ
Rate ηEσ Rate ηT∂u Rate ηTu Rate

1e−4, 32× 32 7.0473e+01 – 1.9244e+03 – 7.5991e+01 – 2.0115e+03 –
5e−5, 64× 64 1.8809e+01 1.9056 4.8834e+02 1.9784 1.9495e+01 1.9627 4.9899e+02 2.0111
2.5e−5, 128× 128 4.8541e+00 1.9298 1.2294e+02 1.9841 4.9394e+00 1.9717 1.2426e+02 2.0084
1.25e−5, 256 × 256 1.2327e+00 1.9465 3.0840e+01 1.9880 1.2433e+00 1.9781 3.1004e+01 2.0064

around 1.01 and Ieff, MECH around 8.4. These results suggest that the effectivity indices may depend on the initial
condition, final condition, and the relationships between h and ∆t , as far as the Mandel problem is concerned.

8.2. Dynamic mesh adaptivity guided by the a posteriori error indicators

We demonstrate the potential of using the a posteriori error indicators to guide dynamic mesh adaptivity
in unconventional reservoirs with the following prototype unconventional model (Fig. 3). The domain size is
[0, 1] × [0, 1] m2, the fracture width is 1/64 m. The permeability is 10e−16 m−1 in the matrix and 10e−11 m−1

in the fractures. The fluid density is 1 kg/m3 and its viscosity is 10e-6 Pa·s. The Young modulus is 5e6 Pa for the
matrix and 10e4 Pa for the fractures. Two wells are located at the center of each horizontal fracture, producing at a
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Table 6
Effectivity indices under simultaneously space and time refinement with simulations from 0.001 s to 0.002 s.

∆t,Th
√

ηFLOW Rate |||(pN
h , uN

h )− (pN , uN )|||1 Rate Ieff, FLOW

1e−4, 32× 32 4.4344e−02 – 4.3794e−02 – 1.0126
5e−5, 64× 64 2.2296e−02 0.9919 2.2165e−02 0.9824 1.0059
2.5e−5, 128× 128 1.1333e−02 0.9841 1.1205e−02 0.9832 1.0114
1.25e−5, 256 × 256 5.8595e−03 0.9735 5.6862e−03 0.9819 1.0305

∆t,Th
√

ηMECH Rate |||(pN
h , uN

h )− (pN , uN )|||2 Rate Ieff, MECH

1e−4, 32× 32 6.3893e+01 – 7.5442e+00 – 8.4691
5e−5, 64 × 64 3.2026e+01 0.9964 3.8195e+00 0.9819 8.3847
2.5e−5, 128 × 128 1.6031e+01 0.9973 1.9220e+00 0.9863 8.3409
1.25e−5, 256 × 256 8.0199e+00 0.9980 9.6411e−01 0.9895 8.3185

Fig. 3. Permeability field and model boundary conditions of the prototype unconventional reservoir model.

rate of 10 m3/s. IIPG with a global penalty parameter of 100 is employed in the EG scheme. The time of simulation
is [0, 500] s with a uniform time step size ∆t = 20 s.

The following dynamic mesh adaptation strategy is applied, starting with a uniform 64 × 64 rectangular mesh.
The local discretization error indicators in L2(E×]tn−1, tn[) is computed on each element E ∈ Th at time step tn and
summed into two indicators, one associated with the flow equation and one associated with the mechanics equation.
Namely, let

ηE,flow := (ηn
t,p,E )2

+

∑
e⊂∂ E

(ηn
t,J )2

  
local time errors

+ (ηn
E,p)2
+

∑
e⊂∂ E

(ηn
flux,e)2

  
local flow errors

+

∑
e⊂∂ E

(
(ηn

pen)2
+ (ηn

∂p,J )2
+ (ηn

p,J )2
)

  
local penalty jumps

, (8.9)

and

ηE,mechanics :=
∑

e⊂∂ E

(ηn
e,1,∂σ )2

  
local errors on the stress tensor’s time derivative

+

∑
e⊂∂ E

(ηn
e,1,σ )2

  
local errors on the stress tensor

+ (ηn
E,1,∂u)2  

local errors on the displacement’s time derivative

+ (ηn
E,1,u)2  

local errors on the displacement

,

(8.10)
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Table 7
Comparison of DoFs between the adaptive mesh and the uniform mesh.

Domain Uniform mesh 128 × 128 Adaptive mesh t = 100 s (% ) Adaptive mesh t = 500 s (% )

Flow 131585 18815 (14.3%) 29018 (22.1%)
Mechanics 132098 20060 (15.2%) 30932 (23.4%)

then each of the two indicators are normalized by the maximum value and added up to obtain a refinement indicator:

ηE,refine :=
ηE,flow

∥ηE,flow∥l∞(Th )
+

ηE,mechanics

∥ηE,mechanics∥l∞(Th )
. (8.11)

The top 10% elements with the largest refinement indicator ηE,refine values are refined isotropically, unless the
element width is smaller than or equal to 1/512 m; the bottom 20% elements with the smallest refinement indicator
values are coarsened unless the element width is greater than or equal to 1/8 m. The dynamic mesh adaptivity
and solutions are presented in Fig. 4. Clearly, the mesh is adaptively refined near the well, across the fractures, at
fracture joints, and around fracture tips. As the fluid is being depleted inside the fractures, more refinements are
put inside and across the fractures.

We compare the number of degree of freedoms (DoFs) of the adaptive mesh at t = 100 s and t = 500 s to the
DoFs of a static uniform 128 × 128 mesh in Table 7. As time progresses, the DoFs of the adaptive mesh increase,
but overall the adaptive mesh utilizes less than 24% of the DoFs of the 128 × 128 uniform mesh for both the flow
and the mechanics domains. The accuracy of the adaptive solutions is demonstrated by comparing the pressure and
volumetric strain solution profiles along the center of the top horizontal fracture to those obtained on the 128 × 128
static mesh, presented in Fig. 5. Results show that the adaptive solutions achieve excellent accuracy, especially at
later time t = 500 s. Moreover, a close examination of the top right plot of Fig. 5 shows that the adaptive mesh
refinement near the fracture boundaries helps to eliminate the nonphysical pressure oscillations at fracture tips,
where the permeability and Young’s modulus change orders of magnitude across the matrix/fracture interface.

8.3. Novel stopping criterion for the fixed-stress iterations

A hyperparameter arises from the fixed-stress iterative coupling algorithm (3.9)–(3.17), namely, the convergence
threshold ε in
criterion 1σ̄ n,ℓ

h − σ̄
n,ℓ−1
h


L∞(Ω)

≤ ε. (8.12)

For large-scale engineering applications, the relative change in mean stress is also a widely used stopping criterion
for the fixed-stress iterations: [4,5,9,12,18,45]:
criterion 2 σ̄

n,ℓ
h − σ̄

n,ℓ−1
h

σ̄
n,ℓ
h


L∞(Ω)

≤ ε. (8.13)

The choice of a “sufficienty small” convergence threshold ε in either (8.12) or (8.13) is usually based on the
user’s experience, or tuned for each simulation scenario. We propose a new stopping criterion for the fixed-stress
iterations that utilizes the a posteriori error estimators to balance the fixed-stress split error with the discretization
errors without tuning the hyperparameter :
Marching forward to the next time step n + 1 when
new criterion

η
n,ℓ
alg ≤ δ(ηn,ℓ

time + η
n,ℓ
jump + η

n,ℓ
flow + η

n,ℓ
E∂σ
+ η

n,ℓ
T∂u
+ η

n,ℓ
Eσ
+ η

n,ℓ
Tu

). (8.14)

We argue that δ = 0.1 is sufficient for most simulation scenarios without the need of further tuning. Namely, (8.14)
with δ = 0.1 indicates that the error caused by the fixed-stress split is an order of magnitude less that the errors
caused by the spatial and temporal discretizations, hence the fixed-stress loop is sufficiently iterated and one can
march forward to the next time step. We demonstrate its performance in the following subsections.
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Fig. 4. Dymanic mesh adaptivity guided by the a posteriori error indicators: top: pressure, middle: volumetric strain, bottom: adaptive mesh;
left: t = 100 s, right: t = 500 s.
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Fig. 5. Comparison of the solutions on the dynamic adaptive mesh and on a uniform fine mesh 128 × 128 along y = 43/128: top: pressure,
bottom: volumetric strain; left: t = 100 s, right: t = 500 s.

8.3.1. New stopping criterion tested with the Mandel problem
We first test the new stopping criterion (8.14) for the Mandel problem. The model parameters shown in Table 1

are used for these tests. The simulations are run from 0 s to 1 s, with a time step ∆t = 0.1 s and mesh 64 × 64.
The performance of the new stopping criterion (8.14) with δ = 0.1 is compared to criterion 1 (with ε = 1e − 6)
and 2 (with ε = 1e − 4) in Figs. 6 and 7. Fig. 6 shows the number of fixed-stress iterations required to meet
the stopping criterion for each time step. The new criterion (8.14) requires significantly less number of iterations
compared to criterion 1 and 2, especially at initial time steps. On average, the new criterion requires 1.4 fixed-stress
iterations per time step; in contrast, criterion 1 requires 4.4 iterations and criterion 2 requires 2.0 iterations. Fig. 7
compares the solution errors obtained using different stopping criteria. The accuracy of the new criterion is very
close to that of criteria 1 and 2 for all the time steps, especially at initial time steps where the errors are relatively
large.
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Fig. 6. Comparison of the number of fixed-stress iterations for each time step using difference stopping criteria for the Mandel problem.

Fig. 7. Comparison of pressure and displacement solution errors using different stopping criteria for the Mandel problem.

Table 8
Comparison of average number of fixed-stress iterations per time step
using different stopping criteria for the unconventional reservoir model.

criterion Avg # of fixed-stress iterations

criterion 1 (ε = 1e−3) 3
criterion 2 (ε = 1e−3) 2
new criterion (δ = 0.1) 1

8.3.2. New stopping criterion tested with the unconventional reservoir model
The second group of tests for the new stopping criterion is performed using the unconventional reservoir model

presented in Section 8.2. The simulations are run with a uniform mesh 128 × 128 and a uniform time step ∆t = 20 s
from 0 s to 500 s. The average number of fixed-stress iterations for different stopping criteria is summarized in
Table 8. In this case the new criterion also requires less fixed-stress iterations per time step than criterion 1 and 2.
An examination of the solutions along the center of the top fracture shown in Fig. 8 reveals that the new stopping
criterion achieves the same accuracy in pressure and volumetric strain as criteria 1 and 2.
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Fig. 8. Comparison of pressure and solutions at t = 500 s using different stopping criteria for the unconventional reservoir model.

We conclude that stopping criteria (8.12) and (8.13) may easily lead to over-iteration (or under-iteration), unless
the convergence threshold is carefully tuned. Without the need of tuning any hyperparameter, the new stopping
criterion is efficient and accurate since the fixed-stress loops are sufficiently iterated to balance the fixed-stress split
error with the discretization errors, achieving the same accuracy compared to the stopping criteria (8.12) and (8.13)
with less number of fixed-stress iterations.

9. Conclusions and discussions

We have established residual-based a posteriori error estimators for the Biot system solved with the fixed-stress
iterative split, EG for the flow equation, and CG for the mechanics equation. The residual-based error estimators
do not require solving auxiliary local problems and are therefore computationally efficient. Both upper and lower
bounds of the errors are obtained, although some lower bounds require weak error terms that unfortunately are
not easily included in the formulas of the effectivity index. These theoretical results are validated by numerical
experiments of the Mandel’s problem. We demonstrated the effectiveness of the a posteriori error estimators when
guiding dynamic mesh adaptation in a prototype unconventional reservoir model containing a fracture network. Our
numerical investigation suggests that the error estimators are effective by achieving dynamic mesh refinement near
the wells, across the fractures, at the fracture joints and around the fracture tips; and dynamic mesh coarsening
elsewhere. The numerical solutions on the dynamic mesh have the same accuracy as the solutions on a static
fine mesh, while using less than 24% of the DoFs of the fine mesh. We further proposed a novel stopping
criterion relying on the a posteriori error indicators. The new stopping criterion balances the fixed-stress split
error with the discretization errors and does not require tuning of the convergence threshold hyperparameter.
Numerical experiments using the Mandel’s benchmark problem and the synthetic unconventional reservoir model
have demonstrated the efficiency and accuracy of the new stopping criterion. Namely, the new stopping criterion
achieves the same accuracy compared to other commonly used stopping criteria (8.12) and (8.13), while avoiding
over-iteration that the stopping criteria (8.12) and (8.13) may easily encounter.
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Appendix

For the reader’s convenience, we recall here some useful bounds, either with or without proofs when they are
well-known. As usual, the family of meshes is regular, see (3.1). Let us start with a number of local inequalities,
with constants Ĉ independent of h, E , e, etc. First a local Poincaré inequality,

∀θ ∈ H 1
0 (E), ∥θ∥L2(E) ≤ ĈhE |θ |H1(E). (A.1)

With a different constant Ĉ , (A.1) also applies to functions that vanish on a part of the boundary of E with positive
measure. It carries over to the union ωe of elements adjacent to e, again with a different constant,

∀θ ∈ H 1
0 (ωe), ∥θ∥L2(ωe) ≤ Ĉhωe |θ |H1(ωe), (A.2)

where hωe is the maximum diameter of the elements sharing e. We also recall a local Poincaré–Wirtinger inequality
for functions with zero mean value

∀θ ∈ H 1(E) ∩ L2
0(E), ∥θ∥L2(E) ≤ ĈhE |θ |H1(E). (A.3)

Thus the mean value operator m E has the following approximation error:

Proposition 14. There exists a constant Ĉ, independent of h, such that for any e ∈ Eh and E adjacent to e, the
mean value operator m E defined by (4.18) satisfies

∀v ∈ H 1(E), ∥v − m E (v)∥L2(e) ≤ Ĉh
1
2
E |v|H1(E). (A.4)

Next, a trace inequality and a scaling argument gives for any E adjacent to e,

∀θ ∈ H 1
0 (ωe), ∥θ∥L2(e) ≤ Ĉh

1
2
e |θ |H1(E). (A.5)

On the other hand, we shall need local inverse inequalities valid for functions θ in finite dimensional spaces, the
dimension being independent of h, e, E . First,

|θ |H1(E) ≤
Ĉ
hE
∥θ∥L2(E). (A.6)

Next, we have the inverse trace inequality

∥θ∥L2(e) ≤
Ĉ
√

he
∥θ∥L2(E). (A.7)

If, in addition, θ belongs to H
1
2

00(e),

∥θ∥
H

1
2

00 (e)
≤

Ĉ
√

he
∥θ∥L2(e). (A.8)

The above constants depend only on the dimension of the local spaces.
Next, let us recall the bounds of some interface jump terms.

Proposition 15. There exists a constant Ĉ, independent of h, such that for all ph ∈ Mh and all constants δ > 0⏐⏐⏐ ∑
e∈E1

h

(
{κ∇ ph · ne}e, [ph]e

)
e

⏐⏐⏐ ≤ δ

2
Jh(ph, ph)+

1
4δ

(d + 1)Ĉ2 λmax

min γe
|ph |

2
h . (A.9)
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Proof. All constants Ĉ below are independent of h. Let e ∈ E1
h and let E be one of the two elements of T 1

h sharing
e. By (A.7), there exists a constant Ĉ such that⏐⏐⏐(κ∇ ph |E · ne, [ph]e

)
e

⏐⏐⏐ ≤ λ
1
2
maxĈ

( |e|
|E |

) 1
2 ∥κ

1
2∇ ph∥L2(E)∥[ph]e∥L2(e)

≤ Ĉ
(γe

he

) 1
2 ∥[ph]e∥L2(e)

(λmax

γe

) 1
2 ∥κ

1
2∇ ph∥L2(E)

≤
1
2

[
δ
γe

he
∥[ph]e∥

2
L2(e) +

1
δ

Ĉ2 λmax

γe
∥κ

1
2∇ ph∥

2
L2(E)

]
,

and the constant Ĉ is independent of δ. Therefore⏐⏐⏐({κ∇ ph · ne}e, [ph]e
)

e

⏐⏐⏐ ≤ δ

2
γe

he
∥[ph]e∥

2
L2(e) + Ĉ2 1

4δ

λmax

γe
∥κ

1
2∇ ph∥

2
L2(E1∪E2),

where E1 and E2 are the two elements of T 1
h sharing e. Then (A.9) follows from the fact that, when summing this

inequality over each e in E1
h , each element E appears at most d + 1 times. □

Let ah(ph, θh) be the bilinear form with τp = 1, i.e., we consider SIPG,

ah(ph, θh) =
1

µ f
((ph, θh))h −

1
µ f

∑
e∈E1

h

((
{κ∇ ph · ne}e, [θh]e

)
e +

(
{κ∇ θh · ne}e, [ph]e

)
e

)
. (A.10)

Then (A.9) implies for any δ > 0,

ah(θh, θh) ≥
1

µ f

(
∥θh∥

2
h − δ Jh(θh, θh)−

1
2δ

(d + 1)Ĉ2 λmax

min γe
|θh |

2
h

)
.

Hence the choice δ = 1
2 gives

ah(θh, θh) ≥
1

µ f

(1
2

Jh(θh, θh)+
(
1− (d + 1)Ĉ2 λmax

min γe

)
|θh |

2
h

)
, (A.11)

and the ellipticity of ah follows from a suitable choice of γe. Thus, we have the following lemma.

Lemma 2. If

min
e∈E1

h

γe ≥ 2(d + 1)Ĉ2λmax, (A.12)

with Ĉ the constant of (A.9), then

∀θh ∈ Mh, ah(θh, θh) ≥
1

2µ f
∥θh∥

2
h . (A.13)

The contraction property of the fixed stress algorithm (3.12)–(3.17) holds under the same sufficient condition
(A.12). More precisely, (A.12) implies in particular

∀ℓ ≥ 2, ∥σ̄
n,ℓ
h − σ̄

n,ℓ−1
h ∥L2(Ω1) ≤

1
βKb
∥σ̄

n,ℓ−1
h − σ̄

n,ℓ−2
h ∥L2(Ω1), (A.14)

where

β =
1

α2 M
+

1
Kb

. (A.15)

As βKb > 1, (A.14) means that the sequence σ̄
n,ℓ
h is contracting in L2(Ω1).

Now, we recall some properties of the approximation operators. We start with θh defined by (4.18). It follows
from Proposition 14 that for any e in Eh ,

∀v ∈ H 1(Ω ), ∥[v − θh]e∥L2(e) ≤ Ĉ
(
hE1 + hE2

) 1
2
(
|v|2H1(E1) + |v|

2
H1(E2)

) 1
2 ,

∥{v − θh}e∥L2(e) ≤
Ĉ
2

(
hE1 + hE2

) 1
2
(
|v|2H1(E1) + |v|

2
H1(E2)

) 1
2 .

(A.16)
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Next we turn to the operator Sh defined by (4.22). Let v be a function that is constant in each element; recall
that

Sh(v) =
∑

a

v(Ea)φa(x).

Let E ∈ T 1
h with vertices ai , 1 ≤ i ≤ d + 1. Since ai is one of the vertices of Eai , there is a sequence of adjacent

elements of T 1
h , E = E1, E2 . . . , Eki = Eai , with Eℓ adjacent to Eℓ+1. Since the mesh is regular, the number ki is

bounded by a fixed integer K independent of ai and h.
Now, as in E ,

d+1∑
i=1

φai (x) = 1,

we can write v(E) = v(E)
∑d+1

i=1 φai (x). Thus,

∀x ∈ E, Sh(v)(x)− v(x) =
d+1∑
i=1

(
v(Eai )− v(E)

)
φai (x).

By considering the above sequence of elements E j , this implies that

∀x ∈ E, Sh(v)(x)− v(x) =
d+1∑
i=1

(ki−1∑
j=1

[v]e j

)
φai (x), (A.17)

where e j is the interface between E j and E j+1. Hence

∀x ∈ E,
⏐⏐Sh(v)(x)− v(x)

⏐⏐ ≤ d+1∑
i=1

(ki−1∑
j=1

|e j |
−

1
2 ∥[v]e j ∥L2(e j )

)
φai (x). (A.18)

From here, we deduce the following proposition:

Proposition 16. There exists a constant Ĉ, related to the regularity of the mesh but independent of h, such that
for all functions v that are constant in each element E of T 1

h ,

∥Sh(v)− v∥2
L2(Ω1) ≤ Ĉ(K − 1)2

∑
e∈E1

h

he∥[v]e∥
2
L2(e), (A.19)

∑
E∈T 1

h

∥∇(Sh(v)− v)∥2
L2(E) ≤ Ĉ

(d + 1
d

)2
(K − 1)2

∑
e∈E1

h

1
he
∥[v]e∥

2
L2(e), (A.20)

and

∥Sh(v)− v∥2
L2(Γ12) ≤ Ĉ(K − 1)2

∑
e∈E1

h

∥[v]e∥
2
L2(e). (A.21)

Proof. By recalling that the set of functions φai , 1 ≤ i ≤ d + 1, form a convex combination in E , we infer from
(A.18) that

∀x ∈ E,
⏐⏐Sh(v)(x)− v(x)

⏐⏐2 ≤ d+1∑
i=1

(ki−1∑
j=1

|e j |
−

1
2 ∥[v]e j ∥L2(e j )

)2
φai (x).

Then, considering that ki ≤ K , we have

∀x ∈ E,
⏐⏐Sh(v)(x)− v(x)

⏐⏐2 ≤ (K − 1)
d+1∑
i=1

(ki−1∑
j=1

|e j |
−1
∥[v]e j ∥

2
L2(e j )

)
φai (x).
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But, as φai is a polynomial of degree one, that takes the value 1
d+1 at the center of E , the Gauss quadrature formula

gives ∫
E

φai =
|E |

d + 1
.

Hence

∥Sh(v)− v∥2
L2(E) ≤

|E |
d + 1

(K − 1)
d+1∑
i=1

ki−1∑
j=1

1
|e j |
∥[v]e j ∥

2
L2(e j ).

When summing this inequality over all E in T 1
h , each jump is repeated at most (K − 1)(d + 1) times. Therefore

∥Sh(v)− v∥2
L2(Ω1) ≤ (K − 1)2

∑
e∈E1

h

h̄e∥[v]e∥
2
L2(e),

where h̄e =
max |E |
min |e′| for all e′ in a neighborhood of E . The regularity of the mesh implies that h̄e ≤ Ĉhe. This yields

(A.19).
Regarding the gradient of the error, note that

|∇ φai | =
1
d
|ẽi |

|E |
,

where ẽi is the face opposite ai . Therefore, (A.17) implies that in E

|∇(Sh(v)(x)− v(x))|2 ≤
d + 1

d2 (K − 1)
d+1∑
i=1

(
|ẽi |

|E |

)2(ki−1∑
j=1

|e j |
−1
∥[v]e j ∥

2
L2(e j )

)
.

Hence

∥∇(Sh(v)− v)∥2
L2(E) ≤

d + 1
d2 (K − 1)

d+1∑
i=1

|ẽi |
2

|E |

(ki−1∑
j=1

|e j |
−1
∥[v]e j ∥

2
L2(e j )

)
,

and the same argument as above yields (A.20).
Finally, the proof of the trace inequality (A.21) is similar to that of (A.19). Indeed, we have

∀x ∈ e,
⏐⏐Sh(v)(x)− v(x)

⏐⏐2 ≤ (K − 1)
d∑

i=1

(ki−1∑
j=1

|e j |
−1
∥[v]e j ∥

2
L2(e j )

)
φai (x),

and ∫
e
φai =

|e|
d

.

Thus

∥Sh(v)− v∥2
L2(e) ≤

|e|
d

(K − 1)
d∑

i=1

ki−1∑
j=1

1
|e j |
∥[v]e j ∥

2
L2(e j ),

and (A.21) follows by summing over all face e of E12
h . □

An interesting by-product of Proposition 16 is the following trace inequality for the functions of Mh .

Corollary 1. There exists a constant Ĉ, related to the regularity of the mesh but independent of h, such that for
all θh ∈ Mh ,

∥θh∥L2(Γ12) ≤ Ĉ
[
∥θh∥L2(Ω1) +

(∑
e∈E1

h

he∥[θh]e∥
2
L2(e)

) 1
2

+

(
∥θh∥

1
2
L2(Ω1)

+

(∑
e∈E1

h

he∥[θh]e∥
2
L2(e)

) 1
4
)((∑

E∈T 1
h

∥∇ θh∥
2
L2(E)

) 1
4
+

(∑
e∈E1

h

1
he
∥[θh]e∥

2
L2(e)

) 1
4
) ]

.

(A.22)
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Proof. Recall that θh = θ ct
h + θdisc

h with θ ct
h ∈ Qh and θdisc

h constant in each cell. Then, we write

∥θh∥L2(Γ12) = ∥
(
θ ct

h + Sh(θdisc
h )

)
+
(
θdisc

h − Sh(θdisc
h )

)
∥L2(Γ12),

and in view of (A.21), it suffices to bound the sum in the first brackets. As this function is in H 1(Ω1), the trace
theorem in Ω1, see [40], yields

∥θ ct
h + Sh(θdisc

h )∥L2(Γ12) ≤ Ĉ
[
∥θ ct

h + Sh(θdisc
h )∥L2(Ω1) + ∥θ

ct
h + Sh(θdisc

h )∥
1
2
L2(Ω1)

∥∇(θ ct
h + Sh(θdisc

h ))∥
1
2
L2(Ω1)

]
.

Now, by (A.19),

∥θ ct
h + Sh(θdisc

h )∥L2(Ω1) ≤ ∥θh∥L2(Ω1)+∥Sh(θdisc
h )− θdisc

h ∥L2(Ω1) ≤ ∥θh∥L2(Ω1)+ Ĉ(K −1)
(∑

e∈E1
h

he∥[θh]e∥
2
L2(e)

) 1
2
.

Similarly, by (A.20),(∑
E∈T 1

h

∥∇(θ ct
h + Sh(θdisc

h ))∥2
L2(E)

) 1
2
≤

(∑
E∈T 1

h

∥∇ θh∥
2
L2(E)

) 1
2
+

(∑
E∈T 1

h

∥∇(Sh(θdisc
h )− θdisc

h )∥2
L2(E)

) 1
2

≤

(∑
E∈T 1

h

∥∇ θh∥
2
L2(E)

) 1
2
+ Ĉ

d + 1
d

(K − 1)
(∑

e∈E1
h

1
he
∥[θh]e∥

2
L2(e)

) 1
2
.

Then (A.22) follows from (A.21) and these two inequalities. □

Note that (A.22) readily implies that

∥θh∥L2(Γ12) ≤ Ĉ
[
∥θh∥L2(Ω1) + h Jh(θh, θh)

1
2 +

(
∥θh∥

1
2
L2(Ω1)

+ h
1
2 Jh(θh, θh)

1
4

)
∥θh∥

1
2
h

]
. (A.23)

This inequality has the following application.

Corollary 2. For all real numbers δ > 0 and δ′ > 0 there exists a constant C(δ, δ′) independent of h and ∆ t
such that for all functions f ∈ L2(Γ12) and θh ∈ Mh ,⏐⏐⏐ ∫

Γ12

f θh

⏐⏐⏐ ≤ 1
2

[ δ

∆ t
∥θh∥

2
L2(Ω1) + δ′∥θh∥

2
h + C(δ, δ′)

(
∆ t + h + (∆ t)

1
2 + h

1
2
)
∥ f ∥2

L2(Γ12)

]
. (A.24)

Proof. By applying to θh the trace inequality (A.23) in⏐⏐⏐ ∫
Γ12

f θh

⏐⏐⏐ ≤ ∥ f ∥L2(Γ12)∥θh∥L2(Γ12),

we infer⏐⏐⏐ ∫
Γ12

f θh

⏐⏐⏐ ≤ 1
2

( δ1

∆ t
∥θh∥

2
L2(Ω1) +

∆ t
δ1

Ĉ∥ f ∥2
L2(Γ12) + δ2 Jh(θh, θh)+

h2

δ2
Ĉ∥ f ∥2

L2(Γ12)

)
+

1
2

( δ3

(∆ t)
1
2
∥θh∥L2(Ω1)∥θh∥h +

(∆ t)
1
2

δ3
Ĉ∥ f ∥2

L2(Γ12) + δ4 Jh(θh, θh)
1
2 ∥θh∥h +

h
δ4

Ĉ∥ f ∥2
L2(Γ12)

)
.

The factor of δ3 can be further bounded by
δ3

(∆ t)
1
2
∥θh∥L2(Ω1)∥θh∥h ≤

δ3

2

( δ5

∆ t
∥θh∥

2
L2(Ω1) +

1
δ5
∥θh∥

2
h

)
.

Therefore, by collecting all factors, we deduce⏐⏐⏐ ∫
Γ12

f θh

⏐⏐⏐ ≤ 1
2

[(
δ1+

δ3

2
δ5
) 1
∆ t
∥θh∥

2
L2(Ω1)+

(
δ2+

δ3

2δ5
+ δ4

)
∥θh∥

2
h+

(∆ t
δ1
+

h2

δ2
+

(∆ t)
1
2

δ3
+

h
δ4

)
Ĉ∥ f ∥2

L2(Γ12)

]
.

It is easy to check that numbers δi > 0 can be picked, independent of h and ∆ t , so that both δ1 +
δ3
2 δ3δ5 and

δ2 +
δ3
2δ5
+ δ4 are arbitrary. This proves the corollary. □
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