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Abstract

We analyze the Biot system solved with a fixed-stress split, Enriched Galerkin (EG) discretization for the flow equation,
and Galerkin for the mechanics equation. Residual-based a posteriori error estimates are established with both lower and upper
bounds. These theoretical results are confirmed by numerical experiments performed with the Mandel’s problem. The efficiency
of these a posteriori error estimators to guide dynamic mesh refinement is demonstrated with a prototype unconventional
reservoir model containing a fracture network. We further propose a novel stopping criterion for the fixed-stress iterations
using the error indicators to balance the fixed-stress split error with the discretization errors. The new stopping criterion does
not require hyperparameter tuning and demonstrates efficiency and accuracy in numerical experiments.
© 2020 Elsevier B.V. All rights reserved.
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1. Introduction

Applications arising in the geosciences and biosciences such as subsidence events, carbon sequestration,
groundwater remediation, hydrocarbon production, and hydraulic fracturing, enhanced geothermal systems, solid
waste disposal, and biomedical heart modeling, are driving the development of numerical models coupling flow
and poromechanics. In this paper, we focus on deriving a posteriori error indicators for the Biot model that consists
of a poromechanics equation coupled to a flow model with the displacement and pressure as unknowns. In contrast
to solving the Biot system fully implicitly, we consider fixed stress iterative scheme that allows the decoupling
of the flow and mechanics equations. The decoupling scheme offers several attractive features such as the use of
existing flow and mechanics codes, use of appropriate preconditioners and solvers for the two models, and ease of
implementation. The design of this approach which is currently quite popular is important in the formulation of
efficient, convergent, and robust schemes.

In the fixed-stress split algorithm, the flow problem is solved first followed by the mechanics problem, and a
constant mean total stress is assumed during the flow solve. Kim et al. [1] demonstrated stability for fixed stress
and in [2-4] Mikeli¢ and Wheeler established contractive property of the scheme. Besides, we note here that this
approach can be interpreted as a preconditioner technique for solving the fully coupled system. For instance, the
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work of Gai et al. [5] and Gai [6] involved interpreting this scheme as a physics-based preconditioning strategy
applied to a Richardson fixed-point iteration. The same preconditioning technique was applied to the fully coupled
system in the work of Castelletto et al. [7,8].

Several extensions of the fixed-stress split scheme have been studied. Almani et al. [9] and Kumar et al. [10]
extended the fixed-stress split to the multirate case, in which flow takes multiple fine time steps within one coarse
mechanics time step. Borregales [11] extended the fixed-stress split to a nonlinear case. Dana et al. [12,13] studied
a multiscale extension of the fixed-stress split to a poroelastic—elastic system where the poromechanics equation is
solved on a larger domain with a coarse grid and the flow equation is solved on a small domain with finer grid.
Moreover, Bause et al. [14] and Borregales et al. [15] explored space—time methods of the fixed-stress split, and the
work of Rodrigo et al. [16] considered the stability analysis of the discretization schemes. Storvik et al. [17] studied
the optimal choice of the stabilization parameter used in the fixed-stress split. Lu and Wheeler [18] have recently
extended the fixed-stress split to a three-way coupling, an adaptive asynchronous coupling scheme that allows over
97.5% reduction in poromechanics computational time due to not requiring the displacement to be computed for
every time step.

Here we restrict our attention to the fixed-stress iterative coupling, analyze the enriched Galerkin method (EG)
for flow and Galerkin for elasticity. This is an extension of the previous work on Galerkin and/or mixed finite element
methods for flow [19] to EG. In the early works of Gai [6] and Wang [20] for two phase Biot system, it was observed
that local mass conservation for flow was essential. In Biot studies in fractured porous media, Lee et al. [21] have
demonstrated that EG is locally conservative and robust in treating fracture networks including quasi Newtonian
flows arising in proppant stimulation. Choo and Lee [22] showed that local mass conservation can also be crucial
to accurate simulation of deformation processes in fluid-infiltrated porous materials. Therefore, EG is an attractive
method for flow discretization, locally mass conservative, giving rise to inexpensive residual error indicators that
are easily incorporated in the code. Mixed methods are also well suited to local mass conservation. Recently,
Ahmed et al. derived a posteriori estimates for fully mixed formulations of Biot model for both the monolithic
scheme and the fixed-stress split scheme [23,24]. Their approach requires solving local auxiliary problems which are
computationally costly. Li and Zikatanov [25] derived residual-based a posteriori error estimates of mixed methods
for monolithic three-field Biot’s consolidation model that does not require the calculation of local problems, which
is promising to be extended for fixed-stress split schemes.

In this paper, we derive error equalities for each iteration of the fixed-stress algorithm at each time step,
followed by residual-based a posteriori error estimates. These estimates are based on separate results extended
to EG from [19]: contraction mapping, stability estimates and a priori error estimates for the discretized problem
that incorporate convergence of the iteration at each time step. Here both lower bound (efficiency) and upper bound
estimates (reliability) are obtained, but they are non-optimal in terms of efficiency in the sense that the lower
bounds involve weak residual errors that cannot be computed numerically, see Section 6. The upper bound estimates
represent an extension of Ern et al. [26] for the monolithic Biot system based on Galerkin approximations. In [26]
no lower bounds were derived and as far as the authors are aware none have been derived to date for Galerkin
schemes. In our theoretical work, it is clear that obtaining lower bounds for a posteriori errors is difficult, technical,
and requires weak error terms that unfortunately do not lead to obtaining the effectivity index easily. This is further
aggravated by the imbalance in the constants multiplying the pressure in the flow and displacement equations, see
Section 8.1.

While the analysis presented here applies to the poroelastic system, a novel feature of this work involves a
generalized poroelastic—elastic system that represents the coupled flow and poromechanics phenomena arising from
hydrocarbon production or geological carbon sequestration in deep subsurface reservoirs. The reason for this choice
is that in these phenomena the spatial domain in which fluid flow occurs is generally much smaller than the
spatial domain over which significant deformation occurs. It also improves standard approaches. Indeed, the typical
approaches model the same physics over one domain, either considers only the reservoir with an overburden pressure
imposed directly or models the entire reservoir and surrounding rocks with zero permeability in the surrounding
rocks. The former approach may misrepresent the mechanics boundary conditions and precludes the study of land
subsidence or uplift whereas the latter approach is computationally prohibitive.

This work is organized as follows. In the subsection below we establish notation. In Section 2, a continuous-
time model involving the decoupling of the model into elastic and poroelastic domains with interface conditions is
formulated in primal variational form. The primal formulation, complete with the fixed-stress splitting algorithm,
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is fully discretized with EG for flow and Galerkin for mechanics in Section 3. The a posteriori error equalities are
derived in Section 4, and the error indicators are inferred from them. Section 5 is devoted to an upper bound for
the total error. Section 6 introduces auxiliary weak residual errors. The lower bounds are discussed in Section 7.
Computational results are presented in Section 8. Numerical results on the Mandel problem confirm these upper and
lower error bounds. Moreover, the efficiency of using the a posteriori indicators to guide dynamic mesh adaptation
and a novel stopping criterion for the fixed-stress iterations are presented. Finally, Section 9 draws some conclusions.

1.1. Notation

To be specific, the notation is expressed in three dimensions in a bounded connected open set 2 C R*. The
scalar product of L%(12) is denoted by (-, )q

Vi ge LX), (f.9)o= /Q fx)gx)dx,

and the index {2 is omitted when the domain of integration is clear from the context. For any non-negative integer
m, the classical Sobolev space H™({2) is defined by (cf. [27] or [28]),
H™(2) = {v e L*N) : 8v e LX)V |k| < m},
where
alkly
8x11 3x22 8x

equipped with the following seminorm and norm for which it is a Hilbert space:

kv =

1 1

2 2

k 2
]y = Z/ ol dx | ol = | Y. 1P,

[k|=m O<|k|<m

This definition is extended to any real number s = m + s’ for an integer m > 0 and 0 < s’ < 1 by defining in
dimension d the fractional semi-norm and norm, see [29] and [30],
1

2
1940(x) — 9*v(y)]
e = [ / f I vy | Mol = (10Bmeo + 10Bo)

d+2s
|k|=m |x —.V| *

Bl—

These fractional order spaces are often used for traces. The following trace property holds in a domain {2 with a
Lipschitz continuous boundary 9(2: If v belongs to H*({2) for some s € 14, 1], then its trace on 32 belongs to

2 9
1 .
H*~2(942) and there exists a constant C; such that

Yv e H(2), |v| “i(g() < Csllvllasn)- 1.n

In particular, H %(8 2) is the trace space of H'({2), with norm
2
v(x) —v 1
v 1 =(/ v = vO)I” (;ly)l dx dy)?,
Hz2( rJr |x—yl
and H™ 2(8 {2) is the dual space of H 2(8 ). Flnally, if I" is a subset of 02 with positive measure, |I'| > 0, we

say that a functlon gin H 2 (I') belongs to HOO(F) if its extension by zero to 92 belongs to H 2 (042). It is a proper
subspace of H 2 (I'), and is normed by

1
2 2 2
Wi = (|v| /|()| T F)) (12)

where d(x, I") denotes the distance to .
We also recall Korn’s and Poincaré’s inequalities both valid for all functions v in H'(£2)? that vanish on I':

Vg < IC”E(V)”LZ(Qy (1.3)
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vl 20y < Plvlgig), (1.4)

where &(v) is the strain tensor, and K and P are constants depending only on (2 and I'. These imply

1
Vo) < CilleMl2).  Cr=K(1+P)2. (1.5)

A trace inequality for all functions v in H'(2)? that vanish on I" can be obtained by combining the interpolation
inequality
1 1
Yo e H'(2), vl 2y < CODIIE g 10121 )

with (1.4) and (1.3),

1
W2 < Calle®ll 2y Ca = CU(KPCY)?. (1.6)

As usual, for handling time-dependent problems, it is convenient to consider measurable functions defined on a
time interval ]a, b[ with values in a functional space, say X (cf. [29]). More precisely, let || - ||x denote the norm
of X; then for any number r, 1 < r < co, we define

b
L' (a, b; X) = {f measurable in la, b[ : / | f)llxdt < oo},

equipped with the norm

1
b 7
||f||u<a,b;x>=( f ||f(t)||§(dt) ,

with the usual modification if r = oco. It is a Banach space if X is a Banach space, and for r = 2, it is a Hilbert
space if X is a Hilbert space. Derivatives with respect to time are denoted by 9, and we define for instance

H'a,b; X)={f € L*(a,b; X) : & f € L*(a, b; X)}.

2. Governing equations and formulation

Let {2 be a bounded, connected, Lipschitz domain in R3. We are interested in the situation where a poro-elastic
model holds in a connected subset {2, of {2 (the pay-zone), completely embedded into (2, while an elastic model
holds in (2, (the nonpay-zone), see Fig. 1, where

=0\ 0.

Let I, denote the boundary of (2|, assumed to be Lipschitz, and let rnj, be the unit normal on I}, exterior to
£2,. In the examples we have in mind, (2| is much smaller than (2. This work extends readily to more general
configurations, but for simplicity, we focus on this situation. Let the boundary of (2, 32, be partitioned into two
disjoint open regions not necessarily connected, but with a finite number of connected components, each with
Lipschitz-continuous boundaries,

30 =TpUTy.
We denote by ng, the unit outward normal vector to d{2. To simplify, we assume that the measure of ' is positive:
|I'p| > 0.
Let o be the effective linear elastic stress tensor,
o) =2Gem) + MV -uwl, (2.1)

where e(u) = %(V u+ Vv u) is the symmetric gradient tensor, I the identity tensor, and A > 0 and G > 0 are the
Lamé coefficients. Let aP°" be the linear poro-elastic stress tensor

o™, p)=0c)—apl, (2.2)

where o > 0 is the Biot—Willis coefficient. Let f be the body force in (2. In the nonpay-zone, i.e., a.e. in {2, x 0, T'[,
the governing equations for the displacement u are those of linear elasticity. In the pay-zone (2|, the equations are
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Q

Fig. 1. Pay-zone with surrounding rock.

those of Biot’s consolidation model for a linear elastic, homogeneous, isotropic, porous solid saturated with a
slightly compressible single-phase fluid. The unknowns are the solid’s displacement # and the fluid’s pressure p.
This model is based on a quasi-static assumption, namely it assumes that the material deformation is much slower
than the flow rate, and hence the second time derivative of the displacement (i.e., the acceleration) is zero. After
linearization and simplifications, it leads to the following system of equations in {2 x 10, T'[,

V- MV -w)I +2Gew)—apl)=f in 2 x]0, T,
V-V -w)I +2Gem))=f infHh x]0,TJ,

1 1
3 (—p +aV- u) ——V - (k(Vp—prgVm)=q in 2 x]0,TI[,
M Ky

1
——«k(Vp—ps,gVn)-ni2 =0 onadf x]0,T[,
I 2.3)

[u]=0 ondfy x]0,TJ,
[c@ln, =apni, ond x]0,TI,
u=0 onlpx]0,T],

ongo =ty onlyx]0 T,

p(0)=po in {2,
where M > 0 is the Biot modulus, s the fluid’s viscosity, « the permeability tensor, g the gravity constant, oy, the
reference density, n a signed distance in the vertical direction, ¢ a given volumetric fluid source or sink term, and
ty a given normal traction. At initial time, u(0) is defined by the above system with p(0) = py, except of course,
the third and fourth equations. Note that the only boundary conditions on the pressure p are transmission conditions
since (2; has no exterior boundary. The tensor k is assumed to be independent of time, symmetric, bounded and
uniformly positive definite in space, with largest eigenvalue A, and smallest eigenvalue Ap, > 0,

ae. x €, Anin < Ai(X) < Amax, =1,2,3. 2.4)

For the sake of simplicity, we assume in addition that the coefficients of k¥ belong locally to some finite-dimensional
space, such as a polynomial space. This assumption can be avoided by a suitable approximation of k, but it
complicates the analysis, see for instance [31].

To simplify the notation, the density indices f and r will be dropped and o, will be replaced from now on
by p.

The mean stress o that will be used in the algorithm is defined by

o0 =K,V-u—ap, 2.5)
where K, is the drained bulk modulus, K, = A + %G.
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2.1. Primal variational formulation

Define the spaces:
Hop(2) ={ve H'(2) : v|r, =0}, W = Hp(2)". (2.6)

As shown by Girault et al. [32], problem (2.3) has the following equivalent variational formulation, for every solution
belonging to the spaces below:
Find u € L®(0, T; W) and p € L>®°(0, T; L>(42)) N L*(0, T; H'(2))) solving a. e. in 10, T[

2u(e(m), e@)o + AV -u,V-v)o =(f,v)o+a(p,V-v)g + &y, Vry, YveEW, 2.7
1 1

<8t <_p+avu>se> +_(K(Vp_pgv r’)s VQ)Q =(q,9)(21» V@ [S H](‘Ql)v (28)
M Q My !

with the initial condition
p0)=po in (. (2.9)
This problem has a unique solution for all sufficiently smooth data, say f € H 10, T; L2(02)Y), q € L?(2x10, T,
1
ty € H(O,T; H :i(FN)d), see [33]. The scalar product on Iy in (2.7) stands for the duality pairing between
H™3(Ty)! and HZ(Iw)".

3. Enriched Galerkin approximation

3.1. Mesh and spaces

For h > 0, let 7, be a regular family of conforming simplicial meshes of the domain (2, with 4 the maximum
element diameter. The family of meshes is regular in the sense of Ciarlet [34]: there exists a constant o > 0,
independent of &, such that

hg

— <o, VEeT, 3.1
QE

where hg is the diameter of E and og the diameter of the ball inscribed in E. We assume that
T=T, VT,

where 7, is a conforming simplicial mesh of (2; and 7,? a conforming simplicial mesh of §2,. Let &, denote the
set of all interior faces of 7, and 5,? the set of all its boundary faces. For any e in &, w, denotes the union of the
elements adjacent to e. We suppose that

g="0E",

where EhD ¥ is the set of all faces lying on I'p and S}Ilv ¥ those lying on I'y. The set of all faces interior to £2; is &
and that interior to (2 is 5,%. Finally, the set of faces on I'; is S}iz. A unit normal vector n, is attributed to each e
in & and &?; its direction can be freely chosen. Here, the following rule is applied: if e € S,‘;’, then n, = ng, the
exterior normal to §2; if e is in 5,} or E,%, then n, points from E; to E;, where E; and E; are the two elements of
Ty adjacent to e and the number of E; is smaller than that of E;. Finally, if e € S,}Z, then n, = n,, the outward

normal to §2;. The jumps and averages of any function f on e € &, (smooth enough to have a trace) are defined by

[f®)]e = f®lg, — f(x)|Ej, when n, points from E; to £},

1
{f()}e := E(f(x)|E,- + f@®IE;).

When e € £, the jump and average coincide with the trace on e.
Let k > 1 and m > 1 be two integers. On this mesh, we introduce first the following standard finite element
spaces:

W, ={eW:vlgeP,(E),VE € Ty}, (3.2)
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On=1{g € H'(2) : qlp € P(E),VE € T}}}. (3.3)
Next, the space Q) is enriched by piecewise constants in each cell, whence the name enriched,
My = Qi +1{q € L*() : qlp € Po(E),VE € Ty}, (34)

The displacement will be discretized in W), and the pressure in M}, and because of the discontinuous constants
in My, the discrete flow equations will be locally mass conservative. Their structure will be the same as that of a
discontinuous Galerkin formulation, but as the jumps involve only constants, their coding will be simpler.

As the exact solution is not necessarily smooth, it is approximated by Scott & Zhang interpolants (see [35]),

Ry, € LW, W), I, € L(H' (1), On). (3.5)

Considering the degree of the polynomial functions in W;, and Qj, these interpolants have the following quasi-local
approximation errors:

VE € Ty, Vv € HY(E)?, |v — R yigy < Ch?jlv|H5(AE), I1<s<m+1,0<j<s, (3.6)

VE € T,'.\Vq € H'(E). g — (@)l i) < C Wy qluscapy - 1 Ss <k+1,0<j <5, (3.7)

with constants C independent of E and hp, where Ag is a small patch of elements including E containing the
values used in computing the approximation.

Regarding approximation in time, the interval [0, T'] is divided into N equal subintervals with length At and
endpoints #, = nAt. The choice of equal time steps is a simplification; the material below extends readily to
variable time steps. The data is assumed to be continuous in time, and we set a.e. in {2

fn(x) :f(xa tn)v qn(x) = CI(X, tn)a tnN(x) = tN(x9 tn)- (38)
3.2. Fixed-stress iterative coupling

With these spaces, the fully discrete split problem is:
Initialization. Set

i = Ih(po). (3.9)
Compute u2 € W, and 6,? by solving

Vvi € Wi, 2G (@), ewn) o + A(V -4, Vwi) o = a (P, V- vi) o+ FO v + (6 va) 1, (3.10)
and setting

) =K,V -u) —ap). (3.11)

Time step n > 1.

n0 _ n-—1 n0 _ _n—1 -n,0 _ =n—1
1. Set p," =p, ,u, =u, ,ando, =0, .
2. For £ > 1, compute

(@) p;'* € Mj, by solving

a1, e 1 ;
Voh € Mi. (37 + %) 7, (P = i 6) g, + o EZTI ((V Py = pgV ). Vi),
€/
1
-—> (({x(v Pt = 08V ) - mele, [04le), + T, (Y 04 - e, [pz’e]e)e)
Hr eESII
1 Ye 10 n. a 1 0 ;
+ M_ Xg:, h_€([[7h Z]e, [911]e)e = _EE(Gh = o, ],9;,)91 +@", ) a;
eec),

(3.12)
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(b) the predictor of the difference in fluid content 8£ by

1 o?
P . n,t nl—1y.
8¢’ : (M Kb)(ph Py ); (.13)

(c) uZ’Z € W,, by solving for all v, € W,
2G (e "), 60) o + (V- Vewn) g = (P, Vown) o + (F'ovn) o + (s vi) s Bi14)
(d) 6, by
ot = KpV-ult —ap)t; (3.15)
h b h Pn .

(e) the corrector of the difference in fluid content 8; by

: n nl— r ., nle
8 =aV - @) —u T+ M(ph"i —prth. (3.16)
If
c P
”8¢ - 8¢7 HLOO(_QI) > &,
set £ < £ + 1 and return to (a);
else, set
b=t pp=pp, Wl =ult, & =600, (3.17)

march in time n <— n + 1 and return to 1.

Note that
: o _
55— = (e = o).

and hence the stopping criterion rests on the difference between two iterates of the mean stress. The choice of
parameter 7, leads to different EG schemes. For example, t, = 1 leads to the Symmetric Interior Penalty Galerkin
(SIPG) scheme, 7, = 0 leads to the Incomplete Interior Penalty Galerkin (IIPG) scheme, and 7, = —1 results in
the Non-symmetric Interior Penalty Galerkin (NIPG) scheme. For the sake of brevity, we shall mostly focus here
on the SIPG scheme. Through the choice of parameters y, > 0, the penalty jump term in (3.12) has the effect of
determining the allowable amount of discontinuity across an edge. The parameters can also be modified to take into
account the variation of k as in [36], but, as this option complicates the a posteriori analysis, it has not been chosen
here. Considering the uniform positive definiteness of the permeability tensor k, the parameters y, can be tuned
so that the system (3.12) has one and only one solution for each right-hand side, see Lemma 2 in Appendix. On
the other hand, owing to Korn’s inequality, (3.14) is always uniquely solvable for each right-hand side. Thus this
algorithm generates a unique sequence. As expected, the approach of [3] can be extended to establish unconditional
geometric convergence of the algorithm in the case of NIPG, and conditional geometric convergence, when the
parameters y, are sufficiently large, in the case of SIPG or IIPG (see Lemma 2 and (A.13) in the Appendix). Under
the same conditions, stability estimates and optimal a priori error bounds can be derived, similar to those in [19].

4. A posteriori error equations

In this section, we derive error equalities that bring forth residuals arising during computations. At this stage,
the data is assumed to be as smooth as needed.

For a posteriori estimates, it is convenient to interpolate the discrete sequences in time. Thus, for any discrete
function in time v", let
I —1ty

yrae VY, € e, 4.1

vl = v
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For the sake of conciseness, we shall use the following bilinear forms on the space H ")+ My,

Vo€ H' @D+ Mis Ji(p.6)i= Y 1 (10l 1612),.

| e
ecg),

Vp.0 e H'(D)+ My, (p.0),:= Y (£Vp.V0),.
E€7711

Vp,6 € H'()+ My, (p,O = (p.0), + Ju(p,0),

together with the seminorm

VO € H'(2)+ M, 10], = (0.0)2, (4.2)
and norm
1
VYo € H'(Q)+ My, 0], = (0, 0);, - 4.3)

The subscript E (resp. w,) is added when these quantities are restricted to E (resp. w,).

4.1. Flow error equation

The idea is to derive an error equality tested with an arbitrary function 6 in a suitable Sobolev space. The
beginning of the following derivation is classical.
With the above notation, the discrete flow equation (3.12) reads in each interval t,_1, t,]

1 o? 1
Vo € My (3 + ) @i, Oh) g, + ™ — (" o = Y (o5 1. V01 )
EeTh1

1
a PL_ Z (({K(V pZ’Z —pgV ) Rele, [9]1]e)e + 1, ({ICV Op - nele, [p/y,lj]e)e> 4.4

1
ee&,

-1
= —E(az fied Qh)gl +(q", 0o, -

Hence, assuming that p belongs to H'™#(£2;) for some ¢ > 0, and 9, p and V - (3,u) are sufficiently smooth in each
interval ]¢,_1, t,], the flow’s error equation, tested with 6y, is

1 a2 n,t 1 n,t
Vo € My (37 + ) (0P = pi) ) g, + 1 (PP O

- — Z( kV(p — P nele. [04)e), + 1, ({(kV O - nete, [p — pzf]e)e) (4.5)

9651
+ E(a,(o — 61D 0) g, =@ — 4", O

On the other hand, for all £ € 7;1, let 8| belong to H'*(E), for some ¢ > 0. The exact flow equation (2.8) tested
with 6 — 6, reads in each interval |t,_1, t,,],
2

V€ My (3 + )@ 6 — 0o, + —(((p,e 0 = Y (pgV 0. V(60 — ) )
Ee7711
1
- > (Y p = 08V 1) - mdes 16 = 6410), + 7, (VO = 6) - me)es 1), ) (4.6)
e65}l

o -
= —E(aza,e _9]1)91 +(q’9 —9}1)()1-
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Therefore, by writing 6 = 6 — 6, + 6, and using (4.4) and (4.6), the flow error tested with any 0|g € H't?(E) for
all E € 7;,1, becomes for all 6, € M, in each interval ]t,_;, t,],

(- +°‘2)<a( m) 6o+ ——(p — P, 6)
M Kh tP phr ) Ql /Jf p ph ) h

1 n, n, o = -n,{—
" > (({W(p — i) nete. [01), + T, (IkV O - nele, [p — pj; ‘]e)g) + E(a’“’ — 5, 0) g,

665;1
1 o’ n,t 1 n,t
= @0 =000,— [ (57 + )@ 0 = oy + (10 = 0hn = 3 (pge¥n. VO — ), .)
’ EeTh1

1
oS (¥ " = 08V ) - mebes 10 = B4Le), + 7 (V6 = 60) - s [ 1), )

’ eegli
+ (051570 = ) | +a —a". 600,
Kb T Q] 1

4.7)
This equality is modified first by observing that

@". 0, = (q,.00)0, and (.0 — O, +(q —q;. 0o, =(q —q,. o, +(q,,0 — 0o,
where g, denotes the L? projection on P, in each cell E; and next by applying Green’s formula in each cell E

=Y (VP = pgVm, VO =) e =Y (V- (Vpy' —pgVn),0 —6),

Ee7711 Ee’Thl
= 2 (VP = pgVi - mele 16 = 1)), + (TP} — pgVi) - mele 6. —641.),)
eeghl
— D (VP — pgVi) - min, 0 — 6),
eeé’f

Then (4.7) becomes for all 6| € H'™(E) for all E € T, all 6, € M), and in each interval Jt,_1, ,],

1 Ot2 n 1 n
(37 + 7)) 0P = P O+ (0 = 2y O

1 nt n.0 o = =nt-l
— (VG = Py medes 10L), + 5 ((6V 0 - medes Tp = 1), ) + - (05 = 3571 0)

1
ecg;,

=(q —q,,0)q

1 a? ¢ 1 ¢ o ool
+ > (@ = (= + )y +—V - (k(Vpy = pgV ) — —d,5,: "0 -6

EeTl(qh (M Kb) Pie My (K( P P8 7))) Ky e h)E
h

1
_ M_f Z (([K(VPZ’Z —pgVn) - n.l., {6 — Gh}e)e — ‘L’p({lcV(Q 0 -n,)., [pz,e]e)e)

1
ecg;,

1 n 1 n
- — Z (K(Vph’e —pgVn)-ni, 0 — 9h)e — — (Pt 6 —6y).
mr ee&,lz rr

(4.8)

Up to this point, the approach presented above is similar to that of [26] for a monolithic scheme. But now, we
want to bring forth the effect of the algorithmic error. To this end, we express the time derivative in the left-hand
side of (4.8) as it appears in (2.8). By means of formula (2.5) for the mean stress &, this gives the following version
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of the flow error equality:
1 ¢ ¢ 1 ¢
o(—p—prH+av-w—u" ,9) —(p—prte
(57 = P + @V - @ —u)) Pl Lt AR

n n 1 n,t nt 1 n,l
= (g = a0 + Y (i = (o Ph + oV u )+ S (k(Vpy“ = pgV ), 0 — 6h)

Ee7;,1
1 n n
+ — Z (({KV(]? - ph’z) : ne}ev [Q]E)e + 'L'p({lee : ne}es [P - p}fz]e)e)
I (4.9)
ec&y
1 n,t n,t
= — Y (T = PV meles 16 = B4)e), = Ty (VO = 60) - m)es [} 1e), )
.l eeS}}
1 n,t 1 n.t o —nt  =nt-1
r D (VP = pgVi) min, 0 —6), — o 0 =) 1, @ =500 g

12
ee&y

4.2. Elasticity error equation

Again, the idea is to derive an error equality tested with an arbitrary function v in a suitable Sobolev space. We
proceed as above, with the exception of the last step. First, we interpolate linearly in time (3.14) in each subinterval
and use the L? projection fj, of f on P2 in each cell E and the L? projection ty , of £y on P3 in each face e of
5,7 9 Then the discrete elasticity error equation reads in each interval ]z,_, t,]

Vv, € Wy, 2G(e]) —u), en)),, +A(V - W) —u), V. Vi) — a(pZ’f —-p, V- vh)Ql

n (4.10)
= (fhr —f, Vh)Q + (tl;\/,hr —ty, vh)FN'
Next, the exact elasticity equation (2.7), tested with v — v, for all v in W at any time gives
Y, € Wi, 2G(e(u), (v —vp))o + AV -u,V-(v—vp))o —a(p,V-(v—v)e, @.11)

=(f,v—v)o+EN,v—"V)ry.
Therefore, we infer from (4.10) and (4.11) the following elasticity error equation in each interval t,_, #,]:
Yo, € Wi, 2G(e(u —ul)), €)o + MV - —up), V-v)g —alp — pif V- v)g,
== firovao+ U =ty v)ry +(f,v—vp)e +(En, v —v)ry, 4.12)
— [2Ge@}). e = vio + MV - @), V- (0 = wg — (P V- (0 = v, |-
Finally, (4.12) is modified by using

Fov—ro+F—fivvie=F —fioVe+ v —ria,

a similar expression for ¢y, and Green’s formula in each cell E. This yields in each interval ]t,_1, #,], for all v in
w

Ywh € Wy, 2G(e(u —uyy), €@)o + MV - (@ — ), V-v)g —alp — pii', V- v)g,
= —frvo+ U =ty V)ry
+ D G+ Vo) —aVpit v —vie+ Y (e + Vo)), v —vi)e

EeT}! EeT? 4.13)
= > (lo@pHlene.v—vy), +a > ([P le. 0 —va) ne),
eeé) ecElugl?

N
— (o ng —ty e v — vh)FN.
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Note that (4.13) is valid at initial time (i.e. when n = 0). Note also that when the data and solution are smooth
enough, (4.13) can be differentiated with respect to time,

(0@ —uy)), e0) , —a(@(p = P V-9) o = (B —fi¥) o + (Bt =ty 1) ¥) 1,
+ > AV o@u) —aVapy v —w)+ Y (fi + Vo @up). v =),

EETh1 E€7712
e it (4.14)
= > (o @uy)lene.v —vi), +a > (3phle. 0 —va) - ne),
ecg) eeglugl?

)
— (0 ng — 3ty 4er v — v;,)FN.

4.3. Final error equation

In the spirit of [26,37], an upper bound for the error is obtained by testing, in each interval, (4.9) with
0=p-— p;l"f, (4.13) with v = 9,(u — uZ’f) and substituting the expression for
—a(p — s V- 0w — u oy,

into the resulting error flow equation. This gives an equation in each subinterval with left-hand side

LHS '_Liﬂ — i + Gille(u —ul'HN>, .+ &iIIV =Y
Tomar' P Pl dt e N2y T 5 g RRAVEIT) (4.15)
- o Pt '
M
and right-hand side for all 6, € H'(0, T; M;) and all v, € H'(0, T; W),),
Lt — et n.t @ —nl  =nmi—1
RHS :=— 7 — >, —_ : — —(0 o s ’9
1Ly ((ph Phe > P P ))h Kb( I(Uhr Ope ) h)Ql
r , R 1 . .
+ 2 (@ P eV )+ o=V (VR = pg V). p = Pl = ),
EeT}} f
! n n n n
+ - Z(({KV(P - ph,z) “Rele, [p — ph’f]e)e + Tp({ICV(p — ph’f) nle, [p — ph,f]e)e)
’ e€5,1
1
= — 3 (VP = pgVm  meles Ap = Py = O0)),
Hr ee«‘,‘}t
- Tp({'CV(P - pi —0p) - nele, [PZ’Z]e)e ) 4.16)
1 , ) . n :
R Z (k(Vpy* — pgVn) -niz, p — phf — 6n), — — Inpi* p = P — 0w
Hr ecel? MKy
h

+ Z -+ v- o(uZ’f) —aV pZ’f, 9, (u — uZ’f — vh))E

EeTh]
N4 N4 N4 w4
+ Y (e + V@), o —upf —vi), — Y ([0 @y)lene, 0, — )t —wy)),
EeT? ec&y
N4 N N4 N4
o Y (e 0 —uit =) me), — (0 @i Ing — 8 e 3@ —ut —v)
ecgugl?

+(a =i p = Ph) g, + S 8@ — w3 )) o+ (O — By e 9w — )

For each n and ¢, in each interval ]¢,_;, t,], the usual choice of function v, is

vi = Ru(u —u})), (4.17)
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whereas the simplest choice for ), considering that M; contains the constant functions, is the integral mean value
in each cell E,

n 1 n
Oule = me(p = pj) = = / (p— P, 4.18)
E

As the surface terms involving «V p - n cannot be controlled by the left-hand side, we apply the argument
introduced in [38]. It consists in extracting the problematic surface terms from the consistency error Eq. (4.5) and
thus expressing them as functions of quantities that can be estimated. Since these terms depend on the choice of
parameter t,, to simplify the discussion, we choose from now on 7, = 1 (i.e., the case SIPG), the other cases
are slightly simpler because they involve less terms. With 6, defined by (4.18), the sum of these surface terms
is

1
- Z({KV(p - pz,l) : ne}w [—PZ}K]e)e =

1
ecg)

D (V= Pty - mede, [P — 1), (4.19)

1
rr eeg,]l
for any function 6 in H'(0, T; Q},), where Q}l denotes the space Q) defined in (3.3) with degree k = 1 (thus having
no jump). Then the flow error Eq. (4.5) tested with pZ’f — 0 € M, yields

1 n n 1 ()[2 n n
i > (VG = pi) mele 1P =01 ) e = = (5 + K_,,)(a’(” = i) Py = 0) g
eegé
1 1
— - Pt pn =0+ wr > (keVpyt = 0) - nele. [p — Pi'Le),

66511
o - _niel ’
- E(al(g—a:rz )’PZre_e)Ql-i‘(C]—C]Z, pi_e)Ql-

Bringing forth the algorithmic error, this can be written

1 1
—— > (V= pi") mede. P =61 ) e = =0 (5, (0 = D) + oV - @ —uiD). i/ = 0)

Hr ee:‘:hl
1 1
— —(p =y =+ — Y (kv = 0) - nee. [p— Pile),
Hr H# eeS,'l
o _ nt— n
= 1, (0@ =T Pl = ) g+ (g =gl Pl = )y

Considering that 6 does not jump, the double scalar product has the expression

1 ¢ 12 1 ¢ n,t 1 n,t n,t
——(p =Py Phy =~ =——(P =y Ppr —0), + — DDy Piy)-
/-'Lf h ht /-'Lf( h ht )h Mf h ht

Thus

1

1 1
- > (V= i - mede [pyi = 01e), = = (@ (3, (p = Py + @V - (w = uy). piit =)

665,1
1 ( n,t n,t 0 1 J n,t n,t 1 v n,t 0 n,t
T Gt )h+u_ W (D) ,phr)+u—z({x (Phy = 0) - meles [p — Py le),
f f eeE,i
o

— 2 (0@ =D P = 0) g, + (@ — gl pic =)oy
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Therefore, by substituting this equality into (4.16) and (4.15), we derive

1 n n n 1 n n 1 n n
LHS =—(py" = Pt 0 = P = — (P = " Pl = 0), + — (0. 203 + 60)
% Hy Hy

o —n.t —n -1 (%4 —n,l —n,t—1 N
- ?(af(o—:r _Gl;lt ), 9/7)_01 - E(af(g}:lr _G];lz ), er _9)(2

b 1

Lo 0 1 . )
+ 2 i - a’(ﬁphf +aV-uy) + ;va (k(Vppt = pgVm). p— Pl — 6,
Ee’771l

1
-— > ( (e(Vp* = pgVm) - mle, {p — Phyf — Onle),
i ecEfugl?

1
+ — Y (VP = 0) - nele, [p = Pi*Le),
B el (4.20)

1
+(a =4 = 05,0 = P +aV @ —ui)). pif = 8) g + (g~ i = i) g,

+ Y (e + Vo) —aV pit g —ul — ),

Ee”l;l1
+ (A V@), o — =), — Y (lo@))lene, 0, —ujyf — i),
EE77,2 eegy,
o ) (e 0 —uyt =) - me), — (0 @i Ing — 8 e 9@ —upt —vi)
ecEuEN?

+ (f —fi 0 —wyD)) o + (tw = B e 0w — )

Note that this formulation requires that 8;(% p+aV. u) be sufficiently smooth to be tested against piecewise
polynomial functions.
The functions v, and 6, have been chosen by (4.17) and (4.18), respectively. To choose 6, recall that p,, =

Pt + plise where ct denotes its continuous part and disc its discontinuous constant part. Then we take

0 = pi + Su(pheo). 4.21)

where S}, is an approximation operator of Scott & Zhang type [35] that is globally C° and piecewise IP; in each
cell, see [39]. More precisely, for any node a of 2|, we choose an element E, in {2, with vertex a, set

Su(pisy@) = pis|g,,

and

Ve e D, Si(Pi@) =Y pie(Ed)da(x), (4.22)

where ¢, is the standard piecewise P; basis function and a runs over all vertices of elements in {2;.

Now, for each n, we consider (4.20) for the last iterate £ = ¢, that achieves convergence of the discrete mean
stress so that we can drop everywhere the index £ except when it appears as £ — 1, i.e., p;, = PZ%K", u,, = u;’l‘f”.
In addition, to avoid a multiplicity of notation, we denote by v} the step function in time that takes the value vy
in the interval J#,_1, f,]. Then, we integrate both sides of (4.20) from Otot,0 <t < T, say t,,_1 <t < t,, and
again to simplify, this integral of the step function vj is denoted by fOI vy. At this stage, we observe that the time
derivative of u — u;,, and p — pj,,; cannot be absorbed by the left-hand side; and hence will have to be integrated
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by parts. Thus, we derive the following error equality:
fll(p Phr)(t)”Q +Glle@ —up) 05 + *IIV @ —wp )OI + 7/ Ip = paelly

:7/ ((ph—Pth—th))h—*/ (P—Ph,Phr—H)th*/ Jn(phs 2phe + 0)
wr Jo wrJo wrJo

t t
= i/ 0 Gne — 517 ). 0n) g, — i/ 8Gne — 5171 pue = 0) g,
1
+/ > qh—at(—phﬁav upe) + =V - (Vi = pgV ). P = Phe — 04) g
EeT}) _r
- / > ([K(Vph—pgvn) nele. {p — Phr — Onle), +7/ > (e Vippe — 0) - nele. [p — Ph]e))
81u512 ecE}

r
+ /0 ((q ans Phe —0) o, + (@ —an. p — Phr)m)‘f'/(; (M(P_Phr)‘f'av'(u_uhr)v % (pne = 0)) g,

/ Z 0 (fne +V-opr) —aVpp),u— Vh)E
EeT)]
t
/ Z e +V-o(upg)), u—up; — Vh) + / Z ([3t0(uhr)"e]6a U—upy — vh)e
E€7;;Z ec&y
t t
_ / o Z ([0¢ Phrle, @ — upy —vp) - ne)e + / (0o uprIng —ty pr) u — upy — vh)FN
0 1,212 0
eeE, UE,

t t
- fo (0 (f —fno)ru —upe) g — /0 (8 (tn — tn pe). w — upe) py + Tnit + IP(r) — IP(0),

(4.23)
where
1
Init := Il po — y(po)lI5, + Glle@(0) — up)||3, + ||v - @(0) — u)%, (4.24)
1
IP(0) = = ((37(P = pue) + @V - (@ = wi )@, (pre = 0)D)
+ D (e + Vo) — aV puo)(t), @ — wye = vi)(D))
Eenl
+ Y (e + V0 @i))0), @ —wpe —vi)(0) , — D ([0 @) (Onele, @ — e —=vi)D),  (4.25)
Ee’Th2 ec&y
+a Z (LPre®]es @ — wpe — vi)(@) - 1), — (0 (@ (O — by e (D), @ — U — Vh)(t))pN
eeglug)?

+(F =)0, @ = ue)(D) , + (@t = tna)(O), @ =y )O)

5. Basic upper bounds

Here we bound the expressions on the right-hand side of (4.23), in terms of the errors on its left-hand side,
the errors on the data, and what will be recognized as error indicators. Recall that this inequality is written for
tn—1 <t <t, <T,and ¢ is usually omitted because it is understood that at each time ¢,, £ = ¢,, the smallest
integer that achieves convergence. Of course the inequality is valid for any £ > 1, and for the sake of clarity, the
indicators are all defined with the superscript £. Below, C denote various constants that are independent of i, At,
and £. Recall that A, and Apin > O are the largest and smallest eigenvalues of « and recall that v; denotes the step
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function in time that takes the value v;, in the interval ]7,_1, t,,] and its integral is denoted by fot vy,. To simplify, it
is understood that in min y, and max y, the minimum and maximum are taken over all faces e of 5,1. We consider
first the expressions not included in Init, or IP.

5.1. Expressions involving 6y,
Recall that 6, is given in each E by mg(p — pu:), see (4.18). There are four expressions, we treat each one in

their order of appearance. In the first one, we shall recognize the following indicator that measures the jump of
pZ’l on interfaces in each interval |z,_1, t,],

" LoYeNs

Mo = (A1) (25) 1123 Tl (5.1)
Note that

STty = Ardippt. pih.

eeéﬁ

Proposition 1. There exists a constant C such that for all constants §; > 0, we have

1 t
—|/ Ju(ph. 2pne + 61)]
Hr Jo
(5.2)

< s [0 [ o=t + (ZZ M) + @+ D) Y L))

nnn
n= lee n=l ¢ Sl

where Amin . is the smallest eigenvalue of k in the union of the two elements adjacent to e.

Proof. Let X = J,(pn, 2pne + 6n) = Jn(Ph, Pir) + Ju(pr, pre + 63). First, by Young’s inequality, for any 6; > O,
and since p does not jump

1
| Jn(ph. pae)| < (Blfh(pm p. Pwr — p)+ EJh(Pha pn)).

This will give the first part of (5.2). For the second part, by the definition (4.18) of 6;, it follows from (A.4) that,
for E adjacent to e

1
E 2, 1
) 163V (P =Pl 2

knﬂnx

AL ~
i = P40 20 = P = p=mE (i = D)l 260y = ChE pie = Pl = €

Therefore, owing to the regularity of the mesh,

/\

1 Ve
In(Phs Pre +01) <= (almn Pl + —(d +1) Z —||[ph] 12, hE - )
eegl mme

Ve
< 5 (s11pue - p|h+—<d+1>2—|| [l )

eESl
After integration in time, this will give the other part of (5.2). [

In the second expression we recognize the algorithmic error indicator defined in each interval ]#,_1, t,] by

M = (Af)2|| (” 5 ey G-

Proposition 2. There exists a constant C such that, for any &, > 0,

o A — 01 1 2 Mo \2 1 oae)?
| [0 =100, ] < 5[ S~ iy + 5, () (D(@0') ] 64

n=1
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- —0—1 .
Proof. Let X = Kib(a,(oht -0, ) Qh)!?]' On any interval Jt,_1, t,],

o 1,0 e
Kb At —— (@ =" o)
and the definition of 6;, implies

—n,e—1
| | = At X, || oy’ _U;; ||L2(Ql)||phr _p”LZ(QI)-
Hence
1,
n o 1 ¢
/ 1X| < ?(A f)zﬂ?s' sup | pur — Plliz2oy)
In—1 b IE]O,I[

and (5.4) follows by summing this inequality over n and applying Young’s inequality. [J

The third expression involves the following local interior residual flow error indicator in each interval ]z,_;, #,]
and all E of T,!:

nt L n 1 n,t 1 n—1 1 n,t n—1
M = he(A0) a2V (VP = gV n))—ﬁzwh —P e Ve = g (55)
Proposition 3. There exists a constant C such that, for any &3 > 0,
1
‘/ > Qh_az( Phe +aV - uhf)+—V (k(Vpu = pgV ), P — Pie — 61 ) & ‘
Ee7;l
(5.6)

1
5 _83f |P th|h+'u“f8 CZZ Z ’é*[’)z]’

mmE
n=1 geT}]

where Amin g is the smallest eigenvalue of k in E.

Proof. Owing to (A.3), we have

A

1
hellk2V(p — Phr)”LZ(E)-

P — Pue = Onll L2y <
)\'2
min, £

Then, the proof of (5.6) is a straightforward application of this bound and Young’s inequality. [

The last expression involves the following local jump flux error indicator, for each e in £ UE,}? and each interval
]tn—l 5 tn]:

1
ng{ll;(,e = (heA t) 2 H [’C(V pz’[ - IogV n) : ne]e HLZ(e)' (5.7)

Proposition 4. There exists a constant C such that, for any &3 > 0,

‘ / Z [K(Vph - ,Ogvﬁ) e e {p Pht — eh}e ) e
ecE UEN? (5.8)

1
fﬂ 5 / P = Pl + 5 cz(d+1)2 > ]

n=1 el Ug)? Amin,e
Proof. Note that (A.16) implies that 6), also satisfies for e in £ !
2 c? i 2 1 2
”{p — Pht — 9h}e||L2(e) = mhe(”’CZV(P - pll‘[)llLZ(El) + ”sz(p - phf)”LZ(Ez))v

with only one element E when e is on 8;2. This readily yields (5.8). U
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5.2. Expressions involving 0

Recall that 6 is defined by (4.21) and (4.22). Here, there are five expressions, examined in their order of
appearance. In the first one, we shall recognize two time error indicators in each interval ]#,_, #,], one for volumes,

At L .,

n—1

mp = (5P = P (5.9)
and one for jumps on each face e € &/,
n.t At n—1
= ( 3) (h) Iy = P el ey (5.10)
Note that
(O + Y () = IIPZZ—ph I7-
eeSl
Proposition 5. There exists a constant C such that, for any &1 > 0,
1 ! 1 ! )
—‘ (P = pupwe —0) h‘ < [261 P = Paelli
mrlJo 2u
d+1., "o 5 5 5 (5.11)
~2 2 max n n n
+ ac ( d ) (K =1 min y, Z(z(nt,p) + Z((nt.l) +(npen) )) ] .
eeS,}
Proof. First, we deduce from (A.20) that
~d+ Amax 1
|phr _0|h = C_(K - 1)( ) Jh(phrv phr)z
min y,
~d+1 max 1 L
C—(K —1)( may )? (Jh(phr = Pns Phe — Pi)% + Ju(pn, ph)2)~
Next, we split p — py, into p — pp; + ppr — pin and set
1 [ 1 !
X1=—/ P — DPue, pre —0),,  Xo=— [ (prc — Pn, pur — 0),.
[ =0 = [ )
The above inequality yields
d + 1 ITlaX
[Xq] < —C—(K —1)( |P phrlh(-]h(phr — Ph> Pht — Ph)2 + Ju(pn, Ph)2)
Y min y, e
With Young’s inequality, this becomes
A2 d+1 2 Amax n \2
X)] < — 261 |p pclt + 5 c () K = 3 > () + (2,)%) ] (5.12)

n=1 eé‘l
Regarding X, there is no need to split J;,(pn:, pr.) because the first factor will be bounded by an indicator. Indeed,

in view of (5.9), we can write

m

1 1 d+1 max n \2
|X2|s%[281/ I = phes 0 = i)+ 55-CH (S K = 1P S )] (513)

n=1

and (5.11) is derived by adding (5.12) and (5.13). O

¢
The second one uses 1~ as follows:



V. Girault, X. Lu and M.F. Wheeler / Computer Methods in Applied Mechanics and Engineering 369 (2020) 113185 19
Proposition 6. There exists a constant C such that, for any 83 > 0,

o ! _ e
—]/ (9 — 557, pm—e)nl}
Ky Jo

1
<
-2

o (5.14)

83
[ /th(p Phes P — phf)+ ( —CX(K — 1)22}12 nfg

n=1

Kb) min y,

Proof. The estimate (A.19) implies

h2
A2 2
1P =120 = CHK = 1P e JiPae i)
From here, we infer (5.14) via Young’s inequality. O

The next proposition estimates the third expression.

Proposition 7. There exists a constant C such that, for any &3 > 0,

1 t
_f‘ / Z({Kv(phr —0)- ne}e’ [P - ph]e)e
0
eeS,{

(5.15)

1 t d+1,d+1 2 A max
52—[33/0 In(p = Phes P — Pre) + 25, ( p )Cz(mmaye) (K_I)ZZZ pen) ]

tr m= leegl
h

Proof. Since 6 is a polynomial function, by combining the argument of Proposition 15 with that of (A.20), we
obtain for any § > 0

_‘ Z eV (pre — 0) - nele, [pale),

%%
eeSl

d+1 d+1)262< Amax

< L [s0pm, o) + ( )ZK—IZJ
_%[ w(Phs Dh % p ( ) h(thPhr)],

min y,

Thus, the choice

85 =

d+1,d+ 127,/ Amax
28 ( d )C<

leads to (5.15). O

d+1 d+1)26’\2( Amax

2
— 2 1 —
) (K =12 e, s =50 (=

)Z(K — 12

min y, min y,

The fourth expression is estimated by applying an easy variant of (A.19).

Proposition 8. There exists a constant C such that, for any &3 > 0,

)
\/ 9= dns Phe = 9.(-2[ : / In(p—pae, = phf)+—cz<l<—1)2

2] (5:16)

Finally, for the fifth expression, we shall use as indicator the jump of the pressure’s time derivative on each face
e € & and in each interval ]t,_1, t,],

= hAt( ) |I—[ph = el 20)- (5.17)

The proof of the next proposition follows easily from (A.19).
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Proposition 9. There exists a constant C such that, for any 8, > 0 and §4 > 0,

| 11 6
‘/(; (M(p - ph,r) —i—OtV : (u - uht)v at(phr - 9)) ‘ = E I: _”p phI”Loo(Ot LZ(QI))
11 o A (K —1)? 5 1N2 (5.18)
_ 2 - Rl 2\ ) n W)
+ )"84”V : (u uhf)”LOO(O,t:Lz(Ql)) + (M 82 + 84)\.)C min Ve (ZI(ZS:I(napJ) ) ) ] °
=1 ee h

5.3. Expressions involving v,

Recall that v;, is defined by applying (4.17) with degree one to u —u,,,. Here, they can be combined so that there
are five expressions, and each one is estimated straightforwardly by using (3.6) with s = 1, either applied directly
or following a trace inequality. This leads to the following error indicators in each interval ]¢,_, t,]:

the time derivative of the displacement equilibrium in all E of 7,!,

nrg,el,é)u = hEA t” (fh + V. O'(llZ ‘ uZ_l) - av(pz,ﬁ - PZ_I)) ”LZ(E)’ (519)

the time derivative of the dlsplacement equilibrium in all E of 72,

’775’,[2,314 =hegA t” (fh 71 +V- ‘7(“2’{ - “Zﬁl))”LZ(E)’ (5.20)

the time derivative of the stress tensor’s jump in the pay-zone and interface, i.e., all e € 5}} U 8,12,

-1 N 1
MY g = thtlI— (0@ —uy™) —a(phy’ = prYDnClell 200, (.21
the time derivative of the stress tensor’s jump in the interior of the nonpay-zone, i.e., e € £7,

s 00 — Arn Loy w2 (5.22)

the time derivative of the stress tensor error on e € [y,

3 1 n n— n—
Moo = heZAf”A—t("(”h’Z —uy g — @y — ) 2 (5.23)

For the sake of conciseness, p is extended by zero in {2,. We obtain the following volume estimates for any § > 0;
to simplify, the number of repetitions of an element is not specified and is incorporated in the constant C,

Z‘/ (0 (e +V - 0 @ne) — @V ppe), u — e _Vh)E‘
Ee7}l’

m

2 lA 1N\2
< 3 Y31V = 0B 2+ 5 (ian))?) |

i=1 n=1 Ee77li

l\)l'—*

Note that by Korn’s inequality (1.3) with I' = I'p

2

2 2 2 2 2
“V(u - uhf)”LZ(Qi) = ”V(u - uh‘t)“LZ(Q) = ]C ”E(u - uh‘f)”LZ(Q)'

i=1

Therefore the two volume estimates can be combined as follows:

Z‘/ ( (3 (e + V- 0 @ie) — @V pio),u — upe _Vh)E>‘
EeT‘
1 I G

< 5 [55G e~z + g 2 (2 (a))

i=1 n=l EE77:

(5.24)

D=
SN——"

[
—_
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A similar argument leads to the interface estimates,

‘ / 3,((7(14;”) —appDnele, u — wpr — vh)e + (at(a(uht)n() —IN ), U — Upr — Vh)p[\])‘
ee&y,
éZICZ m 1,2 m 1\ 2 (525)
[856”3(” - uhr)”iC’O(O,Z;LZ(Q)) + _<<Z(Z (nZ,30)2)2> + (Z( Z (nZ,N,ao)z)z) ):I’
=2 G\ i n=1 oeghd

where 7, 5, stands for 7,1 5, in 5; U 5,%2 and 1,230 In 5,3.
5.4. The first expression and the data errors

The first expression has a straightforward bound,

Mif‘/o (pn = phes P — phr))h < — 81/ Ip = paelli + Z( (nt,) 24 > )] (5.26)

eeSl
There remain the three data errors. We start with the error on ¢,
! - 116, 2 M 2 5.7
) (q —4hs P — phr)ﬂl —= 5 M”Phr - p“LOO(O,t;LZ(‘Ql)) + E”q - 6]h||L1(0q,;L2(Ql)) . (5.27)

And we finish with the error on the time derivative of the force and the given traction,

t
‘ / (8t(f _fhl’)a u— uhT)Q‘
0
1 5 7)2 2 5
= EI:(SSG”s(u - uhf)”LOO(O,z;LZ(.Q)) + (Sj_G ”af(f _‘fht)”Ll(O,t;Lz(Q))]’
t (5.28)
‘ / (8t(tN - tN,hI)v u— uhr)pN‘
0
2
< l[&GHe(u — ) g eriay + e 10y = i) g g2y )
) L2°(0,1:L2(02)) 855G , LY0,;; H=12(I'y))

1
where C is the constant of (1.5) and Cy is the constant of a trace inequality on [y, from HO%(FN)3 to W.
5.5. Bounds for IP(t)

The bounds in this subsection are derived in the interval ]z,,_;, t,], | < m < N. They use the following error

indicators at time #,:
the pressure jump

n, Ve 1 n,
= he(15)? P, Tell 12 (5.29)
for i =1, 2, the displacement equilibrium in all E € 7;5, with p; set to zero in {2,
g5 = helfy + V0@ —aV pillag, (5.30)

the stress tensor’s jump in the pay-zone and interface, i.e., all e € £} U 5}12,

M = R — ap Dndl 2, (5.31)

the stress tensor’s jump in the interior of the nonpay-zone, i.e., e € £7,
1
L 2 N
Mg = he lllo @, nlell 2 (5.32)
the stress tensor’s error on e € Iy,

1
Mye = hlo@yOmng —ty 20 (5.33)
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The first bound follows readily from (A.19): There exists a constant C such that, for any §¢ > 0 and &7 > O,

1
| (7P = pre) +aV - @ = w0, (P = O)D))

1
<3 [ 2P = Pr)OW2 g, + 2871V - @ = )O3 (5.34)
1 052 2 1 m \2
Gt K - g(a =0y s )% |-
ec h

where 0 < s < 1, in fact s = FZ",‘I since f,,—; <t < t,. The remaining bounds are straightforward; they hold for
the above s and for any §g > 0. We have first the volume estimate,

2
S| (i + V0@ — @V piodo), @ — wie =) |

=l peT}
2/c2 (5.35)
1
= 5 [5G e — w12 0, + Z > (=)0 +s0rz.u)) |
= EeT]
Next, we have the interface estimate,
‘ Y (@) = apreD)Onele, @ = wie = vi)(D)), + (0 @ae (g =ty je (), @ = whe = vi)D)
eEgh
_1
= 5 [ 8Gle@— w00l (5.36)
C21C2
o (=900 +502)) + 3 (= 900L) +s(lve))) |-
ec&p eeiév'a

Finally, the bound for the data terms is

1
((F =Fir)0) @ = )0) o + (6 = )0, @ =) D), | = 5 [ 85G e = w0122,

. (5.37)
ICZ”f fhr ||LOO(0t L2(02)) + CNC2||tN tN hT”LOO(()t H- I/Z(FN))) ]

* 5l

5.6. The initial errors

Let us start with bounds for IP(0). At initial time, these bounds are simpler, mainly because pg has no jumps,
and hence (pj,; — 6)(0) = 0. Hence a combination of (5.35)—(5.37) gives for all §g > 0

1
|1P<0>} < [358G||e<u<0> —u)2 g,

oo (k2 (Z D)+ 20 (20) X (o) X ()’ (538)

=l geTjl ecEuE? ec)? eeg,llv’a
+ 1If = fae 2 +CICR Nt — tne ]
htllpoo(0,r:12(2)) 1ENIEN T EN bl oo, m=1/2(Iy)) ) | -

Note that 7 |  only appears in the interface because pj does not jump.
Regarding the initial pressure and displacement errors, by definition the former is simply an interpolation error,
see (3.9) and (3.5). But the initial displacement is computed and its error stems from (4.13). By testing (4.13) at

n=0withv=u— u2, we readily derive by the above argument that

2Gle(u(0) — u,,>||L2(Q)_4x||p<0) Pl 0 + [TPO)]-
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Hence the choice §g = 5 in (5.38) yields
0412 o 02
G||€(u(0) - uh)”LZ(_Q) = H”p(o) — P ”LZ(QI)

(R (NN 0+ Y (ha0)+ 0+ X (o)’ (539)

i=l EeT}i ecEue? ecE)? eef,iv’a
2 22 2
+ “f _fh‘l.' ||LOO(0J;L2(Q)) ) +C1 C‘N ”tN - tN,h‘L' ||LOO(OJ;H—I/2(I"N)) ) .

Similarly, the choice 83 = 3 in (5.38) leads to
0412 o 0,2
)"”V : (u(o) - uh)||L2(Q) = THP(O) - ph”LZ(Ql)

. )
S (R (X0 X 00 L) X ()’ (5.40)

i=l geT}l ecEpUE? ecE)? eeg,iv*”
2 22 2
+ “f _f’”“LOO(O,z;Lz(Q)) ) +C1 CN”tN _tN,h‘[”Loo(OJ;H—l/Z(['N)) ) .

5.7. The reliability bound

Let us substitute the above bounds in (4.23). Since there are many indicators, to simplify, they are grouped into
categories,
e the algorithmic errors,

my = (Y @ntn) + w2 ). (5.41)
n=1

n=1

e the time errors,

Miime *= Z((n?,p)2 + Z(n{’,,)z), (5.42)

n=l1 eefg

e the flow errors,

m

Mo = > (n%,) +Z S (M)’ (5.43)

n=1 geT)] n=leeglugl?

e the penalty jumps,

m

o = 30 0 + (X ) )+ Z( o)+ (1)) (5.44)

n=1 eeSh n=1 eeS,l eegh
e the errors on the tensor’s time derivative,

1

Mg, = (i( Z (’72,1,30)2)5)2 + (Xm:(Z(US,z,aa)2)7>2 + (i( Z (UZ,N,aa)z)%y’ (5.45)

n=1 eeé’liué‘]iz n=1 eeg‘,‘% n=1 eeg,llv’a
e the errors on the displacement’s time derivative,

= (D (0 ))) .6

i=1 n=1 pe7;
e the errors on the tensor at final time,

ne =y ((né’f[i)z + (), a)2> + Z((ﬁé’fil)z + (anz,a)2> + ) ((anXz,la)z + (anN,o)z), (5.47)

ecglugf? ec€} eeg)?
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e the errors on the displacement at final time,

7, = Z S () + (20)), (5.48)

i=l geT}

e the initial errors,

2
Z Z nEzu + Z (n2,1,6)2+ Z (n2,2,6)2+ Z (n(e),N,a)z‘ (549)

i=l ge7] eeg)? eeElUE? ceg)?

Then, we have the following theorem.

Theorem 1. The following reliability bound holds for all time t, t,,_1 <t <t,, 1 <m < N, with a constant C
independent of h, At, and t,

G
_”P ph‘r“Loc(Ot L2(£2))) —||e(u - uhr)”ioo(o 1+ L2(2)) + Z”V : (ll - uhr)”ioom’l;lﬂ(g))
_/ ”p ph‘[”h = C [ n + ”p(o) Hh(p(o))”LZ(Q ) + ”q - qh”le(OJ;l}(Ql))

+ 121lg = anl32 0, Jouf (5.50)

+ nalg + ntlme + n_]ump + Mfiow T nfdg + nT;u + qu + ’7774
+ ”8l(f _fhf)||L1(0,1;L2(_Q)) + ||8t(tN - tN'hT)||L1(0,I;H_I/2(FN))

2 2
+ Ilf _th”LOO((),r;LZ(Q)) + ”tN - tN,h'L’ ”LOO(O,z;H*l/Z(FN)) :I .

6. Weak residual error terms

We observe that several indicators involve time derivatives, whereas the left-hand side of the reliability bound
(5.50) does not. As a consequence, some indicators cannot be bounded by the error terms on this left-hand side.
Thus, when developing these bounds we are led to introduce several weak residual error terms, relative to derivation
in time, that arise in the subsequent section, namely,

t
2 " 1

(811,@)1 =/ Sup -

! ) th—1 OphEMp/R ||9h||i

’ 5 6.1)
< |(ar 4 +a,(—<p P+ eV - = up) + az( =)0 g, |
gt = llap —a+ 3:(—(1’ [ B U /D) | P 6.2)
where E is any element of Ql,
n In 1
Exihe = / sup \(ataw — "), eW), — a(d(p — pi™), V) p = (3 = fr).v) |, (6.3)
' et verd ey VIH1(E)
where E C ﬁi, i =1,2,and p is set to zero in (2,
tn
Enlhy = / wp | (o @), e),, —a(0(p = P V), = (4 ~Fi)0v),, |- 64
In—1 veHl (e)3 V51 ) ¢
where e is an interior face of (2, and again p is set zero in (2,
In 1
EeN a0 = / sup (o). o) = (3lty B 408), = (F ~Fi¥)g| (69
th—1 ve H)(E)3 Vg )
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where e is a face on Iy, E is the element adjacent to e, and exceptionally,
H)E)={ze€ H(E); z=0o0n JE \ e}.

Before estimating these terms, we introduce the notation for any function ¢ in L'(0, T),

1 n
m(q) = E/, 1q(s)ds.

We shall also use an auxiliary regularizing operator P;, of Hermite type that will only serve for theoretical purposes,
P, : H'(2) > Z;, where

Zn =1z, € C'(2); zulp € P(E),VE € T;'},

with r > k sufficiently large to guarantee that the functions of Z;, are globally in C'(12) and satisfy the approximation
property (3.7), see for example [34,40,41]. With this operator, we associate the following interpolation error:

1
Ap) = 1P = ply + (Y0 IV - I Bp) ~ DIy ) + IRV PD) = ) misllory. (66)
EeT),!

To alleviate notation, when there is no ambiguity, the superscript £, will be omitted.

Proposition 10. [f the data k and the unknown p are sufficiently smooth, we have

n,tn 2 é n,tn 2 " n,tn "
(&) = — () + f IPh" = plli + f Ai(py?] 6.7)
'uf In—1 In—1
Proof. Set
n 1 n n o -n —n,tp—1
X =g —q+3(5;(p = Pir) +aV - @ —uj)) + 3G — 5" ). 6:8)
b

The a priori error equation for the pressure (4.5) reads for any 6, in M,

1
(Xv eh)gl = M—fl:((l’z - D, eh))h - Z({’CV(PZ - P) 'ne}ea [Oh]e)e - Z({Kveh . ne}e’ [PZ - p]e)e]-

1 1
ec&) eeg)

Note that this equality is unchanged when any global constant is added to 6, on its right-hand side, thus justifying
the definition of 5}'«1". By inserting pj_ and P,(p) on this right-hand side, we obtain

1
(X7 9/1)91 = M_f [ ((PZ - p}?rv 9/1))/1 + ((sz - D, eh))h - Z ({KV(PZ - Ph(P)) : ne}ev [Gh]e)e

1
e€g;,

= Y (VPP = p) e [61)e), = D (€9 6 medes L = pL), |-

1 1
ee&, eeg,

(6.9)

We infer from Green’s formula and the regularity of k and P, (p) that for all @ € H'(2)),

=Y (e V(PAP) = P) - medes [0 ) e = — D (V- (V(Pu(p) — p)), 04 — 6),,

1 1
eeg;, E€T,

— (Pup) = p Oh —0), + /P KV(P(p) — p) - a6y — 6).
12
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Thus (6.9) reads for all 8, in M, and 6 € H'({2,),
1
(X0h)g, = [ 1= Pies 00+ (@h = PO — (Pap) = p. 64 = 6),

= 3 (T VPp) — P, O — 6), + / KV(P(p) — p) - ma(6y — 0)

b iy (6.10)
= Y (V= P mde 101), = D ((RV 6, -mede [0 = p), |-
eef& eeS}E

By applying to the last two terms the argument used in proving Proposition 15, we derive

A e\ )\max 5 ks
| Z({’CV(PZ - Ph(P)) 'ne}ea [Gh]e)e| <C Z(Z_)é ”[eh]e”e( v )% ||KéV(PZ - Ph(p))”E

e

eeé',i 665}1
~ Amax (L o,
< C(—=)21sOn, 02 |p) — Pu(p)l,.
min y,
Likewise,
Ay Amax L n n 1
| 2 (V0 mee, 19} = Puple),| < C(—2) 2 0Py, = Pu(p), i, = Pa(p)2 164l

£l ¢
ee h

Hence, by substituting these two bounds into (6.10) and employing the estimates of Proposition 16, we obtain the
following bound for X:

1 n n n A Amax 1 n
1600 g, = o= [ (1 = Pl + 1ol = Pl + C () 1 = P 6wl

e

+ CAL(p)Ju(Oh. )2 ] .

Thus
2
(X’ 9/1)9 ¢
sup = < —[1pf = pi I + i — Pl + A2
opeMy/R  16nll7; W

which implies (6.7). Note that the second term is an error bounded by Theorem 1. [

The bound (6.7) supposes that V- kV p € L*(E x1t,—1, t,[). This only guarantees H -3 regularity of the normal
trace of KV p on the interface I'j», see [42]; but its L? regularity follows from the no flow condition.

Proposition 11. Let n, ,  denote the restriction of n;,, defined in (5.9) to an element E. We have

n,0n\2 n,ly )"X fn n,ln 2 n,ly
(&™) < 3[C2(nE‘,ﬁp )+ :2“ (/ P — P e + (n,,ﬁ_E)z)]. 6.11)
f 1,

n—1

with the constant C of (A.1).

Proof. For any element E in 2, take 0 € HO'(E ) arbitrary, non zero, and 6, = 0 in the flow error Eq. (4.9). As
0 vanishes on the boundary of E, (4.9) reduces to

1 1
(qZ —q+9 ( ik pr)+aV-w—u))),0 ) E= —M—((p — PhesOne + (P — P, G)h,E)
;
n 1 n n 1 n
+ (g = (g7 Phe + oV - ul) £ o=V - eV P = pgV ). )
f
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Owing to the local Poincaré inequality (A.1), we have

27
n l n
(a7 — (5P +aV~uh1) + VeV pj; = pgV ). 0) |
Hf
< Chelq" - 8:( Phe+a¥ ) + = -G 2}~ 08V D)3 i

Then by dividing by (0|15, squaring, taking the supremum with respect to ¢ in Hj(E), and integrating over
1ta—1, tu[, we recover (6.11). [

Take i = 1; for E37"y,, we test (4.14) with v, = 0 and v € Hj(E)*; this gives
(00w —uj,)), e0), —a(d:(p — ph). V- v)

= (E)Lf,’ft +V.-o(du;,)

— (0 (f = £ v) .
Therefore, by (A.1), we obtain

—aVopp.v),

‘(o(az(u —up)), e) . —a (3, (p — pi). V- v) . — (3:(f —fro), V)E‘
< Chglaf. +V -o@u],) —

aV atpzf ||L2(E)|V|H1(E),
and by integrating in time, we derive a bound for £

" A bound for €%, follows by the same argument, with
an analogous formula and we have with the constant C of (A.1),
Exite < Ol =12, (6.12)
Regarding SZ 5> assume for the moment that e is interior to (2, test (4.14) with v, = 0 and v € H, (w,)?. This
choice yields

(0@ —u; ), e0),, —a(3(p = pi). Vv),, = @ =),
=Y (. + V- o@u)) —aVp)..v)

_ rev) — (e @u),) — ad ppDn.le, v),
ECwe

ECwe

< D N3 + Vo @) — @V 3, pi N2 Wl 2e + 110 @) — ady pii Dnelell 20 IV 2

By applying (A.2) and (A.5), and dividing both sides by [v|1(,,), we deduce

1
‘(0(@(" —up,)), E(V)) —a(3(p—pp)V-v), — @ —fi).v),
Yl 11 () e e

L 1
C(hou (X2 103 + V- 0 @) = aV 0 pj )+ BE N0 D) — P Dnelell )
ECwe

<

After an integration in time and maximizing over v € H,(w,)

3, this implies

1
n,ln n,ty 2\2 n,ly
|gwe do | = [( Z (’7E 1, 8u) ) + 77e,1,3a]- (6.13)
ECwe
When e lies on [, the same argument leads to
n,ly
|5 ,00

ne,l,ao ’

1
— [((n’éfnl r)u)2 + (n,}llenZ du)2)2 + o ]

(6.14)
where E| C {2 and E, C (2 are the two elements adjacent to e. When e is an interior face of (2, the relevant
bound is

0| = C[(D0 (r4a)®)” + i, |

We,00
ECwe

(6.15)
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For 5:’16”30, we proceed as above, but w, is reduced to the element E adjacent to e and v vanishes on 9E \ e.
Then we easily derive

ALn A ALn An
|g:,N,80| = C(”’}s,z,au + n:,N,i)a)' (6.16)

Remark 1. The weak residual error terms studied above will affect the effectivity index since they will be used
to estimate some of the indicators. Hence, evaluating the effectivity index requires their numerical computation or
approximation. Unfortunately, their computation is not straightforward.

7. Lower bounds

Here we bound below the error, i.e., we derive upper bounds for each indicator in terms of the errors on the
discrete solution and the data. Some of these bounds will be derived under the assumption that ¥ and the solution
are sufficiently smooth. As before, C denotes various constants independent of %, n, and At.

7.1. The algorithmic error indicator

Let us start with an arbitrary value of £. First, the contraction property (A.14) yields
1
(B Kp)!

—n—1

n 1 L o_,
it < (Ar)? iG] P (7.1)

where
—n,l —n—1 n,1 -1 n,1 -1
G, —o, =K,V-@, —u)—alp, —p, ).

Next, a bound for the first term on this right-hand side reduces to a bound for the second term, as shown in the
next proposition.

Proposition 12. We have

2
|1 —1y2 o 1 —12 1 242 —12 22 —12
IV -Gy —~u3 Ol 2y < 3100 —Pi IILz(Q])Jr—zG)L(P’C " ="~ N2y +CrCR N~y [ )

Proof. By taking the difference between (3.14) at step n, £ = 1 and at step n — 1, and testing with v;, = uZ’l —uzfl,

we obtain, after applying Korn’s inequality, a trace inequality, and Young’s inequality

,1 —1y12 ,1 —1y12
2G||€(ul]z - uZ )”LZ(Q) + )"”v . (uz - uz )”LZ(Q)
2
1 n,1 n—1y2 a ol n—12 n1 n—1y2
= E )‘*”V(uh _uh )||L2(Ql)+7”ph _ph ||L2(Ql) +2G”€(uh _uh )”LZ(Q)

1 21210 n—12 22 n—12
+ 36 (PO =1 o + CRCRIA — 6y ),

which reduces to (7.2). O

Thus
15" = G )
2 K; 1 12 K} (22 12 2,2 12 (7:3)
n, n— T n— 7 -
= 2a (1 + 7)”1’}1 — P ”LZ(QI) + e (7) K ”f _f ”LZ(Q) + Cl CN”tN - trllv ||H7%(FN))7

and we must find an estimate for p}"' — p"~!. This is the objective of the next lemma.
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Lemma 1. Suppose that the penalty parameters y, satisfy (A.12). Assuming that the solution and k are sufficiently
smooth as in Proposition 10, we have for alln, 1 <n < N,

1 l n n— n— n—
EW*E)”W"W 120, =€ [|p L m(Pup), + (P = mp), pp T — m(p))

+ ALYV e Vm(PL(p) = POIagg, + (A + At R+ (AD2) ke Vm(Pi(p) = p)-miolar) (7.4

Ee7;l'

2
+ 10" = @20y s, oy ”3’( prav-u )”Lzmlx]tn_l,tn[)] '

Proof. By inserting p)~ ! and m(Py(p)) in (3.12) at step £ = 1 with 7, = 1, and recalling that P,(p) does not

jump at interfaces, we derive for all 8, € M,,

1 o, 1 _ 1 . .
(37 + %) 2 (P =P O, U_f((”" — eh>>h+—<(p L= m(Py(p). O
1
+ o > k(Y m(Pu(p) — pgV ). VO, — —f > {xV(pZ" — P nde [641),
EeThl eES}l

1
- — Z KV (" = m(Pu(p) - nele. [04)e), — o > (e (Vm(Py(p)) — pgV 0) - mele. [01]e),

f eeEl f eec‘:hl

- 1 n— n
— ;T > (Vo -ne.lpy' — Py le), = — D (VO -nede. [P} '), = (" O,
Ioel el
eEE eEEh

With the choice 6, = p}"' — p/~', this becomes

(1+"‘—2)—||
MK, AL Py

—12
pZ ”LZ(QI)_'_M_HPZ _ph ”h

Z({KV(pzl—p;: Yende Iyt = pi '),

Hr eeSl

1
= _/T((”n L —m(Pu(p)). Py — P+ . > (e = m(Pup) - nete. oyt = i),

1
e€g;,

1
o Z (tevpy' = pp ) rede. [y 7)), — — Y (e(Vm(Pu(p) — pgV ), VP = pih),,

/ 6681 Mf E€7711
+ ;T > (kY m(Pu(p)) — pgV 1) - meles o = P '1e),
f 1
ee:‘:h

+ (q" —m(q), it — P e, + @), Pyt — pi N,

Let us examine the terms containing V m(P,(p)) — pgV n. Since the gradient of P,(p) does not jump at interfaces
and « is supposed to be sufficiently smooth, by Greens’ formula applied in each E, we can write for any 6, € M),

= Y (V- k(Y m(Pu(p) — pgV ). Oh), = D (k(V m(Pu(p)) — pgV ). V6;) .
EeT)]! EeT)!

= > (kY m(Pu(p)) — pgV n) - nele. [04]e), — /F k(Vm(Py(p)) — pgV n) - iz ).
12

1
ee&y
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Hence

1 1
o > (e (Vm(Pu(p) — pgV ). V i), + ” > (kY m(Pu(p)) — pgV n) - nele. [0]e),
; Ee’7711 eeé‘é

1 1
Py Y (V- (Y m(Py(p) — pgV 1)), O4) , — 0 ), € mBP) = pgV ) -z
Ee7711 12

1 1
— Y (V- Vm(Pi(p) = p)).Os)y — — | € Vm(Pu(p) = p) - n12 6
H’f E€771 H’f I'yp

1
+— V- (Vm(p) — pgVn)) o,
Hr Joy

where the no flux interface condition in (2.3) is used in the next to last term. Finally, let us integrate in time the

flow equation in (2.3) from #,_; and ¢,, divided by A¢. Considering that ¥ and pgV n are independent of time, this
gives for any 6, € M),

1 1 n 1
(m(q). On)ay + M—f(v LV m(p) = pgV ). On) g = 7~ / (@ (5P +aV u).6i)q . (7.5)

n—1

By collecting these equalities, we obtain,

1 o’ 1 n1 n—1)2 1 n,1 n—12
(M‘FE)EHP;, — Py ||Lz(91)+u—f||l’h — Py ”h

D (Ve =P medes oy = i),

1
ecg),

2
Hr

1 1
= —M—f«p,’:‘l —mPu(P). pi = P+ — D (VP = m(Pu(p)) nede. [P — i),

! eEEhl
1 n n— n— 1 n—
+ — Y (V= pp ) nde oy = m(p))e), + — Y (Ve Vm(Pu(p) — p)). Py = i),
Hr ee:‘,‘; f Ee’7711
1 n,l n—1 n n,l n—1
- — | &k VmPp) = p)n2 (P = i+ (4" = m@), Py = P g,
Ky Jry
+ L fn (3 (i +aV . u) n,l n—l)
At ), " \m” P TP oy

(7.6)

The assumption (A.12) on the penalty parameters y, implies that

1 ,1 —12 2 ,1 -1 .1 -1 1 .1 —12
M—fnpz - P} ||h—M—Z({:cV<pZ LNV A ]e)eszan — P i

|
ec&y

With this, (7.4) is deduced from (7.6) by a straightforward variant of (A.9), suitable applications of Young’s
inequality, and the consequence (A.24) of the trace inequality on ;. U
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By substituting (7.4) into (7.3), by using (7.1), and recalling the definition (5.3) of the algorithmic error, and the
notation (A.15), we obtain the following bound for n?f

n—1 n—1 n—1

K} 4C
v 2) = (19~ = mPupII; + Jnpy ™ = m(p), pi" = m(p))

) 1
(n&") =B K= [(1 +p)?

2
+ ) IV VPP = P, oD
EeTh1
h nt 1 (1.7)

—_— —_— —_ . 2
gt g e VB P ml g,

+ llg" — 4l (= p +aV - u)|?
q q Lz(le]tn—l,tn[) ! Mp Lz(nlx]tn—l»[n[)
K} 1

Ky b oy  enm1y2 P I
b (P =7 g + CECRI 8 IIH_%(FN))]-

From the a posteriori point of view, this bound is not satisfactory because the three last terms cannot be interpreted
as errors, but just involve the solution and data; this is strikingly true of the first of these terms that has no reason
to be small. This reflects the inconsistency of the algorithm’s starting value at each time step, and this effect can
only be mitigated by iterating sufficiently, i.e., taking ¢, sufficiently large to guarantee a suitable estimate of the
error

m
S VAT,
n=1

in (5.50). To this end, we prescribe the condition for all n

1
W <CAt¢, (7.8)

with a constant C independent of n, h, At (to simplify, we do not explicit this constant). The next theorem
summarizes this result.

Theorem 2. Assume that (7.8) holds at each time step and that (A.12) is satisfied. If the data and solution are
sufficiently smooth, we have

n A n— n— n— 1
e <C [ Atipy™ = mPp, + At d(py = m(p), Pt = m(p))?

1

5 1
+ At (D0 IV e VPP = P2 g s p)

Ee7;,1

< L . (7.9)
+ (ADZ(h2 + (AN 4+ hs + (A3 |k V(Py(p) — P)-mll2 iy, ol

. 1
+ At|g" — Q||L2(Q| x Jta—1.tn) +A l||3t(MP +aV. u)”Lz(Ql xJtn—1,tul)

3
+ @i (1o S+ 10 )]
(AD> (19 o,y iz + lN||L°°(ln—1,fn§H7%(FN))

Remark 2. Observe that, if in addition to the assumptions of Theorem 2, the mesh size and time step are of the
same order, i.e.,

h<C At, (7.10)
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then (when ¢,, achieves convergence)

Zmr)znﬂ = [(At)z ZArup" (PPN} + Py = popl = p))?

+ A Y IV - ke VPP = PO 2 orp)’
Ee7711

3 n
+ (AN |k V(Py(p)—p)- n12||L2(F12><]0,T[) + At”q - q”L2(Ql x]0.7])

Lw(o,T;H*%(FN)) ] ’
(7.11)

+ At(na,( P+aV - u)l 2o gorp + 10 iz + 19ty |

Under the same assumption, the other term in n;'l'g is much more favorable because it is bounded as follows

N
(th(n;@)z)% [(Ar)z ZArqp" (PP, + S (P = p pl = )
n=1

+ (A0 NIV - VPP = P agor)

per! (7.12)
+ (AN V(P(P) = P) - miall 2 fory + A0 = @20, xJorD
+ A1 (570 + @ W)l oty + 10 oz + Bl 1 )],
7.2. The time errors indicator
A bound for the time errors indicators 7, , and 7, s, defined in (5.9) and (5.10),
ny' = (%)% pi =P, = (%)1( e) I = P el 2
is derived by much the same argument as in estimating E;J”.
Proposition 13. Under the assumptions of Theorem 2, we have
() + > () < 12#?[(5_’}"3”)2+ (%_)2/[ (P = pli +A1(p)2)], (7.13)
. n—1

eegl

where the interpolation error A((p) is defined in (6.6).

Proof. Proceeding as in the proof of Proposition 10, we define X by (6.8) and write

1
M—f[((p;”, = Phe 000 — Y _ (e V(P — Pi) mede. [041e), — D (V04 - mele. [ pf — pZ,]e)e]

1 1
ecg;, ee&y

1
= (X, 6) +—f[(<p Phes 00+ > (VP — Pu(p) - mo)e. 6412),

eeSl

+ Z({Kveh “Rele, [p;lll' - P]e)e

1
ec&)

+ ST WV — ). O — ), + (Pu(p) — . 6 — ), — / KPP — p) - matly — ) |

I
EeT,) 12
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With the choice 6, = p] — pj ., we recognize in the above left-hand side a; (6, 6,) defined in (A.10). Assuming
(A.12), an(6y,06y) is bounded below by (A.13). Thus, by applying to the last three terms the estimates of
Proposition 16, we derive

1

)2 (Ilpfe = Pu(p)lln + 1 Pu(p) — pl;)

(X, 0n) 1 ap A
S ph = pieln = sup o [ ph = plly + C (2
2yt T T e N0l oy LT i

e

A

+

(Ai(p) = | Pu(p) — ply) ] .

N\'—

min y,
Note that

Phe — Pu(p) = (Ph; — p) + (p — Pu(p));

therefore, the argument in the third term can be replaced by p;. — p and the contribution of p — P,(p) can be
incorporated into .A;(p). Then the proposition follows from

& o
17 = Pl =3[+ (=) / (1P} = Pl + A1(pP)]. O
My 1

In—1 n—1

In

2
4uf
7.3. The local interior flow error indicator

Recall formula (5.5) for ng p,

n, 1 n, 1 n,
nEZI;l =hp(A1)? HCIh‘i‘—V (k(V pj Z"—/%’Vn))—az( it av ol

The bound for 7}, , proceeds via a standard local argument in each element E C ). To simplify, we assume
that restriction to each E of the density p and the components of the permeability tensor k¥ are polynomials. The
pressure error equation (4.9) is tested with 6, = 0 and

LX(E)

1 1
0lr = bE<qZ + —V - (k(V pj — pgV ) —0(=p), +aV- uZT))IE,
ny M

extended by zero outside E, where bg is the lowest degree unit bubble function in E. Thus 6 € H}(E) is a
polynomial function and

1 1
101228y < llgp + #—fv : (’C(V pp — prgv Tl)) - 31( Phe taV - uhz)”Lz(E)
Let
" 1 1
A= (g + V- (65 5 = o5V 0) = (7 e + 0V 1).0)
P
On the one hand, as 0 is a polynomial function, a familiar scaling argument leads to
A> @||61/’1 + LV . (K(VPZ ogVv ’7)) - 8,( Phe V- uhr)HLZ(E)
Ky
On the other hand, (4.9) reduces to
1 1
=@y —a+03(5;(p = Pi) +aV - @—uj). 0)r + M—f((p — Phes One + (Phe — P 6’);1,5).
By collecting the above inequalities and applying (A.6), we derive

1
he|gp + —V - (k(Vp} — pgV m) — 8;( P +aV-up )|
Ky L2(E)

A~/ 1 1 1
< C(ﬂ—fkl%ax(lp - PZr|h,E + | Phe — I’Z|h,5) +llg, —q + at(M(P — Pp) oV (u— uzf))”H*l(E))
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n, Ly

By squaring both sides, integrating in time over |f,_i, t,[, and recalling the notation &
bound for n Ee”

(ni5)" <3¢ (ex™) +

, we deduce an upper

1 n " 2
kmax</ lp — phf”lhE (n,ﬁ"E) )] (7.14)

IL§ h—1
7.4. The local jump flow error indicator

Recall the local jumps 7pen defined in (5.1),

1
e = (A0 (Z) Wb

By inserting p2, n’:t has the bound

pen

In
n,ty 2 n,tp n,tp n
e <2 [ FEMDE " = LI + 24000 = B p = i)
-1 (7.15)

tn
2(n,”f") +2/ T(p = pptm, p = piin.
1,

n—1

This is an acceptable bound, since the first term is an indicator and the second one an error term.
7.5. The local jump flux error indicator

The local flux jump nqyx . defined by (5.7) reads

1
Mine = (he A1) |1V Py = gV i) - nele | o, -

The bound for nfj,, , is derived by a classical argument on each face e € £. To simplify, we restrict the discussion
to internal faces, the case of boundary faces (i.e., on I'};) being simpler, since jumps on [, are just traces. Thus,
let e be an internal face and let b, be a unit bubble polynomial function of the lowest degree that vanishes on de.
Let ¢ be a reference unit face and @; the union of two reference unit elements that share é. By working first on
c?)éland then switching to w, by a suitable transformation, we can construct an extension operator G, linear from

Hg(e) into Hj(w,) and uniformly continuous with respect to e and h, i.e.,
1 N
Vf e Hge), 19N nw) =<CIfl 1 , (7.16)
Ho%)(g)
with C independent of 4, e, and w,. The pressure error Eq. (4.9) is tested with 6, = 0 and

0w, = g([,c(v ph — pgV M) 'ne]ebe)-

1
Thus 6 € Ho1 (w.), hence has no jump through e, and 6|, € Hozo(e),
||9||L2(g) < [K(V Py —pgV M) - ne]e”Lz(g)'

Moreover, by the construction of G and the fact that the restriction of 6 to e belongs to a finite dimensional space,
we have on the one hand,

A 2
(e (V pj; = pgV ) -nle, 0), = C|l(V pj; = pgV ) - mele| -
On the other hand, (4.9) reduces to

—([Ic(VPZ—ngn)~ne]e,9)e=—( ( Pp-pr)+av-@u-— uZ,))—(q—qZ),G)
Ky

We

1
+ 3 (g — aC pm +aV uy)+ —V - (k(Vp, — pgVn).0),
ECwe Mf
1

= (= POy, + (21 = 10),):
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Therefore,
1 ~ 1
o |e(V Py — pgVn) - ne]el\iz(e) <C [ ||8I(M(p —Ph) +aV-@—u)) = (@ — gDl 100101 11 0y)

1
+ Y lgr - p,” oV )+ =V k(T p = 08V Dl 10l

ECwe
1
+ M—f(lp — Phelyap + 1Phe p,’1|h,wg)|9|h,wc |

Then, by applying (7.16), (A.1), and (A.8), we derive

. 1 1
|V pj — pgV ) - nele| 20 < C [ wr ( —lllaz(ﬁ(p —Ph)+aV-@—up)) = (q— gDl -1,
he
2

1 1
O ph, Hav w4V (VP pgV )*)
ECwe L%(E)
A'I'I'Ia)(

+ (/’l_) <|P phrlh we + |phr pZ'h,we) ] .

By squaring both sides, multiplying by 4., and integrating with respect to time, we obtain

(i) = 3¢ [ (€20 + X 23)7) + 2o (52 + [ T -] (7.17)

ECwe -1
7.6. The time derivative pressure’s jump indicator

Recall formula (5.17) for 1y, 7,

My = hedi(1- ) I P = P ez
e

By comparing with ;" ““n defined in (5.10), we see that
3.1
n,ly n,ty
Map.s = he(3,)7m" (7.18)
This is an acceptable upper bound if we assume that
h? < C At, (7.19)

a condition less restrictive than (7.10).

7.7. The time derivative of displacement balance indicators

Take i = 1 and consider the time derivative of the displacement equilibrium 7g ; 5, given by (5.19),
Mg = he A3, +V -0 @uy™) — aV 3 pj" |l 12
When Eq. (4.14) is tested with v, = 0 and
Vi = bedy(fy, + V- o)) — aV pj.),
extended by zero outside E, it reduces to

(0f. + V-0 @) —aV 3 ph.v), = (03, —uj)), e®), —a(d(p— p}.). V-v),
- (af(f _f}rzlt)’ V)E
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Thus, by proceeding as in Section 7.3, we deduce that

é” atfhnr +V- G(alqu) —aV aprr

=
Wl ey
é ] n n n
= (0@ — w0, e0) ;= (0P = pi). V) = (0 = F09) ) W2
hg |V|H1(E)
where we have used (A.6). Therefore, by multiplying both sides with kg and integrating in time, this leads to

Mg T ou < CEF g (7.20)

||2LZ(E)

(0@ — w0, e0)) ;= (P = P V) = (0 = f0:9) | ) Plarncey

When i = 2, the treatment of 1g 3, defined by (5.20) is the same and leads to the bound
g o0 < CEF g (7.21)
7.8. The time derivative of stress tensor’s jump indicators

To bound the time derivative of the stress tensor’s jump on e € &} U E}? given by (5.21),
1
Nty = hZ At @y ™) — e, plil Dinelel 2,
we proceed as for ng,, and use the same notation. Consider a face e in S;} and test (4.14) with v, = 0 and
Vo, = g([(a(a,uzt) - aathrI)ne]ebe>.
The equality (4.14) becomes

fbf| [( a(afqu)_aalerI ) n, ] "|2 = Z <8tfl;lt +V- a(alqu) —aV alpZt’v)E

ECwe
— (00, (u — uj)), €(V))wg +a(3(p—p}). V- V)w( + (3:(F — fro), v)w(»'
Thus

é ” [(0(8&&21) - aaprrI)nf]e Hiz(e)

< ( | = (@@ —uj)), em), +a(d(p—pp) V-v), + (@ —fi)v), !)IVIm(we)

1w ‘
+ ) 195 + Vo @) — aV 3 ppll e IVl 2
ECwe
A 1 1 n n n
<¢(—~ | = (0@ — ). e0), +e(d(p— P Vo), + @ —fi.v), |
2 Plaiw, ‘
1 1
+ 02 (D2 Ny +V - 0@u) = aV 0 i) ) Pz,
ECwe

1
where we have used (7.16), (A.2), and (A.8). By multiplying both sides with 42 and integrating in time we infer

A n n,ly L
Mo < (€05 + (X2 k1) )- (7.22)
ECwe
When e lies on I}, (7.22) is replaced by
A n n,ly n,ly 1
n:fnaa = C(‘fwfga + ((nEf,l.au)z + (nEf,z,au)z) 2)’ (7.23)

where E| C (2 and E, C (2 are the two elements adjacent to e. The case of 7, 5, defined by (5.22) is the same;
we obtain

N 1
Mdhe = C(E0% + (32 2,077, (7.24)

ECwe
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Finally, we consider 7, v js defined by (5.23),

1
14 2 R
)7: Noo = h¢ Atlle(du) " g — Oty pell 220

As e lies on I'y, the jump reduces to the trace, w, is the element adjacent to e, and the lifting function v defined
above vanishes on JF \ e, i.e. belongs to He1 (E). Therefore, we readily obtain

n: I(i/nda = é(gglffn6a + 77262”814)’ (725)
where the auxiliary error 5::,6’30 is defined by (6.5).
7.9. Indicator of the pressure jump at time t,
To bound 7, ; defined by (5.29),

s = he ( )2||[p" “Tell 2e)s

we compare it W1th Npen defined by (5.1) and observe that

h,
Np,J = npen
P A t)l
Therefore, under the assumption (7.19), we have
< Crlatr. (7.26)

7.10. Indicator of the displacement equilibrium errors at time t,

Recall the indicator of displacement equilibrium 7g ;, in 7;[, see (5.30), with p, =0 in (2,
lélinu - hElV + \ O'(uZ’K") - OlV pZ‘Zﬂ ||L2(E)'
For E € T,!, by testing the displacement error equation (4.13), at time #,, with v, = 0 and
v=">bp(ff +V-o@y) —aV p}),
we obtain

(fi +V-o@p)—aVpyv)e=—F—five
+ 2G(e(u — up), e)e + MV - (w —up), V- v)g —a(p — p,, V- v)E.

Hence (A.6) implies
Cllfyy +V - o @) — aV pilla < W = filla-1e) Ve
+ CA‘(ZG”E(” — w2 + AV - (@ — w2 +allp — pZ||L2(E))|v|H1(E)

A

C n n
<o (W = Am1cey + 26 et = iz + 219 - @ = wdlizey + elp = pilizcey ) Whizcey

The formula is similar when E C 7;2, and we have for i = 1,2, with p = p;, =0 when i = 2,
My = C(IF = fil a1 + 26 e — w2y + MV - @ = ™l oy +ellp = P oy ). (727)
7.11. Indicators of the stress tensor’s jumps at time t,

Here we consider the stress tensor’s jump on e € £, U E}? defined by (5.31)

1
An 2 An An
myt = he |[(o @y ™) —apy " Dnelell 2
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the one on e € 52 defined by (5.32)

it = 0 (ICITI AN P

and the one on e C I'y defined by (5.33),

N 0
NN = h lo @, "o =ty 4l 120

Let us consider the first one; the treatment of the others being much the same. Let e be an interior face of 5,}, W,
the union of the two elements sharing e, and test (4.13) at time #, with v, = 0 and

V= g(be[(o(u;;) - apZI)ne]e)~
This yields

/be|[(0(u2)—0€ﬁh e] | Z | +V a(uh)—otV Ph||L2(E)||V||L2(E)

ECwe

C(2G e = upll 2 + MV - @ = Wl 2y + P = P2 + I = 100 ) P 1

~ 1
<C(he Z Wfy +V-o@y) —aV pylle
ECwe

(2G||€(u uZ)”LZ(we) + AV - (u— uZ)”LZ(we) +allp— PZ”L?(M) + Ilf _f/:l”H*I(we)) ) ||V||L2(e)‘

| -

ST

h

1
Then, after multiplying by A2, we deduce
Moty < C (2G||e(u - u',;"")an(we) ANV - = w2+ llp = P 2 + I =i 1,

A
Z (nrll? I, u ) .
ECwe

(7.28)
When e C I, (7.28) becomes

n) 1" <C <2G||s(u - uZ’K”)Ile(%) + AV (u— uZ’l")”m(we) +alp—ppt 22 + W =S -1
I
(O Ol 0D,
(7.29)

where E| C {2, and E, C (2, are adjacent to e. When e is interior to {2, (7.28) is replaced by

I
Mty < C(2G e = ™)l 2y + IV - @ = 2y + I = 100+ (D 013507)?). (7:30)

ECwe

Finally, when e C Iy, there is only one element E adjacent to e and we have

An A n n,ty
U:Na <C (ZGlle(u —uz )”LZ(%)"‘)\”V (u—uh )”Lz(we)“‘ IF — fh - L(we)

n,ty

(7.31)
+ llew —t';v,h”H/( +77E2u) :

8. Numerical results

In this section, we present numerical results that validate the theoretical analysis and the algorithmic improve-
ments built upon the a posteriori error indicators. All examples are computed with the open-source finite element
package deal Il [43].
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Fig. 2. The physical domain (left) and computational domain (right) of the Mandel’s problem [18].

8.1. The Mandel problem

In this section, we solve the Mandel’s problem to validate our solution algorithm and test the effectivity of
the a posteriori error indicators. The Mandel’s benchmark problem considers a 2a x 2b rectangular poroelastic
medium sandwiched between two impervious frictionless plates. At t = 0, the medium is loaded instantaneously
by a constant force 2F. Because of the bi-axial symmetry of the physical problem, the computational domain is
taken as a quarter of the physical domain, see Fig. 2. The governing equations are those of Biot’s system with no
gravity:

V-V -uw)l +2Ge(m)—apl)=0 in 2 x]0, T,

1 1 8.1

3,(—p+aV-u>——V-(KVp)=0 in 2 x10, T[, ®-1)
M [,Lf

where (2 = ]0, a[ x ]0, b[ is the computational domain. Following the approaches in [4], the boundary and initial
conditions supplementing the governing equations are cast as

1
——«Vp-n=0, u,=0, o0,=0 onx=0,

Ky
p=0, on=0 onx=a,
1
——«kVp-n=0, u,=0, o0,=0 ony=0, 8.2)
M
1
——«kVp-n=0, u,=Uyb,t), 0y, =0 ony=h,

Ky
p|r:zo = Pt()(-xv y)
Here U, (b, t) is the analytical solution of the y-displacement at y = b and P;(x, y) is the analytical pressure
solution at r = 7y > 0. Analytical pressure, displacement, and stress solutions are provided as infinite series, see,
e.g. [44].

The physical parameters used for the tests are listed in Table 1. We notice that the parameter o multiplying the
pressure in the first line of (8.1) is much larger than % in the second line, hence the serious imbalance between
the two equations. Denote the energy norm of the displacement by

1

I = wille = (2G e — w22 ) + AV - @ = un)lZsg)) - 8.3)
Numerical convergence of the pressure solution measured in the L? norm and the displacement solution measured
in the energy norm are performed under spatial refinement. Since the pressure solution lacks regularity at early
time [44], the simulations are run on the time interval [0.01, 0.0101] s. In order to mitigate the errors caused by
the time discretization and the fixed-stress split, a small time step Ar= le—6 s and a small fixed-stress threshold
& =le—6 are used. The EG scheme is IIPG with a global penalty parameter of 1e5. The numerical errors are
measured at final time 7 = 0.0101 s and summarized in Table 2. These spacial refinement tests show that the rate
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Table 1
Parameters for Mandel’s problem.
Parameter Quantity Value
a x dimension 1 m
b y dimension 1 m
k permeability le—2 m?
wr fluid viscosity 1.0 Pa-s
F point load intensity 2.0 x 103 N/m
E Young’s modulus 1.0x10* Pa
v Poisson’s ratio 0.2
o Biot’s coefficient 1
M Biot’s modulus 10* Pa
Table 2
Convergence of pressure and displacement solutions under spatial refinement.
Ti I ™ = Pl Rate ™ —ul) |, Rate
32 x 32 4.0447e—04 - 2.5745e—02 -
64 x 64 1.0507e—04 1.945 1.2872e—02 1.0001
128 x 128 3.4714e—05 1.7712 6.4361e—03 1.0000
256 x 256 1.5875e—05 1.5554 3.2180e—03 0.9967

of convergence of the pressure in L? is between first- and second-order, and that of the displacement in the energy
norm is close to first-order, as predicted by theoretical estimates for the displacement and better for the pressure.

The a posteriori error indicators in (5.41)—(5.48) are adapted, without change of notation, to (8.1)—(8.2), namely,
the local error indicators on the interface of the pay-zone and the nonpay-zone &£}2, the faces in the nonpay-zone
5,%, and the elements in the nonpay-zone 7,2, are omitted. Regarding effectivity, considering the strong imbalance
between the displacement and the flow equations, we collect the indicators into two sums,

NFLOW ‘= Nalg T Ntime + Niow + Njump> (8.4)
NMECH ‘= N&,, + Ne, + N7, + 17> (8.5)
and we associate respectively to npLow and nvgcy the error norms,

1
2

N
_ 1 ) 1 , At ) 36
P ) = (ol = { 57 1P = Pl gl —walls + 3= Zl lp—pull | (8.6)
ICp, w) — (pp, wi)ll2 = 2G lle@@ — up)ll 20y + AV - (@ —up)ll 20y + @llp — Pall20)- (8.7)

Then we define the effectivity indices

A/ NFLOW I A/ 'MECH
) ff, MECH — .
I(p, u) — (s wdlls” ~° ll(p, w) — (prs wn)ll2

Given the assumption that the mesh size and time step are of the same order, see (7.10), we test the effectivity
of the a posteriori indicators under simultaneously spatial and temporal refinements. We performed two groups of
convergence tests to examine the effectivity indices. The first group of simulations are run from 0.01 s to 0.02 s
with a fixed-stress convergence tolerance ¢ =le—6. The convergence of the individual error indicators in (5.41) to
(5.48) and the effectivity indices are summarized in Tables 3 and 4, respectively. All the individual error indicators
except g and 7jump exhibit near second order convergence. /nrLow, ll(p) . uy) — (p~, u™)lli, /ImecH, and
Py, ul) — (p™, u™)|l» all exhibit asymptotically first-order convergences, which gives converging Zef. prow and
Ter. Mech- In this group of tests, Zes, prow 1S around 2.3 and Zs mpcy around 1.8.

Another group of tests are performed with simulations from 0.001 s to 0.002 s using smaller time steps.
The convergence of the individual error indicators and the effectivity indices are summarized in Tables 5 and 6
respectively. We observe similar convergence behavior as demonstrated by the first group of tests with Ze rLow

Zefi, rLOW = (8.8)
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Table 3
Convergence of individual a posteriori error indicators under simultaneous spatial and temporal refinement with simulations from 0.01 s to
0.02 s.

At, Ty, TNalg Ttime Rate Nflow Rate Njump Rate
le—3, 32 x 32 1.3215e—02 - 1.7039¢—04 - 2.6802¢—05 -
Se—4, 64 x 64 1.7100e—10 3.4323e—03 1.9449 4.4629¢—05 1.9327 9.7493e—06 1.4589
2.5e—4, 128 x 128 4.8416e—10 8.7498e—04 1.9583 1.1422¢—05 1.9494 4.3753e—06 1.3074
1.25e—4, 256 x 256 2.3276e—09 2.2091e—04 1.9679 2.8891e—06 1.9612 2.1219e—-06 1.2132
At, Ty, NEs, Rate Nés Rate NTsu Rate T, Rate
le—3, 32 x 32 6.9317e+01 - 5.2784e+01 - 7.1801e+01 - 5.4670e+01 -
Se—4, 64 x 64 1.8223e+-01 1.9274 1.2049¢+-01 2.1311 1.8542e+01 1.9532 1.2259e+01 2.1569
2.5e—4, 128 x 128 4.6724e+-00 1.9454 2.8727e4-00 2.0998 4.7128e+00 1.9646 2.8975e+00 2.1189

1.25e—4, 256 x 256 1.1830e+00 1.9581 7.0101e—01 2.0771 1.1881e+00 1.9727 7.0402e—01 2.0917

Table 4

Effectivity indices under simultaneously spatial and temporal refinement with simulations from 0.01 s to 0.02 s.
At, Ty /MFLOW Rate Ny, ully — (P, u™)ll; Rate Zefr, FLOW
le—3, 32 x 32 1.1581e—01 - 5.0968e—02 - 22722
Se—4, 64 x 64 5.9048e—02 0.9717 2.5947e—02 0.9740 2.2757
2.5e—4, 128 x 128 2.9845e—02 0.9780 1.3115e—02 0.9791 2.2757
1.25e—4, 256 x 256 1.5031e—02 0.9821 6.6144e—03 0.9822 2.2724
At, Ty, /TMECH Rate ey uly — (PN, u™)ll2 Rate Zefs, MECH
le—3, 32 x 32 1.5766e+01 - 8.2160e+00 - 1.9190
Se—4, 64 x 64 7.8149e+-00 1.0125 4.2061e4-00 0.9659 1.8580
2.5e—4, 128 x 128 3.8929e+00 1.0089 2.1283e+00 0.9743 1.8291
1.25e—4, 256 x 256 1.9432e4-00 1.0066 1.0706e+00 0.9802 1.8150

Table 5

Convergence of individual a posteriori error indicators under simultaneous spatial and temporal refinement with simulations from 0.001 s to
0.002 s.

At, T Nalg Ntime Rate Nflow Rate Njump Rate
le—4, 32 x 32 3.2536e—11 1.3955¢—03 - 4.0207e—04 - 1.6878¢—04 -
S5e—4, 64 x 64 1.1379e—10 3.5982e—04 1.9554 1.0239e—04 1.9733 3.4890e—05 2.2742
2.5e—5, 128 x 128 1.6658¢—10 9.1408¢—05 1.9661 2.5828¢—05 1.9802 1.1203e—05 1.9565
1.25e—5 256 x 256 1.0063e—09 2.3039e—05 1.9738 6.4856e—06 1.9849 4.8081e—06 1.7039
At, Ty NEse Rate ne, Rate NTou Rate N7, Rate
le—4, 32 x 32 7.0473e4+01 - 1.9244e+03 - 7.5991e4+01 - 2.0115e403 -
5e—5, 64 x 64 1.8809e+-01 1.9056 4.8834e+02 1.9784 1.9495¢+01 1.9627 4.9899e+02 2.0111
2.5e—5, 128 x 128 4.8541e+00 1.9298 1.2294e+02 1.9841 4.9394e+00 1.9717 1.2426e+02 2.0084

1.25e-5, 256 x 256 1.2327e+4-00 1.9465 3.0840e+01 1.9880 1.2433e+00 1.9781 3.1004e+01 2.0064

around 1.01 and Z.g mecu around 8.4. These results suggest that the effectivity indices may depend on the initial
condition, final condition, and the relationships between i and A, as far as the Mandel problem is concerned.

8.2. Dynamic mesh adaptivity guided by the a posteriori error indicators

We demonstrate the potential of using the a posteriori error indicators to guide dynamic mesh adaptivity
in unconventional reservoirs with the following prototype unconventional model (Fig. 3). The domain size is
[0, 1] x [0, 1] m?, the fracture width is 1 /64 m. The permeability is 10e—16 m~! in the matrix and 10e—11 m~!
in the fractures. The fluid density is 1 kg/m® and its viscosity is 10e-6 Pa-s. The Young modulus is 5e6 Pa for the
matrix and 10e4 Pa for the fractures. Two wells are located at the center of each horizontal fracture, producing at a
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Table 6

Effectivity indices under simultaneously space and time refinement with simulations from 0.001 s to 0.002 s.
At, Ty /FLOW Rate Ny ufy = (pN u™ilh Rate Zefr, FLOW
le—4, 32 x 32 4.4344e—02 - 4.3794e—02 - 1.0126
Se—5, 64 x 64 2.2296e—02 0.9919 2.2165e—02 0.9824 1.0059
2.5e—5, 128 x 128 1.1333e—02 0.9841 1.1205e—02 0.9832 1.0114
1.25e-5, 256 x 256 5.8595e—03 0.9735 5.6862e—03 0.9819 1.0305
At, T /TMECH Rate pyY . uly — (PN, u)ll2 Rate ZLeff, MECH
le—4, 32 x 32 6.3893e+01 - 7.5442e4-00 - 8.4691
Se—5, 64 x 64 3.2026e+01 0.9964 3.8195e+00 0.9819 8.3847
2.5e—5, 128 x 128 1.6031e+4-01 0.9973 1.9220e+-00 0.9863 8.3409
1.25e—5, 256 x 256 8.0199¢+00 0.9980 9.6411e—01 0.9895 8.3185
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Fig. 3. Permeability field and model boundary conditions of the prototype unconventional reservoir model.

rate of 10 m3/s. IIPG with a global penalty parameter of 100 is employed in the EG scheme. The time of simulation
is [0, 500] s with a uniform time step size At = 20 s.

The following dynamic mesh adaptation strategy is applied, starting with a uniform 64 x 64 rectangular mesh.
The local discretization error indicators in L2(E x1t,_, t,[) is computed on each element E € 7}, at time step #, and
summed into two indicators, one associated with the flow equation and one associated with the mechanics equation.
Namely, let

,_ n 2 n \2 n 2 n 2 n o \2 n 2 n 2
Mo = Oy ) D (2 0 )2 4 D O+ D () + O 0+ G )?) (8.9)
eCOE eCOE eCOE
local time errors local flow errors local penalty jumps
and
— E : n 2 E : n 2
1 E mechanics += (773,1’30-) + (776,1,,,)
eCOE eCOE
——— ——_—
local errors on the stress tensor’s time derivative  local errors on the stress tensor (810)
n 2 n 2
+ (E.1,0) + (e 1.0) )
— ———

local errors on the displacement’s time derivative  local errors on the displacement
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Table 7

Comparison of DoFs between the adaptive mesh and the uniform mesh.
Domain Uniform mesh 128 x 128 Adaptive mesh t+ = 100 s (% ) Adaptive mesh 1 =500 s (% )
Flow 131585 18815 (14.3%) 29018 (22.1%)
Mechanics 132098 20060 (15.2%) 30932 (23.4%)

then each of the two indicators are normalized by the maximum value and added up to obtain a refinement indicator:

NE flow 1 E,mechanics

NE refine = (81 1)

||77E,ﬂ0w||l°°(77,) ”nE,mechanics”]O"(ﬁ,).
The top 10% elements with the largest refinement indicator ng r.fne values are refined isotropically, unless the
element width is smaller than or equal to 1/512 m; the bottom 20% elements with the smallest refinement indicator
values are coarsened unless the element width is greater than or equal to 1/8 m. The dynamic mesh adaptivity
and solutions are presented in Fig. 4. Clearly, the mesh is adaptively refined near the well, across the fractures, at
fracture joints, and around fracture tips. As the fluid is being depleted inside the fractures, more refinements are
put inside and across the fractures.

We compare the number of degree of freedoms (DoFs) of the adaptive mesh at + = 100 s and ¢ = 500 s to the
DoFs of a static uniform 128 x 128 mesh in Table 7. As time progresses, the DoFs of the adaptive mesh increase,
but overall the adaptive mesh utilizes less than 24% of the DoFs of the 128 x 128 uniform mesh for both the flow
and the mechanics domains. The accuracy of the adaptive solutions is demonstrated by comparing the pressure and
volumetric strain solution profiles along the center of the top horizontal fracture to those obtained on the 128 x 128
static mesh, presented in Fig. 5. Results show that the adaptive solutions achieve excellent accuracy, especially at
later time r+ = 500 s. Moreover, a close examination of the top right plot of Fig. 5 shows that the adaptive mesh
refinement near the fracture boundaries helps to eliminate the nonphysical pressure oscillations at fracture tips,
where the permeability and Young’s modulus change orders of magnitude across the matrix/fracture interface.

8.3. Novel stopping criterion for the fixed-stress iterations

A hyperparameter arises from the fixed-stress iterative coupling algorithm (3.9)—(3.17), namely, the convergence
threshold ¢ in
criterion 1
ot —art| L =e 8.12)
Loo($2)
For large-scale engineering applications, the relative change in mean stress is also a widely used stopping criterion
for the fixed-stress iterations: [4,5,9,12,18,45]:
criterion 2
5_;:,5 _ 6/;1,871
— <e. (8.13)
h Lo%(82)
The choice of a “sufficienty small” convergence threshold ¢ in either (8.12) or (8.13) is usually based on the
user’s experience, or tuned for each simulation scenario. We propose a new stopping criterion for the fixed-stress
iterations that utilizes the a posteriori error estimators to balance the fixed-stress split error with the discretization
errors without tuning the hyperparameter :
Marching forward to the next time step n + 1 when
new criterion
Mig = 80ime & Miomp + Mo + M55, + 175, + 1, + 17 (8.14)
We argue that § = 0.1 is sufficient for most simulation scenarios without the need of further tuning. Namely, (8.14)
with § = 0.1 indicates that the error caused by the fixed-stress split is an order of magnitude less that the errors
caused by the spatial and temporal discretizations, hence the fixed-stress loop is sufficiently iterated and one can
march forward to the next time step. We demonstrate its performance in the following subsections.
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Fig. 4. Dymanic mesh adaptivity guided by the a posteriori error indicators: top: pressure, middle: volumetric strain, bottom: adaptive mesh;
left: + =100 s, right: + =500 s.
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Fig. 5. Comparison of the solutions on the dynamic adaptive mesh and on a uniform fine mesh 128 x 128 along y = 43/128: top: pressure,
bottom: volumetric strain; left: + = 100 s, right: + = 500 s.

8.3.1. New stopping criterion tested with the Mandel problem

We first test the new stopping criterion (8.14) for the Mandel problem. The model parameters shown in Table 1
are used for these tests. The simulations are run from O s to 1 s, with a time step At = 0.1 s and mesh 64 x 64.
The performance of the new stopping criterion (8.14) with § = 0.1 is compared to criterion 1 (with ¢ = le — 6)
and 2 (with ¢ = le — 4) in Figs. 6 and 7. Fig. 6 shows the number of fixed-stress iterations required to meet
the stopping criterion for each time step. The new criterion (8.14) requires significantly less number of iterations
compared to criterion 1 and 2, especially at initial time steps. On average, the new criterion requires 1.4 fixed-stress
iterations per time step; in contrast, criterion 1 requires 4.4 iterations and criterion 2 requires 2.0 iterations. Fig. 7
compares the solution errors obtained using different stopping criteria. The accuracy of the new criterion is very
close to that of criteria 1 and 2 for all the time steps, especially at initial time steps where the errors are relatively
large.
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Fig. 6. Comparison of the number of fixed-stress iterations for each time step using difference stopping criteria for the Mandel problem.
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Fig. 7. Comparison of pressure and displacement solution errors using different stopping criteria for the Mandel problem.

Table 8

Comparison of average number of fixed-stress iterations per time step
using different stopping criteria for the unconventional reservoir model.

criterion

Avg # of fixed-stress iterations

criterion 1 (¢ = le—3)
criterion 2 (¢ = le—3)
new criterion (6 = 0.1)

8.3.2. New stopping criterion tested with the unconventional reservoir model

The second group of tests for the new stopping criterion is performed using the unconventional reservoir model
presented in Section 8.2. The simulations are run with a uniform mesh 128 x 128 and a uniform time step Az = 20 s
from O s to 500 s. The average number of fixed-stress iterations for different stopping criteria is summarized in
Table 8. In this case the new criterion also requires less fixed-stress iterations per time step than criterion 1 and 2.
An examination of the solutions along the center of the top fracture shown in Fig. 8 reveals that the new stopping
criterion achieves the same accuracy in pressure and volumetric strain as criteria 1 and 2.
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Fig. 8. Comparison of pressure and solutions at + = 500 s using different stopping criteria for the unconventional reservoir model.

We conclude that stopping criteria (8.12) and (8.13) may easily lead to over-iteration (or under-iteration), unless
the convergence threshold is carefully tuned. Without the need of tuning any hyperparameter, the new stopping
criterion is efficient and accurate since the fixed-stress loops are sufficiently iterated to balance the fixed-stress split
error with the discretization errors, achieving the same accuracy compared to the stopping criteria (8.12) and (8.13)
with less number of fixed-stress iterations.

9. Conclusions and discussions

We have established residual-based a posteriori error estimators for the Biot system solved with the fixed-stress
iterative split, EG for the flow equation, and CG for the mechanics equation. The residual-based error estimators
do not require solving auxiliary local problems and are therefore computationally efficient. Both upper and lower
bounds of the errors are obtained, although some lower bounds require weak error terms that unfortunately are
not easily included in the formulas of the effectivity index. These theoretical results are validated by numerical
experiments of the Mandel’s problem. We demonstrated the effectiveness of the a posteriori error estimators when
guiding dynamic mesh adaptation in a prototype unconventional reservoir model containing a fracture network. Our
numerical investigation suggests that the error estimators are effective by achieving dynamic mesh refinement near
the wells, across the fractures, at the fracture joints and around the fracture tips; and dynamic mesh coarsening
elsewhere. The numerical solutions on the dynamic mesh have the same accuracy as the solutions on a static
fine mesh, while using less than 24% of the DoFs of the fine mesh. We further proposed a novel stopping
criterion relying on the a posteriori error indicators. The new stopping criterion balances the fixed-stress split
error with the discretization errors and does not require tuning of the convergence threshold hyperparameter.
Numerical experiments using the Mandel’s benchmark problem and the synthetic unconventional reservoir model
have demonstrated the efficiency and accuracy of the new stopping criterion. Namely, the new stopping criterion
achieves the same accuracy compared to other commonly used stopping criteria (8.12) and (8.13), while avoiding
over-iteration that the stopping criteria (8.12) and (8.13) may easily encounter.
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Appendix

For the reader’s convenience, we recall here some useful bounds, either with or without proofs when they are
well-known. As usual, the family of meshes is regular, see (3.1). Let us start with a number of local inequalities,
with constants C independent of h, E, e, etc. First a local Poincaré inequality,

VO € Hy(E), 101l 28 < Chelblyi ). (A1)

With a different constant C, (A.1) also applies to functions that vanish on a part of the boundary of E with positive
measure. It carries over to the union w, of elements adjacent to e, again with a different constant,

VO € Hy(@o), 1101l 1200,) < ChalOlii (o, (A.2)

where h,, is the maximum diameter of the elements sharing e. We also recall a local Poincaré—Wirtinger inequality
for functions with zero mean value

Vo € H'(E)NLY(E), 102 < Chel0l e (A3)

Thus the mean value operator m g has the following approximation error:

Proposition 14. There exists a constant C, independent of h, such that for any e € &, and E adjacent to e, the
mean value operator mg defined by (4.18) satisfies

A~ L
Vv e HY(E), [v—mp@l2e < Chilvly ). (A4)

Next, a trace inequality and a scaling argument gives for any E adjacent to e,

A L
Vo € Hol(we), 1601 L2y < Ch; 101171 (- (A.5)

On the other hand, we shall need local inverse inequalities valid for functions 6 in finite dimensional spaces, the
dimension being independent of 4, e, E. First,

~

C
01 h1e) = h_||9||L2(E)~ (A.6)
E

Next, we have the inverse trace inequality

A

C
10112y < \/THGHLZ(E)- (A7)

1
If, in addition, 6 belongs to Hy(e),

A

C
len 1 =< 1911 22c)- (A.8)
Hg@  ~he L@

The above constants depend only on the dimension of the local spaces.
Next, let us recall the bounds of some interface jump terms.

Proposition 15. There exists a constant C, independent of h, such that for all p, € My, and all constants § > 0

‘ Z({’CVPh : ne}es [ph]e)e

1
ecg),

1) 1 Ay A
< = J(pu, pr) + —(d + 1)C*? ="
2 46 min

e

|pul; (A.9)
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Proof. All constants C below are independent of &. Let e € 5}} and let E be one of the two elements of 7;11 sharing
e. By (A.7), there exists a constant C such that

o lel
(€9 pule - me. Tpale), < haC (7 |) 162V pill g N pale 2o

A‘IIIE[X

< é(Z—e)ﬂuphlean@)( ;

)§ ”’Cjv Ph ||L2(E)

Ye A2 Amax
< [ah—en[ph] 22 + c ||KZVph||Lz(E)]

| =

and the constant C is independent of §. Therefore

1 X
Cz max

where E| and E, are the two elements of 7711 sharing e. Then (A.9) follows from the fact that, when summing this
inequality over each e in &£, each element E appears at most d + 1 times. [

‘({KV P eles [pale),| < |"2v1’h”L2<51UE2)’

Let ay(ps, 6;) be the bilinear form with 7, = 1, i.e., we consider SIPG,

an(pn, 6h) = —((Ph, O — M_ Z( (VY pi - neles [Onle), + (VO - n.)e, [ph]e)e>- (A.10)

’ eEEl

Then (A.9) implies for any § > 0,
1 5 1 25 Mmax 2
a0 = — (164113 = 87461, 61) — 5-(d + D> g, 7).
I 28 min y,
Hence the choice § = l gives
1 1 de
an(n, O) > —( Tn(Oh, ) + (1 — (d + DC*—— )|9h|h) (A.11)
Ly min y,

and the ellipticity of a; follows from a suitable choice of y,. Thus, we have the following lemma.

Lemma 2. If
min y, > 2(d + 1C? Amaxs (A.12)
eeE

with C the constant of (A.9), then
1
VO, € My, an(On, 0n) = =—— 164 I} (A.13)
2y

The contraction property of the fixed stress algorithm (3.12)—(3.17) holds under the same sufficient condition
(A.12). More precisely, (A.12) implies in particular

—nt 1 —n,l—1 —n,l—=2
Ve>2, o, ”LZ(Q]) = 8K, — o, — 0y ”Lz(_()l)a (A.14)
where
1 1
= — 4+ —. A.15
P=wutx, (A.15)

As BK, > 1, (A.14) means that the sequence 6,:"5 is contracting in L2().
Now, we recall some properties of the approximation operators. We start with ), defined by (4.18). It follows
from Proposition 14 that for any e in &,

[S1E

A L 2
Vo e Q). = Ol = Clhe, + i) (0B, + 10,)?- A6

[@%

”{v - eh}e”LZ(e) S E(hEl +hE2) (|v|H1(E1) + |v|H](E2)) .
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Next we turn to the operator S, defined by (4.22). Let v be a function that is constant in each element; recall
that

Sh() = D V(Eq)da(x).
a
Let E € 7;1 with vertices @;, 1 <i < d + 1. Since a; is one of the vertices of E,,, there is a sequence of adjacent
elements of 7;}, E=E\E...,E, =E,, with E, adjacent to Eg,. Since the mesh is regular, the number k; is
bounded by a fixed integer K independent of @; and h.
Now, as in E,
d+1

D a0 =1,
i=1

we can write V(E) = v(E) Y0 ¢ (x). Thus,

i=I
d+1

Vx e E, Sp(v)x) —vx) = Z(U(Ea,-) — V(E))¢g; (x).

i=1

By considering the above sequence of elements E;, this implies that

d+1 ki—1
Vee B, S0 - v = (D, )éu @), (A.17)
i=1  j=1
where e; is the interface between E; and E; . Hence
d+1 ki—1 )
vee £, [Si)) — v = 3 (X lei I, i, ) da ). (A18)

i=1 j=1

From here, we deduce the following proposition:

Proposition 16. There exists a constant C, related to the regularity of the mesh but independent of h, such that
for all functions v that are constant in each element E of 7;1,

155@) = VlTa g, < COK =17 D~ kel o, s (A.19)

eeS,%
Ard+1\2 1
D IVES@) = g < C(T) (K—=17%>" h—en[v]euiz@, (A.20)
E€T)) eck)
and

155 @) = Vl3a ) < CK = 1 Y 0L 2, - (A21)

eef}l

Proof. By recalling that the set of functions ¢,,, 1 <i <d + 1, form a convex combination in E, we infer from

(A.18) that
) d+1 k,‘*l . )
vee B, 500 — v = 3 (3 le I, i) da 0.
i=1 j=1

Then, considering that k; < K, we have

d+1 ki—1

vee B, [Sie —v@[ = K = DY (el vl 12, ) o -

i=1 j=1
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But, as ¢, is a polynomial of degree one, that takes the value —— +1 at the center of E, the Gauss quadrature formula
gives

[¢ _ 1B
“ T a1l

Hence

ki—
|E| -«
1S(0) = Vlagg < - +1(K—l)ZZ ||[v16,||L2(e

=1 j=1
When summing this inequality over all E in 7,', each jump is repeated at most (K — 1)(d + 1) times. Therefore
15h@) = Vl72 g, < (K = D Y Relllvlel g,
eeSl

max |E|
min |¢/|

where h, = for all ¢’ in a neighborhood of E. The regularity of the mesh implies that &, < Ch,. This yields

(A.19).
Regarding the gradient of the error, note that

1 e
d|E|’
where ¢; is the face opposite a;. Therefore, (A.17) implies that in E

d+1 |é| 2 ki—1
i -1 2
() (Xt vl )
=1 j=1

d+1 2 ki—
lei

IV(SH©) = )2 < DT (Z 17 0l 122, ).
j=1

and the same argument as above yields (A.20).
Finally, the proof of the trace inequality (A.21) is similar to that of (A.19). Indeed, we have

|V¢a,~| =

IV(Sh()x) — v@))|* <

Hence

ki—1

Vree,  [Si)@ - @)’ <(K—1>Z(Z|e 7001 12 ) ) 00
i=1 =

and

||[ ]6, ||L2(e )’

1Sh(@) = vli32,, < d(K—l)ZZ

i=1 j=I lej]
and (A.21) follows by summing over all face e of £/>. O

An interesting by-product of Proposition 16 is the following trace inequality for the functions of M.

Corollary 1. There exists a constant C, related to the regularity of the mesh but independent of h, such that for
all 9;, € Mh,

1
A 2
182y = € [ N0l 2cany + (X BelllBhelZa,))
eef}l

(A.22)

1

b (1000 + (S mtieniza,) (S 190 0,) + (2 }:—en[eh]eniz@)z) |

1 1 1
ec&y EeT, ec&y
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Proof. Recall that 6, = 9 lesc with 9,3‘ € Q) and Gd‘sc constant in each cell. Then, we write
163122y = 165" + Sn@5)) + (65 = Su@F"N) Nl 2r)-

and in view of (A.21), it suffices to bound the sum in the first brackets. As this function is in H'({2,), the trace
theorem in (2, see [40], yields

IV +sh(9,$““>>||

165" + Sh@ ) 2y, < C[”Qﬁt + Su 65 L2y + 165 + Sh(@ihs‘"‘)lle(Q )

Now, by (A.19),

L2(8 >]

D=

165+ Sh O 1202, < 101l 22y + 15K OF) = 0N 20y < 16nll 202y + C(K —1>(Zh“[9h1 “Lz@)-

1
ee&y

Similarly, by (A.20),

]

IV + S1 65N, ) < (3 IV, IV(SHEE) — oy, )
Z disc - Z 2 - Z disc disc -

EeTh1 Ee7711 EeTh
1 1
~d+
= (X 1V6ily) C—<K—1)(Z ||[9h]g||L2@) .
Ee7711 eef,‘l

Then (A.22) follows from (A.21) and these two inequalities. [l
Note that (A.22) readily implies that

1 1 1
2ty < €162y + 1 1O 6% + (1001 sy + 12 61,04 ) 16015 (A.23)

This inequality has the following application.

Corollary 2. For all real numbers § > 0 and §' > 0 there exists a constant C(8,8') independent of h and At
such that for all functions f € L¥(I'y) and 6, € M,

Iré 2 ’ 2 ’ 1 L 2
\/F £ 00| = 5[ S 100 0y, + S NOME + CG. 8N AL +h+ADE 4R IF I, | (A24)

Proof. By applying to 6, the trace inequality (A.23) in
f Qh‘

IA

\ L1 22y 100 L2
I'ip

we infer

ol < L(SLiouiz, .+ ALeq s 5200, 0 + TG
| i | = 5 (S5 10120, + 5 Gl War + 825160, 60+ -ClL )

IA

L ACUL 823 Ons )3 100l + L€ £ I
+ E(mll b2l =Gl Wy 84510 02100+ 5-Cf )

The factor of 33 can be further bounded by

3 83, 0s 2 1 2
— 16nll 22 16k lln = E(EHQhHLz(QI) + g”@h”h)-

Ar)?
Therefore, by collecting all factors, we deduce
1 83 83 2 At A t)
][F Fou] = 5[0+ 209 - 102 g, + (B2 75+ 82) 1001} + (?+ 5 - 5 )CIIfIILz(Flz)]

It is easy to check that numbers §; > 0 can be picked, independent of & and A¢, so that both §; + 738385 and
8 + 2%35 + 84 are arbitrary. This proves the corollary. [
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