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computational load, especially in large-scale models. To address this problem, we introduce
a sequential local mesh refinement framework of temporal and spatial adaptivity to

Is(;{,?g?;e domain decomposition optimize convergence rate and prevent convergence failure, while not restricting the
Mixed finite element method whole system to small time steps, thus improving computational efficiency. Two types of
Sequential local mesh refinement error estimators are introduced to estimate the spatial discretization error, the temporal
Iterative solver discretization error separately. These estimators provide a global upper bounds on the dual
Non-linear system norm of the residual and the non-conformity of the numerical solution for non-linear two

phase flow models. The mesh refinement algorithm starts from solving the problem on the
coarsest space-time mesh, then the mesh is refined sequentially based on the spatial error
estimator and the temporal error estimator. After each refinement, the solution from the
previous mesh is used to estimate the initial guess of unknowns on the current mesh for
faster convergence. Numerical results are presented to confirm accuracy of our algorithm
as compared to the uniformly fine time step and fine spatial discretization solution. We
observe around 25 times speedup in the solution time by using our algorithm.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Complex multiphase flow and reactive transport in subsurface porous media is mathematically modeled by systems of
non-linear equations. Due to significant non-linearity, solving such systems with Newton’s method frequently suffers from
convergence issues even when applying very small time steps and using unconditionally stable fully implicit schemes. This
problem becomes much more severe in large-scale models since significant increases in the number of unknowns makes
each Newton iteration computationally intensive. However, by reducing the size of the model using multiscale techniques
and optimizing convergence rates of Newton’s method, one can achieve orders of magnitude improvement in computational
efficiency.
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Fig. 1. Saturation and normalized initial non-linear residual at 100 and 800 days. (For interpretation of the colors in the figures, the reader is referred to
the web version of this article.)

Adaptive homogenization [4,32] reduces the number of unknowns in the model by replacing fine mesh with coarse
mesh in regions where non-linearity and variable (for example saturation) variation is negligible. However, fine and coarse
discretization in space requires different time scales for stable numerical solutions. Forcing the coarse mesh to accommodate
the fine mesh by taking fine time steps fails to reduce the number of unknowns in time. Space-time domain decomposition
addresses this difficulty by allowing different time scales for different spatial grids.

Many space-time domain decomposition approaches have been proposed in the past. In [1,22,23], space-time finite ele-
ments were introduced for elastodynamics with discontinuous Galerkin (DG) in time. The space time method has also been
applied to reaction-diffusion problems with different time discretization schemes [7,8,25-27,29]. Other examples include
[19] who have applied space time sparse grids for parabolic problems; [40] who applied local time stepping based on mul-
tiplicative Schwarz domain decomposition; [36] who formulated local time stepping for fluid dynamics and fluid structure
interactions.

The aforementioned literature applied space-time domain decomposition methods to Galerkin based schemes and did
not consider multiphase flow in subsurface porous media. Prior work on mixed finite element (MFE) methods focused
on linear single phase flow and transport problems where flow is naturally decoupled from advection-diffusion transport
[20,21]. In the latter, an optimized Schwarz waveform relaxation (OSWR) based on Robin transmission was employed. In
[35], a space-time approach for non-linear coupled multiphase flow and transport problems was formulated on a static
grid using an enhanced velocity method, a MFE variant [2,3,5,37,39]. Here continuity of fluxes at non-matching space-time
interfaces was strongly enforced unlike the iterative solution scheme introduced in [20], that require subdomain problems
to be solved iteratively until weak continuity of fluxes is satisfied at interfaces. In addition adaptive mesh refinement was
introduced in [34], thus improving computational efficiency while maintaining accuracy. Further enhancements included
applying an initial residual as an inexpensive error estimator to search for regions requiring refinement. As an example
of this approach we observe from Fig. 1, that the normalized non-linear residual becomes the largest in regions with the
highest non-linearity (water saturation front), thus resulting in increased computational time. Refining such regions in time
ensures Newtonian convergence while refining in space maintains solution accuracy.

The adaptive local mesh refinement approach demonstrated in [34] allowed only one level of refinement in both space
and time, thus restricting the largest coarse time step allowed for stable numerical convergence. This approach was ex-
tended in [30] by allowing additional refinement levels, similar to the algorithm introduced in [10], in which only spatial
adaptivity was treated. When solving problems on each coarse space-time domain, regions with large non-linear residual
and saturation variation are sequentially refined to the finest resolution to ensure solution convergence and accuracy. After
each refinement, before solving the problem on the new mesh, the initial guess for the unknowns are populated by the so-
lution on the previous mesh using linear projections. The initial guess then obtained becomes a better approximation to the
true solution. Therefore, the non-linear solver convergence is not only guaranteed, but also accelerated. Although achieving
5 times speedup of solution time with an iterative linear solver, results in [30] relied on isotropic space-time refinements
which produced a significant number of unnecessary elements. Regions with large saturation variation behind the front
are forced to take redundant fine time steps. Preventing such over-refinement further improves computational performance.
Another problem associated with isotropic refinement schemes is that, the error indicator used to pinpoint refinement loca-
tion combines both temporal and spatial saturation variations. Error indicators calculated in this fashion often mislead the
refinement process, especially in channelized permeability fields. In this work, we have extended the method demonstrated
in [30] by separating temporal and spatial adaptivity to further improve computational performance and solution accuracy.
Further improvement involves the development of error estimators and bounds for a well-known metric first proposed in
[38] for two phase flow problems.

The novelty of this work is the application of a space-time algorithm to nonlinear multiphase flow that is based on error
estimates that provide global upper bounds for the dual norm of the residual and the non-conformity of the numerical
solution. This approach does require the reconstruction of fluxes.
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In this paper, we restrict ourselves to non-linear two-phase flow problems in subsurface porous media. The rest of the
paper begins by describing the governing equations for two phase flow, the functional spaces for space-time domain decom-
position, the enhanced velocity weak variational formulation in Section 2. Analysis of error estimator used in the refinement
process is presented in Section 3 followed by description of the algorithm for the sequential local mesh refinement solver
in Section 4. Results from three numerical experiments using the proposed algorithm are discussed in Section 5. One of the
examples presented involves compressible two-phase flow, which is a critical step in studying three phase problems.

2. Two phase flow formulation

We consider the following well-known two-phase, slightly compressible flow in porous medium model, with oil and
water phase mass conservation, constitutive equations, boundary and initial conditions.

9
%Jrv-ua:qa inQ x J 1)
krol .
Uy =—I<paM—(Vpa —pag) INQx J (2.2)
o
Uy -v=0 ond2 x J (2.3)
_ .0
Pe=Pa 30 x (t=0) (2.4)
Sa = Sg

¢ is porosity and K is permeability tensor. oy, Sy, Uy and g, are density, saturation, velocity and source/sink, respectively
for each phase. The phases are slightly compressible and the phase densities are calculated by Eqn. (2.5),

Po = Pot,ref . eCf,ot(Pot_Pot,ref) (25)

with c¢ o being the fluid compressibility and pq e being the reference density at reference pressure py ref. In the con-
stitutive equation (2.2) given by Darcy’s law, k;, (1o and py are the relative permeability, viscosity and pressure for each
phase. Relative permeability is a function of saturation. Pressure differs between wetting phase and non-wetting phase in
the presence of capillary pressure, which is also a function of saturation.

kro = f(Sa)
Pc=&(Sa) = Pnw — Pw

The saturation of all phases obeys the constrain (2.8).
Y sa=1 (2.8)
o

The boundary and initial conditions are given by Eqn. (2.3) and (2.4). ] = (0, T] is the time domain of interest while Q is
the spatial domain.

Now we will give a brief introduction of enhanced velocity formulation in space-time domain. Let J = (0, T] be parti-
tioned in to a number of coarse time intervals {tn},’;’:1 where 0=ty <ty <---<ty=T. J, = (ty, tn+1] is the nth partition
of the time domain of interest. Consider J, x Q as an union of some non-overlapping subdomains {I,~ X Q,-}, namely
Jn x @ =Uj(I; x Q;), where I; = (t;, Tiz1] is a sub-interval of J; = (tn, tp41] and Q; is a subdomain of Q. The interfaces

of the subdomains are defined as I'; j = 8(1,- X Qi) N 8(11 X Qj), =y Tijand I'i=TN a(l,» X Qi>. We use space-time
enhanced velocity method similar as [39] to discretize the system. The functional spaces for mixed weak formulation are

V = H{div; Q) = {v e (@) :v.ve LZ(Q)}, W =12(Q),
with finite dimensional subspaces as V, and Wjy. Let 7,%; be a rectangular partition of I; x €, Ef* =T[" x F[" be an

space-time element in such partition with T" = (7]}, 7|1 and T = UiT,;. Define velocity and pressure/saturation spaces
as

Vz’i = {v € L2<I,-; H(div; Q,-)) :v(-,x)| e Vy(F™ and v(t, )

!
o =) vat? with vaevh(F?),VETeﬁl’fi},
i a=1

™
!

W{l”,- = {w € L2<I,-; LZ(Q,-)) : w(~,x)‘Fm € Wy (F™) and w(t, ~)‘Tm = Zwat“ with wg € Wi (F"),V E]" € Th’fi},
i i =

where
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Vip(Fh = {V=(V1,Vz)orV=(vl,Vz,V3):Vz=az+ﬂz><z; a,BeR,I=1,--- ,d}

Wh(F™) = {w is a constant in F,m}

Functions in V! ; and W}, along time dimension are represented by polynomials with degrees up to I. As described in [35],
following the dlscontmuous Galerkin (DG) discretization in time [6,24], the DGy (polynomial of degree zero) scheme makes
v(t, )\T_m and w(t, )|T.”' constant. Then we define the product spaces as V! = @lvg,i. We remark that Vz is not a subspace
of V. T(; obtain a ﬁnité element space containing basis functions with continuous normal flux, we need to modify the basis
functions on the space-time interface I'; ;. Let 5" be the rectangular partition of I'; ; obtained from the intersection of
the traces of 7;; and 7;1“ For each e € Sh i j we deﬁne a RTy basis function v, with a normal component equal to one
on e, namely ve|e -v = 1. We then define the space V,l; to be the span of all these basis function, v.. Then the space-time
mixed finite element velocity space VZ’* is

vit=(aivpd)ev)

where VZ:? is the subspace of Vz‘i with zero normal component on I';. Similarly, the pressure/saturation space is W =
ew,

Now consider any function f piecewise in time (for example functions in Vﬁ'* and W), define f7 as the linear inter-
polation along time direction as

fe@o)| S o [ b pame | VE =T X P ey
T - 5. M _m i 5 "
(AR AN AT oo — Tl L0 Fm

and we have

r{”l

/atfr szf(fmv’) m_f(fi’?]o")

i
.[m

i,0
To simplify the notation, let C}, n= pa< o h)s” , be the phase mass concentration. Then space-time enhanced velocity
method formulates Eqn. (2.1) and (2.2) as: find u” ah € Vh , a h € V,1 , a n €W, p n € Wi such that

//at Copt W+// V uupah ://qaw Yw e Wy (2.9)
//K T v_//pahv v YveVp” (2.10)

.]71

/fug.h-v://)\aﬁgyh-v vvevy® (2.11)
Jn Q Jn Q@

The mobility ratio in (2.11) is defined as

kro oo
Mo
and uﬁp,a,h is the upwind velocity calculated by

//uZp,a,h v ://)‘Zﬂgt,h v Vve VZ’* (2.13)
Jn In Q

The additional auxiliary phase fluxes ﬁg’h is used to avoid inverting zero phase relative permeability [31]. Calculation of
the upwind mobility ratio A}, is referred to Eqn. (A.19). The variational form for specifically oil-water system and its fully
discrete formulation is attached in Appendix A. The discrete formulation provides us a non-linear system of equations for
pressure and saturation. We approximate such system in linear form and use Newton iteration to approach the true solution.
Depending on the level of non-linearity and the closeness between the initial guess and the true solution, Newton’s method
could take numerous iterations before achieving convergence. We will use the sequential local mesh refinement algorithm
to accelerate the Newtonian convergence. Before introducing refinement algorithm, in the next section, we will first present
analysis for error estimator used for searching refinement regions.

Ao =

(212)
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3. A posteriori error estimate

In this section, we discuss the error estimate analysis as an extension to the work presented in [38]. In contrast to
the previous work, our approach to calculate a posteriori error estimate does not rely on computationally expensive local
reconstruction of fine scale solution from coarse scale solution Let ET = (rl”}), 711 x F{" € T, be a space-time element, we

define local error estimators nt ri’ '75 ri’ nt f @it 775 f ol ’Ir pai’ ’75 i 3 follows

N\ 2
n?rmozz }Tll_t (/’af(¢caht)+v uupahr qa‘) (3-1)

Er
1

2) 2
(3.2)

ngrmaz |Fm‘ ( / ’af(¢cgz,h,r) +V- uZp,a,h,r —(u

Er
7
o= (/Kl u” 2) (3.3)
t,f.ai h a,h,t
Em
2
pm (/K_1 ul ‘2) (3.4)
s, f.a,i up,o,h ah .
Er
7
2
= (/K ‘atuah, ) (3.5)
Er

1
2
My i = <|Em /‘vx(x—lago 3 |e|/ [(k"at, xne]> (3.6)

ecdET
Ey

Eqn. (3.1)-(3.2) are residual estimators, Eqn. (3.3)-(3.4) are flux estimators and Eqn. (3.5)-(3.6) are non-conformity estimators.
Eqn. (3.1) through (3.6) will provide upper bound for the error measure we are about to introduce. It is common to use
energy norm as an error measurement for linear problems. However, it is much more complicated for nonlinear problems.
Instead we use the dual norm of the residual, which is also widely applied, as our error measure. We denote

X" = L2<Jn; H%sz)) (H (Jn; Lz(sz)),

and for any ¢ € X"

2 1 2 2
H‘/’“x" :/ <||w”L2(Q) + ”KZV’/IHLZ(Q) + ”\/ff ”LZ(Q)>'

In
Let sg. pg. ug and s ., py . Uy, be the exact and numerical saturation, pressure and velocities solutions. The error
measure |||-||| is defined as
n n n n ~n ~n NI n
65t = St P& = P B = ) || = No +Ni

where

Ng = l/,exi}lul?/,”:] {j/ (Q/ 3t(¢CZ,h - ¢Cg,h,r>¢ - Q/ ("Z,h - "Z,h,r) 'Vlﬁ)},

n

and

,)2
ngsz[f/K ah,+1<v¢)}
’ exn g

Ng, represents the dual norm of the residual and Ny, , measures the non-conformity of the numerical solutions.
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Lemma 1. There exist a subspace My C L? (jn; H(curl, Q)) such that

Vx Myt cvptn L2<]n; H(div, Q)).
Moreover, forall v e L? (jn; H(curl, Q)), there exist l'IMg,* v) e Mﬁ’* such that

Z v - HMZ’*(V)”LZ(E;") =C Z |ET| ”VV“LZ(E;")

EleT! EleT)!
-1 2 2
Do lel v =Ty D2 <€ D0 IVIG2g,
ee&p! ee&p

where &}l is the set of space-time edge.

Proof. We will first construct the space M,’:’* for d = 2. For a sub-domain I; x ;, we will define a space Mﬁ,i C
L2<1i; H(curl, Q,»)) by

My, = {v € L2 (155 H(eurl, 20) ) : V] (6,0 = (e + o) @z + ﬂz>}

We next define the product space as My = ®;M} ;. We remark that M} is not a subspace of L2 (]n; H(curl, Q)). To obtain

a space-time finite element space MZ’* in L2<]n; H (curl, Q)), we require v x V. to be continuous for all v € M,’;’*, for each
edge e on the space-time interface. For each space-time interface I'; j, we have the normal vector vr;; of I'; ; satisfies
vry ;= ¢, for some | <d where {;} is the standard basis of RY. Let V;,j be the set of all vertices on I'; j. For each x €V, j,

we can define a bi-linear function vy with vx(x) =1 and v(y) =0 for y € V; j. We then define the space M}: to be the
span of all these basis functions vy. Then we define MZ’* as

My = (@i m?) @ My

where MZ’? is the subspace of My ; with zero trace on boundary of Q;.
For each v € MZ’*, since v is piecewise bi-linear, we obtain V x v|E,_11 = (dv — 81v)|Em € RTp for all E" € 7}1“ and v can
1 1

be written a sum of bi-linear basis functions vy, since vy can be written in a tensor form, we have 3;v - é; for j #i. We
then obtain V x vy € V,’;"* and thus, we have V x v € V;:’*. We consider the Clément interpolation operator H’V’ﬁ’* defined

as
My () = > (wal‘lfu)vx

XeWy Wy

where V), is a set of all vertices of 7;7" vy is the nodal basis functions corresponding to vertex x and wy is the union of
space-time element sharing vertex x. Since {vy}xey, is a partial of unity of J, x 2, we have HME,*(V) S Mﬁ’* such that

v~ HM,’:’*(V)”LZ(ET) <C|E"| ”V"“LZ(E;") VE €Ty
[V = Mygoe oy < C lel VI Ve € DET

For d = 3, we can consider szi defined as
My, = [v = (v1,v2, v3) € L2(Iis Hicurl, 20)) : vil 6.0 = Tju(@x; +,3j)}
Using a similar trick, we can modify the space on the interface and obtain the lemma. O

Next, we will present a posteriori error estimate for this error measure. In the following lemma, we estimate the dual
norm of the residual of the mass balance equations.

Lemma 2. Let nZ’r'?a’,., ng”:’a,i, n?”}"fa!i and ng.’?a!i be the error indicators defined in Eqn. (3.1)-(3.4). There exist constants C, Cpoin > 0
such that
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1 ! 3
Ngf( 5 (n?j}’fa,,-)2>2+< 5 (nz;,':ta,,-)z)lccpom{( 5 (n?,:?a,,-)z)l(

El'eT} EleTy) El'eT)

)

Proof. Since s, pl, and uj, are exact saturation, pressure and velocity, using the phase mass concentration formulation

introduced in Section 2 to simplify the notation, for each v € X" we have

[ (f aloci—ocznc)v- Q/("Z ) V)

Jn Q

_ / (/qw - at(¢ca N T)w +ul, 'V¢>

In Q

We split the term f]n Joul .- Vi into two parts such that
// oh,t VY = // hvw_’_/Z/ ahr_ g,h)'vw
Q,GQ

Next, we split f]" Joul - Vi into two parts as

//u’&’h.le:—//(V-uZp’a,OW—i-//(ug,h—uzp,a.h).Vz//
Jn Jn S Jn Q

Therefore, by Eqn. (3.7), (3.8) and (3.9), the dual norm can be separated into three terms such that

/(/at(mg ¢C‘¥’”)‘” /(“Zh—“ ) W):11+12+13
Q

Jn  Q

where

I = Z /Qal/f - 8t<¢cg,h7r)w -V ugp,a,hl/f

E;HGTI;HE’,'”
1
= 3 [ (=) - VY
EeTy'gm
1
n
=Y /(ua!h.f uly) Vo
B eTy'pm

Since sg’h, pgyh, ug,h are the numerical solutions of Eqn. (2.9) and (2.10) we have the following

Z /<Qa—3t(¢cah,) V. uupoth) w=0 YweW]
Em€7mEm
We take w = ngx// and by Poincaré inequality obtain the following bound for Iy

=2 /(q“_at(¢caht) v "upah)<‘ﬁ Hwﬂﬁ)

Em67?Em

< Cpoin 3 (n0 0 ) (190 hzem + el )
EfeT)

sccpom[( 3 (n?ﬁ"a,)2>%+< 3 (n?:[?a,f)z)%}llw||xn

EleT) EleT)

(3.8)

(3.10)

(3.11)

(312)

(3.13)

(3.14)

(3.15)



8 H. Li et al. / Journal of Computational Physics 403 (2020) 109074

Next for I, by Cauchy-Schwarz inequality we have
1
1 2\ ?
L=Y" / (uhp =) VO = D WP KVl < ( > () ) i (3.16)
El'eT i Em EleT) EleT)
1
Similarly, I3 goes as
1
2 2
=Y f (upe —uly) VO = ( > (M) ) ¥ l1xe (317)
EPeTem EPeTy
By the definition of N, the inequality for the dual norm of the residual is proved. O
In the following lemma, we will provide an upper bound estimate for the non-nonconformity error measure.
Lemma 3. Assuming K € C1(Q), there exist constant C such that
1 1
2\ 2 2\ 2
n,m n,m
Nap=Cy| 2 (nt,p,a,i) + 2 ("s,p,a,i)
EfeT EfeT

Proof. First, using Helmholtz decomposition, we have

K=Yl o = Vo +V x ¢ (3.18)

with ¢g € HY(), ¢1 € H(curl, Q) for d =3 and ¢; € H'(Q) for d = 2. Since ¥ € X", Vy € L2(J, x Q). Meanwhile V¢ €

L2(2) thus we have
a,”+1<v¢‘ //K

inf f/ K~
YyeXn
We will estimate the term [} [, K=tan, — KV¢0|2. By Eqn. (3.18), we have

Jn Q
//-K’]
Jn @
By Eqn. (3.18) and V¢o L V x ¢1, we have

//|Vx¢1 /f 1< uah—Vq&o) (VX¢]>
) 0

Using Lemma 1 and the Trace Theorem, there exist a My € My such that for all EI" € T,

T 1<v¢0 (3.19)

~ 2 2

i .o — KV 0| ://K’V x| . (320)
In @

(3.21)

-2 2 2 2
nzﬂ !ET! ”‘/’1 - HME'*‘Pl HLZ(E;") = C(HV¢>1 ”LZ(]H;LZ(Q)) + ”af‘ij1 HLZ(jn:LZ(Q)))
EMeT]

_ 2 2 2
Z le] l”d’l - HM,’}**‘pl ||L2(e) = C(”V¢1 “Lz(_]n;Lz(Q)) + ”3f¢1 HLZ(]n;LZ(Q)))‘

n
ec&y

Also V x M= 1 € Vy'*, by Eqn. (2.10) we have

//-K*]ﬁgyh : (V x nM;;,*qsl) :/fpgyhv : (V x HMZ,*qh) -0
Jn Q Jn @
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Therefore, we have

// 1< qus])
// 1< uah x(¢1—nmﬁ,*¢1)]

(3.22)
//Vx 1< Ll ((p] Mn.*¢1)+ Zf/[(x ah) xn]-(qsl—HMg.*([)])
eef,‘,’l']n e
< Z HVX( i ) e |91 T 91y g 3 H (K*lﬁg,h) <), e -,
ec&l

h

Apply Eqn. (3.22) to Eqn. (3.21) we obtain

[[1vxal ( S I R]Y (k)|
Jn Q

2 2
2 2
L2<Etﬂ>) <||v¢1 li2 001260 + o] L2<Jn:L2<Q)>>
EleT! !

1

1
2 ? 2 2 :
+C ( - le] H (K Yty r) xn L2(e)> <||V¢1 ”Lz(jn;LZ(sz)) + |3 HLZU,,;LZ(Q))) (3.23)
ee

2

1
2\ ? 2 2
5C< Z (”?,’gfa,i) ) <HV¢1 HLZ(]n;LZ(Q)) + [ acn HLZ(j,,;LZ(Q)))

EleTy)
Next, we establish inequality for ||V, ||i2(]n;L2(Q)) with
“V¢1 HLZ(]n 2Q) = “V X ¢1 ||L2(],. 12(Q) = ”V X ¢1 ||L2(]n 12(Q) (3.24)

Using (3.24), we have

1 1

2 A 2 2 ’
//]quﬁ] 5C< Z (’l?,’,T,a,i)> (”V‘f’l HLZ(]H;LZ(Q))+”afq)luLz(]n;Lz(Q)))
Jn Q

El'eT)

2 2 2
5C{ > (77?,'31,0[,1-) +(leHLZ(Jn;LZ(Q))JF”3f¢1 ”LZ(Jn;B(Q)))} (3:25)

El'eT)
n,m 2 2
<ci > (ns,p,a,i) b2, 12000
E

Also for | 3¢ ||i2(]n;L2(Q)),

2 2 2
||3f¢1 HLZ(j,,;LZ(Q)) = Haf‘l’l HLZ(jn;LZ(Q)) + H3t¢>o ”Lz(jn'Lz(Q))

HK Ollg HLZ(]n 2@y =€ Z <'7t pa 1)
ETeT!

(3.26)

Then the nonconformity error measure is bounded by
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The inequality of the nonconformity error measure is proved. 0O

The error estimator introduced in this section is used to search for refinement regions. In the next section, we will
introduce our sequential local mesh refinement algorithm to reduce the size of the system and minimize the number of
iterations required for convergence, while maintaining accuracy as compared to uniformly fine scale solution.

4. Solution algorithm

In this section we present the sequential local mesh refinement solver algorithm. The procedure starts by solving the
problem at its coarsest resolution in space-time domain and then sequentially refines certain regions to its finest resolution.
The coarsest time step is chosen such that the numerical convergence is guaranteed on the coarsest spatial grid. During the
sequential refinement process, the solver first keeps the spatial mesh static at its coarsest level and searches for regions
to refine in time. Once the last level of temporal refinement is implemented, the temporal discretization is finalized and
the solver refines the mesh in space until reaching the finest resolution. Then the spatial grid is restored to the coarsest
resolution, the solver marches forward in time with the coarsest time step and the whole process reiterates. The complete
algorithm is illustrated in Fig. 2. We always start from the coarsest mesh and refines into deeper levels due to the tree
data structure inherited from [15,18,30]. The tree structure is represented by a group of pointers linked to each other.
Allowing both refinement and agglomeration requires inserting and removing pointers in the middle of the tree and then
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Fig. 3. Sample grid generated during sequential local mesh refinement from coarsest to finest space-time resolution.
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Fig. 4. Normalized spatial and temporal residual estimator at each space and time refinement level.

associating hanging pointers. The toll caused by such complex operation will counteract the computational efficiency

improvement. By constraining the operation to solely refinement, we are only required to evolve the tree by adding new

levels on the bottom

re-

which has a much smaller operation count.

Fig. 3 demonstrates a sample semi-structured grid generated with the algorithm stated above. Here the z axis represents
time in a 2-D spatial problem. Separating temporal and spatial refinement makes the mesh construction more flexible. As
observed from the plot, subdomains can have temporal refinement, spatial refinement or both. This flexibility reduces the

thus

total number of elements by two to three times as compared to the isotropic refinement scheme implemented in [30],
improving computational performance. Note that the solver always refine spatially to the finest resolution for cells with

well contained, for accurate estimate of production rate and bottom-hole flowing pressure. Adding temporal refinements for

these cells depends on whether the saturation front is sweeping through the well or not.

We use the error estimators defined in Section 3 to scan regions for refinement that in return diminishes the upper

bound of the error measure. First we study the temporal and spatial residual estimators defined by Eqn. (3.1) and (3.2),
similar to [34]. Provided by linear projection of the solution on the previous mesh, the initial guess of unknowns after each

refinement procedure is naturally close to the true solution. Consequently, the residual estimators is only useful for indi-
cating the main refinement region on the coarsest space-time resolution. Large estimator values appears only sporadically

on all other resolutions as demonstrated by Fig. 4. The sporadic appea

petrophysical properties.

rance infers strong heterogeneity of the underlying
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The most important estimators to ensure solution convergence and accuracy are the flux estimators. Let us first review
the temporal one represented by Eqn. (3.3). We expand the original formulation as the following.

1

— m _ m )2

o (-1 Ug hlem — g, h|rlo( n |F.m‘1<*1’ 27 -1

tf.oi Tlml TinB i -3
EM ’

m — Uy h |.Lrim0

Then the output is mainly controlled by the temporal flux difference term ua,h\ o= ua,h\ m» which we can further expand
i1 i,0
to

K
Uy h Tir.nl —Uy.h r{no = E,Oa (poz,h |.[ivm1)vpa,h }rlml ikra <5a,h ’71”11) - krot (Sa,h ’1;710) }

K
- Ekra (So‘»h|rl.’_”0) {pot (pa,h|,m>Vpa,h |-[ir1n1 — Pa (pot,h|,ir‘no>Vpa,h |Ti%}

The second term in the above equation is effectively zero in slightly compressible flow since density variation caused by
pressure is negligible and pressure gradient stays fairly constant in time. Moreover, temporal refinement is not necessary
if large estimator output is caused by the leading constant M%pa (Pa,h|riml)VPa,h|ri"‘l in the first term (for example regions

around the well with large pressure gradient), since pressure solution is smooth in time and does not trigger any conver-
gence issues. We need to apply temporal refinement in regions with large n?}" i caused specifically by significant change

in relative permeability k. (Su,hlzim] ) — kra (sa*’llfi"b ). Therefore we calculate the temporal water saturation gradient

0 n,m

n,m
8tswﬁh,i

t,w,i =

(4.1)

and applied refinement exclusively to reglons with both nt f i and eg’xi values exceeding the threshold.
Similarly, the spatial flux estimator ’75 f i in Eqn. (3.4) can be expanded to

2
g f @i {}Fm| |7 — oo K [tup.an — “a,h|2}

with the output mainly controlled by the flux spatial difference u,p o 1 — Uo n. We can also expand this term as the follow-
ing.

kro (Sup,a,h) — Kkra (Sa,h)
Mo

Surely, we need to refine regions with significant change in relative permeability k¢ (Sup,a,h) — krg (sa,h) to accurately
represent the features of the reservoir. Furthermore regions with large estimator output caused by the leading constant
% PaVPpa,n also need special care. Such regions are characterized by rapid mass flow and refining them facilitates conver-
gence. Therefore we calculate the spatial water saturation gradient.

P Al i VS @0 > [V 2700 )
o (||szhl<x>||,oc+IIVs'JV,ﬁ:{"<x>||,m) if [ VS @ < V557" @ '

Uyp o.h — Ug.h = —Kpg VDa,n

and apply refinement to regions with either '75 f @i Of 83 w.i values exceeding the threshold. Please note that we are taking
some extra steps when calculating spatial saturation gradient by looking at the previous time step values. This mechanism
ensures a more accurate exposure of features in the system, especially in channelized permeability distributions. Fig. 5 and
6 show flux estimator and saturation gradient at each refinement level.

Instead of setting a subjective threshold, we outline the regions for refinement by distribution percentiles. We first
define [0.01, 1] as the analysis range of flux error estimator and saturation gradient. Values below 0.01 are considered
too small and thus neglected. The threshold is determined by distribution. The cumulative distribution function of flux
error estimator and saturation gradient at each refinement level is plotted in Fig. 7 against sample data collected during
simulation. As illustrated by the graphs, the data for both variables generally follow log-normal distribution trend. During
temporal adaptation, we refine cells with 50% largest values in both flux estimator and saturation gradient. Therefore, we
use the log-mean, which covers approximately 50% of the analysis range, as the threshold. We notice that during temporal
refinement, the cumulative distribution functions of both variables are better described by normal distribution. However,
we still choose the log-mean as the threshold since it leads to a slight over-refinement in time and thus better guarantees
Newton convergence. During spatial adaptation, we refine cells with either 50% largest values in the saturation gradient
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Fig. 8. Relative permeability (left) and capillary pressure (right) curve for numerical experiments.

or 10% largest values in flux estimator. Therefore, the thresholds for the two variables are the log-mean and one standard
deviation above the log-mean, corresponding to their respective distribution.

Finally for the non-conformity estimators, n?”;?a,i is naturally diminished during temporal refinement using ng”f"ﬂj since
the two estimators have similar formulations. ”?,’Ea,i represents the tangential gradient of flux on non-conformal grid
interfaces. To reduce this term, we apply mesh smoothing algorithm. Adjacent grid cells cannot be more than one refinement
level apart within the hierarchical tree structure in both spatial and temporal dimensions. Such algorithm also ensures a
smooth transition from fine grid into coarse grid and thus facilitates convergence.

5. Numerical results

In this section we will first show results from two numerical experiments on 2-D slightly compressible two-phase flow
model. Both experiments use the same fluid data from the SPE10 dataset [9]. The oil and water reference densities in
Eqn. (2.5) are taken to be 53 Ib/ft> and 64 Ib/ft> and compressibilities are 1 x 104 psi—! and 3 x 10~ psi~! respectively.
The fluid viscosity is 3 and 1 [cp] for oil and water phase. We use Brooks’s Corey model for both relative permeability and
capillary pressure. The equations for relative permeability are

n
e — 10 (&)
™ — Rrw

1= Sor — Swirr

Ny
So — Sor
kro = k;(')o <—
1 — Sor — Swirr
0

The endpoint values are Sor = Syirr = 0.2 and k;, = k?w = 1.0 while the model exponents are n,, =n, = 2. The equation for
capillary pressure is

(5.1)

!
1— s, cow
Pc(Sw) = Pen,cow (%) (5.2)

w — Swirr
with Pep,cow = 10 psi and low = 0.2. Fig. 8 visualizes the relative permeability and capillary pressure curve. The two
experiments use Gaussian-like and channelized permeability and porosity distributions from SPE 10 dataset [9] layer 20
and 52, respectively. The reservoir size is 56 ft x 216 ft x 1 ft. We place a water rate specified injection well at the bottom
left corner and a pressure specified production well at the upper right corner. The water injection rate is 1 ft3/day and
production pressure is 1000 psi. Furthermore, the initial pressure and water saturation are set to be 1000 psi and 0.2.

5.1. Gaussian-like permeability distribution

The Gaussian-like permeability field comes from SPE 10 dataset layer 20. The fine scale petrophysical data are shown
in Fig. 9, assuming isotropic permeability. We allow three refinement levels in both space and time in our experiment.
Although the framework allows different refinement ratios between levels, for the sake of simplicity we set the same ratio,
a factor of 2, between all levels. We use the numerical homogenization technique introduced in [4] to upscale the fine scale
permeability to different coarse levels. This calculation only needs to be performed once at the beginning of the experiment.
The homogenized permeability distribution in X and Y directions, which does not manifest high anisotropy, is illustrated in
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Fig. 9. Gaussian-like fine scale permeability (left) and porosity (right) distribution.
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Fig. 10. The porosity is upscaled simply by weighted volumetric average and therefore is not visualized. The computational
domain is 56 ft x 216 ft x 1 ft x 1000 days with coarsest and finest element size of 8 ft x 8 ft x 1 ft x 10 days and
1ftx1ftx1ftx1.25 days.

The adaptive water saturation profile with its mesh as compared to fine scale solution at 100 and 500 days are plotted
in Fig. 11. We observe the finest mesh stays concentrated at the water front to correctly capture the dramatic changes
in saturation. In this region, mass transfer is not dominated by either oil or water phase and thus contributes the most
non-linearity and requires temporal refinement for stable Newton convergence. Elements behind the water front is gradually
coarsened due to the decreased saturation variation. Overall, the saturation profile provided by the sequential refinement
solver looks similar to the fine scale solution. Fig. 12 shows the production rates and cumulative recoveries of the two
solutions, which are nearly identical. The oil rate from the sequential refinement solver appears to be slightly smoother at
the early time which is caused by the coarse mesh.

The program execution time is presented in Fig. 13. The total execution time consists of system setup which constructs
the linear system, solving the linear system and data handle which mainly involves copying and pasting data from the
current to the previous time step. Since the experiment problem size is still small, we use both direct and iterative solver
to resolve the linear system. The semi-structured space-time mesh results in highly non-symmetric matrices and therefore
we use GMRES with ILU preconditioner as our iterative solver. We observe 8 and 4 times speedup on system setup and
data handle using direct solver. These two types of operations are strongly dependent upon the number of time steps
taken and total number of refinement levels. Hence, the speedup scales linearly with the total temporal refinement ratio
and similar runtime reduction behavior is observed when using iterative solver. The speedup on solving the linear system
best represents the computational performance improvement. Since our problem size is small, the efficiency gain is not
substantial when using direct solver. On the contrary, we observe 25 times speed up on solving the linear system when
using iterative solver. Additional techniques on solving non-symmetric linear systems iteratively, such as relaxing linear
solver tolerance using forcing function [14,28] and applying specialized preconditioners [12,16] for Krylov-based method,
may be utilized for additional acceleration. Note that as we move towards more complex models such as 3-D black oil, the
solution to the corresponding linear system is only accessible through iterative methods. Thus we should expect significant
improvement on computational efficiency once we approach those types of problems.
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Fig. 11. Adaptive mesh (top) and water saturation profile (middle) generated by sequential refinement solver as compared to fine scale solution (bottom) at
100 and 500 days in Gaussian-like permeability field.
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Fig. 12. Two phase production rates and cumulative recoveries from adaptive and fine scale solution of Gaussian-like permeability field.

5.2. Channelized permeability distribution

The channelized permeability field comes from SPE 10 dataset layer 52. The fine scale petrophysical data are shown in
Fig. 14. We also allow three refinement levels in both space and time for this experiment and refinement ratio is also set to a
factor of 2 between all levels. During numerical homogenization, we impose oversampling technique introduced by [11] and
[13] to preserve channel connectivity as much as possible. The homogenized permeability distribution in X and Y direction
is illustrated in Fig. 15. On the contrary to the Gaussian case, the upscaled channel permeability is highly anisotropic and
many detailed structures are destroyed during the homogenization. Due to this condition, we apply an additional step
to the refinement process for regions ahead of the saturation front. Subdomains with large variation between the fine
and upscaled permeability are refined in space. This approach preserves the channel structure with minimum number of
elements, similar to image compression with quadtree which aims to represent the image detail with minimum number
of pixels, and thus ensures the correct pressure solution and flow direction beyond the saturation front. The computational
domain is 56 ft x 216 ft x 1 ft x 1000 days with coarsest and finest element size of 8 ft x 8 ft x 1 ft x 10 days and
1ftx1ftx1ftx1.25 days.

The adaptive water saturation profile with its mesh as compared to the fine scale solution at 200 and 400 days are
plotted in Fig. 16. The overall saturation profile resembles each other between the two solutions. Here, the fine mesh
not only concentrates at the water front, but also outlines the channel structure. The channel boundary is characterized
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Fine scale permeability

Fig. 14. Channelized fine scale permeability (left) and porosity (right) distribution.

X-direction permeability at space level 0 Y-direction permeability at space level 0
F N n r |
4 4
2 . 2
™ : :
B =
X-direction permeability at space level 1 Y-direction permeability at space level 1

F n
R i ,.

=
 u ?

Fig. 15. Homogenized channel permeability in X and Y direction for each space level.



18 H. Li et al. / Journal of Computational Physics 403 (2020) 109074

Adaptive mesh at 200 days Adaptive mesh at 400 days
LB LT LT A T.T P T | FEER T T [ AL
T FEFE et | e
H i [ HEH FRF AR H
i FEEEH FEHE P
L H HFE e
EH T ] T I
L . B e e e L
e : GiEwiiin +ﬁ+:z++ i HITT
EREd [ H il
HHH | ] ‘ LT T

Fine saturation at 200 days
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and 400 days in channelized permeability field.
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Fig. 17. Two phase production rates and cumulative recoveries from adaptive and fine solution of channelized permeability field.

by dramatic contrast of permeability, thus resulting in steep water saturation gradient. The refinement algorithm detects
these features and deploys mesh with appropriate size accordingly. Many low permeability spots inside the main high
permeability channel are also accurately identified and represented. Some subdomains beyond the saturation front are
refined as well to recover necessary channel structure and ensures correction flow direction. Fig. 17 shows the production
rates and cumulative recoveries of the two solutions. The adaptive and fine scale rates also look similar, however with
obvious discrepancies. The rates from sequential refinement solver looks smoother than the fine scale solution at early time.
It also suffers from slightly early water breakthrough. The oil and water cumulative production from the two solutions
nearly overlap.

We also approach the solution by both direct and iterative method. The program execution time is shown in Fig. 18.
The speedup on system setup and data handle also scales linearly with total temporal refinement ratio. The solution time
reduction by direct solver remains low. We still observe a 25 times speedup using iterative solver, even when additional
spatial refinements are applied beyond the saturation front. The substantial improvement is caused by two main reasons.
First of all, the flow and transport is constrained within the channel structure behind the water front, making the saturation
variation effectively zero in other part of the reservoir. Consequently, the number of grid cells required to represent the
channel structure and saturation front is still relatively small, causing the adaptive solution easier to acquire. Secondly, the
fine scale system consists of dramatic permeability contrast, resulting in the related linear system to have eigenvalues close
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Fig. 18. Runtime comparison between sequential refinement and fine scale solution using direct and iterative linear solver for channelized permeability
field.

to zero. Solving such linear system with Krylov-based iterative methods requires many iterations, making the fine scale
solution harder to obtain.

5.3. Compatibility with compressible flow

We also considered the compatibility of our algorithm to compressible flow using the same channelized permeability
field presented in Fig. 14. The density calculation of compressible gas phase differs from the slightly compressible case
Eqn. (2.5) as follows

Pg = Pg,ref - (14 CgPg) (5.3)

This yields non-linearity due expansion which is no longer negligible. The compressibilities employed are 1 x 104 psi~!

and 1 x 1072 psi~! for liquid and gas respectively. In addition, the gas viscosity and density are significantly smaller than
the ones for liquid. In this numerical study, the liquid viscosity is maintained as 3 [cp] while the gas viscosity has magnitude
twice smaller (0.03 [cp]). The densities are chosen to be 53 Ib/ft> and 0.01 Ib/ft>. The initial pressure, gas injection rate
and total simulation time is adjusted to be 2500 psi, 10 ft3>/day and 500 days.

The adaptive gas saturation profile with corresponding mesh as compared to the fine scale solution at 100 and 200 days
are plotted in Fig. 19. The mesh structure is similar to the one in the previous slightly compressible case and the overall
saturation profile for the two solutions coincide. Fig. 20 shows the production rates and cumulative recoveries of the two
solutions. The adaptive and fine scale rates also look similar. However, the gas rate from the sequential refinement solver
suffers from slightly early breakthrough. The cumulative production of the two phases for the both solutions almost overlap.
The computational speedup for this compressible case is almost identical to the ones presented above.

6. Conclusions

We have introduced an algorithm that constructs adaptive mesh using error estimators to solve non-linear two-phase
flow problems with reduced execution time. The procedure sequentially refines the mesh from coarsest to finest resolution
in large non-linearity regions, with temporal and spatial adaptivity separated to accurately expose features in the system
with relatively small number of elements, while ensuring numerical convergence. After each refinement, the initial guess for
the new mesh is generated by the solution on the previous mesh through linear projection, which accelerates convergence
rate. Results from two numerical experiments for slightly compressible flow are demonstrated. Rates and cumulative pro-
duction from both experiments resembles well between the adaptive and fine scale solution. The water saturation profiles
also look similar. We observe approximately 25 times speedup in solution time for the Gaussian-like and the channelized
permeability field. The channel case suffers from a slightly early water breakthrough, which could be mitigated by loosening
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Fig. 19. Adaptive mesh (top) and saturation profile (middle) generated by sequential refinement solver as compared to fine scale solution (bottom) at 100
and 200 days in channelized permeability field for compressible flow.
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Fig. 20. Two phase production rates and cumulative recoveries from adaptive and fine solution of channelized permeability field.

refinement criterion. We also tested the algorithm for compressible flow and observed similar solution accuracy and com-
putational speedup. With the promising results from two-phase flow problems, we propose to further test our algorithm on
more complex models such as 3-D three-phase black oil system.
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Appendix A. Fully discrete formulation

Consider the oil-water system, the variational form of Eqn. (2.1) through (2.4) is: find uf, , € VZ‘*, ﬁg,h € VZ‘*, s, €W,
ph , € W} such that '



H. Li et al. / Journal of Computational Physics 403 (2020) 109074 21

d

(3_ pWSw pt+Po(1— Sw h)> ) + <V . (u’;v,h + ug,h)s W) = <QW + 4o, W) (A1)
8

(5 bpwSYy, h) ) + (V uy, ) = (qw, W> (A.2)

K- ) (poh, -v):O (A3)

(k"
(1( ) — (p';v,h, V. v) - —(pc, v. v) (A4)

for all v e VZ’* and w € Wy. The conversion between auxiliary and actual phase flux is referred to Eq. (2.11). The oil
saturation and water pressure are eliminated by the saturation constrain and the capillary pressure relation (assume oil
phase being the non-wetting phase).

For the fully discrete formulation, we will start by stating the basis functions in RTy x DGy discretization scheme. In
spatial dimensions, the pressure and saturation are piecewise constants while velocity is piecewise linear. Meanwhile all
variables are piecewise constants in temporal dimension as stated in Section 2. To better present the discretized form, in
this section, let E;.“ = (Tm, Tm+1] X F; be a space-time element, we have

m_
W 1 onE! frm<t§rm+1mxi_%§x5xi+% (AS)
0 otherwise
X_X,_l
2 onEl
| m
1
(oﬁl =1x.3—x (A.6)
2 '+j m
onEj
ETL |

The solution to Eqn. (A.1) through (2.11) can be written in discrete form using basis functions as

qa r
po:ZZP:'nW','n

m=1 i=1

q r

m m

Sw=)_ ) Shiwi
m=1 i=1
r+1

Uy = ZZ Oll+1(pl+1

m=1i=1
r+1

Uy = ZZ 0(l+l(pl+1

m=1i=1

(A7)

We remove the superscript n and subscript h in the above solution variables for this section since we need to use n to pair
basis functions. While keeping the solution in discrete form, we now substitute the testing functions in the variational forms
of mass conservation and constitutive equation with wsf and (o’},+1 . For the first term in Eqn. (A.3) and (A.4) we obtain

2

r+1 — —
. 1 Xjpd TX- 1 X3 Xl -
K iy, @" ) K1 E E gm ,Q" = 2 4 2 Z\un
( ’ ‘p]+% @xJ m=1i=1 0”-4-2 % (0]+% QxJ 2 en I<] Kj+] Ol,]+%
X i1

(A8)

Here, |e"

is an edge of a space-time element. Since the framework uses backward Euler scheme in time to avoid Courant-

2
Fredricks-Levy condition, we have the construction

asi=jandm=n

m n _
Q. 1(5’”%)—

I+3

0 otherwise

The second term in Eqn. (A.3) and (A.4) can be reformulated as
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Pn

q r Pn’
_ m ,m Lol _ a,j a,j+1 n n
(n7 0 )= (ST v 0y) <[ fo [ B =rt i o
QX] E? ] EN

m=1i=1 j+1 |
j+1

When non-matching grid caused by different time scales at (j+ ;)‘ and (j+ %)+ is encountered, assume the ratio between
coarse and fine time step to be (;‘ =¢, then foreachO<k<¢-1

[N

(o501, = (S Sty ol

k n—1k
) =Py =Py in (A11)
=1i=1 QxJ

The variational form of capillary pressure term can be revised in similar way as Eqn. (A.10) and (A.11). Now we evaluate
the mass conservation equation. The first term in Eqn. (A.2) becomes

) v m .om ..n n n— n—
<§ ZZ¢Pw5w,iwf ’Wj>s2><] = ((¢Pw5w)j - (¢Pw5w)j l)|Ej l| (A12)

m=1i=1

In fine time scales, Eqn. (A.12) can be altered as follows.

<8t mzl 121:¢/0w5w, “)M = (@owSw)| * — @pusi)] TV ] 1Y (A13)
The second term is calculated as
r+1
(V~uW,W'})Qx]=( X;ZU(X ,+1(/)+1,w']1->ng:U"WJ+2 UC”?? (A14)
m=1 i=1

The approach to handle non-matching grid is a little different for this term. Assume the fine time partition stays on (j+ %)‘
side, then on fine time elements we have
1k n—1lk n—1lk

n=gky c 7
(V- uy, w; = Uw,j+% Uw,j—% (A15)

while for the coarse time element we have

=1
-yt (A16)
k=0

(V- -uy, ]+]) w,j+3

w1+3

Eqn. (A.13) and (A.16) will cause the accumulation and transmissibility matrix to have extra temporal bands forming in the
lower triangle, making the corresponding linear system non-symmetric. The oil phase mass conservation equation is similar.
Combining the equations for both phases will provide the expression for the total mass conservation equation. The two
sides of Eqn. (2.11) is estimated as

r+1 X

i+3 %}
V) = Q" )_# n
(e, V) = ZZUM+ ( 110 Pl 2en | Ugjt1 (A17)
m=1 i=1 +3
= ~ ()% Xj'*‘%_xj—% N 1
(Aallg, V) X (Agyllg, V) = Wka.j+%ua,]‘+% (A18)
!

The )\Z"}+1 is the upwind mobility for stable numerical solution and is defined as
Jta

1 _
ke —(p” b Dk (SE ) ifUT >0
e o ra.j+1 _ o, j o, j+1)Kra Oy j o, j+3 (A19)

oz,jwLl Ol,j-'rl .
’ 2 He (Py.j+ Py jr1)kra (S 1) otherwise

2Ma

The matrix corresponding to the above discrete formulation has sparsity pattern of three, five or seven non-zero diagonals,
depending on the spatial dimension of the problem, with one extra temporal diagonal in the lower triangle. Forming such
matrix in block format is referred to [17,33,35].
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