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Abstract
Origami provides a flexible platform for constructing three-dimensional multi-stable mechanical
metamaterials and structures. While possessing many interesting features originating from
folding, the development of multi-stable origami structures is faced with tremendous demands
for acquiring tunability and adaptability. Through an integration of origami folding with
magnets, this research proposes a novel approach to synthesize and harness multi-stable
magneto-origami structures. Based on the stacked Miura-ori and the Kresling-ori structures, we
reveal that the embedded magnets could effectively tune the structure’s potential energy
landscapes, which includes not only altering the position and the depth of the potential wells but
essentially eliminating the intrinsic potential wells or generating new potential wells. Such
magnet-induced evolutions of potential energy landscapes would accordingly change the origami
structure’s stability profiles and the constitutive force–displacement relations. Based on proof-of-
concept prototypes with permeant magnets, the theoretically predicted effects of magnets are
verified. The exploration is also extended to the dynamics realm. Numerical studies suggest that
the incorporated magnets not only could translate the critical frequencies for achieving certain
dynamical behaviors but also fundamentally adjust the frequency-amplitude relationship.
Overall, this study shows that the proposed approach would provide a novel means to control the
stability profile as well as the mechanics and dynamic characteristics of origami structures, and
thus, inspire new innovations in designing adaptive mechanical metamaterials and structures.

Keywords: origami metamaterial, bistability, multistability, origami mechanics, origami
dynamics

(Some figures may appear in colour only in the online journal)

1. Introduction

Multi-stability, characterized by coexisting potential energy
minima for a given set of parameters, has led to a revolution
in developing artificial structures and materials with multi-
farious adaptive functionalities. Kinematically, multi-stable
materials and structures could remain at different stable
configurations without external aids, letting them immediately

attractive in various shape morphing applications [1–4]. They
could also feature different mechanical properties at different
stable equilibria that allow us to online tune the performance
by strategically switching the states, including auxetic reg-
ulation [5–7], stiffness and damping adaptability [8–12].
Under external excitations, multi-stability will trigger rich
dynamic behaviors that could be exploited for function
improvements, including fast actuation that makes use of the
snap-through jumps [13, 14], energy harvesting that takes
advantages of the large-amplitude inter-well oscillations
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[1, 15, 16], vibration control benefiting from the low-ampl-
itude intra-well oscillations or excitation-induced stability
[16–18], robust sensing as a result of the bifurcation phe-
nomena [16, 19, 20], and non-reciprocal wave propagation
profiting from the unique asymmetric bi-stability [21–24].
Therefore, incorporating multi-stability has become a pro-
mising and effective way of developing high-performance
structures and functional materials with adaptivity.

In spite of the intriguing attributes and the enormous
potentials of multi-stable structures and materials, the con-
stituent units for achieving multi-stability are very similar,
concentrating on the curved or pre-stressed bi-stable springs,
beams, arcs, shells, and their close relatives. Such archi-
tectures show simplicity in designing, modeling, mechanical
analysis, and fabrication because their bi-stability is mainly
evident in one direction. Through topology analyses, these
units can be further tessellated into two-dimensional (2D) or
three-dimensional (3D) lattice configurations [2, 25, 26].
However, they are also facing inevitable limitations that their
underlying mechanisms of bi-stability remain essentially the
same, i.e. elastic buckling instability [25], and these comp-
onent units are scarcely capable of being assembled into truly
3D systems with diverse geometry forms. These deficiencies
may weaken the overall potentials of multi-stable systems,
which, therefore, raise desperate demands for new constituent
units for constructing complex 3D configurations as well as
novel principles for achieving multi-stability.

Recently, origami, the art of paper folding, has been
identified as a powerful platform for constructing and trans-
forming 3D shapes as well as achieving multi-stability.
Unlike the conventional strategies that are monotonous in
terms of the underlying mechanisms and representations,
origami folding provides fundamentally different principles
and rich design resources toward 3D multi-stable structures.
For example, the stacked Miura-ori (SMO) structure, assem-
bled by two Miura-ori cells with kinematic constraints, is
essentially a 3D structure featuring a double-well potential
landscape by elaborately prescribing the crease patterns and
precisely assigning the crease stiffness. Its fundamental bi-
stable mechanism has been recognized as the non-unique
correspondence between the folding angles of the two con-
stituent Miura-ori cells [27]. Connecting multiple SMO units
in series or in parallel, more potential energy minima (i.e.
multi-stability) and even mechanical diode effect [28–30] can
be obtained. In generic degree-4 vertex origami cells, the
nonlinear relationship between folding angles would also
induce complex potential landscapes with as many as five
minima [31]. In these examples, rigid foldability is ensured
that the facets keep undeformed during folding but just rotate
around the hinge-like creases. Breaking the rigid-foldability
pre-condition, multi-stability can also be acquired in non-
rigid-foldable origami structures on account of the elastic
facet deformations and the nonlinear geometries, such as the
square-twist pattern [32], the Kresling origami structure [33],
and the origami ball [34]. Therefore, by offering both
sophisticated 3D geometries and rich mechanisms of multi-
stability, the origami solution could potentially overcome the
intrinsic limitations of the conventional 1D/2D multi-stable

structures, bring about novel characteristics and functional-
ities, and find broad application prospects.

Note that the multi-stability is always an inherent prop-
erty if the structure design and the component materials are
pre-determined. In other words, for a given multi-stable
structure, its underlying potential energy landscape cannot be
quantitatively modified or qualitatively changed. However, a
controllable multi-stability profile without re-designing and
re-fabricating the prototype is desirable in applications. For
example, if the depths of the potential wells are quantitatively
changeable, the critical force for switching the structure
between adjacent stable configurations would become tunable
for specific needs. If the number and positions of potential
wells are qualitatively adjustable, adaptive structures and
materials with tailorable stable configurations can be devel-
oped for customized shape morphing. Controlling multi-sta-
bility also has dynamics significance. Taking energy
harvesting as an example, if the environmental vibrations are
weakened, large-amplitude inter-well responses can still be
attained in a bi-stable system by reducing the potential well
depths [35]; otherwise, if with intense environmental vibra-
tions, energy harvesting performance can be further improved
via upgrading the system from bi-stable to multi-stable [36].
For origami, the above arguments also hold; a given origami
structure with pre-specified crease pattern and constituent
materials can only exhibit a constant stability profile, and
evolution to a controllable one will be desirable and
significant.

To achieve such controllability, additional components
are needed to be incorporated into the origami structure. For
example, previous research reveals that the multi-stability
characteristics can be effectively tuned by fluidic pressure.
Upon pressurization, a SMO structure can switch its energy
landscape between mono-stable and bi-stable; by stacking
two pressurized cells, more than two stable states can be
generated [29]. While showing promising results, the pressure
solution requires a hermetic chamber inside the origami
structure as well as cumbersome pressure regulating devices,
which severely limits its application. Inspired by the facts that
magnets are widely exploited in classical mechanical devices
to achieve and to harness multi-stability, this research pro-
poses employing magnets to control the stability profiles of
origami structures. Note that coupling of origami and magnets
has already been explored in previous research in terms of
magnetic actuation and self-folding [37–40]. However, the
effects of magnets on origami structures’ stability profiles and
mechanical properties have not been studied.

In this research, by integrating magnets with origami
structures at prescribed geometric entities, magneto-origami
structures with diverse magnet arrangements and pole layouts
are demonstrated. The stability profile of the coupled structure
is determined by both the elastic and the magnetic potential
energies. Here, the overall potential landscape, and hence, the
stability profile, can be quantitatively or even qualitatively
tailored by tuning the magnetic field strength or the magnetic
polarization. Observed phenomena include the quantitative
changes of potential well depths, migrations of potential well
positions, and evolutions among single-well, double-well, and
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triple-well landscapes (corresponding to mono-stable, bi-
stable, and tri-stable profiles, respectively). Such changes of
stability profile would, in turn, affect the constitutive force–
displacement relation and induce drastically different
dynamic responses, thereby illustrating the significance of the
magnet approach in applications.

Foreseeable advantages of the proposed approach are
multiple. First, the magnets can be compactly embedded with
origami structures at rich geometric entities (e.g. on vertices
or facet centers, etc), offering great design flexibility. Second,
the magnetic effect is largely reliable and robust, making this
approach feasible in diverse working environments and sui-
table for various applications. Third, tuning the magnetic
strength and magnetic polarization can be easily achieved by
adjusting the currents if electromagnets are employed; as a
proof-of-concept study, this research uses permanent magnets
in theoretical and experimental analyses to uncover the
underlying mechanisms of multi-stability and to reveal the
effects of magnets on statics and dynamics.

In the following sections, the rich design of origami
magnetic-elastic integration is first introduced, exemplified by
the SMO structure and the Kresling-ori structure (section 2).
Theoretical results are then reported to demonstrate how
magnets could quantitatively and qualitatively control the
stability profile and affect the static characteristics (section 3),
which are experimentally verified based on proof-of-concept
prototypes with permanent magnets (section 4). Following
that, numerical studies are carried out to illustrate the magnet-
induced evolutions of the magneto-origami structures’
dynamic characteristics (section 5). Finally, summary and
conclusions are presented (section 6).

2. Origami magnetic-elastic integration

Origami structures could offer abundant vertices, creases, and
facets for embedding magnets. Note that a generic guideline
for arranging magnets in origami structures does not exist,
and with different embedding positions and manners, the
magnetic-elastic coupling would present significant differ-
ences that cannot be simply quantified by a parameter. In this
section, we use the SMO structure and the Kresling-ori
structure to exemplify the rich design possibilities of magn-
etic-elastic integration. For ease of use, the geometries of the
Miura-ori and the Kresling-ori are provided without detailed
derivations.

2.1. Magnetic-elastic coupled Miura-ori structures

Miura-ori pattern is a kind of degree-4 vertex crease pattern
with a pair of collinear creases and reflectional symmetry.
Two Miura-ori cells with kinematic compatibility can be
assembled into a SMO structure [41, 42]. The bottom and the
top Miura-ori cells are characterized by crease lengths ak and
b ,k and a sector angle g ,k where k takes ‘A’ or ‘B’, denoting
the bottom cell A and the top cell B, respectively (figure 1(a)).
They have to satisfy the following kinematic compatibility

conditions

g g= = =b b b a a, cos cos . 1A B B B A A ( )

Folding of the SMO structure is a one degree-of-freedom
(DoF) mechanism that can be described by the folding angles
qA or q ,B they are not independent to each other but satisfy

q q g g= arccos cos tan tan . 2B A A B( ) ( )

The outer dimensions of the SMO structure, i.e. the length
L ,M the width W ,M and the height H ,M can be expressed in
terms of qA (here and in what follows, the subscript ‘M’

denotes the Miura-ori)
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Folding of the structure can also be characterized by the
dihedral angles between facets rki and the dihedral angles at
the connecting creases r ,C where =k A, B and =i 1, 2, 3, 4
(figure 1(a)). They can also be expressed as functions of qA
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Based on whether the bottom cell A nests into or bulges out
from the top cell B, the SMO structure could exhibit two
qualitatively different configurations. For clarity, the config-
urations with q > 0A and q < 0A are denoted as nested-in and
bulged-out, respectively (figure 1(a)).

An SMO structure possesses 12 vertices, 20 creases, and
8 facets that can be employed for magnet integration.
Figure 1(b) displays three different designs for embedding
magnets. In Design I, two magnets are placed at the top vertex
‘2’ and the bottom vertex ‘11’; in Design II, four magnets are
positioned at four coplanar vertices (‘4’, ‘6’, ‘7’, ‘9’); in
Design III, eight magnets are embedded at the facet centers.
In addition to changing the magnet arrangement, the design
can be further enriched by adjusting the magnetic polariza-
tion. In Design I, the two magnets can be set with their like
poles or opposite poles facing each other, giving rise to the
repulsive-magnet and the attractive-magnet layouts, respec-
tively (figure 1(c)). In Design II, the four coplanar magnets
can make up 16 different pole layouts, which can be deducted
into 5 by considering the symmetry among the four magnets
and the identity among certain pole-pole relationships
(figure 1(d)). In Design III, the 8 magnets could constitute
variegated 3D pole layouts; for demonstration purpose, a few
examples are given in figure 1(e).

During folding (qA varies between p- 2/ and p 2/ ), the
outer dimensions of the SMO structure would experience
significant changes [41, 42], which would, therefore, alter the
relative distances among the magnets and change the system’s
stability profile. This will be detailed in section 3.
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2.2. Magnetic-elastic coupled Kresling-ori structures

The crease pattern of a Kresling-ori [33] is made up of a row
of n identical parallelogram panels, each parallelogram panel
is defined by three length parameters: aK and bK are the side
lengths, lK is the length of the long diagonal (here and in what
follows, the subscript ‘K’ denotes the Kresling-ori)
(figure 2(a)). Construction of the structure from the flat crease
pattern is achieved by folding and rolling it into a polygonal
prism such that points ‘A’ and ‘B’ overlap with ‘A*

’ and ‘B*
’.

Geometries of the folded structure can be described by the
circumradius of the basal polygon R ,K the height H ,K and the
relative rotation angle a of the top polygon with respect to the
frame fixed to the bottom polygon (figure 2(b)). Variation in
the polygon circumradius RK would scale the size of the
origami; the height HK or the rotation angle a are used to
characterize the structure configuration.

To quantify the aspect ratio of the structure and the
degree of transformation during folding, an angle ratio l is
defined, which is the ratio of the angle CAD to half the
internal angle of the basal polygon q .K The value of l is
bounded by l 0.5 1.0 [33], where the lower bound
indicates a limiting case that the structure height =H 0,K

constructed from two offset polygon bases connected by tri-
angular panels, and the upper bound indicates a limiting case

that the parallelogram panels become rectangular panels such
that lq= =H b l sin .K K K K( ) With a smaller value of l, the
structure height HK and the rotation angle a vary less during
folding. l > 1 indicates a change in chirality, i.e. antic-
lockwise rotation of the top polygon will result in an
expansion of the structure. Negative and positive chirality are
mathematically identical; hence, situations with l > 1 are not
considered here. With parameters R ,K l, and n, the remaining
lengths and angles ( qa b, ,K K K and lK) can be determined
from the crease pattern (figure 2(a)), the folded structure, and
the basal polygon (figure 2(b)):

p
lq

q p q l

=
= + -
= - = -

a R n

b l a l a
n n l R

2 sin ,

2 cos ,
2 2 , 2 cos 1 . 5

K K
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2

K
2
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1 2
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( ) ( ( )) ( )
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/

/

Note that each vertex in the Kresling-ori crease pattern
has one DoF. Hence, for l 0.5 1.0, overlapping of the
vertices ‘A’, ‘B’, and ‘A*

’, ‘B*
’ could generate an ‘open’ or a

‘closed’ polygonal prism via rigid folding. However, if these
overlapped vertices are fixed together (e.g. by gluing), the
relative position of each vertex with respect to its neighbors
will be fully defined, and the generated structure will be
kinematically rigid at either the ‘open’ or the ‘closed’ con-
figuration. That is, if the triangular panels are truly rigid, the

Figure 1. Geometries and designs of the magnetic-elastic coupled Miura-ori structures. (a) Geometries of the stacked Miura-ori (SMO)
structure. The mountain and valley folds in the crease pattern are denoted by dashed and dotted–dashed lines, respectively; the vertices in the
stacked structure are denoted by numbers from ‘1’ to ‘12’; the folding angles q ,k the dihedral angles rki = =k iA, B; 1, 2, 3, 4 ,( ) and the
outer dimensions (L ,M W ,M HM) are also indicated. (b) Three different designs (I, II, and III) for embedding magnets, where the magnetic
poles are not denoted. (c) Two different pole layouts of Design I. (d) Five different pole layouts of Design II. (e) Four representative pole
layouts of Design III, where the colors denote the poles facing inside the stacked structure.
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expanded polygonal prism cannot be contracted, and
vice versa. Only if the panels or the creases are deformable,
the structure is possible to exhibit snapping transformations
between the ‘open’ and the ‘closed’ configurations
(figure 2(c)). Applying a force on the top of the structure and
allowing free rotation, the structure will twist and contract;
inversely, applying a pull force on the top, the structure will
twist and expand. Note that such folding of the Kresling-ori
structure is no longer rigid.

To determine the structure configuration, i.e. the height
HK and the rotation angle a, the following vector loop
equation and kinematic constraint equations (figure 2(d)) have
to be satisfied [33]:

lq
+ + + =

= -
=

l a

l

R R R R
R R

R

0,
Constraint 1: cos ,
Constraint 2: . 6

AB BO OC CA

BC CA K K K

CA K

· ( )
( ) 

Constraint 1 implies that the angle between RBC and RCA is a
constant lq ;K Constraint 2 indicates that the fold AC is rigid
so that its length remains a constant lK (in this paper, · 

denotes the Euclidean length). In addition, the length of the
fold AB is mathematically assumed to be variable, so that an
additional DoF is introduced that allows the structure to be
foldable between the open and the closed configurations.
Detailed procedures for determining the folding kinematics
are briefly summarized as:

Step 1: Solve the initial rotation angle a0 via the vector
loop equation and Constraint 1;

Step 2: Solve the initial height HK0 via Constraint 2;
Step 3: Solve the final rotation angle aEnd via Constraint 2

and with = =H H 0;K K End‐
Step 4: Let HK varies between HK0 and H ,K End‐ with step h,

i.e. = -H H ih,iK K0 = ¼i 1, , End; solve ai via
Constraint 2 at each H ;i

Step 5: With ai and H ,iK calculate the strain in the crease
AB based on e = -R R R_ _ _ ,iAB AB AB 0 AB 0/   
=i 1,..., End.

The value of eAB is a direct measure of the structure’s
non-foldability and bi-stability; however, Pagano et al [33]
has pointed out that the assumed strain eAB cannot properly

Figure 2. Geometries and designs of the magnetic-elastic coupled Kresling-ori structures. (a) The crease pattern of a Kresling-ori ( =n 8,
l = 0.98), where the mountain and valley folds are denoted as dashed and dotted–dashed lines. (b) A Kresling-ori structure based on the
pattern shown in (a) (left) and the top-down view of the structure (right). Rotation of the top octagon with respect to the frame fixed to the
bottom octagon is described by the angle a, which is measured from the x-axis to the vector OB.

 
The origin of the frame locates at the center

of the bottom octagon, and the x-axis is chosen to intersect vertex ‘A’ of the bottom octagon. (c) Folding of the Kresling-ori structure between
the ‘open’ and the ‘closed’ configurations, where evolutions of the height HK and the rotation angle a are shown. (d) The vectors in a unit
panel ABCD, which are used for determining the folding motion. (e) Introducing virtual folds CV and ¢AV to account for the panel bending.
For readability of the figure, only the virtual folds in the unit panel ABCD are plotted. (f) A design for embedding magnets, where the colors
denote the poles facing inside the Kresling-ori structure; two magnetic pole layouts are given: the repulsive-magnet layout (left) and the
attractive-magnet layout (right).
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reflect the observed deformation of a paper Kresling-ori
structure, rather, with a relief cut along the fold AB, bending
of the triangular panels ABC and ACD can better describes
the facet deformations. Thus, two virtual folds, CV and ¢AV ,
are mathematically added across each kinematically rigid
panel (figure 2(e)) to capture the panel bending [32, 33, 42].
In this way, the rigid triangular panels ABC and ACD are
divided into four rigid triangular facets: BCV, ACV, ¢DAV ,
and ¢CAV . Note that the triangular facets ¢DAV and ¢CAV
can be considered as rotations of BCV and ACV; they are
mathematically redundant. In what follows, only the virtual
fold CV is examined.

The position of the virtual fold CV, i.e. the position of the
virtual vertex V, can be set arbitrarily on the crease AB.
During folding, its spatial position can be determined based
on the following constraints [33]:

+ =
=

= + -
7

b

l

R R

R

R R R R R

Constraint 3: ,

Constraint 4: ;

Constraint 5: 2 .

VA VB K

VC v

AB VA
2

VB
2

VA VB
1 2

( )
( · )

   
 

     

Constraint 3 indicates that the lengths of sides VA and VB
sum to the length of the crease AB; Constraint 4 asks that the
length of the virtual fold VC remain constant lv during
folding, where lv is determined from the open configuration;
Constraint 5 is the Cosine rule of the triangle ABV that
determines the out-of-plane deflection, where the length
RAB  is obtained from the strain e ,AB RVA  and RVB 
remain fixed. By solving the constraint equation (7), the
position of the virtual vertex V, as well as the dihedral angles
at folds BC, VC, and AC (i.e. r ,BC r ,VC and rAC) can be
determined.

The Kresling-ori structure shown in figure 2(b) possesses
8 vertices and 8 sides on the top layer, as well as 8 vertices
and 8 sides on the bottom layer that can be employed for
embedding magnets. Figure 2(f) shows a design example, in
which 8 magnets are embedded on the top-layer vertices, and
8 magnets are embedded in the bottom-layer side centers. As
the two easiest pole layouts, the top-layer and bottom-layer
magnets can be set with their like poles or opposite poles
facing each other, giving rise to the repulsive-magnet layout
and the attractive-magnet layout (figure 2(f)). Other designs
and magnetic pole layouts are also possible but are not con-
sidered in this research.

During folding, in addition to the height change, the top
layer would rotate with respect to the bottom layer, char-
acterized by the rotation angle a. Thus, folding would not
only alter the distance between the top-layer and bottom-layer
magnets but also change their correspondence. For example,
the top-layer magnet that is closest to the bottom-layer
magnet on side AD would experience three shifts during
folding, from magnet ‘B’, to ‘P1’, to ‘P2’, and to ‘P3’

(figure 2(c)). Such changes on the distance and correspon-
dence among magnets would therefore alter the stability
profile of the system, which will be detailed in the following
section.

It is worth noting again that in the magnetic-elastic
coupled origami structures, by employing electromagnets, the

magnetic poles can be easily reversed by switching the
direction of electric currents. However, in what follows,
permanent magnets will be used for proof-of-concept ana-
lyses and experiments.

3. Controlling stability profile and static
characteristics

Often, we can gain useful information about a mechanical
system’s stability profile by interpreting its potential energy
landscape. For a magnetic-elastic coupled origami structure,
the overall potential energyP originates from two aspects: the
magnetic potential energy PMag and the elastic potential
energy PE:

P = P + P . 8Mag E ( )

With this, the structure’s constitutive relation along direction
u can be obtained by = - PF ud d .u / Through analytical
approaches, this section studies the effects of magnets in
controlling the stability profile and the static characteristics,
exemplified by two examples: magnetic-elastic coupled
Miura-ori structure and Kresling-ori structure.

3.1. Magnetic potential energy

To analyze how the magnets contribute to the overall
potential energy, a reliable magnetic force model has to be
determined in advance. According to the Gilbert model [43],
the magnetic forces between magnets originate from the
magnetic charges near the poles. If the magnetic poles are
small enough, they can be represented as point magnetic
charge. The magnitude of a magnetic pole q (in Am) can be
expressed as m=q B S ,r 0/ where Br is the residual flux
density (in T), m p= ´ - -4 10 H m0

7 1 is the permeability of
vacuum, and S is the cross-section area (in m2) of the magnet.
Generally, the force between two identical magnetic poles
separated by distance r (in m) is given by

m
p pm

= =F r
q

r

B S

r4 4
. 9r

Mag
0

2

2

2 2

0
2

( ) ( )

For bar or cylindrical magnets, by assuming point-like
magnetic poles on the end surfaces, the force between mag-
nets can be calculated as a combination of multipole inter-
actions. For example, if two identical cylindrical magnets
with radius RMag (in m) and length d (in m) are placed end to
end at a large distance r R ,Mag the force between them can
be approximated by

p
m

» +
+

-
+

F r
B R

r r d r d4

1 1

2

2
.

10

r
Mag

2
Mag

4

0
2 2 2

⎡
⎣⎢

⎤
⎦⎥( )

( ) ( )
( )
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On the other hand, based on the Amphère model [43], if
two or more magnets are small enough or sufficiently distant
such that their shapes and sizes are not important, we can
model both magnets as magnetic dipoles with magnetic
moments m1 and m .2 The force exerted by a dipole moment
m1 on another dipole moment m2 can be determined as the
force due to the magnetic field of m1 on m ,2 i.e.

m
pd

d

d d d

d d d d

= +

+ -

F m m m m m m

m m
m m

, ,
3

4
5

, 11

Mag 1 2
0
5 1 2 2 1

1 2
1 2

2

⎤
⎦⎥

( ) [( · ) ( · )

( · ) ( · )( · ) ( )

where d is the distance-vector from the vector dipole moment
m1 to m ,2 with d d= .  Note that with vector calculation,
this model includes both magnitudes and direction. For
example, if two axially magnetized magnets are aligned along
the z-axis, pointing in the z-direction, and separated by dis-
tance r, the magnetic force can be simplified into

d
m
pd

=F m m
m m

z, ,
3

2
, in direction. 12Mag 1 2

0 1 2

4
( ) ‐ ( )

Here, if the two magnets are identical, the magnetic dipole
moment m m= =m B V B Sd ,r r0 0/ / with V denoting the
volume (in m3) of the magnet; the distance between the two
dipole moment is d = +r d. Hence, equation (12) can be
rewritten as

pm d
=F z

B Sd
z

3

2
, in direction. 13r

Mag

2

0
4

( ) ( ) ‐ ( )

To show the accuracy of these models, two NdFeB
magnets (Grade N52, =R 6.35 mm,Mag =d 12.7 mm, axi-
ally magnetized, residual flux density =B 1.44 Tr ) are used
for attraction and repulsion tests. Specifically, we 3D-printed
two holders (Formlabs, photoreactive resin, standard black)
for fixing the magnets; they are screwed to the universal
testing machine with the magnets’ dipoles aligned
(figure 3(b)). Tension and compression tests are performed
between 0 and 60 mm in a quasi-static way with speed

5.0 mmmin−1. Figure 3(c) shows the recorded force–dis-
tance relations for both the attractive-magnet and the
repulsive-magnet layouts, which agree very well with the
experimental calibration data provided by K&J Magnetics.
Based on the magnet parameters, the relationship between
the magnetic force and the separation distance corresp-
onding to the multipole interaction model (i.e. equation (10))
and the magnetic dipole moment model (i.e. equation (13))
can be obtained, respectively, which are also plotted in
figure 3(c). Comparing the theoretical curves with the
experimental data, the multipole interaction model can
hardly be used when the two magnets are getting close
( <r 10 mm), but the magnetic dipole moment model agrees
well with the experimental data in the whole range. There-
fore, in what follows, the magnetic dipole moment model
(equation (11)) will be adopted for calculating the magnetic
potential energy.

Using vector notations, the magnetic potential energy for
two magnetic dipole moments m1 and m2 separated by a
vector d (pointing from m1 to m ,2 d d=  ) can be expressed
as

ò
m
pd d

d d

d d

P = -

= - -

F m m

m m
m m

, , d

4

3
. 14

Mag Mag 1 2

0
3

1 2
2 1 2

⎡
⎣⎢

⎤
⎦⎥

( ) ·
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3.2. Elastic potential energy

The elastic potential energy of an origami structure may come
from two aspects: the rotations of rigid facets with respect to
elastic hinge-like creases and the elastic deformation of non-
rigid facet panels.

(a) The SMO structure

For the rigid-foldable SMO structure, the elastic potential
energy solely results from the hinge-like creases, because the
facets remain rigid during folding and just rotate with respect

Figure 3. Experiments on validating the magnetic force models. (a) 3D-printed holders for fixing the magnets on the universal testing
machine. (b) Experimental setup, where the two magnets are axially aligned. (c) Experimental and theoretical force–distance relations.
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to the creases. We assign kA and kB as the torsional spring
stiffness per unit length for the creases in cell A and cell B,
respectively, and kC as the torsional spring stiffness per unit
length for the connecting creases between the two cells.
Hence, the torsional stiffness constants (Kki and KC)
corresponding to the dihedral angles (rki and rC) can be
determined, where the subscript =k A, B and =i 1, 2,
3, 4. In cell A, = =K K k b,A1 A3 A = =K K k a ;A2 A4 A A in
cell B, = =K K k b,B1 B3 B = =K K k a ;B2 B4 B B for the con-
necting crease, =K k b.C C Then the total elastic potential
energy of the SMO structure can be expressed as

å

å

r r

r r r r
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+ - + -
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Here, the superscript ‘0’ denotes the dihedral angle corresp-
onding to the stress-free stable configuration at q q= ,A A

0

where no crease suffers to deformations.

(a) The Kresling-ori structure

The elastic potential energy of the non-rigid-foldable
Kresling-ori structure results from both the hinge-like creases
and the deformable facets. We assign kcre as the torsional
spring stiffness per unit length for the creases, and kbend as the
torsional spring stiffness per unit length for the virtual fold
that approximate the panel bending. According to the
experiment performed by Silverberg et al [32], for 120 lb
paper, kbend will be two orders of magnitude higher than k .cre
Noting that a relief cut is assumed along the fold AB, hence,
only the elastic potential energies of the folds BC, VC, and
AC in the unit panel ABCD need to be considered. Actually,
they could also characterize the potential energy of the whole
structure, because all the other folds are rotationally or
reflectional symmetric to them. Thus, the total elastic poten-
tial energy of a Kresling-ori structure (with n unit panels) can
be obtained as

r r

r r r r

P = -

+ - + -
16

n
k a

k l k l

2
2

2 .

i

i i

E K cre K BC, BC,0
2

cre K AC, AC,0
2

bend v VC, VC,0
2

( )

[ ( )

( ) ( ) ]

‐

Here the subscript ‘i’ denotes the calculation step,
= ¼i 1, , End; =i 0 indicates the initial open configuration

of the structure.

3.3. Example 1: a magnetic-elastic coupled Miura-ori structure

We first investigate the magnetic-elastic coupled Miura-ori
structure based on Design I. Specifically, the two magnets are
placed at the top vertex ‘2’ and the bottom vertex ‘11’ of the
SMO structure (refer to figure 1(b)); they keep aligning along
the z-axis and pointing in the z-direction during the complete
folding process. Table 1 lists the geometry and physical para-
meters of the SMO structure and the used magnets (NdFeB,

Grade N52). Three stress-free angles (q =  15 , 30 ,A
0 and 45 )

of the SMO structure are studied; for each case, the total
potential energy corresponding to the no-magnet, the repulsive-
magnet, and the attractive-magnet layouts are examined. Sub-
stituting the parameters listed in table 1 into equations (14) and
(15), the total potential energy of the magnetic-elastic coupled
Miura-ori structure can be obtained via equation (8).

Figure 4(a) displays the total potential energy of the
structure with respect to the structure height H .M When
the stress-free angel q = 15A

0 and there is no magnet, the
structure is mono-stable, with its only stable configuration
(i.e. the potential well) locating at =H 17.58 mm.M Adding
repulsive or attractive magnet pairs, the structure remains
mono-stable; however, its stable configuration can be sig-
nificantly shifted to =H 41.49 mmM and =H 10.68 mm,M

respectively. When the stress-free angle q = 30A
0 and there is

no magnet, the structure already has two stable states locating
at =H 12.91 mmM and 42.55 mm. Adding a repulsive or
attractive magnet pair, the structure’s stability profile is qua-
litatively changed to mono-stable. For the repulsive-magnet
layout, the stable configuration at =H 12.91 mmM is no
longer stable, and the stable configuration at =H 42.55 mmM

is pushed to 47.89 mm; for the attractive-magnet layout, the
stable configuration at =H 42.55 mmM is no longer stable,
and the stable configuration at =H 12.91 mmM is shifted to
9.90 mm. When the stress-free angle q = 45 ,A

0 the structure
is also bi-stable if there is no magnet; the two stable config-
urations are widely separated, situated at =H 10.27 mmM

and 56.79 mm. Setting two repulsive magnets, the structure is
switched to mono-stable, with its only stable configuration
locating at =H 57.80 mm.M Setting two attractive magnets,
the bi-stability is reserved; the two stable configurations
experience small shifts from HM= 10.27 to 9.13 mm, and
from 56.79 to 54.74 mm.

In addition to controlling the number and positions of the
stable configurations, the depths of the potential wells can
also be effectively tailored. For example, attractive magnets
can effectively deepen the depth of the potential well at the
nested-in configuration. This will also affect the structure’s
static and dynamic characteristics.

The structure’s force–displacement relation along the
height direction can be obtained via

q q
= -

¶P
¶

-

-

F
Hd

d
. 17H

A A
M

M M
1⎛

⎝⎜
⎞
⎠⎟ ( )

Table 1. Parameters of the magnetic-elastic coupled Miura-ori
structure.

Parameters Values Parameters Values

aA 38.1 mm =k k40B A 0.6 N rad−1

aB 45.7 mm RMag 6.35 mm

b 50.8 mm d 12.7 mm
gA 75 Br 1.44 T

=k kA C 0.015 N rad−1
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Figure 4(b) shows the constitutive relations corresponding to
the no-magnet, the repulsive-magnet, and the attractive-
magnet layouts, with the stress-free angle q = 45 .A

0 The
magnet-induced changes of the stability profile also transform
the static characteristics. With repulsive magnets, the con-
stitutive relation experience qualitative changes that the stable

nested-in configuration and the negative stiffness segment are
removed. The attractive magnets do not change the stability
profile qualitatively; but quantitatively, the deepened potential
well significantly raises the critical force level for a snap-
through transition from the nested-in to the bulged-out con-
figurations. Specifically, the critical force increases by more
than two times from =F 2.37 NH M w o

ˆ ‐ ‐ / to =F 7.97 N,H M A
ˆ ‐ ‐

where the hat denotes the critical force, the subscript ‘M’

denotes the Miura-ori structure, ‘w/o’ and ‘A’ denote the no-
magnet and the attractive magnet layouts, respectively.

3.4. Example 2: a magnetic-elastic coupled Kresling-ori
structure

We then investigate the magnetic-elastic coupled Kresling-
ori structure based on the design given in figure 2(f). Spe-
cifically, 8 magnets are embedded on the top-layer vertices,
and 8 magnets are embedded in the bottom-layer side
centers. Table 2 lists the geometric and physical parameters
of the Kresling-ori structure and the used magnets (NdFeB,
Grade N52). Substituting the geometric parameters into the
constraint equations (6) and (7), the strain in the fold AB
(eAB) and the dihedral angles (r ,BC r ,VC and rAC) can be
determined for each rotation angle a (figure 5(a)). Setting
the open configuration as the stress-free state and based on
the obtained dihedral angles, the total elastic potential
energy can be determined via equation (16). Figure 5(b)
displays the profiles of the total elastic potential energy as
well as its constituents. It reveals that the elastic potential
energy originating from the virtual folds (i.e. panel bending)
account for the main parts, and the Kresling-ori structure
is intrinsically bi-stable, with two potential wells (stable
configurations) locating at =H 54.3 mmK and =HK

2.2 mm. We remark here that generally, owing to the
contribution of panel bending, the elastic potential energy
profile of the Kresling-ori structure is much higher than the
Miura-ori structure (except when approaching the folding
limits of Miura-ori). Therefore, multiple magnets (in this
design example, 16 magnets) have to be integrated into the
Kresling-ori structure to generate strong magnetic potential
energy so that the inherent elastic potential energy profile
can be significantly affected.

To conveniently examine the magnetic potential energy,
the magnets in the top layer are numbered from ‘1’ to ‘8’, and
the magnets in the bottom layer are numbered from ‘9’ to
‘16’. Note that the relative positions among the magnets in the
same layer remain immutable during folding; while for the
magnets in different layers, their relative positions would
experience significant changes, which would, therefore, alter
the magnetic potential energy. Generally, the net force
applied on the top-layer magnet ‘j’ (F ,jMag, j=1, K, 8) is the
vector sum of the magnetic forces exerted by the bottom-layer
magnets (with dipole moment m ,i i=9, K, 16 ) on the top-
layer magnet j (with dipole moment mj). Hence, based on

Figure 4. Effects of magnets on the SMO structure’s stability profile
and static characteristics. (a) Total potential energy landscapes of the
structure corresponding to the no-magnet, the repulsive-magnet, and
the attractive-magnet layouts. From the left to the right, the stress-
free angle q = 15 ,A

0 30 , and 45 . (b) With q = 45 ,A
0 the force–

displacement relations corresponding to the no-magnet, the
repulsive-magnet, and the attractive-magnet layouts. The stable
configurations are denoted by empty circles; the critical forces for
snap-through transitions from the nested-in to the bulged-out
configuration are also marked.

Table 2. Parameters of the magnetic-elastic coupled Kresling-ori
structure.

Parameters Values Parameters Values

n 8 kbend 0.8 N rad−1

RK 30.00 mm RMag 6.35 mm

l 0.98 d 6.35 mm
kcre 8 mN rad−1 Br 1.44 T
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equation (11), we have
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Equation (18) is capable of capturing both the vertical and
torsional components of the magnetic forces. Since all mag-
nets are identical, aligned along the z-axis, and pointing in the
z-direction, the corresponding magnetic dipole moment can
be expressed as =  = ¼m im 0, 0, 1 , 1, ,16 .i

T( ) ( ) For the
repulsive-magnet layout, the top and bottom layer magnets
take the opposite signs; for the attractive-magnet layout, they
take the same sign. To vividly illustrate the above concept, as
an example, figure 6(a) shows the magnetic force components
exerted by the bottom layer magnets ‘9’ to ‘16’ on the top
layer magnet ‘1’ at a certain folded configuration. With
respect to folding, the magnet ‘1’ will experience a spatial
translation, whose trajectory is given in figures 6(a) and (b).
Along this trajectory, the magnitude of the net force applied
on magnet ‘1’ increases significantly as the height decreases,
and its direction also undergoes noteworthy changes, as dis-
cretely depicted in figure 6(b).

Assuming zero magnetic potential energy at the open
configuration and based on equation (18), the magnetic
potential energy of the whole system can be expressed as

òåå dP = -
= =

F m m u, , d , 19
j i

i j ij jMag
1

8

9

16

Mag( ) ( )

where uj is the translation trajectory of magnet
= ¼j j 1, , 8( ) with respect to folding; it is a function of the

structure height HK or the rotation angle a. Figure 6(c) dis-
plays the total potential energy of the Kresling-ori structure
versus its height. Attaching magnets to the bi-stable Kresling-

ori structure, the stable configuration at =H 54.3 mmK is
little affected due to the weak magnetic forces. However, the
stable configuration at =H 2.2 mmK experiences great
changes. When the top-layer and bottom-layer magnets are
attractive, the stable configuration at =H 2.2 mmK is moved
to =H 6.1 mm,K and the corresponding potential well is
significantly depended. When the magnets are repulsive, in
addition to a large translation of the stable configuration from

=H 2.2 mmK to =H 16.6 mm,K the configuration at
=H 0 mmK becomes stable, i.e. the stability profile of the

structure undergoes a qualitative change from bi-stable to tri-
stable. Similarly, based on = - PF Hd d ,H K K K‐ / the struc-
ture’s constitutive force–displacement relations corresponding
to the no-magnet, the repulsive-magnet, and the attractive-
magnet layouts can be obtained (figure 6(d)).

The above two examples vividly demonstrate the effects
of magnets in controlling origami structures’ stability profile
as well as the corresponding static characteristics. Quantita-
tively, the magnets could translate the potential well (i.e. the
stable configuration), deepen or shallows the potential well
(i.e. alter its stability degree). Qualitatively, the magnets could

Figure 6. Effects of magnets on the Kresling-ori structure’s stability
profile and static characteristics. (a) Magnetic force components
exerted by the bottom-layer magnets on the top-layer magnet ‘1’. For
clearness, other top-layer magnets are not shown. (b) Magnitudes of
the net magnetic force applied on the top-layer magnet ‘1’ with
respect to the structure height; its direction changes along the
translation trajectory are discretely depicted in the inset. (c) Total
potential energy profiles of the structure corresponding to the no-
magnet, the repulsive-magnet, and the attractive-magnet layouts. The
potential energies originating from the repulsive and attractive
magnets are also provided. (d) The force–displacement relations of
the structure corresponding to the no-magnet, the repulsive-magnet,
and the attractive-magnet layouts. The stable configurations are
denoted by empty circles.

Figure 5. Kinematics and elastic potential energy of the Kresling-ori
structure based on the geometric parameters listed in table 2. (a) The
strain in the fold AB (eAB) and the dihedral angles (r ,BC r ,VC and rAC)
with respect to the rotation angle a. (b) Total elastic potential energy
and its constituents with respect to the structure height H ,K where the
two potential wells (corresponding to the two stable configurations)
are marked by empty circles.
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eliminate the original stable configuration or add additional
stable configuration to the structure. These changes would
thus fundamentally alter the structure’s constitutive force–
displacement relations. We point out here again that if
replacing the permanent magnets with electromagnets, such
tailoring could be achieved more easily by controlling the
electric currents.

4. Prototypes and experimental verification

To verify the predicted effects of incorporating magnets,
proof-of-concept prototypes are fabricated and tested. Evo-
lutions of origami structures’ stability profiles are evaluated
via the experimental force–displacement relations.

4.1. Magnetic-elastic coupled Miura-ori structure prototype

Figures 7(a) and (b) show the design and prototype of the
magnetic-elastic coupled Miura-ori structure based on the
parameters given in table 1. The origami facets are water jet
cut individually from 0.25 mm thickness austenitic stainless-
steel sheets. Note that austenitic stainless steels can be classed
as paramagnetic with relative permeabilities approaching 1.0
(generally in the range between 1.003 and 1.05 in the fully
annealed condition). Such low permeabilities enable auste-
nitic steels to be used as ‘non-magnetic’ materials, with their
effects on the magnetic field being negligible. To prevent
possible contacts between the facets and the top/bottom
magnets, part of the facets around the vertex are cut out.
These facets are pasted to a 0.13 mm thickness adhesive-back
plastic film (ultrahigh molecular weight polyethylene) to form
individual Miura-ori cells. The two cells are then connected
along the connecting creases by adhesive-back films to form
an SMO structure. Through this construction, the steel facets
are significantly stiffer than the plastic creases to ensure rigid-
foldability. In addition, we paste 0.1 mm thickness pre-bent
spring-steel stripes at the folds of the top cell to provide
strong torsional stiffness (i.e. a high k2), thus imparting bi-
stability to the SMO structure. To install the SMO structure
on the universal testing machine, 3D-printed connectors are
screwed to rectangular connection plates, which further con-
nect with the SMO cell at the top and bottom creases through
adhesive-back films. To ensure free rotation of the SMO
structure as well as effective load transmission during com-
pression/tension tests, non-magnetic ball bearings are
embedded into embedded into the connectors, and a non-
magnetic titanium screw rod is inserted through the bearing,
with one end fixing with the 3D-printed magnet holder, and
the other end fixing with the universal testing machine. Here,
NdFeB magnets (see parameters listed in table 1) are
employed for proof-of-concept experiments.

To experimentally verify the effects of magnets, dis-
placement-controlled compression and tension tests are car-
ried out on the prototypes with the no-magnet, the repulsive-
magnet, and the attractive-magnet layouts, respectively.
Figure 7(c) shows the measured force–displacement relations
corresponding to the three layouts. For each layout, five

complete quasi-static tension and compression tests (with
speed 10 mmmin−1) are performed; for each test, we average
the tension and compression test data to get one curve.
Averaging the five curves yields the measured average (the
curves) and the standard deviations (shaded bands).
Figure 7(c) reveals that when there is no magnet, the proto-
type exhibits bi-stability. By integrating repulsive magnets,
the original bi-stable profile is altered to mono-stable, where
the stable bulged-out configuration remains stable, while the
nested-in configuration is no longer stable. By integrating
attractive magnets, although the prototype remains bi-stable,
the stable nested-in configuration is significantly translated,
and the critical force for the snap-through switch is remark-
ably lifted. Therefore, in terms of the qualitative character-
istics, the experimental curves are in good agreement with the
theoretical predictions displayed in figure 4(b).

It is worth pointing out that in the experiment, when the
prototype is compressed toward its lower kinematic folding
limit, the distance between the two attractive magnets (i.e.
HM) becomes very small, and the magnetic force becomes
extremely strong to possibly damage the prototype. In detail,
experimental trials reveal that the strong magnetic attraction
would deform the steel facets, tear the adhesive film, and let
the two magnets stick together. To prevent such a scenario

Figure 7. Experiments on the magnetic-elastic coupled Miura-ori
structure prototype. (a) Design of the prototype. (b) Photo of the
prototype assembled on the universal testing machine. (c) Measured
force–displacement curves of the prototype corresponding to the no-
magnet, the attractive-magnet, and the repulsive-magnet layouts. The
curves denote the measured averages, and the shaded bands denote
the standard deviations. The stable configurations (empty circles)
and the critical forces for snap-through switches are indicated. Insets
show the photos of the prototype during folding.
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and to ensure safety, the compression tests are manually
stopped when a force fall is detected. Such a procedure does
not affect the identification of qualitative characteristics.

4.2. Magnetic-elastic coupled Kresling-ori structure prototype

Figures 8(a) and (b) show the design and prototype of the
magnetic-elastic coupled Kresling-ori structure based on the
parameters given in table 2. The origami structure is made of
0.076-mm-thickness moisture-resistant polyester film. We use
laser-based machining techniques to cut and pattern flat sheet.
Specifically, the creases are perforated to some extent such
that the bending stiffness of the creases is weakened; we also
cut small holes at the vertices where multiple creases intersect
to prevent stress concentration. Through folding, rolling, and
gluing, a Kresling-ori structure can be obtained. To embed
magnets and to connect with the universal testing machine,
the Kresling-ori structure is connected with two acrylic plates
at the top and bottom. Note that during folding, the top plate
would rotate with respect to the bottom plate. To ensure free
rotation, similarly, ball bearings are embedded into the 3D-
printed connectors, which further connect with the top and
bottom acrylic plates. A non-magnetic titanium screw rod is
inserted through the bearing, with one end fixing with the
plate, and the other end fixing with the universal testing
machine. Here, NdFeB magnets (see parameters listed in
table 2) are employed for proof-of-concept experiments.

Displacement-controlled compression and tension tests
are carried out on the prototype for the no-magnet, the
attractive-magnet, and repulsive-magnet layouts, respectively.
Based on the same testing and data processing procedures as
we used in subsection 4.1, figure 8(c) shows the measured
force–displacement relations of the magnetic-elastic coupled
Kresling-ori prototype corresponding to the three layouts. It
reveals that when there is no magnet, the prototype is bi-
stable (figure 8(c), left). By integrating attractive magnets, the
structure’s constitutive relation evolves into a mono-stable
profile (figure 8(c), middle), which, however, contradicts with
the theoretical prediction (which is a bi-stable profile, shown
in figure 6(d), dashed). Carefully observing the curves and the
prototype’s deformation during folding, the attractive mag-
nets have little effects on the first half of the curve and the
stable ‘open’ configuration; with the height decreasing, large
discrepancies occur, which are induced by two reasons. First,
in theoretical analysis, the origami panels are assumed to be
rigid, which are strong enough to drag the magnets so that
their configurations exactly follow the folding kinematics.
Based on such assumptions, the overall reaction force of the
prototype will experience an inflection point from declining to
increasing, generating a stable ‘close’ configuration (see the
dashed curve in figure 6(d) and the dashed curve in
figure 8(c), middle). However, in experiments, when the
prototype is compressed to a relatively small height, the
attractive force between the top-layer and the bottom-layer
magnets becomes so strong that the origami panels made of
thin polyester films are no longer able to drag the magnets
following the folding kinematics. Hence, when the prototype
is further compressed, although the top-layer magnets will

gradually decline, their lateral positions with respect to the
bottom-layer magnets will be locked. In this process, the
polyester-film panels will be seriously deformed; however,
due to the increasingly strong magnetic attraction, the overall
reaction force of the prototype keeps negative and declines
fast, giving rise to a mono-stable profile. Second, theoretical
analysis assumes zero-thickness of the facets and creases, but
practically, when the prototype is compressed into small
height, the film thickness cannot be ignored anymore. The
films will be contacted and pressed seriously, which generate
significant elastic force that would affect the overall profile.
This explains why the reaction force starts to increase when
the prototype is compressed to below =H 2.64 mm.

By integrating repulsive magnets, the original bi-stable
profile evolves into tri-stable (figure 8(c), right), where the

Figure 8. Experiments on the magnetic-elastic coupled Kresling-ori
structure prototype. (a) Design of the prototype. (b) Photo of the
prototype assembled on the universal testing machine. (c) Measured
force–displacement curves of the prototype corresponding to the no-
magnet, the attractive, and the repulsive magnet layouts. The curves
denote the measured averages, and the shaded bands denote the
standard deviations; the stable configurations are also indicated by
empty circles. (d) Configurations of the prototype during tests.
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stable ‘open’ configuration remains stable, while the stable
‘closed’ configuration is translated to a configuration with
larger height. Keep compressing the prototype beyond the
stable ‘closed’ configuration, the reaction force increases
again, and then experiences a sudden drop, suggesting a snap-
through transition of the configuration. Theoretically, such
drop will continue until the test ends, and the final config-
uration would be an additional stable state brought by the
repulsive magnets (see figure 6(d)). However, in experiments,
the sudden force drop is followed by a fluctuating interval,
and then the force rises again until the end. Such dis-
crepancies between the theoretical and experimental results
are also caused by the non-ignorable material thickness of the
prototype. When the prototype is compressed into small
height, the films will be contacted and pressed, which there-
fore interrupts the configuration snap-through and increases
the reaction force undesirably. Particularly, at the final stage
of the test, the film compressions become significant, which
will increase the reaction force.

In short, based on proof-of-concept prototypes of Miura-
ori and Kresling-ori structures, the effects of magnets on the
stability profiles and the force–displacement constitutive
relations are verified, which includes qualitative transitions
(switches among mono-stable, bi-stable, and tri-stable) and
quantitative evolutions (translations of the stable configura-
tions, deepening or shallowing of the potential wells). Due to
the deformation and inter-pressing of the polyether-film
panels, non-negligible discrepancies are observed when test-
ing the magnetic-elastic coupled Kresling-ori prototype; this
triggers an interesting research problem that has not been
tackled, that is, what is the effects of magnet-origami inte-
gration when the origami panels and creases are flexible to
exhibit large deformations.

5. Dynamics

Changes of the stability profile and the corresponding force–
displacement relation would, in turn, affect the structure’s
dynamic characteristics; this will be particularly significant if
such changes are qualitative. This section numerically studies
the effects of magnets on the system dynamics of an example
magnetic-elastic coupled Miura-ori structure.

5.1. Simplified system and equation of motion

Figure 9(a) schematically displays the setup for dynamic study.
Specifically, the magnetic-elastic coupled Miura-ori structure is
horizontally suspended on a fixed frame with light strings. A
lumped mass m connects with the origami structure at one end,
and harmonic base excitations are applied on the structure at the
other end. Here, the lumped mass is assumed to be much heavier
than the origami structure, such that the origami can be equiva-
lently considered as a massless nonlinear spring with force–dis-
placement relation F u( ) and a massless viscous damper with
damping coefficient c. Thus, the system in figure 9(a) can be
simplified into a spring-lumped-mass model (figure 9(b)), with x

and y denoting the absolute displacements of the lumped mass
and the base, respectively, and = -u x y denoting and the
relative displacement between the lumped mass and the base.
The origin of the relative displacement (i.e. =u 0) is set at the
unstable equilibrium of the SMO structure without magnet.
Based on the example shown in figure 4(b) (with parameters
listed in table 1, and q = 45A

0 ), the =u 0 configuration is set at
=H 27.20 mm.M Hence, the equation of the motion of the

equivalent model yields

+ + = -mu F u cu my , 20̈ ( ) ̈ ( )

where the dots over the variables denote time derivatives. The
base is subjected to harmonic excitation w=y A tsin( ) with
amplitude A and frequency w.

Note that the constituent force–displacement relations of
the magnetic-elastic coupled Miura-ori structure possess
strong nonlinearity originating from the origami geometry
and the magnetic effect. For the sake of convenience in
numerical studies, the constitutive relations corresponding to
the no-magnet, the repulsive-magnet, and the attractive-
magnet layouts are fitted with polynomials up to 27th orders,
respectively. Figure 9(c) displays the theoretical and the fitted
curves of the three constitutive relations, which are in good
agreement; particularly, the stable and unstable equilibria of
the system are well captured. Note that as expected, some
undesired small fluctuations exist, and when u approaches to
the folding limits, the fitted relations cannot fully reflect the
kinematic constraints. However, such fittings would still be

Figure 9. Dynamic study on the magnetic-elastic coupled Miura-ori
structure. (a) Setup for dynamic study. (b) The equivalent model of
the system. (c) The analytical and fitted force–displacement relations
corresponding to the no-magnet, the repulsive-magnet, and the
attractive-magnet layouts.
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effective in demonstrating the effects of magnets on
dynamics.

5.2. Numerical analyses

The following parameters are assigned for numerical ana-
lyses: =m 0.15 kg, = -c 0.4 kg s ,1 and =A 6.0 mm. Based
on the fitted force–displacement relations corresponding to
the no-magnet, the repulsive-magnet, and the attractive-
magnet layouts, equation (20) is solved via the 4th-order
Runge–Kutta method with zero initial condition, i.e.

=u u, 0, 0 ,0 0( ) ( ) respectively. With a step of 0.1 Hz, a
discrete frequency sweep is performed between 2 and 20 Hz.
With a fixed displacement excitation amplitude A, the higher
the excitation frequency, the larger the input energy. At each
frequency, the simulation time is long enough to let the
system enter steady-state. The peak-to-peak value of the
relative displacement (u) and the system’s displacement
transmissibility in terms of the root-mean-square (RMS)
value (specifically, Td RMS‐ ) are examined to uncover the
system’s dominant dynamic behaviors. Specifically, Td RMS‐
is defined as

= =
+ +¼+

+ +¼+
T

x

y

x x x N

y y y N
, 21N

N

d RMS
RMS

RMS

1
2

2
2 2
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2

2
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( )‐

/

/

where xi and yi ( = ¼i N1, 2, , ) are numerical sampling
points in the steady-state displacement-time histories of the
lumped mass and the base, respectively.

Figure 10 displays the dynamic responses of the magn-
etic-elastic coupled origami structure corresponding to the
three layouts. When there is no magnet applied, the structure
is inherently bi-stable (refer to figure 4). Under external
excitations, three qualitatively different types of responses
can be observed: intra-well (in) oscillations that surround the

nested-in stable configuration, intra-well (out) oscillations that
surround the bulged-out stable configuration, and large-
amplitude inter-well oscillations that surround the two stable
configurations (figure 10(a)). They present distinctly different
displacement transmissibility levels. When the excitation
frequency is relatively low, the structure could exhibit both
intra-well (in) and intra-well (out) oscillations. Note that due
to the low energy barrier between the nested-in and the
bulged-out stable configurations (refer to figure 4), transitions
from the intra-well (in) oscillations to the intra-well (out)
oscillations occur at very low frequency (2.3 Hz). By
increasing the excitation frequency, the input energy becomes
large enough to maintain inter-well oscillations, which con-
tinue appearing above 8.6 Hz.

When attractive magnets are applied, the structure
remains bi-stable. Similarly, three types of responses with
distinct displacement transmissibility levels are observed,
namely, intra-well (in) oscillations, intra-well (out) oscilla-
tions, and inter-well oscillations (figure 10(b)). However, with
the attractive magnets, the potential well at the nested-in
configuration is significantly deepened, which raises the
energy barrier from the nested-in to the bulged-out stable
configurations, and correspondingly, increases the critical
force for snapping through to the bulged-out configuration
(refer to figure 4). Hence, when the excitation frequency is
relatively low, the input energy is insufficient to overcome the
potential energy barrier, and the structure sustains at intra-
well (in) oscillations. By increasing the excitation frequency
to 6.5 and 6.6 Hz, inter-well oscillation and a transition to the
intra-well (out) oscillation are observed for the first time.
When the excitation frequency is further increased to 11.4 Hz,
the input energy becomes sufficient to maintain large-ampl-
itude inter-well oscillations. Comparing to the no-magnet
layout, the critical frequency for transiting from intra-well (in)
oscillations to intra-well (out) oscillations and the critical

Figure 10. Dynamic responses of the magnetic-elastic coupled Miura-ori structure corresponding to (a) the no-magnet layout, (b) the
attractive-magnet layout, and (c) the repulsive-magnet layout. The top row displays the peak-to-peak values of the relative displacement (u)
with respect to the excitation frequency, where the structure’s stable configurations are denoted by the dashed horizontal lines; the bottom
row displays the displacement transmissibility in terms of the RMS value with respect to the excitation frequency.
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frequency for exhibiting persistent inter-well oscillations are
significantly increased.

When repulsive magnets are applied, the structure turns
into mono-stable (refer to figure 4), which fundamentally alter
the system’s dynamic responses (figure 10(c)). Overall, the
frequency-response diagram shows representative character-
istics of hardening nonlinearity. In detail, unlike the bi-stable
scenarios that the oscillations surround different stable equi-
libria, here, basically, the structure is able to output two types
of responses (namely, high-amplitude responses and low-
amplitude responses) that surround the same stable equili-
brium but are different in the amplitude level and the dis-
placement transmissibility level. Note that some complex
dynamic behaviors (e.g. responses with subharmonic com-
ponents) are also observed, which also surround the only
stable equilibrium.

It’s worth mentioning here that with only one pair of
initial conditions, the system’s dynamics cannot be fully
captured; this is because the structure possesses strong global
nonlinearity such that its responses are extremely sensitive to
initial conditions [44]. Carrying out a comprehensive
dynamic analysis of the structure by considering the non-
linearities originating from the origami geometry and the
magnets is an interesting topic to be explored.

In short, by numerically examining the dynamic
responses of the magnetic-elastic coupled Miura-ori structure,
the effects of the attractive and repulsive magnets on system
dynamics are exemplified. The attractive magnets could
quantitatively change the critical frequency for transiting
intra-well (in) oscillations to intra-well (out) oscillations and
the critical frequency for exhibiting continuous inter-well
oscillations; the repulsive magnets could qualitatively switch
the structure’s dominant dynamic characteristics from bi-sta-
bility to hardening nonlinearity. Such qualitative and quanti-
tative changes on dynamics suggest the possibility and
feasibility of using magnets to control origami structures’
dynamic responses, and hence, to harness their dynamic
functionalities.

6. Summaries and conclusions

Multi-stable mechanical metamaterials and structures are
capable of exhibiting different mechanical properties and
outputting distinct dynamic responses at different stable
configurations. For these peculiar merits, they have received
considerable research attention in many domains. Particularly,
origami, the art of paper folding, featuring with extraordinary
capabilities in constructing and deforming 3D shapes, has
provided novel inspiration, elaborate 3D configuration, and
infinite design space to the development of multi-stable ori-
gami structures. Although possessing marked advantages
originating from folding, the further development of multi-
stable origami structures is faced with a tremendous demand
for acquiring tunability of the stability profile and adaptability
of mechanical properties. This research, as a result, makes a
significant and beneficial attempt by employing magnets to
quantitatively and qualitatively alter the structure’s potential

energy landscape, thus achieving tunability of the stability
profile. Quantitative changes include translations of the
potential wells, deepening and shallowing of the potential
wells; qualitative changes manifest as the switches of the
profile among mono-stability, bi-stability, and tri-stability.
Through two examples, the magnetic-elastic coupled Miura-
ori structure and the magnetic-elastic coupled Kresling-ori
structure, we observed that the stability profile changes could
further affect the structures’ mechanical properties, e.g. fun-
damentally alter the structures’ constitutive force–displace-
ment relation. Based on proof-of-concept magneto-origami
structure prototypes with permanent magnets, the predicted
magnet-induced effects are verified. The investigation is also
extended to the dynamics realm, motivated by the facts that
origami structures will be inevitably working in a dynamic
environment or under dynamic excitations. Numerical ana-
lyses reveal that the quantitative changes of the stability
profile could translate the critical frequencies for switching
dynamic responses, and the qualitative changes of the stabi-
lity profile could fundamentally alter the frequency-response
relations.

Overall, by revealing the magnet-induced evolutions of
the origami structure’ static and dynamic characteristics, this
research could significantly advance the state of the art of the
development of multi-stable metamaterials and structures that
are inspired by origami. The proposed magnet-based inno-
vation could effectively endow the origami structures with the
long-desired tunability of the stability profile and mechanical
properties, making them attractive in applications that call for
adaptabilities, such as adjustable shape morphing and
broadband energy harvesting.

Through the above theoretical, numerical, and exper-
imental studies, we also recognize many interesting issues
that worth further investigation to systematize the magnet-
based approach. For example, since electromagnets could
effectively and efficiently change the magnetic field strength
as well as reverse the pole layout, it would be very interesting
and necessary to design new prototypes based on electro-
magnets to achieve on-line tunability. The magnetic effect
and the origami geometry introduce significant nonlinearities
into the structure, it is therefore imperative to perform com-
prehensive dynamic analyses to systematically uncover the
magnet-induced switches of nonlinear dynamic behaviors.
The behavior of magneto-origami structures will be sig-
nificantly complex if the origami structures are flexible or
soft; this constitutes a challenging research topic because of
the difficulty in modeling and analyzing soft origami struc-
tures. The size of magnets is always non-negligible that may
affect the folding of the origami structure, which calls for
integrated design and prototyping by putting the magnet size
into consideration.
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