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ABSTRACT Cell-cell adhesion is essential for tissue growth and multicellular pattern formation and crucial for the cellular dy-
namics during embryogenesis and cancer progression. Understanding the dynamical gene regulation of cell adhesion molecules
(CAMs) responsible for the emerging spatial tissue behaviors is a current challenge because of the complexity of these nonlinear
interactions and feedback loops at different levels of abstraction—from genetic regulation to whole-organism shape formation.
To extend our understanding of cell and tissue behaviors due to the regulation of adhesion molecules, here we present a novel,
to our knowledge, model for the spatial dynamics of cellular patterning, growth, and shape formation due to the differential
expression of CAMs and their regulation. Capturing the dynamic interplay between genetic regulation, CAM expression, and
differential cell adhesion, the proposed continuous model can explain the complex and emergent spatial behaviors of cell pop-
ulations that change their adhesion properties dynamically because of inter- and intracellular genetic regulation. This approach
can demonstrate the mechanisms responsible for classical cell-sorting behaviors, cell intercalation in proliferating populations,
and the involution of germ layer cells induced by a diffusing morphogen during gastrulation. The model makes predictions on the
physical parameters controlling the amplitude and wavelength of a cellular intercalation interface, as well as the crucial role of N-
cadherin regulation for the involution and migration of cells beyond the gradient of the morphogen Nodal during zebrafish gastru-
lation. Integrating the emergent spatial tissue behaviors with the regulation of genes responsible for essential cellular properties
such as adhesion will pave the way toward understanding the genetic regulation of large-scale complex patterns and shapes
formation in developmental, regenerative, and cancer biology.

SIGNIFICANCE The regulation of cell adhesion molecules (CAMs) is essential for the correct cellular and tissue spatial
behaviors during development, and its dysregulation may lead to cancer formation. Here, we show how a novel, to our
knowledge, continuous approach can model the spatial dynamics of cell sorting, intercalation, and involution due to
differential expression of CAMs. The model explains cell-sorting arrangements and intercalation behaviors, predicting the
amplitude and wavelength of the intercalation interface, as well as the involution and migration of germ layer cells during
zebrafish gastrulation beyond the gradient that regulates their differentiation. This approach integrates genetic regulation
of CAMs, the biophysical forces of adhesion, and the subsequent cellular dynamics to explain how these mechanisms can
dictate large-scale tissue behaviors.

INTRODUCTION their different cell types (2,3). These cell-cell adhesive
forces are dependent on the expression of cell adhesion mol-
ecules (CAMs) through the cell surface, such as families of
proteins including the cadherins, integrins, and nectins (4,5).
CAMs expressed at the cell surface can form bonds with the
same or different CAM types expressed in neighboring
cells, resulting in different adhesive strengths. These CAM
adhesive forces are transmitted to the cell through its cyto-
skeleton network and can result in specific cell spatial be-

The adhesive properties of cells can dictate their spatial be-
haviors and the formation of correct tissue patterns and
shapes during morphogenesis and homeostasis (1). Seminal
studies demonstrated how stirred disassociated embryonic
tissues could sort themselves and regain their specific con-
figurations because of the distinct adhesive properties of
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patterns. The importance of cell adhesion is clear when its
cellular components are perturbed, resulting in tissues that
can degenerate into mispatterned phenotypes during devel-
opment (6) and disease states such as cancer progression
and metastasis (7,8). However, it remains unclear how inter-
cellular interactions between adhesion molecules and the
dynamic genetic regulation of their expression can produce
these cellular and tissue patterns.

The precise regulation of CAM expression modulates the
adhesive properties of cells and hence can control the move-
ment of cells and the formation of global tissue patterns dur-
ing morphogenesis, whereas its dysregulation may lead to
tumor formation and metastasis. Several gene families
have been found to regulate CAM expression. The Snail
family of transcription factors regulate the expression of
cadherins essential for gastrulation in invertebrates, the
epithelial-to-mesenchymal transition in neural crest cells
in amniotes, and the development of organs such as the kid-
ney (9,10). Differential regulation of CAMs such as
cadherins by ephrins and Hox genes is a key factor for
proper cell distribution during limb morphogenesis and
regeneration (11); mutations in these pathways can result
in limbs with abnormal morphological organizations (12).
Dysregulated pathways controlling CAMs expression are
sufficient to induce tumor progression, metastasis forma-
tion, and drug resistance (9,13). Kinases can upregulate
E-selectin—a CAM essential for the localization of metasta-
tic cancer cells in the lungs (14)—and specific kinase inhib-
itors targeting these pathways represent promising drugs for
anticancer therapeutics (15). However, the complex feed-
back loops between CAM regulation, cellular adhesion
dynamics, tissue behaviors, and intercellular signaling
represent an extraordinary challenge that remains to be
deciphered.

To understand the complex dynamics between the regula-
tion of CAMs and the spatial tissue behaviors, mathematical
and computational approaches are needed to model the
physical properties of these processes and explain their
emergent dynamics. Discrete models based on the extended
Potts approach have been proposed to understand cell
adhesion dynamics, and they can recapitulate the classical
cell-sorting dynamics due to adhesion (16-18), specific
developmental dynamics (19-21), and cancer behaviors
(22,23). These models do not include the dynamics of
CAM expression and instead use predefined adhesion con-
stants for different cell types. Extensions to these discrete
approaches have been proposed to model the concentration
of CAMs, using either static concentrations defining cellular
adhesion strengths (24) or dynamic concentrations with
hybrid models (25). These approaches are based on the
explicit modeling of cells and hence computationally expen-
sive for large numbers, which limits their applicability. In
addition, discrete models are often not amenable to analyt-
ical study with the theory of dynamical systems, including
the analysis of their fixed points, bifurcations, and phase
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portraits. To overcome the limitations of discrete models,
continuous models of cell adhesion have been proposed
that can equally recapitulate the classical cell-sorting behav-
iors but are computationally more efficient for the simula-
tion of large populations and amenable for mathematical
analysis (26,27). Continuous models have been successfully
used to explain developmental processes (28) and cancer dy-
namics (29-32). However, the adhesion properties in these
models are static and defined with specific constants in pre-
defined cell types. As a consequence, the regulation and dy-
namics of adhesion molecules have not been possible to
model with continuous approaches, limiting our ability to
understand the regulatory dynamics of CAM expression
and their influence in large-scale tissue behaviors such as
whole embryos.

Here, we present a novel, to our knowledge, continuous
model of cell adhesion due to the expression of CAMs
and their regulation. This approach does not rely on prede-
fined adhesion constants between cell types but models as
continuous the levels of CAM concentration, which in
turn dynamically determine the adhesive properties between
cells. Modeling the expression of CAMs naturally allows
the inclusion of their regulatory dynamics, which is essen-
tial in many biological processes. We demonstrate the capa-
bilities of the proposed model with three experiments. First,
we show how the model can correctly recapitulate the clas-
sical Steinberg cell-sorting dynamics due to the differential
expression of CAMs. Next, we present a model of cellular
intercalation dynamics resulting from the differential
expression of two different nectins in a proliferating cell
population. Finally, we model whole-embryo develop-
mental dynamics during zebrafish gastrulation, explaining
how the diffusing morphogen Nodal regulates the expres-
sion of a cadherin, dynamically modulating the adhesive
properties of cells and resulting in a characteristic involution
of the mesendodermal germ layer. Furthermore, the model
predicts a robust cell migration toward the animal pole
beyond the Nodal gradient. Integrating the regulatory dy-
namics of CAMs and their cell adhesion properties in the
proposed continuous model permits the simulation and
spatial predictions of the behaviors of large population of
cells due to the interdependent dynamics of genetic regula-
tion and adhesion proteins.

METHODS
Model of dynamic cell adhesion
Model derivation

The dynamic adhesive properties of cells originate from the regulation and
expression of CAMs. CAMs expressed on neighbor cells interact with each
other, generating adhesive forces. CAMs bind to both CAMs of the same
type as well as CAMs of other types. The adhesive force generated from in-
teractions between CAMs hence depends on both the adhesive strength
between CAMs and their specific levels of expression in the interacting
cells. The dynamic regulation of CAM expression, possibly by intra- and
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intercellular regulatory factors, results in dynamic adhesive forces. These
dynamic forces can dictate cellular and tissue movement, resulting in target
patterns and shapes. The proposed model follows a continuous approach to
define a population of cells with adhesion forces as in (26,27), but instead of
explicitly modeling cell types, it models types of CAMs (and possibly other
factors) expressed in the cells (Fig. 1). The concentration levels of CAMs
dynamically give rise to the specific adhesive forces between cells.

We derive the model by considering the forces acting on a population of
cells with no proliferation or death to be conservative, which implies by
mass conservation

du(x,t)

ek -V-J, ey

where u(x, ) is the cell density at position x and time ¢, and J is the flux of
the cells. We can rewrite the cell density equation in terms of the flow ve-
locity of the cells, resulting in

Qu(x, 1)
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where V is the velocity field of the cells. Cells contain n different types of
CAMs that are advected by the movement of the cells, resulting in
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where c is the vector of the n CAM types concentrations c;(x, t) at position x
and time ¢.

Cells move in a directed manner from regions of high density to those of
lower density (27), causing dispersion velocity V,, and toward each other
because of adhesive forces between their expressed CAMs, causing adhe-
sion velocity V,, so the total velocity of the cells is

V=V;+V,. )
a b c
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FIGURE 1 Proposed continuous model for the regulatory dynamics of
cell-cell adhesion. (a) Cells regulate and express different types of adhesion
proteins (CAMs, red and green), causing cell-cell adhesive forces depend-
ing on the CAMs concentration in the cells within a radius R. (b) A 2D
scheme of tissue discretization and cellular fluxes due to dynamic adhesion.
Cell density and CAM and other factor concentrations are defined in a grid
of discretized control volumes, and the flux is defined across the boundaries
between control volumes (points A-D). (¢) Kernel for the numerical discre-
tization in two dimensions of the adhesion integral at boundary point A in
(a). The adhesion values are computed at points at regular angular and
radial directions (red circles) from the boundary point (black circle at the
center), with a bilinear interpolation of CAM concentrations from the cen-
ter of the four surrounding control volumes (cyan, magenta, yellow, and
green lines). The same kernel is used for boundary point B, and its transpose
is used for boundary points C and D. The example shows a discretization
with 42 angular by 10 radial directions. To see this figure in color, go online.
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We assume that the cell dispersion velocity is proportional to the popu-
lation density, which implies

Vi= —k,Vu, &)

where k, is the dispersion constant. Diffusion is assumed to be negligible
relative to the strength of dispersion and adhesion (27).

The adhesion velocity vector depends on the adhesive bonds between
CAMs expressed in the cells and their neighbors within a sensing radius R
(Fig. I @). This radius models the size of a cell, including their ability to reach
and contact other cells through the cell body and through their protrusions
such as filopodia. Following Newton’s law and assuming that inertia is negli-
gible for cell movements, the adhesion velocity vector is then inversely pro-
portional to the cell radius (because of drag) and proportional to the pairwise
sum of all adhesion forces between the n CAM types such that

vV, = i X%K(u,c,-,c_,-)(x), (6)
i

where ¢ is a constant of proportionality related to viscosity, n is the number
of CAM types, and K(u, c;, ¢;)(x) is the nonlocal cell adhesion force vector
at location x due to the bonding interactions between the two CAM types c;
and ¢;. The adhesive strength between CAM types are defined by a symmet-
ric square matrix A, where each element a;; represents the adhesion strength
between CAM types c; and c;, and hence the diagonal defines the homotypic
adhesion strengths for each CAM type. The nonlocal cell adhesion force de-
pends on the adhesive bindings between the CAMs expressed in the local
cell at point x and those expressed by its neighbors within the cell-sensing
radius R. In d spatial dimensions, it takes the form

K(eo)e) = [ [ alrluae)easrn)]
0

x w(r) r'"'n dn dr,

where §¢ ~ ! is the d-dimensional unit spherical surface; r is the radial dis-
tance; n is the direction vector; f{u, c;, ¢;)(x, x + M- 111) describes the na-
ture of adhesive forces between CAM types ¢; and c; expressed from cell
locations x and x + r ~ 'n, respectively, and their dependence on the
cell density; and w(r) describes how the cell adhesive force depends on
the radial distance r. For simplicity, we assume w(r) = 1 in this work.

The adhesive force between two CAM types expressed by two cells de-
pends on their binding activity due to the CAMs’ relative concentrations
within each cell. We assume that the binding activity follows the law of
mass action, such as the adhesive force exerted on cells at location x ex-
pressing CAM type c; by cells at location y expressing CAM type c; depends
on the product of their relative concentrations because the force is calcu-
lated per unit of cell density within their respective cells, given by

- _ax) b)),
f(’/h‘u j)(xay) u(x) uly) h(u(y)), ®)

where h(u(y)) represents how the adhesive force depends on the local cell
density. As in (26,27), we assume a population pressure that causes cells
to be attracted only to regions below a threshold density. For this, a logistic
function with crowding capacity k. limits the cell movement because of
adhesion toward dense regions:

u<1 - 1) if u<k,,
k. ©)

0 otherwise.

h(u) =



A nondimensional model is defined by rescaling with
u Ci
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and dropping the stars, we obtain the model
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Numerical methods

Simulations were computed in a 2D domain using the explicit upwind finite
volume method with flux limiting in a uniform square lattice and a zero-flux
boundary condition. The nonlocal integral term for adhesion is discretized
into angular and radial components using bilinear interpolation. The system
was numerically solved using ROWMAP (33) and implemented in
MATLAB R2017b (The MathWorks, Natick, MA). Methods are detailed
in the Appendix.

RESULTS

We demonstrate the ability of the proposed model to explain
tissue shape behaviors due to the differential expression of
CAMs with three simulations of in vitro and in vivo exper-
iments. Classical cell-sorting behaviors can be recapitulated
in the model in a population of nongrowing cells expressing
two different CAM types, resulting in engulfment, mixing,
or sorted cellular aggregates depending on the adhesive
strengths between the CAM types. Extending the model
with cell growth, a simulation of in vitro growing dynamics
shows how a proliferating cell population can result in either
separated or intercalated patterns because of the cells ex-
pressing either the same or different nectins, respectively.
Finally, the dynamics of zebrafish gastrulation are explained
with an extended model including the expression of a
morphogen forming a gradient, which in turn upregulates
the expression of the CAM N-cadherin, inducing the involu-
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tion of these cells because of their acquired differential cell
adhesion properties, even beyond the expression gradient of
the morphogen. Importantly, the behaviors shown in the
simulations are not due to inherent cell adhesion strengths
between different cell types but from dynamic adhesion
strengths that arise from the concentration of various
CAM types, in which each CAM type has specific molecular
adhesion values and their concentrations, and hence the re-
sulting cell adhesion forces, can be subject to genetic
regulation.

Cell-sorting behaviors

CAM types can bind to each other with different adhesive
strengths, so cell-cell adhesion forces depend on the levels
of expression of the different CAM types. These differences
in cell-cell adhesion can cause an emerging cellular self-or-
ganization into different spatial patterns, a behavior shown
in vitro in a variety of animal cells, including amphibian
(2), chick (34,35), zebrafish (18), and hydra (36). In these
experiments, cells express different CAM types with
different adhesive properties. Some combinations of CAM
types can confer strong adhesive forces, causing cells to
bind tightly to each other in the core of the final sorted
aggregate. Other combinations of CAM types generate
lower adhesive forces, resulting in cells that bind loosely
to each other and move to the outside of the aggregate.
The proposed continuous nondimensional model (Eq. 11)
can demonstrate cellular sorting behaviors because of the
differential expression of CAMs, which are qualitatively
similar to in vitro experiments using dissociated zebrafish
(18) or transfected CHO cells (37). Fig. 2 shows four
different sorting behaviors resulting from nonproliferating
cells expressing either of two CAM types with different ad-
hesive strengths (strength values as estimated in (27)). All
the simulations start with the same initial random configura-
tion of disassociated tissue, in which each initial aggregate
contains cells expressing one of two different CAM types.
Depending on the relative strength of the homotypic and
heterotypic adhesion strengths between the CAM types,
the spatially randomized tissues form aggregates that self-
organize into patterns of engulfment, partial engulfment,
mixing, or complete sorting. When the CAM homotypic
adhesion strengths are asymmetric, the simulation recapitu-
lates the engulfment behaviors observed in vitro (Fig. 2 a).
This sorting behavior is due to the differential expression of
CAMs, in which cellular aggregates expressing the CAM
type with stronger homotypic adhesion strength (red) are
tightly adhered and hence surrounded by the cellular aggre-
gates expressing the CAM type with weaker homotypic
adhesion strength (green). However, when the homotypic
adhesion strengths of the two CAM types are equal but still
higher than the heterotypic adhesion strength, no cell aggre-
gate is stronger than the other, and hence, there is still sort-
ing between the tissues expressing the different CAM types
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but no engulfment (Fig. 2 b). In contrast, the randomized tis-
sues do not sort themselves when the homotypic and hetero-
typic adhesion strengths are equal (Fig. 2 c¢), resulting in
aggregates that are mixed. In the complete absence of het-
erotypic adhesion between the two CAM types, the tissues
sort themselves completely, forming separated aggregates
(Fig. 2 d). These simulations show how the cell-sorting be-
haviors depend on the homotypic and heterotypic adhesion
strengths between the CAM types and their levels of expres-
sion in the different tissues. Cells first aggregate into tran-
sient local clusters (¢ = 0.1), which eventually merge into
larger aggregates (¢ = 1 to t = 100). This dynamic behavior
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FIGURE 2 Cell-sorting simulations in a popula-
tion of cells expressing either of two CAM types
with different adhesion strengths. (@) Asymmet-
rical homotypic adhesion strengths in the CAM
types result in the engulfment of the cells express-
ing the higher-adhesive-strength CAM type (red)
by the cells expressing the lower-adhesive-
strength CAM type (green). (b) Symmetric homo-
typic adhesion strength higher than the heterotypic
adhesion strength results in partial engulfment. (¢)
When the homotypic and heterotypic adhesion
strengths are equal, the cells become mixed. (d)
Without heterotypic adhesion forces, the cell pop-
ulations expressing the two different CAM types
completely sort themselves. Matrix diagrams indi-
cate the homotypic and heterotypic adhesion
strengths between CAM types. All simulations
start with the same initial state of equal red and
green CAM type total concentration. Domain is
of size 10 x 10 units, discretized into a 100 x
100 grid; arbitrary units. To see this figure in color,
go online.

recapitulates both in vitro experiments and previous discrete
models (38). Although the specific final steady state depends
on the initial state, qualitatively different steady states
emerge as the result of the specific adhesion strengths be-
tween CAM types (Fig. S1).

Cell intercalation in proliferating cell populations

The spatial tissue behaviors in a population of proliferating
cells can depend on both the expression levels and the adhe-
sive properties of CAMs. This has been shown in in vitro



coculture assays of two proliferating cell populations ex-
pressing similar or different nectin adhesion proteins (6).
When both populations express the same CAM type (nec-
tin-1), the boundary formed between the two populations
at the contact plane is well-defined, and the cells do not
mix. In contrast, when each population express a different
CAM type with different adhesive properties (nectin-1 or
nectin-3), the two populations mix and intercalate at the
boundary. The proposed model can explain these behaviors
because of the differential expression of nectin-1 or nectin-3
in the two proliferating cell populations.

We extend Eq. 2 to include a simple logistic cell growth
term g(u) such that

Ju(x, 1) t)
ot

g(u) = kg”(l _k%), (12)

where k, is the cell growth rate and k; is the cell carrying ca-
pacity. We assume that the daughter cells continue express-
ing the same CAM types as their parent cells so that the
relative CAM concentration in the daughter and parent cells
are equal. In this way, we extend Eq. 3 to

6c,~(x, t)
ot

=V V) + g(u),

=~ (V) + (). (13)

This extended model can explain the in vitro intercalation
dynamics of growing cell populations resulting from the dif-
ferential expression of CAMs. We use the dimensional pa-
rameters as experimentally measured in (27):
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The parameter k. could not be measured experimentally
and was set to k;. We then fitted the model to the experi-
mental images from (27), setting ¢ = 100 and k, =
126,000 um?/h « um?*/cells.

Fig. 3 shows simulations of growing population dynamics
when the two cell populations express either the same (nec-
tin-1) or different (nectin-1 or nectin-3) CAM types. The ho-
motypic and heterotypic adhesion strengths of nectin-1 and
nectin-3 are derived from protein-protein interaction experi-
mental data measured with surface plasmon resonance (39)
and their values are shown in Fig. 3 a. Both simulations start
with the same initial state for cell density—two random cell
populations on the opposite sides of the domain—and homo-
geneous relative concentration of either nectin-1 or nectin-3
(a/u = 1). This random initial state for cell density simulates
the noise in biological cells in the deterministic model, which
otherwise would result in an unrealistic equilibrium of adhe-
sion forces at the center of the front because of perfectly sym-
metrical cell densities. During the simulation, the cells
proliferate and spread through all the domain up to the carrying
capacity density. When both left and right cell populations ex-
press the same CAM type (nectin-1), they do not mix or inter-
calate at the interface because the adhesive forces between the
two populations are balanced equally and hence cancel out
(Fig. 3 b). In contrast, when the two populations express
different CAM types (nectin-1 or nectin-3), the difference in
homotypic adhesive strengths results in the mixing and interca-
lation pattern at the interface (Fig. 3 ¢). The simulation hence
shows how either intercalation or smooth boundaries can arise
at the interface of two growing cell populations depending on
the expression levels and adhesive properties of their CAMs.

The model predicts the specific amplitude and wavelength
of the intercalation interface depending on the physical param-
eters. Fig. S2 shows the steady states resulting from individu-
ally varying the parameters of the model. Except for the
dispersion constant k,, all other parameters considerably affect
the pattern of the intercalation interface. To quantify the effect
of each parameter on the intercalation pattern, we measured
the amplitude of the interface and caculated its wavelength
with a Fourier analysis when perturbing each parameter indi-
vidually by a factor (Fig. S3). The results show that the inter-
calation amplitude increases linearly with the sensing radius

FIGURE 3 Simulation of proliferating cell pop-
ulations expressing identical or different CAM
types explains in vitro intercalation behaviors.
The two cell populations express a different
marker (magenta or blue) and either the same or
different CAM type (nectin-1 in red and nectin-3
in green). (a) Homotypic and heterotypic adhesion
strengths of nectin-1 and nectin-3. (b) Cell popula-
tions proliferating and expressing the same CAM
type, nectin-1, do not mix when they meet at the
interface. (c¢) Cell populations proliferating and
expressing different CAM types, nectin-1 or

t=72h t=96h

nectin-3, mix and form intercalated patterns when they meet at the interface because of the different homotypic adhesion strengths of the two CAM types
expressed. Domain is of size 1 x 1 mm, discretized into a 50 x 50 grid. To see this figure in color, go online.
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R, the constant related to viscosity ¢, and cell carrying capac-
ity k; but decreases exponentially with the dispersion constant
ko. The intercalation wavelength increases linearly with the
sensing radius R and, to a lesser extent, with the constant
related to viscosity ¢ and cell carrying capacity k; but de-
creases linearly with the dispersion constant k.

Dynamic regulation of adhesion during
gastrulation

During gastrulation, Nodal acts as a diffusive morphogen,
forming a concentration gradient that induces mesendoderm
differentiation (40). In zebrafish, Nodal is expressed in the
yolk syncytial layer (YSL), a region of the yolk consisting
of nuclei that have descended from the blastoderm (41).
The YSL is divided into two segments: the internal YSL
(iYSL), which is completely covered by the blastoderm,
and the external YSL (eYSL), which protrudes beyond the
blastoderm margin. Only the nuclei of the eYSL are tran-
scriptionally active, being the source of the Nodal signal
that diffuses through a small area of the blastoderm at the re-
gion of the embryonic shield. All germ layers express similar
levels of E-cadherin, but Nodal induces the upregulation in
expression of N-cadherin (42). These Nodal-induced cells
with higher expression of N-cadherin have higher cell adhe-
sion strengths compared to ectoderm cells (18), and they
differentiate into mesendoderm. Those not exposed to the
Nodal gradient become ectoderm (43). Furthermore, the
Nodal-induced cells with higher N-cadherin levels that
differentiate into mesendoderm involute over the blastoderm
margin toward the yolk (41,44). However, the mechanism
driving this involution and migration due to the regulation
of adhesion molecules by Nodal is not completely under-
stood. A cellular Potts model based on biophysical forces
could demonstrate zebrafish germ layer involution (18) but
without considering the role of the Nodal gradient—new
mesendoderm cells with different biophysical properties
were created spontaneously at a point in space. Models
have been proposed to describe the diffusion of the Nodal
gradient (45) but omitting its role in cellular involution.
Indeed, the lack of models that can incorporate both biophys-
ical forces such as adhesion and its regulation by morphogen
signals prevents us from understanding the interplay between
Nodal gradient formation, N-cadherin regulation, and
cellular involution during zebrafish gastrulation.

We extend the nondimensional model (Eq. 11) to explain
the induction of mesendoderm differentiation, involution,
and migration by the diffusion of Nodal and its regulation
of N-cadherin (Fig. 4). The 2D model contains a slice of
the whole embryo during gastrulation at the germ ring stage,
including the yolk, iYSL, eYSL, blastoderm, and envelop-
ing layer (EVL), together with four CAM types: E-cadherin,
N-cadherin, and those present in the EVL and yolk (labeled
EVL and Yolk in Fig. 4, for simplicity). The equations for
CAMs are extended with a regulatory term such that
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c = (cry.enyCn),

W = —V+(¢;V)+R,(c,m), (14)
where c is the vector of n CAM type concentrations c; and
R, (c,m) is the regulation of the CAM type c;. In addition,
the equations for the Nodal morphogen and other regulatory
factors are included in a vector m of concentrations of k
morphogens and other factors such that

m = (my,....,m),

om;(x,t
% = — Ve (mV)+V « (DpuVm;) + Ry (c,m),

as)

where D,,, is the diffusion constant per unit of cell density of
the morphogen m; and R,,(c,m) is the regulation of the
morphogen m; expression. Morphogen diffusion depends
on cell density because experimental evidence demonstrates
that Nodal diffuses through the extracellular space between
cells in a tissue (46).

The CAM regulatory terms in R (¢, m) are all zero for all
CAM types c;, except for N-cadherin, which is regulated by
the morphogen Nodal. The expression of N-cadherin in the
blastoderm depends on the levels of the morphogen Nodal
with a Hill type function such that

h
kmax mnnd
7 h

khalf +m

nod

RNL'ad(ca m) = Mplast (16)
where m,,,; is the concentration of Nodal, m,,,, is a molec-
ular marker only present in the blastoderm (as a constant 1),
kinax 1s the maximal rate of N-cadherin expression, kjqy is
the concentration of Nodal that yields half the maximal
rate, and 4 is the Hill coefficient.

The model includes the regulatory factors expressed in the
1YSL and eYSL regions of the yolk as two lumped variables
in m with zero diffusion constant and regulation. Nodal dif-
fuses and is expressed in the eYSL; hence, its diffusion con-
stant is not zero, and its reaction term depends on the eYSL
factors in addition to natural degradation, such that

Rnod(c; m) = kemeYSL - Ar”nach (17)

where k, is an expression constant, m,yg; is the concentra-
tion of eYSL factors, and A is the decay constant for Nodal.

Substituting Egs. 16 and 17 in Egs. 14 and 15, the zebra-
fish gastrulation model is defined with

ou

E— —V'(MV),

c = (Cyolk; Cevly CEcad CNL'tId)?



Modeling of Regulated Cell Adhesion

a ) b FIGURE 4  Simulation of involution and migra-
Yolk EvL  E-cadherin . . . . tion dynamics during zebrafish gastrulation due to

. . 50 the dynamic regulation of CAM expression. (a)

. 40 25 T\};e; ]iegul.atoryl netw((j)r'k ir}l1 tliss']i/stem. iYSL Zn;:l

e regions located in the express nondif-

O > . . 30 25 15 fusible factors labeled with the same name (cyan

Nodal N-cadherin

and magenta, respectively). eYSL factors induce

bryo is initialized homogenously but dynamically
changes because of differences in cell adhesion.
(d) Mesendodermal progenitors involute from
pressed because of eYSL factors in the yolk
diffuses to the blastoderm, inducing higher levels
of N-cadherin expression in this area, which re-
sults in the cells moving toward the animal pole
beyond the area of Nodal diffusion. (f) A nondif-
’ ’ ’ ‘ ‘ fusible tracer (green) is advected by the mesendo-
dermal progenitor cells, showing their involution.
The initial state values are zero except at the loca-
b Mmeyseo = 0.8, Mnodal,0 = 0, and Myyeero = 1.
Nondimensional parameter values were k., =
0.1, ke = 0.1, h = 2, Dyypq = 1, k, = 10, and
t=30 t=50

@ o 30 40 50 . M 4
the expression of the diffusible protein Nodal (yel-
the germ ring toward the animal pole over the
margin of the yolk because of the dynamic upregu-
tions shown (c—f, t = 0), which are homogeneous
with uy = 0.8, ¢yor0 = 0.8, Covio = 0.8, Crcaao =
t=100 t=200 t=300 A =15.Domain is of size 25 x 25 units, discretized
into a 250 x 250 grid; arbitrary units. To see this

low), which induces a higher expression of adhe-
sion protein N-cadherin (green). The cells in the
EVL produce a specific CAM type (blue). All
germ layers express the same level of E-cadherin
adhesion protein (red). (b) Adhesion strengths be-
tween CAM types. (c) The cell density in the em-
lation of N-cadherin expression. (¢) Nodal ex-
064, CNcad0 = 016, and miysLo = 0.8 and
figure in color, go online.

ACyoik - _p. (c, /kV) The parameters of the model were estimated based on
at ’ ’ experimental data and physical constraints. The adhesion
parameters between N-cadherin and E-cadherin were
0Cent — P (cV) derived from atomic force microscopy data from zebrafish
ot e ectoderm, mesoderm, and endoderm cells (18). We assumed
OCrent that mesendoderm cells express both N-cadherin and E-cad-
a;a = —V-(CreadV), herin, whereas ectoderm cells express only E-cadherin
(18,42). Homotypic adhesions for cells in the EVL were
i set to an arbitrary high value because this region is expected
ICNead 7 (CreadV Kinax 1,4 to remain clustered together. Similarly, the homotypic adhe-
- = CNcad )+ Mplast h n . . .
ot Kty + Mg sion of the yolk was set to the same high value to simulate a
single cohesive yolk cell. Heterotypic adhesion between
yolk and EVL was set to zero for simplicity. Following
m = (Miysr., MeysL, Myod),
am,»

a—:SL = —V -« (mysV),
an/lL'YSL _ V V (18)

o * (meys V),

amnod
T = -V (mrmdv) +Ve (Dlmduvmnod) + kaL'YSL - A”nnod~
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the same assumptions as (18), heterotypic adhesions be-
tween N-cadherin and E-cadherin and the inner yolk and
outer EVL were set such that N-cadherin preferentially
adhered to the yolk over the EVL, whereas E-cadherin pref-
erentially adhered to the EVL over the yolk. The specific
adhesion constants used between all CAM types are shown
in Fig. 4 b. Constants D, k., and A govern the Nodal
gradient and were estimated for the resulting Nodal gradient
to span between the eYSL and the EVL. The Hill coefficient
h was set to 2 for simplicity; k,,,4, and kj,,;r were estimated to
result in moderate N-cadherin expression levels.

The simulation initial state is based on experimental im-
ages of zebrafish gastrulation (44,47). The embryo is
defined with a homogeneous cell density circle (Fig. 4 c,
t = 0). Within the embryo, the initial EVL and Yolk CAM
densities are set at the locations of the EVL and yolk,
respectively, while the E-cadherin and N-cadherin are set
in the blastoderm area, with E-cadherin being higher than
N-cadherin (Fig. 4 d, t = 0), as it has been shown experi-
mentally (18,42). The factors iYSL and eYSL are initialized
homogeneously in their respective regions (Fig. 4 d, t = 0)
while Nodal is initially zero along all the domain (Fig. 4 e,
t = 0). A zero-flux boundary was imposed at the interface
between the blastoderm with the EVL and yolk regions to
simulate the sealing between EVL cells via apical junctional
complexes (48) and the dense cortical yolk cell cytoskeleton
(49), respectively. For simplicity, the simulation does not
include the EVL cell migration over the yolk.

Fig. 4, c—f show the simulation of zebrafish gastrulation,
during which the mesendoderm progenitors involute and

migrate over the margin of the yolk because of the dynamic
regulation of CAM expression by the diffusing morphogen
Nodal. The eYSL factors activate the expression of Nodal
in the eYSL region of the yolk, which then diffuses through
the germ ring region of the blastoderm, causing the upregu-
lation of N-cadherin in the cells at this location (Fig. 4 e).
The increased concentration of N-cadherin causes an in-
crease of adhesive forces, which results in the involution
and migration of these cells toward the animal pole.
Crucially, even after the cells leave the region where Nodal
diffuses and stop expressing additional N-cadherin, they
continue migrating toward the animal pole because the
movement is driven by the acquired higher adhesion
strength (as a simplification, the model omits further regula-
tion and degradation of N-cadherin). As these cells migrate,
additional cells closer to the EVL fill the vacated space and
are hence exposed to Nodal signals, resulting in further
involution dynamics. A nondiffusible tracer in the simula-
tion (Fig. 4 f) shows the involution movement of the cells
and their movement along the margin of the yolk. In this
way, the model shows how the dynamic regulation of
CAM expression can cause specific patterns and cellular be-
haviors during gastrulation that are essential for the correct
development of the embryo.

To determine the sensitivity of the model parameters, we
performed a parameter scan over the five parameters gov-
erning Nodal expression and its downstream response.
Fig. 5 shows the resulting spatial concentration levels of
N-cadherin and Nodal when increasing or decreasing each
parameter individually. Inhibition of Nodal signaling

-60% -40% -20% baseline +20% +40% +60% +80%
. 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18
kmax J n n i
0.08 0.10 0.12 0.14 0.16

khalf

Dnad
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\\\\\\

FIGURE 5 Resulting expression patterns of
N-cadherin as modulated by the parameters con-
trolling Nodal expression and its regulatory effects
on N-cadherin. Each simulation corresponds to the
18 percentage perturbation indicated in the column to
the parameter in the row and resulting in the value
above each plot. First two rows vary the regulatory
effect of Nodal (magenta) in the expression of
N-cadherin (yellow). Last three rows vary the con-
centration gradient formed by Nodal. All simula-
tions are shown at ¢ = 300, arbitrary units. White
dotted line in center simulation shows the location
of the profile plots in Fig. 6. To see this figure in
color, go online.




reduces N-cadherin expression along both the emerging
anterior-posterior (AP) and dorso-ventral (DV) axes. Slight
reductions in the extent of the Nodal gradient cause reduc-
tion of N-cadherin expression along the DV axis, and larger
reductions in Nodal expression cause reduction along the
AP axis, preventing the region of high N-cadherin concen-
tration from reaching the animal pole. These behaviors are
consistent with changes in expression of zebrafish mesendo-
derm markers due to experimental inhibition of Nodal
signaling in vivo (50). In addition, removing Nodal
signaling and instead including a cell population with high
N-cadherin levels results in a thin layer near the region of
the yolk and no involution behavior (Fig. S4).

The model shows how Nodal can upregulate N-cadherin
to cause these cells to migrate to the animal pole, resulting
in cells with high N-cadherin expression levels even beyond
the expression gradient of Nodal. The extent of this behavior
is modulated by both the parameters controlling the strength
of Nodal upregulating N-cadherin and those controlling the
expression gradient of Nodal, as shown in the spatial pheno-
types as profile plots in Fig. 6. The concentration levels of
Nodal and N-cadherin can increase or decrease by varying
the different parameters, yet all simulations show how the
expression pattern of N-cadherin goes beyond that of Nodal
because of the migration of the cells to the animal pole after
acquiring higher adhesion strengths to the yolk, demon-
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strating the robustness of the system along large parameter
ranges. In addition, N-cadherin needs to have a higher adhe-
sion strength to the yolk than E-cadherin because simula-
tions with equal adhesion strengths between all CAMs
(Fig. S5) results in no involution, a behavior that can be
rescued by just increasing the adhesion strength between
N-cadherin and the yolk (Fig. S6) but not by increasing
the adhesion strength between E-cadherin and the yolk
(Fig. S7).

We tested whether the dynamic regulation of N-cadherin
by Nodal was necessary for the zebrafish involution
behavior with simulations adapting a continuous modeling
approach using discrete cell types with different adhesion
strengths (26,27). We implemented an equivalent 2D zebra-
fish model based on different cell types with inherent adhe-
sion strengths between them (see Supporting Materials and
Methods). The diffusive gradient of Nodal now directly in-
duces the differentiation of ectoderm cells into mesendo-
derm cells, which have a higher adhesion strength to the
yolk. The results show that with the experimental adhesion
strengths the differentiated mesendoderm cells did not
adhere to the yolk but diffused through the blastoderm
(Fig. S8), whereas the tracer migrated upwards toward the
animal pole rather than involuting as expected (Fig. S9),
even with the correct patterns of Nodal gradient
(Fig. S10). Increasing the adhesion strength between the
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2 2 2 2
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FIGURE 6 Profile plots of the concentration levels of Nodal and N-cadherin resulting from different parameters. N-cadherin (yellow) expression pattern
extends beyond the Nodal (magenta) concentration gradient due to the cell movements toward the animal pole caused by differential adhesion strengths. Each
profile plot corresponds to the concentration level of Nodal and N-cadherin along a line through the eYSL and blastoderm (animal pole to the right) as shown
in Fig. 5 center plot and with the parameter indicated in the row perturbed by the percentage indicated in the column resulting in the value above each plot. All
simulations are shown at r = 300, arbitrary units. To see this figure in color, go online.
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yolk and the differentiated mesendoderm cells resulted in a
very thin layer of mesendoderm cells over the margin of the
yolk because of the instantaneous change in adhesion
strength in these cells that translates into an instantaneous
very strong adhesion force toward the yolk, as highlighted
by the radial movements of the tracer directly toward the
yolk without involuting near the eYSL (Fig. S9). This is
in contrast to the proposed model of dynamic adhesion regu-
lation, in which the gradual change in cell adhesion
strengths results in the expected band of involuted cells
and involution dynamics of the tracer (Fig. 4).

DISCUSSION

Here, we presented a novel, to our knowledge, continuous
mathematical model of cell-cell adhesion due to the explicit
expression and regulation of cell adhesion proteins (CAMs)
for the explanation of sorting, intercalation, and convolution
cellular behaviors. Cells express different CAM types,
which have specific adhesive properties when binding to
CAMs of the same or different type. The adhesive forces be-
tween CAMs produce cell movements dependent on the cell
density and CAM concentration in neighbor cells within a
sensing radius. Moving cells carry their expressed CAMs
and possibly other factors with them. CAM expression can
be regulated by intra- and extracellular factors, including
diffusible morphogens such as Nodal. Because regulation
alters the expression level of specific CAM types, the adhe-
sive properties of cells are defined dynamically. In this way,
the regulatory dynamics of CAM expression can dictate the
resulting tissue patterns and shapes.

The capacity of the model to explain cellular in vitro and
in vivo behaviors were demonstrated with three sets of nu-
merical experiments showing sorting, intercalation, and
convolution spatial dynamics. First, we showed how this
approach could recapitulate the classical sorting behaviors
in a model of spatially randomized cells expressing one of
two different CAM types. The simulations showed how
the emergent sorting dynamics displayed by the cell popula-
tions—engulfment, partial engulfment, mixing, or complete
sorting—depended on the homotypic and heterotypic adhe-
sion strengths between the CAM types. Next, we showed
how intercalation dynamics in a growing cell population de-
pended on the type of CAMs expressed and their adhesion
strengths. When the two proliferating populations expressed
the same CAM type, they formed a completely separated
boundary between them. However, when the two prolifer-
ating populations expressed different CAM types, they
intercalated at the boundary. The intercalation interface
shows a characteristic amplitude and wavelength, which
the model predicts depending on specific physical cellular
parameters. These predictions could be tested in vitro by
recording the amplitude and wavelength of the intercalation
interface formed between different cell types with known
physical properties. Most notably, the cell-sensing radius
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is predicted to correlate with the intercalation wavelength,
whereas the cell growth rate is predicted to inversely corre-
late with the intercalation amplitude.

Importantly, the dynamic regulation of CAMs can be
explicitly included in the proposed model, as it is essential
in many in vivo behaviors. We demonstrated this capacity
in the last experiment, which showed cellular involution be-
haviors controlled by a diffusible morphogen during zebra-
fish gastrulation, a behavior that could not be recapitulated
with a model based on discrete cell types. The model
included the expression and diffusion of the morphogen
Nodal, which formed a concentration gradient extending
toward the blastoderm. Nodal induced the upregulation of
N-cadherin, implicitly changing the adhesive properties of
these cells. These new adhesive properties resulted in
cellular involution and migration over the margin of the
yolk, a movement that continued beyond the Nodal gradient
because of the properties of the new CAM expression levels,
which need to have differential adhesion strengths. The pre-
cise concentration profiles formed by Nodal and N-cadherin
because of their dynamic regulation modulating adhesion
forces were investigated by varying the parameters of the
pathway through large ranges. Crucially, the system showed
that the dynamic regulation by Nodal was necessary to
induce the involution behavior and how the expression
pattern of N-cadherin robustly extended beyond the gradient
of Nodal over these parameter ranges, a prediction by the
model to be tested in vivo. A reporter system has been devel-
oped to visualize Nodal gradients in zebrafish by inserting a
GFP tag into the zebrafish Nodal ligands (51) and used to
measure the diffusion of ectopic Nodal (45). Future work
could test the model predictions and fit the key parameters
by visualizing the endogenous Nodal gradient together
with N-cadherin expression during zebrafish gastrulation
to provide deeper insights into the mechanisms controlling
zebrafish embryogenesis.

Previous continuous modeling approaches have repli-
cated cellular behaviors due to cell-cell adhesion by
modeling cell types with specific adhesion properties.
Continuous models of cell-cell adhesion have demonstrated
cell sorting (26) and intercalation (27) dynamics by explic-
itly modeling two distinct cellular populations with different
cell-cell adhesion constants. Similarly, proposed continuous
models of tumor dynamics include static adhesion coeffi-
cients defined between cancer cells and the extracellular
matrix (29). Other continuous approaches have modeled
separated cellular populations representing different cell
types, in which one cell population could transition to
another one as when acquiring a mutation (32), but the ad-
hesive properties between each population are still prede-
fined and static. Although these models are excellent
approaches for simulating large cellular populations with
static adhesive properties, they are limited in their capacity
to model dynamic adhesive behaviors. In contrast, the
continuous model presented here can explain the behaviors



of both cell populations with static adhesive properties (sim-
ulations 1 and 2) and those with dynamically regulated ad-
hesive properties (simulation 3) by directly including the
expression and concentrations of CAMs. The dynamic regu-
lation of CAMs is a key element in many biological pro-
cesses, as we demonstrated here, and, to our knowledge,
has previously only been captured with hybrid models
(25). However, numerically solving hybrid models are
computationally infeasible for large cell numbers, and their
mathematical analysis is limited because of their discrete
nature. Computing a cell-sorting simulation takes 4 h using
one core with the presented continuous framework but 24 h
using 16 cores with a discrete cellular Potts model imple-
mentation (24,52).

The presented model only accounts for cell motilities due
to dispersion and directed adhesion forces, but it could be
extended to incorporate other active motility mechanisms.
Extended Viscek models taking into account intrinsic cell
motilities and alignment interactions have been shown to
be sufficient to exhibit cell-sorting behaviors (53). This
phenomenon could be incorporated into the model with an
additional nonlocal term depending on the velocity of neigh-
boring cells. In addition, other intrinsic cell motility forces
could be incorporated into the velocity term of the cell den-
sity, such as chemotactic behaviors, which are easily incor-
porated in continuous models (54).

The proposed approach uses adhesion forces that arise
dynamically from CAM expression instead of from explicit
cell types. Single-cell force spectroscopy can directly
measure the adhesion forces between cells expressing
different levels of CAMs (55), which can be used to exper-
imentally set the parameters of the model. For simplicity,
the model assume that the binding forces are proportional
to the product of the relative concentration of CAMs; how-
ever, more complex formulations of adhesion ligands and
receptors are also possible (56). The extracellular matrix
is an additional important element in cell-cell adhesion dy-
namics, and it could be incorporated into the continuous
model of adhesion (29). Together with adhesion forces,
cell cortex elasticity and tension also can play a role in
certain behaviors and be essential during tissue shape dy-
namics (18,57). Future work will extend the presented
model to incorporate the role of these components in
cellular behaviors.

The regulation of CAM expression and how these mole-
cules affect large-scale cellular behaviors is extraordinarily
important in both healthy and diseased states (58-60). The
proposed model integrates genetic regulation of CAMs,
the biophysical forces of adhesion that drive cell motion,
and the subsequent cellular dynamics. This integrated
view of dynamic adhesion will be essential for understand-
ing tissue behaviors in developmental and cancer biology as
well as in bioengineering (61-63). The proposed continuum
approach allows for the simulation of large cell populations
(up to the whole-organism scale), as well as the continuous
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phenomena involved in genetic regulation (e.g., morphogen
gradients and CAM expression). Crucially, machine
learning approaches for the reverse-engineering of the regu-
lation of patterning (64—66) and cancer formation (67,68)
directly from formalized experimental data (69—72) can be
integrated with the proposed model, with the goal to
discover the specific regulatory mechanisms of CAMs that
give rise to key spatial phenotypes. In summary, the pre-
sented continuous modeling approach will pave the way
for the understanding of the regulatory dynamics of cell
adhesion essential in developmental, regenerative, and can-
cer biology.

SUPPORTING MATERIAL

Supporting Material can be found online at https://doi.org/10.1016/j.bpj.
2019.10.032.

APPENDIX: NUMERICAL METHODS

Numerical simulations were performed in a 2D domain using the explicit
upwind finite volume method with flux limiting in a uniform square lattice
and a zero-flux boundary condition. The fluxes between control volumes
due to the adhesion velocity (Eq. 6) are computed at four points A-D,
one at each face midpoint (Fig. 1 b). At each of these midpoints and for
each pair of CAMs, the nonlocal integral term for adhesion (Eq. 7) is
computed within a circle with radius R and centered at the face point
(Fig. 1 ¢). The integral circle is discretized with parameters N,, Ny € N,
defining a set of points uniformly distributed along N, radial values and
4(iNy /4N,) + 2 angular values for each radial value i, € N, 1 < i, <
N,, asin (27). Because the cell density and CAM concentrations are numer-
ically defined at the control volume centers, bilinear interpolation is used
from the four surrounding control volume centers to calculate their values
at the regular integral points in the circle (red points and color lines in Fig. 1
¢) and the average from the two surrounding control volume centers to
calculate their values at the face point (black point in Fig. 1 ¢). The bilinear
interpolations of the integral circle are precomputed in a weight matrix rep-
resenting a kernel, which then are used to efficiently calculate the adhesion
velocities in each face midpoint with a kernel convolution operation
(because of symmetry, the kernel for points C and D is the transpose of
the kernel for points A and B). Cell densities and CAM concentrations
outside of the domain are considered zero in the kernel convolution opera-
tion, as is consistent with the zero-flux boundary condition (73). The system
was numerically solved with a generalized Runge-Kutta fourth-order solver
using ROWMAP (33). Simulation computations used MATLAB R2017b
(The MathWorks).
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