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ABSTRACT Cell-cell adhesion is essential for tissue growth and multicellular pattern formation and crucial for the cellular dy-

namics during embryogenesis and cancer progression. Understanding the dynamical gene regulation of cell adhesion molecules

(CAMs) responsible for the emerging spatial tissue behaviors is a current challenge because of the complexity of these nonlinear

interactions and feedback loops at different levels of abstraction—from genetic regulation to whole-organism shape formation.

To extend our understanding of cell and tissue behaviors due to the regulation of adhesion molecules, here we present a novel,

to our knowledge, model for the spatial dynamics of cellular patterning, growth, and shape formation due to the differential

expression of CAMs and their regulation. Capturing the dynamic interplay between genetic regulation, CAM expression, and

differential cell adhesion, the proposed continuous model can explain the complex and emergent spatial behaviors of cell pop-

ulations that change their adhesion properties dynamically because of inter- and intracellular genetic regulation. This approach

can demonstrate the mechanisms responsible for classical cell-sorting behaviors, cell intercalation in proliferating populations,

and the involution of germ layer cells induced by a diffusing morphogen during gastrulation. The model makes predictions on the

physical parameters controlling the amplitude and wavelength of a cellular intercalation interface, as well as the crucial role of N-

cadherin regulation for the involution and migration of cells beyond the gradient of the morphogen Nodal during zebrafish gastru-

lation. Integrating the emergent spatial tissue behaviors with the regulation of genes responsible for essential cellular properties

such as adhesion will pave the way toward understanding the genetic regulation of large-scale complex patterns and shapes

formation in developmental, regenerative, and cancer biology.

INTRODUCTION

The adhesive properties of cells can dictate their spatial be-

haviors and the formation of correct tissue patterns and

shapes during morphogenesis and homeostasis (1). Seminal

studies demonstrated how stirred disassociated embryonic

tissues could sort themselves and regain their specific con-

figurations because of the distinct adhesive properties of

their different cell types (2,3). These cell-cell adhesive

forces are dependent on the expression of cell adhesion mol-

ecules (CAMs) through the cell surface, such as families of

proteins including the cadherins, integrins, and nectins (4,5).

CAMs expressed at the cell surface can form bonds with the

same or different CAM types expressed in neighboring

cells, resulting in different adhesive strengths. These CAM

adhesive forces are transmitted to the cell through its cyto-

skeleton network and can result in specific cell spatial be-

haviors. The sum of intercellular interactions between

different CAMs determines the net force in the cell, which

drives specific cellular movements and emergent tissue
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SIGNIFICANCE The regulation of cell adhesion molecules (CAMs) is essential for the correct cellular and tissue spatial

behaviors during development, and its dysregulation may lead to cancer formation. Here, we show how a novel, to our

knowledge, continuous approach can model the spatial dynamics of cell sorting, intercalation, and involution due to

differential expression of CAMs. The model explains cell-sorting arrangements and intercalation behaviors, predicting the

amplitude and wavelength of the intercalation interface, as well as the involution and migration of germ layer cells during

zebrafish gastrulation beyond the gradient that regulates their differentiation. This approach integrates genetic regulation

of CAMs, the biophysical forces of adhesion, and the subsequent cellular dynamics to explain how these mechanisms can

dictate large-scale tissue behaviors.

2166 Biophysical Journal 117, 2166–2179, December 3, 2019

https://doi.org/10.1016/j.bpj.2019.10.032

� 2019 Biophysical Society.



patterns. The importance of cell adhesion is clear when its

cellular components are perturbed, resulting in tissues that

can degenerate into mispatterned phenotypes during devel-

opment (6) and disease states such as cancer progression

and metastasis (7,8). However, it remains unclear how inter-

cellular interactions between adhesion molecules and the

dynamic genetic regulation of their expression can produce

these cellular and tissue patterns.

The precise regulation of CAM expression modulates the

adhesive properties of cells and hence can control the move-

ment of cells and the formation of global tissue patterns dur-

ing morphogenesis, whereas its dysregulation may lead to

tumor formation and metastasis. Several gene families

have been found to regulate CAM expression. The Snail

family of transcription factors regulate the expression of

cadherins essential for gastrulation in invertebrates, the

epithelial-to-mesenchymal transition in neural crest cells

in amniotes, and the development of organs such as the kid-

ney (9,10). Differential regulation of CAMs such as

cadherins by ephrins and Hox genes is a key factor for

proper cell distribution during limb morphogenesis and

regeneration (11); mutations in these pathways can result

in limbs with abnormal morphological organizations (12).

Dysregulated pathways controlling CAMs expression are

sufficient to induce tumor progression, metastasis forma-

tion, and drug resistance (9,13). Kinases can upregulate

E-selectin—a CAM essential for the localization of metasta-

tic cancer cells in the lungs (14)—and specific kinase inhib-

itors targeting these pathways represent promising drugs for

anticancer therapeutics (15). However, the complex feed-

back loops between CAM regulation, cellular adhesion

dynamics, tissue behaviors, and intercellular signaling

represent an extraordinary challenge that remains to be

deciphered.

To understand the complex dynamics between the regula-

tion of CAMs and the spatial tissue behaviors, mathematical

and computational approaches are needed to model the

physical properties of these processes and explain their

emergent dynamics. Discrete models based on the extended

Potts approach have been proposed to understand cell

adhesion dynamics, and they can recapitulate the classical

cell-sorting dynamics due to adhesion (16–18), specific

developmental dynamics (19–21), and cancer behaviors

(22,23). These models do not include the dynamics of

CAM expression and instead use predefined adhesion con-

stants for different cell types. Extensions to these discrete

approaches have been proposed to model the concentration

of CAMs, using either static concentrations defining cellular

adhesion strengths (24) or dynamic concentrations with

hybrid models (25). These approaches are based on the

explicit modeling of cells and hence computationally expen-

sive for large numbers, which limits their applicability. In

addition, discrete models are often not amenable to analyt-

ical study with the theory of dynamical systems, including

the analysis of their fixed points, bifurcations, and phase

portraits. To overcome the limitations of discrete models,

continuous models of cell adhesion have been proposed

that can equally recapitulate the classical cell-sorting behav-

iors but are computationally more efficient for the simula-

tion of large populations and amenable for mathematical

analysis (26,27). Continuous models have been successfully

used to explain developmental processes (28) and cancer dy-

namics (29–32). However, the adhesion properties in these

models are static and defined with specific constants in pre-

defined cell types. As a consequence, the regulation and dy-

namics of adhesion molecules have not been possible to

model with continuous approaches, limiting our ability to

understand the regulatory dynamics of CAM expression

and their influence in large-scale tissue behaviors such as

whole embryos.

Here, we present a novel, to our knowledge, continuous

model of cell adhesion due to the expression of CAMs

and their regulation. This approach does not rely on prede-

fined adhesion constants between cell types but models as

continuous the levels of CAM concentration, which in

turn dynamically determine the adhesive properties between

cells. Modeling the expression of CAMs naturally allows

the inclusion of their regulatory dynamics, which is essen-

tial in many biological processes. We demonstrate the capa-

bilities of the proposed model with three experiments. First,

we show how the model can correctly recapitulate the clas-

sical Steinberg cell-sorting dynamics due to the differential

expression of CAMs. Next, we present a model of cellular

intercalation dynamics resulting from the differential

expression of two different nectins in a proliferating cell

population. Finally, we model whole-embryo develop-

mental dynamics during zebrafish gastrulation, explaining

how the diffusing morphogen Nodal regulates the expres-

sion of a cadherin, dynamically modulating the adhesive

properties of cells and resulting in a characteristic involution

of the mesendodermal germ layer. Furthermore, the model

predicts a robust cell migration toward the animal pole

beyond the Nodal gradient. Integrating the regulatory dy-

namics of CAMs and their cell adhesion properties in the

proposed continuous model permits the simulation and

spatial predictions of the behaviors of large population of

cells due to the interdependent dynamics of genetic regula-

tion and adhesion proteins.

METHODS

Model of dynamic cell adhesion

Model derivation

The dynamic adhesive properties of cells originate from the regulation and

expression of CAMs. CAMs expressed on neighbor cells interact with each

other, generating adhesive forces. CAMs bind to both CAMs of the same

type as well as CAMs of other types. The adhesive force generated from in-

teractions between CAMs hence depends on both the adhesive strength

between CAMs and their specific levels of expression in the interacting

cells. The dynamic regulation of CAM expression, possibly by intra- and
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intercellular regulatory factors, results in dynamic adhesive forces. These

dynamic forces can dictate cellular and tissue movement, resulting in target

patterns and shapes. The proposed model follows a continuous approach to

define a population of cells with adhesion forces as in (26,27), but instead of

explicitly modeling cell types, it models types of CAMs (and possibly other

factors) expressed in the cells (Fig. 1). The concentration levels of CAMs

dynamically give rise to the specific adhesive forces between cells.

We derive the model by considering the forces acting on a population of

cells with no proliferation or death to be conservative, which implies by

mass conservation

vuðx; tÞ

vt
¼ � V , J; (1)

where u(x, t) is the cell density at position x and time t, and J is the flux of

the cells. We can rewrite the cell density equation in terms of the flow ve-

locity of the cells, resulting in

vuðx; tÞ

vt
¼ � V , ðuVÞ; (2)

where V is the velocity field of the cells. Cells contain n different types of

CAMs that are advected by the movement of the cells, resulting in

c ¼ ðc1;.; cnÞ;

vciðx; tÞ

vt
¼ � V , ðciVÞ; (3)

where c is the vector of the n CAM types concentrations ci(x, t) at position x

and time t.

Cells move in a directed manner from regions of high density to those of

lower density (27), causing dispersion velocity Vd, and toward each other

because of adhesive forces between their expressed CAMs, causing adhe-

sion velocity Va, so the total velocity of the cells is

V ¼ Vd þ Va: (4)

We assume that the cell dispersion velocity is proportional to the popu-

lation density, which implies

Vd ¼ � kpVu; (5)

where kp is the dispersion constant. Diffusion is assumed to be negligible

relative to the strength of dispersion and adhesion (27).

The adhesion velocity vector depends on the adhesive bonds between

CAMs expressed in the cells and their neighbors within a sensing radius R

(Fig. 1 a). This radiusmodels the size of a cell, including their ability to reach

and contact other cells through the cell body and through their protrusions

such as filopodia. FollowingNewton’s law and assuming that inertia is negli-

gible for cell movements, the adhesion velocity vector is then inversely pro-

portional to the cell radius (because of drag) and proportional to the pairwise

sum of all adhesion forces between the n CAM types such that

Va ¼
X

n

i

X

n

j

f

R
K
�

u; ci; cj
�

ðxÞ; (6)

where f is a constant of proportionality related to viscosity, n is the number

of CAM types, and K(u, ci, cj)(x) is the nonlocal cell adhesion force vector

at location x due to the bonding interactions between the two CAM types ci
and cj. The adhesive strength between CAM types are defined by a symmet-

ric square matrix A, where each element aij represents the adhesion strength

between CAM types ci and cj, and hence the diagonal defines the homotypic

adhesion strengths for each CAM type. The nonlocal cell adhesion force de-

pends on the adhesive bindings between the CAMs expressed in the local

cell at point x and those expressed by its neighbors within the cell-sensing

radius R. In d spatial dimensions, it takes the form

K u; ci; cj
� �

xð Þ ¼

Z

R

0

Z

Sd�1

aij f u; ci; cj
� �

x; xþ rd�1
h

� �� �

� u rð Þ rd�1
h dh dr;

(7)

where Sd � 1 is the d-dimensional unit spherical surface; r is the radial dis-

tance; h is the direction vector; f(u, ci, cj)(x, x þ rd � 1
h) describes the na-

ture of adhesive forces between CAM types ci and cj expressed from cell

locations x and x þ r
d � 1

h, respectively, and their dependence on the

cell density; and u(r) describes how the cell adhesive force depends on

the radial distance r. For simplicity, we assume u(r) ¼ 1 in this work.

The adhesive force between two CAM types expressed by two cells de-

pends on their binding activity due to the CAMs’ relative concentrations

within each cell. We assume that the binding activity follows the law of

mass action, such as the adhesive force exerted on cells at location x ex-

pressing CAM type ci by cells at location y expressing CAM type cj depends

on the product of their relative concentrations because the force is calcu-

lated per unit of cell density within their respective cells, given by

f
�

u; ci; cj
�

ðx; yÞ ¼
ciðxÞ

uðxÞ

cjðyÞ

uðyÞ
hðuðyÞÞ; (8)

where h(u(y)) represents how the adhesive force depends on the local cell

density. As in (26,27), we assume a population pressure that causes cells

to be attracted only to regions below a threshold density. For this, a logistic

function with crowding capacity kc limits the cell movement because of

adhesion toward dense regions:

hðuÞ ¼

8

>

<

>

:

u

�

1�
u

kc

�

if u< kc;

0 otherwise:

(9)

a b c

FIGURE 1 Proposed continuous model for the regulatory dynamics of

cell-cell adhesion. (a) Cells regulate and express different types of adhesion

proteins (CAMs, red and green), causing cell-cell adhesive forces depend-

ing on the CAMs concentration in the cells within a radius R. (b) A 2D

scheme of tissue discretization and cellular fluxes due to dynamic adhesion.

Cell density and CAM and other factor concentrations are defined in a grid

of discretized control volumes, and the flux is defined across the boundaries

between control volumes (points A–D). (c) Kernel for the numerical discre-

tization in two dimensions of the adhesion integral at boundary point A in

(a). The adhesion values are computed at points at regular angular and

radial directions (red circles) from the boundary point (black circle at the

center), with a bilinear interpolation of CAM concentrations from the cen-

ter of the four surrounding control volumes (cyan, magenta, yellow, and

green lines). The same kernel is used for boundary point B, and its transpose

is used for boundary points C and D. The example shows a discretization

with 42 angular by 10 radial directions. To see this figure in color, go online.
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A nondimensional model is defined by rescaling with

x� ¼
x

R
; t� ¼

kpkc

R2
t; u� ¼

u

kc
; c�i ¼

ci

kc
;A� ¼

Rf

kp
A (10)

and dropping the stars, we obtain the model

vuðx; tÞ

vt
¼ � V , ðuVÞ;

vciðx; tÞ

vt
¼ � V , ðciVÞ; i˛½1; n�;

V ¼ � Vuþ
X

n

i

X

n

j

K
�

u; ci; cj
�

ðxÞ;

K u; ci; cj
� �

xð Þ ¼

Z

1

0

Z

Sd�1

aij

2

4

ci xð Þ

u xð Þ

cj xþ rd�1hð Þ

u xþ rd�1hð Þ

� h u xþ rd�1h
� �� �

3

5u rð Þ rd�1
h dh dr;

hðuÞ ¼

�

uð1� uÞ if u< 1;
0 otherwise:

(11)

Numerical methods

Simulations were computed in a 2D domain using the explicit upwind finite

volume method with flux limiting in a uniform square lattice and a zero-flux

boundary condition. The nonlocal integral term for adhesion is discretized

into angular and radial components using bilinear interpolation. The system

was numerically solved using ROWMAP (33) and implemented in

MATLAB R2017b (The MathWorks, Natick, MA). Methods are detailed

in the Appendix.

RESULTS

We demonstrate the ability of the proposed model to explain

tissue shape behaviors due to the differential expression of

CAMs with three simulations of in vitro and in vivo exper-

iments. Classical cell-sorting behaviors can be recapitulated

in the model in a population of nongrowing cells expressing

two different CAM types, resulting in engulfment, mixing,

or sorted cellular aggregates depending on the adhesive

strengths between the CAM types. Extending the model

with cell growth, a simulation of in vitro growing dynamics

shows how a proliferating cell population can result in either

separated or intercalated patterns because of the cells ex-

pressing either the same or different nectins, respectively.

Finally, the dynamics of zebrafish gastrulation are explained

with an extended model including the expression of a

morphogen forming a gradient, which in turn upregulates

the expression of the CAM N-cadherin, inducing the involu-

tion of these cells because of their acquired differential cell

adhesion properties, even beyond the expression gradient of

the morphogen. Importantly, the behaviors shown in the

simulations are not due to inherent cell adhesion strengths

between different cell types but from dynamic adhesion

strengths that arise from the concentration of various

CAM types, in which each CAM type has specific molecular

adhesion values and their concentrations, and hence the re-

sulting cell adhesion forces, can be subject to genetic

regulation.

Cell-sorting behaviors

CAM types can bind to each other with different adhesive

strengths, so cell-cell adhesion forces depend on the levels

of expression of the different CAM types. These differences

in cell-cell adhesion can cause an emerging cellular self-or-

ganization into different spatial patterns, a behavior shown

in vitro in a variety of animal cells, including amphibian

(2), chick (34,35), zebrafish (18), and hydra (36). In these

experiments, cells express different CAM types with

different adhesive properties. Some combinations of CAM

types can confer strong adhesive forces, causing cells to

bind tightly to each other in the core of the final sorted

aggregate. Other combinations of CAM types generate

lower adhesive forces, resulting in cells that bind loosely

to each other and move to the outside of the aggregate.

The proposed continuous nondimensional model (Eq. 11)

can demonstrate cellular sorting behaviors because of the

differential expression of CAMs, which are qualitatively

similar to in vitro experiments using dissociated zebrafish

(18) or transfected CHO cells (37). Fig. 2 shows four

different sorting behaviors resulting from nonproliferating

cells expressing either of two CAM types with different ad-

hesive strengths (strength values as estimated in (27)). All

the simulations start with the same initial random configura-

tion of disassociated tissue, in which each initial aggregate

contains cells expressing one of two different CAM types.

Depending on the relative strength of the homotypic and

heterotypic adhesion strengths between the CAM types,

the spatially randomized tissues form aggregates that self-

organize into patterns of engulfment, partial engulfment,

mixing, or complete sorting. When the CAM homotypic

adhesion strengths are asymmetric, the simulation recapitu-

lates the engulfment behaviors observed in vitro (Fig. 2 a).

This sorting behavior is due to the differential expression of

CAMs, in which cellular aggregates expressing the CAM

type with stronger homotypic adhesion strength (red) are

tightly adhered and hence surrounded by the cellular aggre-

gates expressing the CAM type with weaker homotypic

adhesion strength (green). However, when the homotypic

adhesion strengths of the two CAM types are equal but still

higher than the heterotypic adhesion strength, no cell aggre-

gate is stronger than the other, and hence, there is still sort-

ing between the tissues expressing the different CAM types

Modeling of Regulated Cell Adhesion
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but no engulfment (Fig. 2 b). In contrast, the randomized tis-

sues do not sort themselves when the homotypic and hetero-

typic adhesion strengths are equal (Fig. 2 c), resulting in

aggregates that are mixed. In the complete absence of het-

erotypic adhesion between the two CAM types, the tissues

sort themselves completely, forming separated aggregates

(Fig. 2 d). These simulations show how the cell-sorting be-

haviors depend on the homotypic and heterotypic adhesion

strengths between the CAM types and their levels of expres-

sion in the different tissues. Cells first aggregate into tran-

sient local clusters (t ¼ 0.1), which eventually merge into

larger aggregates (t ¼ 1 to t ¼ 100). This dynamic behavior

recapitulates both in vitro experiments and previous discrete

models (38). Although the specific final steady state depends

on the initial state, qualitatively different steady states

emerge as the result of the specific adhesion strengths be-

tween CAM types (Fig. S1).

Cell intercalation in proliferating cell populations

The spatial tissue behaviors in a population of proliferating

cells can depend on both the expression levels and the adhe-

sive properties of CAMs. This has been shown in in vitro

a

b

c

d

FIGURE 2 Cell-sorting simulations in a popula-

tion of cells expressing either of two CAM types

with different adhesion strengths. (a) Asymmet-

rical homotypic adhesion strengths in the CAM

types result in the engulfment of the cells express-

ing the higher-adhesive-strength CAM type (red)

by the cells expressing the lower-adhesive-

strength CAM type (green). (b) Symmetric homo-

typic adhesion strength higher than the heterotypic

adhesion strength results in partial engulfment. (c)

When the homotypic and heterotypic adhesion

strengths are equal, the cells become mixed. (d)

Without heterotypic adhesion forces, the cell pop-

ulations expressing the two different CAM types

completely sort themselves. Matrix diagrams indi-

cate the homotypic and heterotypic adhesion

strengths between CAM types. All simulations

start with the same initial state of equal red and

green CAM type total concentration. Domain is

of size 10 � 10 units, discretized into a 100 �

100 grid; arbitrary units. To see this figure in color,

go online.
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coculture assays of two proliferating cell populations ex-

pressing similar or different nectin adhesion proteins (6).

When both populations express the same CAM type (nec-

tin-1), the boundary formed between the two populations

at the contact plane is well-defined, and the cells do not

mix. In contrast, when each population express a different

CAM type with different adhesive properties (nectin-1 or

nectin-3), the two populations mix and intercalate at the

boundary. The proposed model can explain these behaviors

because of the differential expression of nectin-1 or nectin-3

in the two proliferating cell populations.

We extend Eq. 2 to include a simple logistic cell growth

term g(u) such that

vuðx; tÞ

vt
¼ � V , ðuVÞ þ gðuÞ;

gðuÞ ¼ kgu

�

1�
u

kk

�

; (12)

where kg is the cell growth rate and kk is the cell carrying ca-

pacity. We assume that the daughter cells continue express-

ing the same CAM types as their parent cells so that the

relative CAM concentration in the daughter and parent cells

are equal. In this way, we extend Eq. 3 to

vciðx; tÞ

vt
¼ � V , ðciVÞ þ

ci

u
gðuÞ: (13)

This extended model can explain the in vitro intercalation

dynamics of growing cell populations resulting from the dif-

ferential expression of CAMs. We use the dimensional pa-

rameters as experimentally measured in (27):

R ¼ 100 mm;

kk ¼ 0:005595 cells
	

mm2;

kg ¼
1

12
h�1:

The parameter kc could not be measured experimentally

and was set to kk. We then fitted the model to the experi-

mental images from (27), setting f ¼ 100 and kp ¼
126,000 mm2/h , mm2/cells.

Fig. 3 shows simulations of growing population dynamics

when the two cell populations express either the same (nec-

tin-1) or different (nectin-1 or nectin-3) CAM types. The ho-

motypic and heterotypic adhesion strengths of nectin-1 and

nectin-3 are derived from protein-protein interaction experi-

mental data measured with surface plasmon resonance (39)

and their values are shown in Fig. 3 a. Both simulations start

with the same initial state for cell density—two random cell

populations on the opposite sides of the domain—and homo-

geneous relative concentration of either nectin-1 or nectin-3

a=ð u ¼ 1Þ. This random initial state for cell density simulates

the noise in biological cells in the deterministic model, which

otherwise would result in an unrealistic equilibrium of adhe-

sion forces at the center of the front because of perfectly sym-

metrical cell densities. During the simulation, the cells

proliferate and spread throughall the domain up to the carrying

capacity density. When both left and right cell populations ex-

press the same CAM type (nectin-1), they do not mix or inter-

calate at the interface because the adhesive forces between the

two populations are balanced equally and hence cancel out

(Fig. 3 b). In contrast, when the two populations express

different CAM types (nectin-1 or nectin-3), the difference in

homotypic adhesive strengths results in themixingand interca-

lation pattern at the interface (Fig. 3 c). The simulation hence

shows how either intercalation or smooth boundaries can arise

at the interface of two growing cell populations depending on

the expression levels and adhesive properties of their CAMs.

The model predicts the specific amplitude and wavelength

of the intercalation interface dependingon the physical param-

eters. Fig. S2 shows the steady states resulting from individu-

ally varying the parameters of the model. Except for the

dispersionconstant kp, all other parameters considerably affect

the pattern of the intercalation interface. To quantify the effect

of each parameter on the intercalation pattern, we measured

the amplitude of the interface and caculated its wavelength

with a Fourier analysis when perturbing each parameter indi-

vidually by a factor (Fig. S3). The results show that the inter-

calation amplitude increases linearly with the sensing radius

a

b c FIGURE 3 Simulation of proliferating cell pop-

ulations expressing identical or different CAM

types explains in vitro intercalation behaviors.

The two cell populations express a different

marker (magenta or blue) and either the same or

different CAM type (nectin-1 in red and nectin-3

in green). (a) Homotypic and heterotypic adhesion

strengths of nectin-1 and nectin-3. (b) Cell popula-

tions proliferating and expressing the same CAM

type, nectin-1, do not mix when they meet at the

interface. (c) Cell populations proliferating and

expressing different CAM types, nectin-1 or

nectin-3, mix and form intercalated patterns when they meet at the interface because of the different homotypic adhesion strengths of the two CAM types

expressed. Domain is of size 1 � 1 mm, discretized into a 50 � 50 grid. To see this figure in color, go online.
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R, the constant related to viscosity f, and cell carrying capac-

ity kk but decreases exponentially with the dispersion constant

kg. The intercalation wavelength increases linearly with the

sensing radius R and, to a lesser extent, with the constant

related to viscosity f and cell carrying capacity kk but de-

creases linearly with the dispersion constant kp.

Dynamic regulation of adhesion during

gastrulation

During gastrulation, Nodal acts as a diffusive morphogen,

forming a concentration gradient that induces mesendoderm

differentiation (40). In zebrafish, Nodal is expressed in the

yolk syncytial layer (YSL), a region of the yolk consisting

of nuclei that have descended from the blastoderm (41).

The YSL is divided into two segments: the internal YSL

(iYSL), which is completely covered by the blastoderm,

and the external YSL (eYSL), which protrudes beyond the

blastoderm margin. Only the nuclei of the eYSL are tran-

scriptionally active, being the source of the Nodal signal

that diffuses through a small area of the blastoderm at the re-

gion of the embryonic shield. All germ layers express similar

levels of E-cadherin, but Nodal induces the upregulation in

expression of N-cadherin (42). These Nodal-induced cells

with higher expression of N-cadherin have higher cell adhe-

sion strengths compared to ectoderm cells (18), and they

differentiate into mesendoderm. Those not exposed to the

Nodal gradient become ectoderm (43). Furthermore, the

Nodal-induced cells with higher N-cadherin levels that

differentiate into mesendoderm involute over the blastoderm

margin toward the yolk (41,44). However, the mechanism

driving this involution and migration due to the regulation

of adhesion molecules by Nodal is not completely under-

stood. A cellular Potts model based on biophysical forces

could demonstrate zebrafish germ layer involution (18) but

without considering the role of the Nodal gradient—new

mesendoderm cells with different biophysical properties

were created spontaneously at a point in space. Models

have been proposed to describe the diffusion of the Nodal

gradient (45) but omitting its role in cellular involution.

Indeed, the lack of models that can incorporate both biophys-

ical forces such as adhesion and its regulation by morphogen

signals prevents us from understanding the interplay between

Nodal gradient formation, N-cadherin regulation, and

cellular involution during zebrafish gastrulation.

We extend the nondimensional model (Eq. 11) to explain

the induction of mesendoderm differentiation, involution,

and migration by the diffusion of Nodal and its regulation

of N-cadherin (Fig. 4). The 2D model contains a slice of

the whole embryo during gastrulation at the germ ring stage,

including the yolk, iYSL, eYSL, blastoderm, and envelop-

ing layer (EVL), together with four CAM types: E-cadherin,

N-cadherin, and those present in the EVL and yolk (labeled

EVL and Yolk in Fig. 4, for simplicity). The equations for

CAMs are extended with a regulatory term such that

c ¼ ðc1;.; cnÞ;

vciðx; tÞ

vt
¼ � V , ðciVÞ þ Rciðc;mÞ; (14)

where c is the vector of n CAM type concentrations ci and

Rciðc;mÞ is the regulation of the CAM type ci. In addition,

the equations for the Nodal morphogen and other regulatory

factors are included in a vector m of concentrations of k

morphogens and other factors such that

m ¼ ðm1;.;mkÞ;

vmiðx; tÞ

vt
¼ � V , ðmiVÞ þ V , ðDmi

uVmiÞ þ Rmi
ðc;mÞ;

(15)

where Dmi
is the diffusion constant per unit of cell density of

the morphogen mi and Rmi
ðc;mÞ is the regulation of the

morphogen mi expression. Morphogen diffusion depends

on cell density because experimental evidence demonstrates

that Nodal diffuses through the extracellular space between

cells in a tissue (46).

The CAM regulatory terms in Rciðc;mÞ are all zero for all
CAM types ci, except for N-cadherin, which is regulated by

the morphogen Nodal. The expression of N-cadherin in the

blastoderm depends on the levels of the morphogen Nodal

with a Hill type function such that

RNcad c;mð Þ ¼ mblast

kmax m
h
nod

khhalf þ mh
nod

; (16)

where mnod is the concentration of Nodal, mblast is a molec-

ular marker only present in the blastoderm (as a constant 1),

kmax is the maximal rate of N-cadherin expression, khalf is

the concentration of Nodal that yields half the maximal

rate, and h is the Hill coefficient.

The model includes the regulatory factors expressed in the

iYSL and eYSL regions of the yolk as two lumped variables

in m with zero diffusion constant and regulation. Nodal dif-

fuses and is expressed in the eYSL; hence, its diffusion con-

stant is not zero, and its reaction term depends on the eYSL

factors in addition to natural degradation, such that

Rnodðc;mÞ ¼ kemeYSL � lmnod; (17)

where ke is an expression constant, meYSL is the concentra-

tion of eYSL factors, and l is the decay constant for Nodal.

Substituting Eqs. 16 and 17 in Eqs. 14 and 15, the zebra-

fish gastrulation model is defined with

vu

vt
¼ � V , ðuVÞ;

c ¼
�

cyolk; cevl; cEcad; cNcad
�

;
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:

vcyolk

vt
¼ �V$ cyolkV

� �

;

vcevl

vt
¼ �V$ cevlVð Þ;

vcEcad

vt
¼ �V$ cEcadVð Þ;

vcNcad

vt
¼ �V$ cNcadVð Þ þ mblast

kmax m
h
nod

khhalf þ mh
nod

;

m ¼ ðmiYSL;meYSL;mnodÞ;

The parameters of the model were estimated based on

experimental data and physical constraints. The adhesion

parameters between N-cadherin and E-cadherin were

derived from atomic force microscopy data from zebrafish

ectoderm, mesoderm, and endoderm cells (18). We assumed

that mesendoderm cells express both N-cadherin and E-cad-

herin, whereas ectoderm cells express only E-cadherin

(18,42). Homotypic adhesions for cells in the EVL were

set to an arbitrary high value because this region is expected

to remain clustered together. Similarly, the homotypic adhe-

sion of the yolk was set to the same high value to simulate a

single cohesive yolk cell. Heterotypic adhesion between

yolk and EVL was set to zero for simplicity. Following

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

vmiYSL

vt
¼ �V , ðmiYSLVÞ;

vmeYSL

vt
¼ �V , ðmeYSLVÞ;

vmnod

vt
¼ �V , ðmnodVÞ þ V , ðDnoduVmnodÞ þ kemeYSL � lmnod:

(18)

a b

c

d

e

f

FIGURE 4 Simulation of involution andmigra-

tion dynamics during zebrafish gastrulation due to

the dynamic regulation of CAM expression. (a)

The regulatory network in the system. iYSL and

eYSL regions located in the YSL express nondif-

fusible factors labeled with the same name (cyan

and magenta, respectively). eYSL factors induce

the expression of the diffusible proteinNodal (yel-

low), which induces a higher expression of adhe-

sion protein N-cadherin (green). The cells in the

EVL produce a specific CAM type (blue). All

germ layers express the same level of E-cadherin

adhesion protein (red). (b) Adhesion strengths be-

tween CAM types. (c) The cell density in the em-

bryo is initialized homogenously but dynamically

changes because of differences in cell adhesion.

(d) Mesendodermal progenitors involute from

the germ ring toward the animal pole over the

marginof the yolk because of the dynamic upregu-

lation of N-cadherin expression. (e) Nodal ex-

pressed because of eYSL factors in the yolk

diffuses to the blastoderm, inducing higher levels

of N-cadherin expression in this area, which re-

sults in the cells moving toward the animal pole

beyond the area of Nodal diffusion. (f) A nondif-

fusible tracer (green) is advected by the mesendo-

dermal progenitor cells, showing their involution.

The initial state values are zero except at the loca-

tions shown (c–f, t ¼ 0), which are homogeneous

with u0 ¼ 0.8, cyolk,0 ¼ 0.8, cevl,0 ¼ 0.8, cEcad,0 ¼

0.64, cNcad,0 ¼ 0.16, and miYSL,0 ¼ 0.8 and

meYSL,0 ¼ 0.8, mnodal,0 ¼ 0, and mtracer,0 ¼ 1.

Nondimensional parameter values were kmax ¼

0.1, khalf ¼ 0.1, h ¼ 2, Dnod ¼ 1, ke ¼ 10, and

l¼ 5. Domain is of size 25� 25 units, discretized

into a 250 � 250 grid; arbitrary units. To see this

figure in color, go online.
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the same assumptions as (18), heterotypic adhesions be-

tween N-cadherin and E-cadherin and the inner yolk and

outer EVL were set such that N-cadherin preferentially

adhered to the yolk over the EVL, whereas E-cadherin pref-

erentially adhered to the EVL over the yolk. The specific

adhesion constants used between all CAM types are shown

in Fig. 4 b. Constants Dnod, ke, and l govern the Nodal

gradient and were estimated for the resulting Nodal gradient

to span between the eYSL and the EVL. The Hill coefficient

h was set to 2 for simplicity; kmax and khalf were estimated to

result in moderate N-cadherin expression levels.

The simulation initial state is based on experimental im-

ages of zebrafish gastrulation (44,47). The embryo is

defined with a homogeneous cell density circle (Fig. 4 c,

t ¼ 0). Within the embryo, the initial EVL and Yolk CAM

densities are set at the locations of the EVL and yolk,

respectively, while the E-cadherin and N-cadherin are set

in the blastoderm area, with E-cadherin being higher than

N-cadherin (Fig. 4 d, t ¼ 0), as it has been shown experi-

mentally (18,42). The factors iYSL and eYSL are initialized

homogeneously in their respective regions (Fig. 4 d, t ¼ 0)

while Nodal is initially zero along all the domain (Fig. 4 e,

t ¼ 0). A zero-flux boundary was imposed at the interface

between the blastoderm with the EVL and yolk regions to

simulate the sealing between EVL cells via apical junctional

complexes (48) and the dense cortical yolk cell cytoskeleton

(49), respectively. For simplicity, the simulation does not

include the EVL cell migration over the yolk.

Fig. 4, c–f show the simulation of zebrafish gastrulation,

during which the mesendoderm progenitors involute and

migrate over the margin of the yolk because of the dynamic

regulation of CAM expression by the diffusing morphogen

Nodal. The eYSL factors activate the expression of Nodal

in the eYSL region of the yolk, which then diffuses through

the germ ring region of the blastoderm, causing the upregu-

lation of N-cadherin in the cells at this location (Fig. 4 e).

The increased concentration of N-cadherin causes an in-

crease of adhesive forces, which results in the involution

and migration of these cells toward the animal pole.

Crucially, even after the cells leave the region where Nodal

diffuses and stop expressing additional N-cadherin, they

continue migrating toward the animal pole because the

movement is driven by the acquired higher adhesion

strength (as a simplification, the model omits further regula-

tion and degradation of N-cadherin). As these cells migrate,

additional cells closer to the EVL fill the vacated space and

are hence exposed to Nodal signals, resulting in further

involution dynamics. A nondiffusible tracer in the simula-

tion (Fig. 4 f) shows the involution movement of the cells

and their movement along the margin of the yolk. In this

way, the model shows how the dynamic regulation of

CAM expression can cause specific patterns and cellular be-

haviors during gastrulation that are essential for the correct

development of the embryo.

To determine the sensitivity of the model parameters, we

performed a parameter scan over the five parameters gov-

erning Nodal expression and its downstream response.

Fig. 5 shows the resulting spatial concentration levels of

N-cadherin and Nodal when increasing or decreasing each

parameter individually. Inhibition of Nodal signaling
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FIGURE 5 Resulting expression patterns of

N-cadherin as modulated by the parameters con-

trolling Nodal expression and its regulatory effects

on N-cadherin. Each simulation corresponds to the

percentage perturbation indicated in the column to

the parameter in the row and resulting in the value

above each plot. First two rows vary the regulatory

effect of Nodal (magenta) in the expression of

N-cadherin (yellow). Last three rows vary the con-

centration gradient formed by Nodal. All simula-

tions are shown at t ¼ 300, arbitrary units. White

dotted line in center simulation shows the location

of the profile plots in Fig. 6. To see this figure in

color, go online.
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reduces N-cadherin expression along both the emerging

anterior-posterior (AP) and dorso-ventral (DV) axes. Slight

reductions in the extent of the Nodal gradient cause reduc-

tion of N-cadherin expression along the DVaxis, and larger

reductions in Nodal expression cause reduction along the

AP axis, preventing the region of high N-cadherin concen-

tration from reaching the animal pole. These behaviors are

consistent with changes in expression of zebrafish mesendo-

derm markers due to experimental inhibition of Nodal

signaling in vivo (50). In addition, removing Nodal

signaling and instead including a cell population with high

N-cadherin levels results in a thin layer near the region of

the yolk and no involution behavior (Fig. S4).

The model shows how Nodal can upregulate N-cadherin

to cause these cells to migrate to the animal pole, resulting

in cells with high N-cadherin expression levels even beyond

the expression gradient of Nodal. The extent of this behavior

is modulated by both the parameters controlling the strength

of Nodal upregulating N-cadherin and those controlling the

expression gradient of Nodal, as shown in the spatial pheno-

types as profile plots in Fig. 6. The concentration levels of

Nodal and N-cadherin can increase or decrease by varying

the different parameters, yet all simulations show how the

expression pattern of N-cadherin goes beyond that of Nodal

because of the migration of the cells to the animal pole after

acquiring higher adhesion strengths to the yolk, demon-

strating the robustness of the system along large parameter

ranges. In addition, N-cadherin needs to have a higher adhe-

sion strength to the yolk than E-cadherin because simula-

tions with equal adhesion strengths between all CAMs

(Fig. S5) results in no involution, a behavior that can be

rescued by just increasing the adhesion strength between

N-cadherin and the yolk (Fig. S6) but not by increasing

the adhesion strength between E-cadherin and the yolk

(Fig. S7).

We tested whether the dynamic regulation of N-cadherin

by Nodal was necessary for the zebrafish involution

behavior with simulations adapting a continuous modeling

approach using discrete cell types with different adhesion

strengths (26,27). We implemented an equivalent 2D zebra-

fish model based on different cell types with inherent adhe-

sion strengths between them (see Supporting Materials and

Methods). The diffusive gradient of Nodal now directly in-

duces the differentiation of ectoderm cells into mesendo-

derm cells, which have a higher adhesion strength to the

yolk. The results show that with the experimental adhesion

strengths the differentiated mesendoderm cells did not

adhere to the yolk but diffused through the blastoderm

(Fig. S8), whereas the tracer migrated upwards toward the

animal pole rather than involuting as expected (Fig. S9),

even with the correct patterns of Nodal gradient

(Fig. S10). Increasing the adhesion strength between the
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FIGURE 6 Profile plots of the concentration levels of Nodal and N-cadherin resulting from different parameters. N-cadherin (yellow) expression pattern

extends beyond the Nodal (magenta) concentration gradient due to the cell movements toward the animal pole caused by differential adhesion strengths. Each

profile plot corresponds to the concentration level of Nodal and N-cadherin along a line through the eYSL and blastoderm (animal pole to the right) as shown

in Fig. 5 center plot and with the parameter indicated in the row perturbed by the percentage indicated in the column resulting in the value above each plot. All

simulations are shown at t ¼ 300, arbitrary units. To see this figure in color, go online.
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yolk and the differentiated mesendoderm cells resulted in a

very thin layer of mesendoderm cells over the margin of the

yolk because of the instantaneous change in adhesion

strength in these cells that translates into an instantaneous

very strong adhesion force toward the yolk, as highlighted

by the radial movements of the tracer directly toward the

yolk without involuting near the eYSL (Fig. S9). This is

in contrast to the proposed model of dynamic adhesion regu-

lation, in which the gradual change in cell adhesion

strengths results in the expected band of involuted cells

and involution dynamics of the tracer (Fig. 4).

DISCUSSION

Here, we presented a novel, to our knowledge, continuous

mathematical model of cell-cell adhesion due to the explicit

expression and regulation of cell adhesion proteins (CAMs)

for the explanation of sorting, intercalation, and convolution

cellular behaviors. Cells express different CAM types,

which have specific adhesive properties when binding to

CAMs of the same or different type. The adhesive forces be-

tween CAMs produce cell movements dependent on the cell

density and CAM concentration in neighbor cells within a

sensing radius. Moving cells carry their expressed CAMs

and possibly other factors with them. CAM expression can

be regulated by intra- and extracellular factors, including

diffusible morphogens such as Nodal. Because regulation

alters the expression level of specific CAM types, the adhe-

sive properties of cells are defined dynamically. In this way,

the regulatory dynamics of CAM expression can dictate the

resulting tissue patterns and shapes.

The capacity of the model to explain cellular in vitro and

in vivo behaviors were demonstrated with three sets of nu-

merical experiments showing sorting, intercalation, and

convolution spatial dynamics. First, we showed how this

approach could recapitulate the classical sorting behaviors

in a model of spatially randomized cells expressing one of

two different CAM types. The simulations showed how

the emergent sorting dynamics displayed by the cell popula-

tions—engulfment, partial engulfment, mixing, or complete

sorting—depended on the homotypic and heterotypic adhe-

sion strengths between the CAM types. Next, we showed

how intercalation dynamics in a growing cell population de-

pended on the type of CAMs expressed and their adhesion

strengths. When the two proliferating populations expressed

the same CAM type, they formed a completely separated

boundary between them. However, when the two prolifer-

ating populations expressed different CAM types, they

intercalated at the boundary. The intercalation interface

shows a characteristic amplitude and wavelength, which

the model predicts depending on specific physical cellular

parameters. These predictions could be tested in vitro by

recording the amplitude and wavelength of the intercalation

interface formed between different cell types with known

physical properties. Most notably, the cell-sensing radius

is predicted to correlate with the intercalation wavelength,

whereas the cell growth rate is predicted to inversely corre-

late with the intercalation amplitude.

Importantly, the dynamic regulation of CAMs can be

explicitly included in the proposed model, as it is essential

in many in vivo behaviors. We demonstrated this capacity

in the last experiment, which showed cellular involution be-

haviors controlled by a diffusible morphogen during zebra-

fish gastrulation, a behavior that could not be recapitulated

with a model based on discrete cell types. The model

included the expression and diffusion of the morphogen

Nodal, which formed a concentration gradient extending

toward the blastoderm. Nodal induced the upregulation of

N-cadherin, implicitly changing the adhesive properties of

these cells. These new adhesive properties resulted in

cellular involution and migration over the margin of the

yolk, a movement that continued beyond the Nodal gradient

because of the properties of the new CAM expression levels,

which need to have differential adhesion strengths. The pre-

cise concentration profiles formed by Nodal and N-cadherin

because of their dynamic regulation modulating adhesion

forces were investigated by varying the parameters of the

pathway through large ranges. Crucially, the system showed

that the dynamic regulation by Nodal was necessary to

induce the involution behavior and how the expression

pattern of N-cadherin robustly extended beyond the gradient

of Nodal over these parameter ranges, a prediction by the

model to be tested in vivo. A reporter system has been devel-

oped to visualize Nodal gradients in zebrafish by inserting a

GFP tag into the zebrafish Nodal ligands (51) and used to

measure the diffusion of ectopic Nodal (45). Future work

could test the model predictions and fit the key parameters

by visualizing the endogenous Nodal gradient together

with N-cadherin expression during zebrafish gastrulation

to provide deeper insights into the mechanisms controlling

zebrafish embryogenesis.

Previous continuous modeling approaches have repli-

cated cellular behaviors due to cell-cell adhesion by

modeling cell types with specific adhesion properties.

Continuous models of cell-cell adhesion have demonstrated

cell sorting (26) and intercalation (27) dynamics by explic-

itly modeling two distinct cellular populations with different

cell-cell adhesion constants. Similarly, proposed continuous

models of tumor dynamics include static adhesion coeffi-

cients defined between cancer cells and the extracellular

matrix (29). Other continuous approaches have modeled

separated cellular populations representing different cell

types, in which one cell population could transition to

another one as when acquiring a mutation (32), but the ad-

hesive properties between each population are still prede-

fined and static. Although these models are excellent

approaches for simulating large cellular populations with

static adhesive properties, they are limited in their capacity

to model dynamic adhesive behaviors. In contrast, the

continuous model presented here can explain the behaviors
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of both cell populations with static adhesive properties (sim-

ulations 1 and 2) and those with dynamically regulated ad-

hesive properties (simulation 3) by directly including the

expression and concentrations of CAMs. The dynamic regu-

lation of CAMs is a key element in many biological pro-

cesses, as we demonstrated here, and, to our knowledge,

has previously only been captured with hybrid models

(25). However, numerically solving hybrid models are

computationally infeasible for large cell numbers, and their

mathematical analysis is limited because of their discrete

nature. Computing a cell-sorting simulation takes 4 h using

one core with the presented continuous framework but 24 h

using 16 cores with a discrete cellular Potts model imple-

mentation (24,52).

The presented model only accounts for cell motilities due

to dispersion and directed adhesion forces, but it could be

extended to incorporate other active motility mechanisms.

Extended Viscek models taking into account intrinsic cell

motilities and alignment interactions have been shown to

be sufficient to exhibit cell-sorting behaviors (53). This

phenomenon could be incorporated into the model with an

additional nonlocal term depending on the velocity of neigh-

boring cells. In addition, other intrinsic cell motility forces

could be incorporated into the velocity term of the cell den-

sity, such as chemotactic behaviors, which are easily incor-

porated in continuous models (54).

The proposed approach uses adhesion forces that arise

dynamically from CAM expression instead of from explicit

cell types. Single-cell force spectroscopy can directly

measure the adhesion forces between cells expressing

different levels of CAMs (55), which can be used to exper-

imentally set the parameters of the model. For simplicity,

the model assume that the binding forces are proportional

to the product of the relative concentration of CAMs; how-

ever, more complex formulations of adhesion ligands and

receptors are also possible (56). The extracellular matrix

is an additional important element in cell-cell adhesion dy-

namics, and it could be incorporated into the continuous

model of adhesion (29). Together with adhesion forces,

cell cortex elasticity and tension also can play a role in

certain behaviors and be essential during tissue shape dy-

namics (18,57). Future work will extend the presented

model to incorporate the role of these components in

cellular behaviors.

The regulation of CAM expression and how these mole-

cules affect large-scale cellular behaviors is extraordinarily

important in both healthy and diseased states (58–60). The

proposed model integrates genetic regulation of CAMs,

the biophysical forces of adhesion that drive cell motion,

and the subsequent cellular dynamics. This integrated

view of dynamic adhesion will be essential for understand-

ing tissue behaviors in developmental and cancer biology as

well as in bioengineering (61–63). The proposed continuum

approach allows for the simulation of large cell populations

(up to the whole-organism scale), as well as the continuous

phenomena involved in genetic regulation (e.g., morphogen

gradients and CAM expression). Crucially, machine

learning approaches for the reverse-engineering of the regu-

lation of patterning (64–66) and cancer formation (67,68)

directly from formalized experimental data (69–72) can be

integrated with the proposed model, with the goal to

discover the specific regulatory mechanisms of CAMs that

give rise to key spatial phenotypes. In summary, the pre-

sented continuous modeling approach will pave the way

for the understanding of the regulatory dynamics of cell

adhesion essential in developmental, regenerative, and can-

cer biology.

SUPPORTING MATERIAL

Supporting Material can be found online at https://doi.org/10.1016/j.bpj.

2019.10.032.

APPENDIX: NUMERICAL METHODS

Numerical simulations were performed in a 2D domain using the explicit

upwind finite volume method with flux limiting in a uniform square lattice

and a zero-flux boundary condition. The fluxes between control volumes

due to the adhesion velocity (Eq. 6) are computed at four points A–D,

one at each face midpoint (Fig. 1 b). At each of these midpoints and for

each pair of CAMs, the nonlocal integral term for adhesion (Eq. 7) is

computed within a circle with radius R and centered at the face point

(Fig. 1 c). The integral circle is discretized with parameters Nr, Nq ˛ N,

defining a set of points uniformly distributed along Nr radial values and

4ðirNq =4NrÞ þ 2 angular values for each radial value ir ˛ N, 1 % ir %

Nr, as in (27). Because the cell density and CAM concentrations are numer-

ically defined at the control volume centers, bilinear interpolation is used

from the four surrounding control volume centers to calculate their values

at the regular integral points in the circle (red points and color lines in Fig. 1

c) and the average from the two surrounding control volume centers to

calculate their values at the face point (black point in Fig. 1 c). The bilinear

interpolations of the integral circle are precomputed in a weight matrix rep-

resenting a kernel, which then are used to efficiently calculate the adhesion

velocities in each face midpoint with a kernel convolution operation

(because of symmetry, the kernel for points C and D is the transpose of

the kernel for points A and B). Cell densities and CAM concentrations

outside of the domain are considered zero in the kernel convolution opera-

tion, as is consistent with the zero-flux boundary condition (73). The system

was numerically solved with a generalized Runge-Kutta fourth-order solver

using ROWMAP (33). Simulation computations used MATLAB R2017b

(The MathWorks).
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