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Abstract— A circulant-permutation-based spatially-coupled
(SC) code is constructed by partitioning the circulant per-
mutation matrices (CPMs) in the parity-check matrix of a
block code into several components and piecing copies of these
components in a diagonal structure. By connecting several SC
codes, multi-dimensional SC (MD-SC) codes are constructed.
In this paper, we present a systematic framework for constructing
MD-SC codes with notably better cycle properties than their
one-dimensional counterparts. In our framework, the multi-
dimensional coupling is performed via an informed relocation
of problematic CPMs. This work is general in the terms of the
number of constituent SC codes that are connected together,
the number of neighboring SC codes that each constituent
SC code is connected to, and the length of the cycles whose
populations we aim to reduce. Finally, we present a decoding
algorithm that utilizes the structures of the MD-SC code to
achieve lower decoding latency. Compared to the conventional
SC codes, our MD-SC codes have a notably lower population of
small cycles, and a dramatic BER improvement. The results of
this work can be particularly beneficial in data storage systems,
e.g., 2D magnetic recording and 3D Flash systems, as high-
performance MD-SC codes are robust against various channel
impairments and non-uniformity.

Index Terms— Circulant permutation matrix, cycles, error
floor, finite-length, LDPC codes, multi-dimensional codes, relo-
cation, spatially-coupled codes.

I. INTRODUCTION

PATTALLY-COUPLED (SC) codes are a family of graph-

based codes that have attracted significant attention thanks
to their capacity approaching performance. One-dimensional
SC (1D-SC) codes are constructed by coupling a series of dis-
joint block codes into a single coupled chain [3]. Here, we use
circulant-permutation-based LDPC codes [4] as the underlying
block codes. The 1D-SC codes have been well studied from
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the asymptotic perspective and the finite length perspective.
From the asymptotic perspective, density evolution techniques
have been used to study the decoding threshold, e.g., [5], [6].
From the finite length perspective, via the evaluation and opti-
mization of the number of problematic combinatorial objects,
it has been shown how an informed coupling strategy can
notably improve the performance, e.g., see [7]-[9].

Multi-dimensional SC (MD-SC) codes can be constructed
by coupling several 1D-SC codes together via rewiring
the existing connections or by adding extra variable nodes
(VNs) or check nodes (CNs) [10], [11]. MD-SC codes are
more robust against burst erasures and channel non-uniformity,
and they have improved iterative decoding thresholds, com-
pared to 1D-SC codes [10], [11]. MD-SC codes were intro-
duced in [10], [11] and investigated more in [12]-[17].

In [10], [12], [13], constructions are presented for MD-SC
codes that have specific structures, e.g., loops and triangles.
The construction method for MD-SC codes presented in [11]
involves connecting edges uniformly at random such that some
criteria on the number of connections are satisfied. In [14],
a framework is presented for constructing MD-SC codes by
randomly and sparsely introducing additional CNs to connect
VN at the same positions of different chains. In [15], multiple
SC codes are connected by random edge exchanges between
adjacent chains to improve the iterative decoding threshold.
In [16], [17], MD-SC codes are presented to improve the
error correction performance against the severe burst errors
in wireless channels.

Previous works on MD-SC codes, while promising, have
some limitations. In particular, they either consider random
constructions or are limited to specific topologies. As a result,
they do not focus on using the added degree of freedom
achieved by the multi-dimensional (MD) coupling in order
to improve particular properties of the code, e.g., girth and
minimum distance. They also use the density evolution tech-
nique for the performance analysis. This technique is dedicated
to the asymptotic regime and is based on some assumptions,
e.g., being cycle-free, that cannot be readily translated to the
practical finite-length case. In [13], a finite-length analysis in
the waterfall region for MD-SC codes with a loop structure is
presented.

Finding the best connections to be rewired in order to
connect constituent 1D-SC codes and construct MD-SC
codes with outstanding finite-length performance is still an
open problem. This paper is the first work to present a
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comprehensive systematic framework for constructing MD-SC
codes by coupling individual SC codes together to attain
fewer short cycles. For connecting the constituent SC codes,
we do not add extra VNs or CNs, and we only rewire some
existing connections. This paper is an extended version of
our work published in [1]. We extend our previous work by:
(1) connecting an arbitrary number of SC codes at a desired
MD coupling depth to construct MD-SC codes; (2) converting
the instances of the short cycles in the constituent SC codes to
cycles of the largest possible length in the MD-SC code; and
(3) presenting a low-latency decoder that exploits the structure
of the constituent SC codes along with the structure of the final
MD-SC code.

For exchanging the connections, we follow three rules:
(1) The connections that are involved in the highest number
of short cycles are targeted for rewiring; (2) The neighboring
constituent SC codes to which the targeted connections are
rewired are chosen such that the associated short cycles convert
to cycles of the largest possible length in the MD setting;
(3) The targeted connections are rewired to the same positions
in the other constituent SC codes in order to preserve the low-
latency decoding property. From an algebraic viewpoint, prob-
lematic circulant permutation matrices (CPMs), corresponding
to groups of connections, that contribute to the highest number
of short cycles in the constituent SC codes are relocated to
connect these codes together.

The rest of the paper is organized as follows. In Section II,
the necessary preliminaries are briefly reviewed. In Section III,
the structure of our MD-SC codes is presented. In Section 1V,
our novel framework for constructing MD-SC codes with
enhanced cycle properties is introduced. In Section V, a low-
latency algorithm for decoding MD-SC codes is presented.
In Section VI, our simulation results are given. Finally,
the conclusion appears in Section VII.

II. PRELIMINARIES

Throughout this paper, each column (resp., row) in a parity-
check matrix corresponds to a VN (resp., CN) in the equiva-
lent graph of the matrix. Regular circulant-permutation-based
codes are (v, k) LDPC codes, where ~ is the column weight
of the parity-check matrix (VN degree), and « is the row
weight (CN degree). The parity-check matrix H of a circulant-
permutation-based code is constructed as follows:

ofo.0 ofon ogfor—1
O—fl,o o—fl,l . O—fl,x—l
H= . . . . (1)
O—f'yfl,O O—f’yfl,l O—f’yfl,nfl

Each CPM has the form ofi7 where 7, 0 < i < v—1, is the
row group index, j, 0 < 7 < k—1, is the column group index,
and o is the z X z identity matrix cyclically shifted one unit to
the left. The term f; ; specifies the power of the CPM at row
group index ¢ and column group index j. We use circulant-
permutation-based codes as the underlying block codes of SC
codes. We highlight that, in this paper, each CPM in (1) is a
permutation of an identity matrix. Thus, each circulant matrix
has weight 1. Circulants with larger weights have a negative
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Fig. 1. The parity-check matrix of an SC code with parameters m and L.

impact on the girth [18], and we do not use them in our code
construction since the ultimate goal is to improve the cycle
properties.

The parity-check matrix Hgc of a circulant-permutation-
based SC code is constructed by partitioning the xy CPMs of
the underlying block code into (m + 1) component matrices
Hy,H,,...,H,, (with the same size as H), and piecing L
copies of the component matrices together as shown in Fig. 1.
The parameter m is called the memory, and the parameter
L is called the coupling length. Each component matrix Hj,
0 <1 < m, has a subset of CPMs of H and zeros elsewhere so
that Zl";o H; =H. Areplica R), 1 <v <L, is a submatrix
of Hgc that has one submatrix [HZ ... HZ |7, Fig. 1.

Recently, a systematic framework for partitioning the under-
lying block code and optimizing the CPM powers, known
as the optimal partitioning and circulant power optimizer
(OO-CPO) technique, was proposed for constructing high-
performance SC codes [7], [19]. In this paper, we use the
OO-CPO technique for designing the constituent SC codes
that are then used to construct MD-SC codes. We note that
choosing high-performance 1D-SC codes as constituent SC
codes is not necessary in our MD-SC construction, and it
only results in a better start point in a framework that further
improves the performance via MD coupling.

Short cycles have a negative impact on the performance
under iterative decoding. They affect the independence of
the extrinsic information exchanged in the iterative decoder.
Moreover, problematic combinatorial objects that cause the
error-floor phenomenon, e.g., absorbing sets and trapping sets
[20], [21], are formed of cycles with relatively short lengths
[71, [19], [22], [23]. Finally, short cycles can have a negative
impact on the code minimum distance. In [24], [25], some
upper bounds on the minimum distance of circulant-based
block and SC LDPC codes are derived, and it is shown that
the smaller the girth of the graph, the smaller the minimum
distance upper bound will be. Thus, improving the girth can
result in a larger minimum distance.

We present a systematic framework to construct MD-SC
codes, which is based on an informed relocation of CPMs.
MD-SC codes constructed using our proposed framework
enjoy a notably lower population of short cycles, and con-
sequently better performance compared to 1D-SC codes.

Throughout this paper, the operator £ (resp., %) defines the
congruence (resp., incongruence) modulo p, and the operator
(.)p defines modulo p of an integer.
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ITII. MD-SC CODE STRUCTURE

In this section, we demonstrate the structure of our MD-
SC codes. Our MD-SC codes have two main parameters: MD
coupling depth d and MD coupling length Lo. The parameter
Lo of an MD-SC code shows the number of SC codes that are
connected together to form the MD-SC code. Each constituent
SC code is connected to at most (d — 1) following SC codes,
sequenced in a cyclic order. Thus, 1 < d < Lo, and d = 1
corresponds to Lo disjoint 1D-SC codes.

We intend to reduce the population of cycles with length
k, or cycles-k, in our MD-SC code construction, and the
parameter & is an input to our scheme. A wise choice for k is
the girth [26], or the length of the cycle that is the common
denominator of several problematic combinatorial objects for
a specific channel, e.g., AWGN channels [7], partial response
channels [27], or Flash channels [28]. For instance, a cycle-
6 is the common denominator of problematic combinatorial
objects for AWGN channels, and a cycle-8 is the common
denominator of problematic combinatorial objects for partial
response channels even if the girth is 6.!

An Auxiliary matrix Ay, t € {1,--- Ly — 1}, has the
same size as the parity-check matrix of the constituent 1D-SC
code, i.e., Hgc, and appears in the parity-check matrix of the
final MD-SC code, see (3). The auxiliary matrices are all-zero
matrices at the beginning of the framework and are filled with
CPMs during the construction process. A relocation is defined
as moving a CPM of Hgc to the same position in one of the
auxiliary matrices.

Consider an SC code with parity-check matrix Hgc, mem-
ory m, and coupling length L as the constituent 1D-SC code,
and let R, be the middle replica of Hgc, ie., v = [L/2].
There are kv CPMs in this replica. Out of these xy CPMs,
we choose 7 CPMs that are the most problematic, i.e., that
contribute to the highest number of cycles-k. The parameter
T is called the MD coupling density. We relocate the chosen
CPMs to auxiliary matrices Ay, Ao, ..., Ag—; such that a
relocated CPM from Hgc is moved to the same position in one
of the auxiliary matrices. The same relocations are repeated
for all the (L — 1) remaining replicas. As a result,

d—1
Hsc = Hye + Z Ay, (2)

t=1
where Hg is derived from Hgc by removing the 7 chosen
CPMs. We note that the middle replica R, is considered for
ranking the CPMs in order to include all possible cycles-k
that a CPM in Hgc can contribute to. The parity-check matrix
of the MD-SC code, Hg/ICD, is constructed as follows, where

Aj=A41 == Ar,1 = 0: (The non-zero auxiliary
matrices are Aq, Ao, ..., Ag_1.)
H{. Ar,1 A,
A, H{ A,
HYD — . 3)
AL2—1 AL2—2 e /SC

'We note that while all cycles of equal length may not be equally detrimental
in general, we treat them the same to simplify our design. As we will show
later in the paper, our presented algorithm works on a list of cycles to remove
by multi-dimensional rewiring. This list can be further filtered by the user to
only include the most detrimental cycles.
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Hg/ICD can be viewed as a collection of Lo rows and Lo
columns of segments S, where 0 < a < Ly —1 and 0 <
b < Ly, — 1. Each segment S, ; is a matrix with the same
dimension as Hgc, S, = Hi, S(att)r,.a = A¢ for t €
{1,---,d—1},and S(414),, o =0fort €{d, -, Lo — 1}.2
As such, the code does not reduce to a block LDPC code even
when d = Lo.

Example 1. Consider an SC code with v =2, k = 3, z = 3,
m = 1, and L = 3. The matrix H of the underlying block
code and the component matrices are given below:

[ +fo.0 fo,1 fo,2 ]
g’ a’ a’>
H = glio gl ghi2 |
[ 5fo.0 0 fo2 ]
ag ag
Ho=1"9 or o |
0 ol 0 ]
H, = oo 0 of1.2

We intend to construct an MD-SC code with parameters T =
1, d =2, and Ly = 4. Assume o710 is the most problematic
CPM, and we relocate it to Ay. This relocation is applied to
all L = 3 instances of the problematic CPM. We remind that
each CPM corresponds to a group of z connections in the
graph of the SC code. Four constituent SC codes along with
their problematic connections are depicted in Fig. 2(a). The
problematic connections are rewired to the same positions in
the next SC codes, in a cyclic order, to construct the MD-SC
code, Fig. 2(b).
Next, we introduce some necessary definitions:

Definition 1.

1) Let C;j, where 0 < i < (L+m)y—1and 0 < j <
Lk—1, be a CPM in Hgc. We say C; ; is relocated to
Ay, where t € {1,---,d— 1}, if it is moved from Hgc
to Ay. We denote this relocation as C; j— Ay.

2) C; @S, refers to C; j in segment S, . When C; j— Ay,
the value of C; ;@S is copied 10 C; ;@S (444),, ar
and C; @S, , becomes 0 (a € {0,---,Ly — 1} and
te{l,---,d—1}).

3) The MD mapping M : {C; ;}—{0,--- ,d—1} is a map-
ping from a CPM in Hgc to an integer in {0, - -+ ,d—1},
and it is defined as follows:

a) IfCi’jHAt, M(Cz’]) =1.
b) IfC; ; is kept in H{ (no relocation), M (C; ;) = 0.

4) A cycle-k, denoted by Oy, visits k CPMs in the parity-
check matrix of the code. We list the k CPMs of Oy,
according to the order they are visited when the cycle
is traversed in a clockwise direction, in a sequence as
Cok = {Cihjl,CiMé, .. "Cilmjk}’ where il = ig,jg =
I3y s lk—1 = ik, Jk = J1- A CPM can be visited more
than once, e.g., Fig. 3(b).

5) We denote the distance between C;, j, and C;, j, on
Oy, where u,v € {1,...,k}, as Do, (Ci, ju:Ciy.ju) €
{0, ey k— 1}. Dok (Ciudwc’iqu}) = |’U - u|

In the new MD-SC code design framework, we effectively

answer two questions: which CPMs to relocate, and where to
relocate them.

2While HYP may look similar to a block LDPC code, we would like to
note that the locality of connections is always bounded during relocations.
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Fig. 2. (a) Four 1D-SC codes. Circles (resp., squares) represent VNs (resp.,
CNs). Each line represents a group of connections (defined by a CPM) from
z VNs to z CNs. Problematic connections are shown in dashed red lines.
(b) MD-SC code with 7 = 1, d = 2, and Lo = 4. Rewired connections are
shown in dashed blue lines.

IV. NOVEL FRAMEWORK FOR MD-SC CODE DESIGN

In this section, we present a new framework for constructing
MD-SC codes. First, we investigate the effects of relocating a
subset of CPMs on the population of cycles. Then, we present
our algorithm for constructing MD-SC codes which is based
on a score voting policy.

A. The Effects of Relocation of CPMs on Cycles

Consider a cycle Oy in Hgc with the sequence of CPMs
Co,. Prior to any relocation, there are Lo instances of this
cycle in the MD-SC code with parameter Lo, one per each
constituent SC code. We investigate the effect of relocating
a subset of CPMs of O, and we call this subset targeted
CPMs. We show that, after relocations, Lo instances of CPMs
of Co, can form Lo cycles of length k, L2 /2 cycles of length
2k, ..., or one cycle of length Lyk. The first case is a result of
bad choices for relocations, and the rest are more preferable.
In fact, we opt for the relocations that result in larger cycles
(with smaller cardinality as a result).

Theorem 1. Let Co, = {Ci, j1:Cisjos---,Cis ji be the
sequence of CPMs in Hgc that are visited in a clock-

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 68, NO. 5, MAY 2020
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Cisyjs Ci4,j4 Cis,js Cis,je
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Fig. 3. Cycles-8 with Cog = {Cs, ;- --,Cig,jg }- Each line represents a

connection between two CPMs. (a) All CPMs are unique. (b) Cig js = Ciy,jo
and Ciy j; = Cig,js-

wise order by Q. If the following equation holds,
the Lo instances of CPMs of Co, form Lo cycles-k
in HYY,

k

Z(—l)“M(Ciu’ju) L 0.

u=1

“)

Otherwise, the instances of the targeted CPMs do not
result in cycles-k in Hg/[CD.3 We call (4) the Ineffec-
tive Relocation Condition, or IRC, in the rest of this
paper.

Proof: Let (C;, j.,Ci,. j...) be a pair of consecutive
CPMs in Cp,, where u € {1,...,k} and Ci ., ..,
Ci,,j,- By definition, two CPMs have the same row (resp.,
column) group index, i.e., %, = iyq1 (€SP, Ju =
Jus1), when u 2 1 (resp., u 2 0). Before relocations,
Cip.ju @840 # 0 and C;, ;, @S, = 0, where C;, j, €
Co,, a,b € {0,---,Ly — 1}, and @ # b. This results
in Lo instances of O, one per each segment S, .. After
relocations, the CPMs in Cp, do not all belong to the same
segment.

Here, a unit of an MD horizontal (resp., MD vertical) shift
is defined as cyclically going one segment right (resp., down)
when we go from C;, ;, to C;, . j,.,- The cycle Oy, reflects
in the MD-SC code as cycles with the same length % if and
only if when we start from C;, ;, # 0 from one segment and
traverse the CPMs of the cycle in a clock wise order (with
the same order they appear in Cp, ), we end up at the same
segment that we started with.

The segments of HY appear in the cyclic order
{H§c, AL,—1,- -+, A1}, with the MD mapping {0, Lo —
1,--+,1}, from left to right. These segments appear in the
cyclic order {Hg, Aq,---,Ar,—1}, with the MD mapping
{0,1,---, Lo —1}, from top to bottom, see (3). Thus, the MD
horizontal shift, when we go from C;, j, to Ci, . j..1>
w e {13,k — 1} is (M(Ciy.) — MCovsrgo )i,
units, see Definition 1.3. Similarly, the MD vertical shift,
when we go from C;, j, to Ci, ., j...» u € {0,2,...,k},
is (M(Ciir jury) — M(Ci, 5. ), units. We remind that the
operator (.), defines modulo p of an integer. The total MD
horizontal and vertical shifts when we traverse the CPMs of

3Equation (4) resembles Fossorier’s condition on CPM powers of a
circulant-permutation-based code that makes a cycle in the protograph result
in multiple cycles in the lifted graph of the code [29].
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O} in ng/ICD are 6y and Jy, respectively:

Sr=( Y [M(Cij)—MCirjui)r,
uwe{l,3...,k—1}
k
= (_ Z[(_l)uM(ciuJu)])LQa
u=1
Sv=_0 Y, [MCi\jui)—MCij)i,
we{2,4...,k}
k
= (=D (=1)"M(Ci, 3, ©)

The relocations are ineffective if and only if the start and
end segments are the same when we traverse the & CPMs of
Oj. For this to happen, the total MD horizontal and vertical
shifts (0 and &) need to be zero, which results in (4). [

If equation (4), or IRC, holds for the CPMs of Ok, Lo
instances of CPMs of Cp, in HYY form Lo cycles-k in
the MD-SC code (not preferable). Theorem 2 investigates the
situation when IRC does not necessarily hold.

Theorem 2. Each cycle Oy in Hgc results in T cycles with
length Lok /T in HYY, where

7 =ged(Le, Ap,), (6)
and
k
Ao, = (=D [(-1)"M(Ci, ;.))r,- (N
u=1

The operator ged outputs the greatest common divisor of its
two operands.

Proof: Consider a cycle O with Co, = {Ciy j;,-- -,
Cir.jr } in Hsc. There are (L2)? instances of C;, j, in HYY,
u € {1,...,k}, one per each segment, and only Lo of them
can be non-zero. We traverse the CPMs of O in Hg/ICD
according to the order they appear in Cp, starting from a
non-zero instance of C;, ;. After traversing all k& CPMs,
we reach C;, j, in a segment that is (cyclically) Ay, units
right and Ap, units down from the segment we started.

If Ap, = 0, the cycle is complete after traversing the &
CPMs. In this case, there are Ly instances of Cp,, one per
each instance of C;, ;. If Ap, # 0, the cycle cannot be
complete after traversing &k CPMs. We proceed traversing the
CPMs until we reach C;, ;, that is in the same segment that
we started from.

We define the parameter A as follows:

A =min{glg € {1,2,--- },gAo, Z0}. (8)

Then, we complete the cycle after traversing Ak CPMs. The
. .. . Ly

parameter A is the minimum integer value such that AAp, =
0, i.e., A = La/ged (L2, Ap,). The Lo instances of the k
CPMs in Cp, form 7 = Lok /A\k = ged(Le, Ao, ) cycles of
the length A\k = Lok /7. O
For example, when Ly and Ay, are relatively prime, there
is a cycle with length Lok that traverses all instances of the
CPMs of Cop, . When 7 = ged (L2, Ap, ) = Lo, the instances
of the CPMs of Cp, form Lo cycles with length k. In our
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(a) b)

(e) ®

Fig. 4. (a) C;,,j,—A1. The white circles show original locations of
the relocated CPM. (b) A cycle-3k is formed. (¢) {Ci, j,,Ci; 5, }—A1.
(d) Three cycles-k are formed. (e) {Ci, j,,Ciy,j,»Cic,jo f—A2. (f) Two
cycles-2k are formed.

algorithm for the MD-SC code construction, the relocations
that result in smaller 7 are more preferred as they result in
larger cycles.

Remark 1. Review some properties of gecd that are used in
the rest of this paper:

o gcd(a,0) = |al for any non-zero a,

e ged(a + yb,b) = ged(a, b) for any integer y,

e ged(—a,b) = ged(a, b).

Example 2. Let Co, = {Ci, j,,...,Ci,. .} be the sequence
of CPMs of O, and n be the number of its relocated CPMs.

1) Let n =1, C;, j, — Ay, and Ly = 3. Then, Ao, =
((-1)*)3 and T = 1. Fig. 4(a) shows C,, j,—Ai.
Fig. 4(b) shows that a cycle-3k (shown in orange) is
formed. The green border represents that this relocation
is preferable.

2) Let n = 2, C;, ;.,Ci, j,—A1, and Ly = 3. Suppose
Do, (Cia,7ja7cib7jb) = 1. Then, Aok = ((_1)(1 -
(=D)*)3 = 0 and 7 = Lo = 3. Fig. 4(c) shows
Ciy jusCiy,jy—A1. Fig. 4(d) shows that three cycles-
k are formed. The red border represents that these
relocations are not preferable.

3) Let n = 3, and Cia,ja’ Cib,jb’ Cic,chAQ’ and Lo =
4. Suppose these three CPMs are consecutive in Co,.
Then, Ao, = ((-1)*(2—-2+2)), =2and 7 = 2.
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Fig. 4(e) shows C;,, j.,Ci, 3, Ci. j.—Aa. Fig. 4(f) shows
that two cycles-2k are formed. The red border represents
that these relocations are less preferred. We note that if
we relocated the targeted CPMs to Ay instead, the result
would be one cycle-4k which is more preferred.
Remark 2. A CPM can appear more than once in Cp,, e.g.,
see Fig. 3(b). A CPM that is repeated r times in the sequence
can be interpreted in our analysis as r different CPMs; every
two CPMs from this group have an even distance on Oy. The
relocation of a CPM that appears r times is equivalent to the
relocation of r CPMs to the same auxiliary matrix.

B. Score Voting Algorithm for MD-SC Code Design

Our framework is based on a score voting policy and aims
at minimizing the population of short cycles. As stated in
Section III, the MD coupling with depth d is performed
via relocating problematic CPMs to auxiliary matrices A,
te{l,---,d—1}. After relocating one CPM, the ranking of
the problematic CPMs (with respect to the number of cycles
each of them is visited by) changes. Thus, the relocations are
performed sequentially. In our framework, we use a tree-
based strategy for constructing MD-SC codes, by identifying
a proper sequence of relocations such that as many as possible
designated cycles are removed in the constituent SC codes,
while as few as possible short cycles are formed in the multi-
dimensional configuration. To assign scores to the branches of
the tree, we use the results of Section IV (A). A tree-based
strategy has also been recently applied to find a good parti-
tioning to construct 1D-SC codes with a reduced population
of problematic objects [30].

Consider a targeted CPM C;, ;. There are d possible
relocation options for this CPM: relocate to one of the (d—1)
auxiliary matrices or keep in Hg, ie., M(C;, j,) = t and
t € {0,1,---d — 1}. Each cycle Oy in Hgc that has the
targeted CPM in its sequence gives a score for each of these
options, and the collective scoring results are considered for
making a decision. The score R(O,t) is proportional to the
length of the cycles that the instances of the CPMs of Cop,
form after applying the corresponding option (after performing
a relocation or keeping the targeted CPM in H):

L
ng(LQ7 Aok) ’
Ao, = (1) rt— Y

C €Co, \C

R(Op,t) =

[(=1)“M(Ci, )L,

TusJu tv,Jv

©)

Here, we assumed C;, ;, is repeated r times in Cp,, and v is
the index of one of the repetitions.

In fact, there might be several options for a targeted CPM
such that IRC (i.e., (4)) does not hold. However, the options
that result in larger cycles (with smaller cardinality as a
consequence) are preferable. We use a scoring system in our
algorithm for constructing MD-SC codes in order to convert
short cycles in the constituent SC codes into cycles with
lengths as large as possible.

Example 3. Consider the cycle Oy and a target CPM C;, ;, €
Co,.
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Algorithm 1 Score Voting Algorithm for Relocation

: inputs: targeted CPM C;, j,, k, [M(C; ;)], d, and Lo.

: Find W, the set of all active/inactive cycles-k that have
Ci,.j, in their sequences.

N —

3: for each O, € ¥ do

4 fort —0tod—1do

5 M(C'L’U,jv) =t.

6 Ao, = (= ()" M(Ci, g )i,
7 R(Ok, t) = Lg/ng(Lg, Aok).

8 & ={0,---,d—1}.

9: for v — 1 to | L2/2] do

10:  if Ly =0 then
11 O — argmin, g [{Ok|Ok € ¥, R(Ok, t) = z}|.

12: output: relocation options .

Scenario 1. No CPMs of Oy are previously relocated, and
Ci,.j, appears once in Co, (ie, r = 1). Thus, IRC does
not hold after a relocation, regardless of the auxiliary matrix
that C,, j, is relocated to. For the option M(C;, ;,) = t,
R(Oy,t) = Lo/ ged(La, t). For instance, Oy, gives score 1 to
the option “keep in Hg”, and gives score Lo to the option
“relocate to A1”.

Scenario 2. C;, ;. € Co, is already relocated to A,
Do, (Ciy o> Cinjw) = 2, and both CPMs appear once in
Co, (i.e., v = 1). Then, IRC does not hold for options “no
relocation” and “relocation to A", when t # Lo — 1. In fact,
for the option M(C;, ;,) =t t € {0,---,d— 1}, Oy gives
score R(Oy,t) = La/ ged(La,t + 1). For instance, Oy, gives
score 1 to “relocate to Ar,_1”, and gives score Ly to “keep

in Hy” and “relocate to Ay ” where (t' + 1) and Ly are
relatively prime.
The relocation options are {relocate to Aj,..., relocate to

Ag_1, keep in Hg.}. We identify the best options for a
targeted CPM as follows: We first identify and keep the options
that receive the least number of scores with value x = 1,
as these options result in fewer cycle-%k in the MD-SC code.
Among these options, we keep the ones that that receive the
least number of scores with value x = 2, as these options
result in fewer cycle-2k in the MD-SC code. We continue
until we reach = | Lo/2] or there is only one option left for
the targeted CPM. Then, all survived options are recorded as
branches of a tree, and the next targeted CPM is chosen and
similarly evaluated for each branch.
Remark 3. The score value is by definition a divisor of L.
Thus, x is only considered for the above analysis if Ly = 0.
Moreover, we do not continue the procedure until reaching xr =
Lo. This is because two options that receive the same number
of scores with value x, x € {z|x € {1,2,...,Ly/2}, Ly = 0},
receive the same number of scores with value x = Lo.
Algorithm 1 shows the procedure to find the best relocation
options. We consider all cycles-k in Hgc that visit CPMs in
the middle replica. We call the cycles for which IRC holds the
active cycles and the rest as the inactive cycles. We highlight
three points here: (1) The targeted CPM C;, ;, is chosen
from {C; ;|C;; # 0 and M (C; ;) = 0} to increase the MD
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coupling. (2) The most problematic CPM is the one that is
visited by the most active cycles. (3) Each active/inactive cycle
that visits C;, j, (has C;, j, in its sequence) gives a score
to each relocation option, since the status of cycles-k (being
active or inactive) changes by relocations.

Now, we are ready to describe our algorithm for construct-
ing MD-SC codes. A solution for constructing an MD-SC
code is a sequence of up to 7 relocations. Our algorithm
for constructing MD-SC codes is greedy in the sense that,
at each step, it chooses the relocation options that result in the
least number of short cycles. The solutions for constructing an
MD-SC code are recorded in a tree structure.

The root of the tree corresponds to the initial state, where
Hi. =Hgcand A, =0fort € {1,---, Lo—1}. Other nodes
correspond to one relocation each, and the path from the root
node to a node at level ¢, £ € {1,..., 7}, describes a solution
with ¢ relocations for constructing the MD-SC code. At each
iteration of our algorithm, we expand the tree by one level and
trim the solutions that do not result in MD-SC codes with the
best cycle properties amongst the solutions at that level.
Expanding. At iteration ¢, we consider all nodes at level
¢ — 1, individually. For each node at level ¢ — 1, we perform
the relocations described by the path from the root to the node,
and form matrix Hg and the auxiliary matrices, accordingly.
Next, all CPMs in the middle replica of H’SC are ranked, in a
decreasing order, based on the number of active cycles-k that
they are visited by. Then, we target one CPM from the top of
the list and find its best relocation options, by Algorithm 1.
If the option “keep in Hg” is among the best options, the next
problematic CPM in the sorted list is targeted. We continue
this process until the most problematic CPM, such that its
relocation reduces the population of short cycles, is found.
Then, its best relocation options are added as children of the
current node. If there is no CPM in the list such that its
relocation reduces the population of short cycles, the node
is not expanded.

Trimming. At the end of each iteration, all solutions (there
is one solution per leaf node) that do not result in MD-SC
codes with the least number of active cycles are trimmed. If all
children of a node are trimmed, that node is also trimmed.
Termination. We proceed with expanding and trimming the
tree of solutions, until no node is expanded in an iteration (the
relocation process does not help anymore) or the maximum
density is achieved (it happens at the end of iteration 7). Then,
we construct the MD-SC code according to the relocations
suggested by the nodes on the path from the root to a randomly
chosen, non-trimmed, leaf.

Example 4. Fig. 5 illustrates an example for the tree of
solutions to construct an MD-SC code with parameters Lo =
3, d =3, and T = 5.* At iteration 1, there are two winning
relocation options for the targeted CPM, and they both result
in 161 cycles-6. At iteration 2, each node at level 1 is expanded
to two nodes. All 4 solutions result in 140 active cycles-6.
At iteration 3, each node at level 2 is expanded to one node. All

4The remaining code parameters that result in this realization are k = z =
17, v = 4, m = 1, L = 10, girth 6, and OO-CPO technique is used for
constructing the constituent SC codes.
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Fig. 5. An illustration for a tree of solutions. The information associated
with each node are the relocation option and the number of cycles-6 for the
solution described by the path from the root up to this node. The nodes with
dashed borders show the trimmed solutions. The nodes with hatch background
show the winning solutions.

4 solutions result in 123 active cycles-6. At iteration 4, the 1°'
and 4™ nodes at level 3 are expanded to two nodes each, and
the 2" and 3" nodes at level 3 are expanded to one node
each. Among the 6 solutions, two of them result in 107 active
cycles-6, and the remaining result in 108 active cycles-6 and
are trimmed. At iteration 5 (the last iteration), each (non-
trimmed) node at level 4 is expanded to one node. The two
solutions (shown with nodes that have hatch backgrounds)
result in 92 active cycles-6, and one of them can be chosen
randomly for constructing the MD-SC code.

Algorithm 2 shows the procedure for constructing MD-SC
codes.

V. LOw-LATENCY DECODING OF MD-SC CODES

In this section, we implement and analyze a low-latency
windowed decoding for MD-SC codes. First, we describe the
decoding method. Then, we provide the latency analysis of
our decoder.

A. Multi-Dimensional Windowed Decoding

In this subsection, we describe a low-latency windowed
decoder for our MD-SC codes. Our decoder extends the well-
studied windowed decoder of the conventional SC codes,
[31], [32], to allow for low-latency decoding across multiple
constituent SC codes. Such a decoder was briefly introduced in
[14]. In our paper, we thoroughly define and analyze the multi-
dimensional windowed decoder which, to our knowledge, has
not been done before.

First, note that each segment of an MD-SC code has the
staircase structure of an SC code, see Definition 1.2. Therefore,
if two VNs do not to share CNs within one constituent SC
code before MD coupling, any instance of these two VNs
across different constituent SC codes also do not share CNs
after MD coupling. This observation motivates the low-latency
windowed decoding, similar to 1D-SC codes.

We define an MD window as a collection of several smaller
(local) windows that are each defined over one segment of
HlsVICD. Let Wp be the size of the local windows and [p be
the MD window index, where m +1 < Wp < L and 1 <
Ip < L.Let R, @S, ;, refer to the kth replica in segment S,
of HYY. Recall that Statt)p,a =0 forte{d,--- Lo —1}
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Algorithm 2 Algorithm for Constructing MD-SC Codes
1: inputs: Hgc, k, Lo, d, and 7.
2: initialize: A tree with one node (roor), £ = 1.
3: Find T, i.e., the set of all cycles-k in Hgc that visit CPMs
in the middle replica of Hgc.
4: while ¢ <7 and there are nodes at level £ — 1 do
5:  for each node at level £ — 1 do
Set [M(C; ;)] according to the relocations suggested
by the path from root to node.
7: Find status (active/inactive) of cycles-k in I' using
IRC or (4).
S = {Ci,j|Ci7j S R"L/Q'l and M(Ci,j) = 0}.
Sort S in a decreasing order according to the number
of times they are visited by active cycles in I'.
10: Flag= 0.

11 while |S| > 0 and Flag= 0 do

12: Select the first CPM C;, ;, in S for relocation.

13: Find best relocation options ¢ for C;, ;, by Algo-
rithm 1.

14: if 0 € ® then S =5\C;, j,

15: else

16: Flag= 1.

17: for vt € ® do

18: Add a child to node with content
M(Ci, 5,) =t.

19:  Count the number of active cycles for each solution
suggested by the nodes at level £.

20:  Trim all leaves (and their parents if needed) that do not
result in minimum active cycles-k.

21: £=0+1.

22: Pick a random solution, set M (C; ;) accordingly, and
construct Hg/[CD using (3).

23: output: HYY.

and a € {0,..., Ly — 1}, which results in Ry, being zero for
these segments. Therefore, the local windows are only defined
for the non-zero segments, and the number of local windows
is Lgd.

Consider the i MD window. For this MD window,
we define a local window Wé%, where 0 < a < Lo — 1
and 0 < b < d — 1, as the edges between VNs and CNs
that exclusively belong to replicas {Rk@s(a+b)L2,mlD <
k < min(lp + Wp — 1,L)}. As such, the Iy, MD window
is defined as the collection of local windows Wé%, and we
call it the multi-dimensional window configuration. We assume
that the VNs corresponding to replicas {R1,Ro...,R;,_1}
in all segments have already been decoded, and their decoded
values contribute to the decoding of VNs in later MD windows.
The 'y, window performs decoding on its own MD window
configuration and aims to decode the VNs corresponding to
replica R;,, of all segments, known as the MD targeted VNs.
This operation is performed sequentially from the first to the
L™ MD window until all the VNs are decoded. For example
in Fig. 6(a), the small rectangles represent an MD window
configuration. The green columns are VNs that have already
been decoded, and the blue columns are the targeted VNs.
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(b)

Fig. 6. In both figures, the color green with horizontal lines represents
the decoded VNs and the color blue with diagonal lines represents the
MD targeted VNs: (a) MD window configuration for an MD-SC code with
parameters L =6, m =2, Lo = 3,d =2, Wp =4, and [p = 2. (b) Each
smaller rectangle represents a replica and each horizontal chain is a constituent
SC code. The bigger rectangle shows the MD window configuration.

One can view each constituent SC code as a chain of
replicas. In the MD-SC code, constituent SC chains can only
be connected together through their similar replicas. MD
windowed decoding exploits this limited connectivity to allow
for lower decoding latency, Fig. 6(b). The structure of our
MD-SC codes allows for a simpler decoder implementation.
For all MD window configurations, the graphs have the same
structure (edge connectivity). Thus, the same, small decoder
can be used for all MD windows and the only change across
MD windows is the initial values of the VNs. This is another
advantage of our deterministic construction compared to the
random constructions, e.g., [11], [14], where the MD window
configurations vary.

We now briefly mention a viable variant of the MD win-
dowed decoding that is an interesting direction for future
research. To further reduce the complexity and latency, one can
limit the number of constituent SC codes that are considered
in an MD window configuration to be less than Lo. The major
challenge with this decoder is that the degree distribution
of the MD window can be very different from the global
degree distribution, affecting the decoding threshold of the MD
windows [33]. Since the MD window configurations depend
on the selected relocations, the score voting algorithm would
need to take into account the degree distribution change. This
observation requires more analysis which is left as future work.

B. Latency Analysis
In this subsection, we provide a latency analysis of our
MD windowed decoder.’ For decoding a group of VN,

SThe presented latency analysis is inspired by the analysis in [31] performed
for the one-dimensional windowed decoding.
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we consider the decoding latency as the time the first VN is
acquired until the whole VNs in that group are decoded, which
is an upper bound for the latency of all VNs in the group. First,
we consider the latency of a block decoder. The block decoder
requires all the VNs to start decoding. Therefore, its decoding
latency T is given by T = Tycc + Tiyee, Where T, is the
time needed to receive the full codeword and T}, is the time
needed to decode the codeword.

We define the window latency as the time needed to decode
the targeted VNs for a single MD window. This latency gives
the time elapsed between successive decoding of the MD
targeted VNs.® We can define window latency as TW» =
TWp + TP, where T)VP is the time needed to receive the

rec rec

VNs in the MD window and T'!? is the time needed to decode

dec
the targeted VNs. We can relate T,YZCD and 7. by
w L w
TV < M e MTT@, (10)
LrLoz L

since all MD windows, except for a few trailing and leading
ones, require (Wp +m)r Ly z values for the VNs in their MD
configurations before they can start decoding.

We assume that the number of iterations is the same for
both the block decoder and the MD windowed decoder. For
iterative decoding, the decoding time grows linearly with the
number of VNs in consideration. Each MD configuration has
WpkLse z VNs, except for the last (Wp — 1) MD windows
that have fewer VNs. Therefore, T;g 2 and Tjye. are related
by:

Tdec - —Tdec~

TWp < 2227
LrLoz L

dec — (11)
Using (10) and (11), T7Wp < Wetmp 4 Wor, =<
WT. As expected, the latency reduction is similar to
windowed decoding of 1D-SC codes, which shows that our
MD-SC construction preserves the latency benefits of the
1D-SC codes.

VI. SIMULATION RESULTS

Our simulation results demonstrate the outstanding per-
formance of our new framework for constructing MD-SC
codes, and it is organized as follows: Subsections A and B
are dedicated to the analysis of MD-SC codes with girths
6 and 8, respectively. In each subsection, we study the effect
of parameters 7, d, and Ly on the performance of MD-SC
codes. Additionally, we compare the MD-SC codes con-
structed by our new framework with their 1D-SC counterparts
(1D-SC codes having the same length and nearly the same
rate as the MD-SC codes). In Subsection C, we compare
the performance of our well-designed MD-SC codes with
random constructions. In Subsection D, we evaluate the per-
formance of the MD windowed decoding. In our simulations,
we consider the AWGN channel, and we use quantized
min-sum algorithm with 4 bits and 15 iterations for the
decoding.

©This definition of latency is commonly used in the literature on windowed
decoding, e.g., [31], [32].
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Fig. 7. The number of active cycles-6 for various densities and depths. After
a point, increasing 7 does not decrease the population of active cycles-6, e.g.,
after 18 relocations for depth 2, which results an early termination.

TABLE I

POPULATION OF CYCLES-6 FOR MD-SC CODES WITH SC-CODE 1 AS THE
CONSTITUENT SC CODE, Ly = 5, AND DENSITY 26.47%

depth d 2 3 4 5
number of active cycles-6 26 12 7 7
total number of cycles-6 20,825 | 9,775 | 5,695 | 5,610

A. Analysis for MD-SC Codes With Girth 6

We first describe the code parameters of SC-Code 1 with
girth 6 that is used as the constituent SC code in the rest of this
subsection. SC-Code 1 has parameters kK = z = 17, v = 4,
m = 1, L = 10, rate 0.74, and length 2,890 bits, and it is
constructed by the OO-CPO technique [7]. The partitioning
and CPM powers of SC-Code 1 are given in Appendix. The
cycles of interest here have length 6, i.e., kK = 6.

First, we consider MD-SC codes with L, = 5 constructed
by Algorithm 2. Fig. 7 shows the effect of increasing the MD
coupling density 7 on the population of cycles-6 for various
MD coupling depths. The horizontal axis shows 77, and the
vertical axis shows the number of active cycles-6. We remind
that an active cycle-k is a cycle-k that visits CPMs of the
middle replica of the constituent SC code and IRC (i.e., (4))
holds for it. As we see, increasing 7 does not decrease the
population of active cycles-6 after 18 (resp. 23) relocations for
depth 2 (resp., 5), resulting in an earlier termination for the
smaller depth.

Table I shows the number of cycles-6 for MD-SC codes with
Ly = 5, density 18 (26.47% of CPMs), and for various MD
coupling depths. As we see, increasing the depth improves the
cycle properties of the MD-SC codes. According to Table I,
MD-SC codes with depths 4 and 5 have similar number of
active cycles-6, and the small difference in the total number of
cycles-6 is due to the different multiplicity of the active cycles-
6 in the final MD-SC codes. Fig. 8 shows a similar comparison
in terms of the BER performance. For example, at SNR=
3.94 dB, the MD-SC code with depth 5 shows more than
1.5 orders of magnitude improvement in BER performance
compared to MD-SC code with depth 2.
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Fig. 8. The BER curves over AWGN channel at density 26.47% and for

various depths.

Next, we study the effect of increasing the MD cou-
pling length Lo on the performance of MD-SC codes.
We first describe the MD-SC codes and their 1D counterparts.
MD-SC-Code 1 has Lo = 1, and it is, in fact, one instance of
SC-Code 1. MD-SC-Code 2 has Ly = 3, d = 3 (maximum
depth), and 7 = 23 (maximum density). After reaching the
maximum density, relocation does not decrease the population
of the cycles of interest. SC-Code 2 is an SC code similar to
SC-Code 1 but with L = 30 (three times the coupling length of
SC-Code 1); thus it has comparable length and rate to MD-SC-
Code 2. MD-SC-Code 3 has Ly = 5, d = 5 (maximum depth),
and 7 = 23 (maximum density). SC-Code 3 is an SC code
similar to SC-Code 1 but with L = 50; thus it has comparable
length and rate to MD-SC-Code 3. The MD mapping matrices,
ie., M = [M(C;;)], for MD-SC-Codes 2 and 3 are shown
below:

01202200000000010
M2 — 10000111020000022
20000001200011002}"
100000020112000010 |
[03302200010000100]
M5 — 11300003034000042
000000011003430¢04
10000300040002000 0 |

Table II shows the number of cycles-6 for SC-Codes 2 and
3 and MD-SC-Codes 1-3. MD-SC-Code 2 has nearly
90% fewer cycles-6 compared to SC-Code 2, and
MD-SC-Code 3 has nearly 99% fewer cycles-6 compared
to SC-Code 3. Furthermore, by increasing the number of
constituent SC codes, although the overall code length
increases, the number of cycles-6 decreases thanks to the
higher amount of the MD coupling.

Fig. 9 compares the BER performance for our MD-SC codes
and their 1D-SC counterparts. MD-SC-Code 2 shows about
4 orders of magnitude performance improvement compared
to SC-Code 2 at SNR= 4.10 dB. This improvement is very
pronounced for MD-SC-Code 3 compared to SC-Code 3
(about 6 orders of magnitude at SNR= 3.85 dB). These results
demonstrate that the freedom offered by MD-SC codes is
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TABLE II

POPULATION OF CYCLES-6 FOR MD-SC CODES AND THEIR
1D COUNTERPARTS

code name Lo | length rate cycles-6
MD-SC-Code 1 (SC-Code 1) | 1 2,890 0.74 | 29,274
SC-Code 2 1 8,670 0.76 | 91,494
MD-SC-Code 2 3 8,670 0.74 | 9,078
SC-Code 3 1 14,450 | 0.76 | 153,714
MD-SC-Code 3 5 14,450 | 0.74 | 1,700
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Fig. 9. The BER curves over AWGN channel for MD-SC codes compared
to their 1D counterparts: (a) Lo = 3, (b) L2 = 5.

thoroughly exploited by our efficient construction framework,
resulting in a large improvement in the BER performance.
One interesting observation here is that although increasing
the coupling length improves the BER performance for 1D-SC
codes, the improvement becomes incremental for large values
of L. Therefore, adding the MD coupling to achieve an even
better error correction is a promising choice.

B. Analysis for MD-SC Codes With Girth 8

We first describe the code parameters of SC-Code 4 with
girth 8 that is used as constituent SC code in the rest of this
subsection. SC-Code 4 has parameters x = 19, z = 23, v = 3,
m = 2, L = 10, rate 0.81, and length 4,370 bits, and it is
constructed by the OO-CPO technique [7]. The partitioning
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Fig. 10. The number of active cycles-8 for various densities and depths.
TABLE III

POPULATION OF CYCLES-8 FOR MD-SC CODES AND THEIR
1D COUNTERPARTS

code name num. active cycles-8 | total num. cycles-8

SC-Code 5 - 1,397,319
MD-SC-Code 4 8,510 292,560
MD-SC-Code 5 7,521 258,060
MD-SC-Code 6 7,291 249,320

and CPM powers of SC-Code 4 are given in Appendix. The
cycles of interest here have length 8, i.e., kK = 8.

We consider MD-SC codes with Ly = 4 constructed by
Algorithm 2. Fig. 10 shows the effect of increasing the MD
coupling density 7 on the population of cycles-8 for various
MD coupling depths. We have two interesting observations
here: First, increasing 7 does not decrease the population
of active cycles-8 after 24 (resp. 22 and 21) relocations for
depth 2 (resp., 3 and 4), implying that a larger depth does not
necessarily result in an earlier termination. Second, for some
relocations, although the population of active cycles-8 does not
decrease, Algorithm 2 proceeds with relocations (for example,
see relocations 18" and 19" in Fig. 10). This is because
although these relocations do not reduce the population of the
shortest cycles (cycles with length 8 here), they reduce the
population of cycles with length 2k = 16.

Next, we study the BER performance of MD-SC codes
with various depths and their 1D-SC counterpart. We first
describe the codes: MD-SC-Codes 4-6 have Lo = 4, 7 = 19,
SC-Code 4 as their constituent SC codes, length 17,480, and
rate 0.81. MD-SC-Code 4, resp. 5 and 6, have depth 2, resp.,
3 and 4. SC-Code 5 is an SC code similar to SC-Code 4 but
with I = 40 (four times the coupling length of SC-Code 4);
thus it has comparable length and rate to MD-SC-Codes 4-6
(length 17,480 and rate 0.83).”

According to Fig. 11, MD-SC-Codes 4-6 show about
2 orders of magnitude performance improvement compared
to SC-Code 5 at SNR= 4.50 dB. Table III shows the
number of cycles-8 for SC-Code 5 and MD-SC-Codes 4-6.
MD-SC-Code 6 has nearly 82% fewer cycles-8 compared

"The MD mapping matrices for MD-SC-Codes 4-6 can be found in
Appendix.
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Fig. 11.  The BER curves over AWGN channel at density 25% and for

various depths along with the BER performance for the 1D-SC counterpart
(SC-Code 5).

to SC-Code 5 and nearly 15% fewer cycles-8 compared
to MD-SC-Code 4. As we see, the MD coupling consider-
ably improves the performance of the SC codes; however,
the improvement by increasing the MD coupling depth is small
in this case, and thus, using a lower depth is sufficient to
achieve a good error floor performance.

C. Comparison with Random Constructions

Previous works on MD-SC codes, while promising, either
consider random constructions or are limited to specific
topologies. In this subsection, we compare our new MD-SC
code construction with random constructions for connecting
several SC codes together. Random constructions are inspired
by [10], [11], [14], [15], where the purpose of random
constructions is performing an ensemble asymptotic analysis
over a family of the MD-SC codes. In order to perform a
fair comparison, all MD-SC codes in this section have the
same constituent SC code, i.e., SC-Code 6. SC-Code 6 has
parameters K = 17, z = 17, v = 3, m = 1, L = 15,
rate 0.81, and length 4,335 bits, and it is constructed by the
0OO0-CPO technique [7]. The partitioning and CPM powers of
SC-Code 6 are given in Appendix. The cycles of interest here
have length 6, i.e., k£ = 6.

MD-SC-Codes 7-10 have Ly, = 3, 7 = 9, SC-Code 6 as
their constituent SC codes, length 13,005 bits, and rate 0.81.
MD-SC-Codes 7 and 8, have depths 2 and 3, respectively,
and they are constructed by Algorithm 2 introduced in this
paper.® MD-SC-Codes 9 and 10 are constructed by random
relocations, and they both have depth 2. For MD-SC-Code 9,
the relocated CPMs are chosen uniformly at random, and
similar relocations are applied to all replicas of one constituent
SC code. However, different constituent SC codes can have
different relocations. MD-SC-Code 10 is constructed in a
similar way to MD-SC-Code 9, but the same relocations
are applied to all constituent SC codes. The later random
construction has the benefit of avoiding the creation of cycles-4
if the constituent SC codes do not have cycles-4.

8The MD mapping matrices for MD-SC-Codes 7 and 8 can be found in
Appendix.
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TABLE IV

POPULATION OF SHORT CYCLES FOR MD-SC CODES CONSTRUCTED BY
VARIOUS POLICIES

code name num. cycles-4 | num. cycles-6 | num. cycles-8
MD-SC-Code 7 0 2,856 685,032
MD-SC-Code 8 0 0 643,110
MD-SC-Code 9 255 9,010 585,820
MD-SC-Code 10 0 8,211 606,543

102 w w w w

—+— MD-SC-Code 10: Random Policy

0 }4 —6— MD-SC-Code 7: Score Voting Policy

103k i

1074

105 ¢

~
2

10

10—7 L

10-8 L

10?0 - : - :
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Fig. 12.  The BER curves over AWGN channel for MD-SC codes with

SC-Code 6 as the constituent SC code, Lo = 3, density 18%, and constructed
based on a random policy and our new score-voting policy.

Table IV shows the population of short cycles for
MD-SC-Codes 7-10. As we see, MD-SC-Code 7 has 65%
fewer cycles-6 compared to MD-SC-Code 10, and they
both have zero cycles-4. These two codes have the same
structure, but the relocated CPMs are chosen randomly
for MD-SC-Code 10, while they are chosen to specifi-
cally reduce the number of cycles-6 for MD-SC-Code 7.
MD-SC-Code 8, which is similar to MD-SC-Code 7 but
with depth 3, has zero cycles-6 and 6.1% fewer cycles-
8 compared to MD-SC-Code 7. MD-SC-Code 9 is similar
to MD-SC-Code 10, but without the constraint of similar
relocations for all constituent SC codes, thus it could not
preserve the girth of the constituent SC codes and has cycles-4.
Fig. 12 shows the BER performance comparison for MD-
SC-Code 7 and MD-SC-Code 10. These two codes both
have depth 2 and have the MD structure described in (3).
At SNR = 6.0 dB, MD-SC-Code 7 shows nearly 1.3 orders of
magnitude BER improvement compared to MD-SC-Code 10.

D. Evaluation of MD Windowed Decoding

In this subsection, we use SC-Code 1 as the constituent
code and construct MD-SC-Code 11 with Ly = 5, d = 2,
T = 18, length 14,450 bits, and rate 0.74. We evaluate
the BER performance of MD-SC-Code 11 using the MD
windowed decoder with MD window sizes 3 and 4. As a
reference, we also show the BER performance using a block
decoder. Both the MD windowed decoder and the block
decoder use min-sum algorithm with 15 iterations. The results
are illustrated in Fig. 13. As expected, there is a slight
degradation in the BER performance for windowed decoder
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Fig. 13. The BER performance comparison for MD windowed decoder, with
MD window sizes 3 and 4, and block decoder for decoding an MD-SC code.

compared to the block decoder. In addition, the degradation
decreases as the MD window size increases, and it is already
small for MD window size 4.

APPENDIX

The partitioning matrix PM = [h; ;] and CPM power
matrix CM = [f; ;], with dimensions v X &, describe par-
titioning and CPM powers, respectively. A CPM with row
group index ¢ and column group index j in the block code
H is assigned to the component matrix Hy, ;, and it has
power f; ;. For SC-Codes 1-3, these two matrices are given
below:

0101010101 O01O01O0T11
PM! — 1 0101010101010 100O0
00000O0O0OO0OO0OT111 11111 11]["
L1 11111 1100O0O0O0O0O0TO00O0
[0 102 8 2 0 5 715 0 0 0 0 10 0 0 O
coM! = 111521410 3 6 7 8 9 4 11 12 8 14 10 16
11 2 412 8 1112915 4 13 5 6 1 11 13 15
111 3 6 9 2 16 8 4 7 101316 2 5 8 6 14

For SC-Codes 4-5, these two matrices are given below:

011012022011012¢0222
PM? = |:1 00100100222221211 1:|7
2222212111001001000
210163191 0 0215 0 0 1 0 9 0161 O
cMm?® = |:0 11734 5 6 7 8 9 101112 13 14 15 16 17 18:|.
017 0 6 8 1012141618 2022 1 3 5 19 9 11 13

For SC-Code 6, these two matrices are given below:

1 0101010101010 101
PM3=|:01010101010101010}
100101100711 010T1T10
002907 416 2 4 2 9 0 4 131 1
CM3|:13126456789101312014816:|.
0200810814161 3 5 7 15 5 5 2

For MD-SC-Codes 4-8, the MD mapping matrices are given
below:

|

OO = OO -
O O O r O
OO = OO -
O N = OO
[=NelolloRoNel
o= O O+~ O
[=NelolloRol=}
OO R OO K
(= el oBlolele)
= O = OO =
= OO O OCOo

= O N O = -
== )
= O O = = O
O O O rF
N OO = OO
Qo N = OO
oON O O+ O
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02 00000000100110030
M¢ = 100110000O0O03203000 2],
L0 1 03 010001300O0O0O02360
[10110100100100100
M"=|00000000000000O0GO0O0O ]|,
LOOOOOO0OO0OOO0OO0OO1IO0OO0OT1O0
[2 01 10100002200100
M® = 10000O0OO0OOOOOOOOOOO/{-
LOOOOOO0OO0OOOOOOOOOZ20

VII. CONCLUSION

We expanded the repertoire of SC codes by establishing
a framework for MD-SC code construction with an arbitrary
number of constituent SC codes and an arbitrary multi-
dimensional coupling depth. The MD-SC codes can be clas-
sified as SC LDPC codes, but they indeed have specific
structures beyond the traditional SC codes that are well-
exploited in our design to improve the cycle properties.
We presented a new code construction realized by jointly
using traditional spatial coupling (in the constituent codes)
and our new MD coupling (for connecting constituent codes).
For MD coupling, we rewire connections (relocate CPMs) that
are most problematic within each SC code. Our framework
encompasses a systematic way to sequentially identify and
relocate problematic CPMs, thus utilizing them to connect
the constituent SC codes. Our MD-SC codes show a notable
reduction in the population of small cycles and a significant
improvement in the BER performance compared to the 1D
setting. We also presented a windowed decoder for the MD-
SC codes that exploits the locality of the constituent SC codes
to attain a low decoding latency.

Two promising research directions are to investigate MD-SC
codes on non-uniform channels, such as multilevel Flash and
multi-dimensional magnetic recording channels, in addition to
improve the presented windowed decoder by incorporating the
MD coupling depth to further reduce the decoding latency
and complexity. Furthermore, the presented methodology for
constructing MD-SC codes can be extended to use circulant-
based underlying block codes that have circulants of weight
0, 1, or larger than 1. This can possibly result in constructing
irregular MD-SC codes, and it is an interesting research
direction for future studies.
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