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Abstract— A circulant-permutation-based spatially-coupled
(SC) code is constructed by partitioning the circulant per-
mutation matrices (CPMs) in the parity-check matrix of a
block code into several components and piecing copies of these
components in a diagonal structure. By connecting several SC
codes, multi-dimensional SC (MD-SC) codes are constructed.
In this paper, we present a systematic framework for constructing
MD-SC codes with notably better cycle properties than their
one-dimensional counterparts. In our framework, the multi-
dimensional coupling is performed via an informed relocation
of problematic CPMs. This work is general in the terms of the
number of constituent SC codes that are connected together,
the number of neighboring SC codes that each constituent
SC code is connected to, and the length of the cycles whose
populations we aim to reduce. Finally, we present a decoding
algorithm that utilizes the structures of the MD-SC code to
achieve lower decoding latency. Compared to the conventional
SC codes, our MD-SC codes have a notably lower population of
small cycles, and a dramatic BER improvement. The results of
this work can be particularly beneficial in data storage systems,
e.g., 2D magnetic recording and 3D Flash systems, as high-
performance MD-SC codes are robust against various channel
impairments and non-uniformity.

Index Terms— Circulant permutation matrix, cycles, error
floor, finite-length, LDPC codes, multi-dimensional codes, relo-
cation, spatially-coupled codes.

I. INTRODUCTION

S
PATIALLY-COUPLED (SC) codes are a family of graph-

based codes that have attracted significant attention thanks

to their capacity approaching performance. One-dimensional

SC (1D-SC) codes are constructed by coupling a series of dis-

joint block codes into a single coupled chain [3]. Here, we use

circulant-permutation-based LDPC codes [4] as the underlying

block codes. The 1D-SC codes have been well studied from
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the asymptotic perspective and the finite length perspective.

From the asymptotic perspective, density evolution techniques

have been used to study the decoding threshold, e.g., [5], [6].

From the finite length perspective, via the evaluation and opti-

mization of the number of problematic combinatorial objects,

it has been shown how an informed coupling strategy can

notably improve the performance, e.g., see [7]–[9].

Multi-dimensional SC (MD-SC) codes can be constructed

by coupling several 1D-SC codes together via rewiring

the existing connections or by adding extra variable nodes

(VNs) or check nodes (CNs) [10], [11]. MD-SC codes are

more robust against burst erasures and channel non-uniformity,

and they have improved iterative decoding thresholds, com-

pared to 1D-SC codes [10], [11]. MD-SC codes were intro-

duced in [10], [11] and investigated more in [12]–[17].

In [10], [12], [13], constructions are presented for MD-SC

codes that have specific structures, e.g., loops and triangles.

The construction method for MD-SC codes presented in [11]

involves connecting edges uniformly at random such that some

criteria on the number of connections are satisfied. In [14],

a framework is presented for constructing MD-SC codes by

randomly and sparsely introducing additional CNs to connect

VNs at the same positions of different chains. In [15], multiple

SC codes are connected by random edge exchanges between

adjacent chains to improve the iterative decoding threshold.

In [16], [17], MD-SC codes are presented to improve the

error correction performance against the severe burst errors

in wireless channels.

Previous works on MD-SC codes, while promising, have

some limitations. In particular, they either consider random

constructions or are limited to specific topologies. As a result,

they do not focus on using the added degree of freedom

achieved by the multi-dimensional (MD) coupling in order

to improve particular properties of the code, e.g., girth and

minimum distance. They also use the density evolution tech-

nique for the performance analysis. This technique is dedicated

to the asymptotic regime and is based on some assumptions,

e.g., being cycle-free, that cannot be readily translated to the

practical finite-length case. In [13], a finite-length analysis in

the waterfall region for MD-SC codes with a loop structure is

presented.

Finding the best connections to be rewired in order to

connect constituent 1D-SC codes and construct MD-SC

codes with outstanding finite-length performance is still an

open problem. This paper is the first work to present a
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comprehensive systematic framework for constructing MD-SC

codes by coupling individual SC codes together to attain

fewer short cycles. For connecting the constituent SC codes,

we do not add extra VNs or CNs, and we only rewire some

existing connections. This paper is an extended version of

our work published in [1]. We extend our previous work by:

(1) connecting an arbitrary number of SC codes at a desired

MD coupling depth to construct MD-SC codes; (2) converting

the instances of the short cycles in the constituent SC codes to

cycles of the largest possible length in the MD-SC code; and

(3) presenting a low-latency decoder that exploits the structure

of the constituent SC codes along with the structure of the final

MD-SC code.

For exchanging the connections, we follow three rules:

(1) The connections that are involved in the highest number

of short cycles are targeted for rewiring; (2) The neighboring

constituent SC codes to which the targeted connections are

rewired are chosen such that the associated short cycles convert

to cycles of the largest possible length in the MD setting;

(3) The targeted connections are rewired to the same positions

in the other constituent SC codes in order to preserve the low-

latency decoding property. From an algebraic viewpoint, prob-

lematic circulant permutation matrices (CPMs), corresponding

to groups of connections, that contribute to the highest number

of short cycles in the constituent SC codes are relocated to

connect these codes together.

The rest of the paper is organized as follows. In Section II,

the necessary preliminaries are briefly reviewed. In Section III,

the structure of our MD-SC codes is presented. In Section IV,

our novel framework for constructing MD-SC codes with

enhanced cycle properties is introduced. In Section V, a low-

latency algorithm for decoding MD-SC codes is presented.

In Section VI, our simulation results are given. Finally,

the conclusion appears in Section VII.

II. PRELIMINARIES

Throughout this paper, each column (resp., row) in a parity-

check matrix corresponds to a VN (resp., CN) in the equiva-

lent graph of the matrix. Regular circulant-permutation-based

codes are (γ, κ) LDPC codes, where γ is the column weight

of the parity-check matrix (VN degree), and κ is the row

weight (CN degree). The parity-check matrix H of a circulant-

permutation-based code is constructed as follows:

H =

⎡

⎢

⎢

⎢

⎣

σf0,0 σf0,1 . . . σf0,κ−1

σf1,0 σf1,1 . . . σf1,κ−1

...
... . . .

...

σfγ−1,0 σfγ−1,1 . . . σfγ−1,κ−1

⎤

⎥

⎥

⎥

⎦

. (1)

Each CPM has the form σfi,j where i, 0 ≤ i ≤ γ−1, is the

row group index, j, 0 ≤ j ≤ κ−1, is the column group index,

and σ is the z×z identity matrix cyclically shifted one unit to

the left. The term fi,j specifies the power of the CPM at row

group index i and column group index j. We use circulant-

permutation-based codes as the underlying block codes of SC

codes. We highlight that, in this paper, each CPM in (1) is a

permutation of an identity matrix. Thus, each circulant matrix

has weight 1. Circulants with larger weights have a negative

Fig. 1. The parity-check matrix of an SC code with parameters m and L.

impact on the girth [18], and we do not use them in our code

construction since the ultimate goal is to improve the cycle

properties.

The parity-check matrix HSC of a circulant-permutation-

based SC code is constructed by partitioning the κγ CPMs of

the underlying block code into (m + 1) component matrices

H0,H1, . . . ,Hm (with the same size as H), and piecing L
copies of the component matrices together as shown in Fig. 1.

The parameter m is called the memory, and the parameter

L is called the coupling length. Each component matrix Hl,

0 ≤ l ≤ m, has a subset of CPMs of H and zeros elsewhere so

that
∑m

l=0 Hl = H. A replica Rν , 1 ≤ ν ≤ L, is a submatrix

of HSC that has one submatrix [HT
0 . . .HT

m]T , Fig. 1.

Recently, a systematic framework for partitioning the under-

lying block code and optimizing the CPM powers, known

as the optimal partitioning and circulant power optimizer

(OO-CPO) technique, was proposed for constructing high-

performance SC codes [7], [19]. In this paper, we use the

OO-CPO technique for designing the constituent SC codes

that are then used to construct MD-SC codes. We note that

choosing high-performance 1D-SC codes as constituent SC

codes is not necessary in our MD-SC construction, and it

only results in a better start point in a framework that further

improves the performance via MD coupling.

Short cycles have a negative impact on the performance

under iterative decoding. They affect the independence of

the extrinsic information exchanged in the iterative decoder.

Moreover, problematic combinatorial objects that cause the

error-floor phenomenon, e.g., absorbing sets and trapping sets

[20], [21], are formed of cycles with relatively short lengths

[7], [19], [22], [23]. Finally, short cycles can have a negative

impact on the code minimum distance. In [24], [25], some

upper bounds on the minimum distance of circulant-based

block and SC LDPC codes are derived, and it is shown that

the smaller the girth of the graph, the smaller the minimum

distance upper bound will be. Thus, improving the girth can

result in a larger minimum distance.

We present a systematic framework to construct MD-SC

codes, which is based on an informed relocation of CPMs.

MD-SC codes constructed using our proposed framework

enjoy a notably lower population of short cycles, and con-

sequently better performance compared to 1D-SC codes.

Throughout this paper, the operator
p
= (resp.,

p
�=) defines the

congruence (resp., incongruence) modulo p, and the operator

(.)p defines modulo p of an integer.
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III. MD-SC CODE STRUCTURE

In this section, we demonstrate the structure of our MD-

SC codes. Our MD-SC codes have two main parameters: MD

coupling depth d and MD coupling length L2. The parameter

L2 of an MD-SC code shows the number of SC codes that are

connected together to form the MD-SC code. Each constituent

SC code is connected to at most (d − 1) following SC codes,

sequenced in a cyclic order. Thus, 1 ≤ d ≤ L2, and d = 1
corresponds to L2 disjoint 1D-SC codes.

We intend to reduce the population of cycles with length

k, or cycles-k, in our MD-SC code construction, and the

parameter k is an input to our scheme. A wise choice for k is

the girth [26], or the length of the cycle that is the common

denominator of several problematic combinatorial objects for

a specific channel, e.g., AWGN channels [7], partial response

channels [27], or Flash channels [28]. For instance, a cycle-

6 is the common denominator of problematic combinatorial

objects for AWGN channels, and a cycle-8 is the common

denominator of problematic combinatorial objects for partial

response channels even if the girth is 6.1

An Auxiliary matrix At, t ∈ {1, · · · , L2 − 1}, has the

same size as the parity-check matrix of the constituent 1D-SC

code, i.e., HSC, and appears in the parity-check matrix of the

final MD-SC code, see (3). The auxiliary matrices are all-zero

matrices at the beginning of the framework and are filled with

CPMs during the construction process. A relocation is defined

as moving a CPM of HSC to the same position in one of the

auxiliary matrices.

Consider an SC code with parity-check matrix HSC, mem-

ory m, and coupling length L as the constituent 1D-SC code,

and let Rν be the middle replica of HSC, i.e., ν = �L/2�.

There are κγ CPMs in this replica. Out of these κγ CPMs,

we choose T CPMs that are the most problematic, i.e., that

contribute to the highest number of cycles-k. The parameter

T is called the MD coupling density. We relocate the chosen

CPMs to auxiliary matrices A1, A2, . . . , Ad−1 such that a

relocated CPM from HSC is moved to the same position in one

of the auxiliary matrices. The same relocations are repeated

for all the (L − 1) remaining replicas. As a result,

HSC = H
′
SC +

d−1
∑

t=1

At, (2)

where H
′
SC is derived from HSC by removing the T chosen

CPMs. We note that the middle replica Rν is considered for

ranking the CPMs in order to include all possible cycles-k
that a CPM in HSC can contribute to. The parity-check matrix

of the MD-SC code, H
MD
SC , is constructed as follows, where

Ad = Ad+1 = · · · = AL2−1 = 0: (The non-zero auxiliary

matrices are A1, A2, . . . , Ad−1.)

H
MD
SC =

⎡

⎢

⎢

⎢

⎣

H
′
SC AL2−1 · · · A1

A1 H
′
SC · · · A2

...
...

. . .
...

AL2−1 AL2−2 · · · H
′
SC

⎤

⎥

⎥

⎥

⎦

. (3)

1We note that while all cycles of equal length may not be equally detrimental
in general, we treat them the same to simplify our design. As we will show
later in the paper, our presented algorithm works on a list of cycles to remove
by multi-dimensional rewiring. This list can be further filtered by the user to
only include the most detrimental cycles.

H
MD
SC can be viewed as a collection of L2 rows and L2

columns of segments Sa,b, where 0 ≤ a ≤ L2 − 1 and 0 ≤
b ≤ L2 − 1. Each segment Sa,b is a matrix with the same

dimension as HSC, Sa,a = H
′
SC, S(a+t)L2

,a = At for t ∈

{1, · · · , d− 1}, and S(a+t)L2
,a = 0 for t ∈ {d, · · · , L2 − 1}.2

As such, the code does not reduce to a block LDPC code even

when d = L2.

Example 1. Consider an SC code with γ = 2, κ = 3, z = 3,

m = 1, and L = 3. The matrix H of the underlying block

code and the component matrices are given below:

H =

[

σf0,0 σf0,1 σf0,2

σf1,0 σf1,1 σf1,2

]

,

H0 =

[

σf0,0 0 σf0,2

0 σf1,1 0

]

,

H1 =

[

0 σf0,1 0

σf1,0 0 σf1,2

]

.

We intend to construct an MD-SC code with parameters T =
1, d = 2, and L2 = 4. Assume σf1,0 is the most problematic

CPM, and we relocate it to A1. This relocation is applied to

all L = 3 instances of the problematic CPM. We remind that

each CPM corresponds to a group of z connections in the

graph of the SC code. Four constituent SC codes along with

their problematic connections are depicted in Fig. 2(a). The

problematic connections are rewired to the same positions in

the next SC codes, in a cyclic order, to construct the MD-SC

code, Fig. 2(b).

Next, we introduce some necessary definitions:

Definition 1.

1) Let Ci,j , where 0 ≤ i ≤ (L + m)γ−1 and 0 ≤ j ≤
Lκ−1, be a CPM in HSC. We say Ci,j is relocated to

At, where t ∈ {1, · · · , d − 1}, if it is moved from HSC

to At. We denote this relocation as Ci,j→At.

2) Ci,j@Sa,b refers to Ci,j in segment Sa,b. When Ci,j→At,

the value of Ci,j@Sa,a is copied to Ci,j@S(a+t)L2
,a,

and Ci,j@Sa,a becomes 0 (a ∈ {0, · · · , L2 − 1} and

t ∈ {1, · · · , d − 1}).

3) The MD mapping M : {Ci,j}→{0, · · · , d−1} is a map-

ping from a CPM in HSC to an integer in {0, · · · , d−1},

and it is defined as follows:

a) If Ci,j→At, M(Ci,j) = t.
b) If Ci,j is kept in H

′
SC (no relocation), M(Ci,j) = 0.

4) A cycle-k, denoted by Ok, visits k CPMs in the parity-

check matrix of the code. We list the k CPMs of Ok,

according to the order they are visited when the cycle

is traversed in a clockwise direction, in a sequence as

COk
= {Ci1,j1 , Ci2,j2 , . . . , Cik,jk

}, where i1 = i2, j2 =
j3, . . . , ik−1 = ik, jk = j1. A CPM can be visited more

than once, e.g., Fig. 3(b).

5) We denote the distance between Ciu,ju
and Civ ,jv

on

Ok, where u, v ∈ {1, . . . , k}, as DOk
(Ciu,ju

, Civ ,jv
) ∈

{0, . . . , k − 1}. DOk
(Ciu,ju

, Civ,jv
) = |v − u|.

In the new MD-SC code design framework, we effectively

answer two questions: which CPMs to relocate, and where to

relocate them.

2While HMD

SC
may look similar to a block LDPC code, we would like to

note that the locality of connections is always bounded during relocations.
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Fig. 2. (a) Four 1D-SC codes. Circles (resp., squares) represent VNs (resp.,
CNs). Each line represents a group of connections (defined by a CPM) from
z VNs to z CNs. Problematic connections are shown in dashed red lines.
(b) MD-SC code with T = 1, d = 2, and L2 = 4. Rewired connections are
shown in dashed blue lines.

IV. NOVEL FRAMEWORK FOR MD-SC CODE DESIGN

In this section, we present a new framework for constructing

MD-SC codes. First, we investigate the effects of relocating a

subset of CPMs on the population of cycles. Then, we present

our algorithm for constructing MD-SC codes which is based

on a score voting policy.

A. The Effects of Relocation of CPMs on Cycles

Consider a cycle Ok in HSC with the sequence of CPMs

COk
. Prior to any relocation, there are L2 instances of this

cycle in the MD-SC code with parameter L2, one per each

constituent SC code. We investigate the effect of relocating

a subset of CPMs of Ok, and we call this subset targeted

CPMs. We show that, after relocations, L2 instances of CPMs

of COk
can form L2 cycles of length k, L2/2 cycles of length

2k, . . . , or one cycle of length L2k. The first case is a result of

bad choices for relocations, and the rest are more preferable.

In fact, we opt for the relocations that result in larger cycles

(with smaller cardinality as a result).

Theorem 1. Let COk
= {Ci1,j1 , Ci2,j2 , . . . , Cik,jk

} be the

sequence of CPMs in HSC that are visited in a clock-

Fig. 3. Cycles-8 with CO8
= {Ci1,j1 , . . . , Ci8,j8}. Each line represents a

connection between two CPMs. (a) All CPMs are unique. (b) Ci6,j6 = Ci2,j2
and Ci7,j7 = Ci3,j3 .

wise order by Ok. If the following equation holds,

the L2 instances of CPMs of COk
form L2 cycles-k

in H
MD
SC ,

k
∑

u=1

(−1)uM(Ciu,ju
)

L2= 0. (4)

Otherwise, the instances of the targeted CPMs do not

result in cycles-k in H
MD
SC .3 We call (4) the Ineffec-

tive Relocation Condition, or IRC, in the rest of this

paper.

Proof: Let (Ciu,ju
, Ciu+1,ju+1

) be a pair of consecutive

CPMs in COk
, where u ∈ {1, . . . , k} and Cik+1,jk+1

=
Ci1,j1 . By definition, two CPMs have the same row (resp.,

column) group index, i.e., iu = iu+1 (resp., ju =

ju+1), when u
2
= 1 (resp., u

2
= 0). Before relocations,

Ciu,ju
@Sa,a �= 0 and Ciu,ju

@Sa,b = 0, where Ciu,ju
∈

COk
, a, b ∈ {0, · · · , L2 − 1}, and a �= b. This results

in L2 instances of Ok, one per each segment Sa,a. After

relocations, the CPMs in COk
do not all belong to the same

segment.

Here, a unit of an MD horizontal (resp., MD vertical) shift

is defined as cyclically going one segment right (resp., down)

when we go from Ciu,ju
to Ciu+1,ju+1

. The cycle Ok reflects

in the MD-SC code as cycles with the same length k if and

only if when we start from Ci1,j1 �= 0 from one segment and

traverse the CPMs of the cycle in a clock wise order (with

the same order they appear in COk
), we end up at the same

segment that we started with.

The segments of H
MD
SC appear in the cyclic order

{H′
SC,AL2−1, · · · ,A1}, with the MD mapping {0, L2 −

1, · · · , 1}, from left to right. These segments appear in the

cyclic order {H′
SC,A1, · · · ,AL2−1}, with the MD mapping

{0, 1, · · · , L2−1}, from top to bottom, see (3). Thus, the MD

horizontal shift, when we go from Ciu,ju
to Ciu+1,ju+1

,

u ∈ {1, 3, . . . , k − 1}, is (M(Ciu,ju
) − M(Ciu+1,ju+1

))L2

units, see Definition 1.3. Similarly, the MD vertical shift,

when we go from Ciu,ju
to Ciu+1,ju+1

, u ∈ {0, 2, . . . , k},

is (M(Ciu+1,ju+1
) − M(Ciu,ju

))L2
units. We remind that the

operator (.)p defines modulo p of an integer. The total MD

horizontal and vertical shifts when we traverse the CPMs of

3Equation (4) resembles Fossorier’s condition on CPM powers of a
circulant-permutation-based code that makes a cycle in the protograph result
in multiple cycles in the lifted graph of the code [29].
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Ok in H
MD
SC are δH and δV , respectively:

δH = (
∑

u∈{1,3...,k−1}

[M(Ciu,ju
) − M(Ciu+1,ju+1

)])L2

= (−
k

∑

u=1

[(−1)uM(Ciu,ju
)])L2

,

δV = (
∑

u∈{2,4...,k}

[M(Ciu+1,ju+1
) − M(Ciu,ju

)])L2

= (−

k
∑

u=1

[(−1)uM(Ciu,ju
)])L2

. (5)

The relocations are ineffective if and only if the start and

end segments are the same when we traverse the k CPMs of

Ok. For this to happen, the total MD horizontal and vertical

shifts (δH and δV ) need to be zero, which results in (4).

If equation (4), or IRC, holds for the CPMs of Ok, L2

instances of CPMs of COk
in H

MD
SC form L2 cycles-k in

the MD-SC code (not preferable). Theorem 2 investigates the

situation when IRC does not necessarily hold.

Theorem 2. Each cycle Ok in HSC results in τ cycles with

length L2k/τ in H
MD
SC , where

τ = gcd(L2, ∆Ok
), (6)

and

∆Ok
= (−

k
∑

u=1

[(−1)uM(Ciu,ju
)])L2

. (7)

The operator gcd outputs the greatest common divisor of its

two operands.

Proof: Consider a cycle Ok with COk
= {Ci1,j1 , . . . ,

Cik,jk
} in HSC. There are (L2)

2 instances of Ciu,ju
in H

MD
SC ,

u ∈ {1, . . . , k}, one per each segment, and only L2 of them

can be non-zero. We traverse the CPMs of Ok in H
MD
SC

according to the order they appear in COk
starting from a

non-zero instance of Ci1,j1 . After traversing all k CPMs,

we reach Ci1,j1 in a segment that is (cyclically) ∆Ok
units

right and ∆Ok
units down from the segment we started.

If ∆Ok
= 0, the cycle is complete after traversing the k

CPMs. In this case, there are L2 instances of COk
, one per

each instance of Ci1,j1 . If ∆Ok
�= 0, the cycle cannot be

complete after traversing k CPMs. We proceed traversing the

CPMs until we reach Ci1,j1 that is in the same segment that

we started from.

We define the parameter λ as follows:

λ = min{g|g ∈ {1, 2, · · · }, g∆Ok

L2= 0}. (8)

Then, we complete the cycle after traversing λk CPMs. The

parameter λ is the minimum integer value such that λ∆Ok

L2=
0, i.e., λ = L2/ gcd (L2, ∆Ok

). The L2 instances of the k
CPMs in COk

form τ = L2k/λk = gcd(L2, ∆Ok
) cycles of

the length λk = L2k/τ .

For example, when L2 and ∆Ok
are relatively prime, there

is a cycle with length L2k that traverses all instances of the

CPMs of COk
. When τ = gcd (L2, ∆Ok

) = L2, the instances

of the CPMs of COk
form L2 cycles with length k. In our

Fig. 4. (a) Cia,ja→A1. The white circles show original locations of
the relocated CPM. (b) A cycle-3k is formed. (c) {Cia,ja , Cib,jb

}→A1.
(d) Three cycles-k are formed. (e) {Cia,ja , Cib,jb

, Cic,jc}→A2. (f) Two
cycles-2k are formed.

algorithm for the MD-SC code construction, the relocations

that result in smaller τ are more preferred as they result in

larger cycles.

Remark 1. Review some properties of gcd that are used in

the rest of this paper:

• gcd(a, 0) = |a| for any non-zero a,

• gcd(a + yb, b) = gcd(a, b) for any integer y,

• gcd(−a, b) = gcd(a, b).

Example 2. Let COk
= {Ci1,j1 , . . . , Cik,jk

} be the sequence

of CPMs of Ok, and n be the number of its relocated CPMs.

1) Let n = 1, Cia,ja
→ A1, and L2 = 3. Then, ∆Ok

=
((−1)a)3 and τ = 1. Fig. 4(a) shows Cia,ja

→A1.

Fig. 4(b) shows that a cycle-3k (shown in orange) is

formed. The green border represents that this relocation

is preferable.

2) Let n = 2, Cia,ja
, Cib,jb

→A1, and L2 = 3. Suppose

DOk
(Cia,ja

, Cib,jb
) = 1. Then, ∆Ok

= ((−1)a −
(−1)a)3 = 0 and τ = L2 = 3. Fig. 4(c) shows

Cia,ja
, Cib,jb

→A1. Fig. 4(d) shows that three cycles-

k are formed. The red border represents that these

relocations are not preferable.

3) Let n = 3, and Cia,ja
, Cib,jb

, Cic,jc
→A2, and L2 =

4. Suppose these three CPMs are consecutive in COk
.

Then, ∆Ok
= ((−1)a(2 − 2 + 2))4 = 2 and τ = 2.
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Fig. 4(e) shows Cia,ja
, Cib,jb

, Cic,jc
→A2. Fig. 4(f) shows

that two cycles-2k are formed. The red border represents

that these relocations are less preferred. We note that if

we relocated the targeted CPMs to A1 instead, the result

would be one cycle-4k which is more preferred.

Remark 2. A CPM can appear more than once in COk
, e.g.,

see Fig. 3(b). A CPM that is repeated r times in the sequence

can be interpreted in our analysis as r different CPMs; every

two CPMs from this group have an even distance on Ok. The

relocation of a CPM that appears r times is equivalent to the

relocation of r CPMs to the same auxiliary matrix.

B. Score Voting Algorithm for MD-SC Code Design

Our framework is based on a score voting policy and aims

at minimizing the population of short cycles. As stated in

Section III, the MD coupling with depth d is performed

via relocating problematic CPMs to auxiliary matrices At,

t ∈ {1, · · · , d− 1}. After relocating one CPM, the ranking of

the problematic CPMs (with respect to the number of cycles

each of them is visited by) changes. Thus, the relocations are

performed sequentially. In our framework, we use a tree-

based strategy for constructing MD-SC codes, by identifying

a proper sequence of relocations such that as many as possible

designated cycles are removed in the constituent SC codes,

while as few as possible short cycles are formed in the multi-

dimensional configuration. To assign scores to the branches of

the tree, we use the results of Section IV (A). A tree-based

strategy has also been recently applied to find a good parti-

tioning to construct 1D-SC codes with a reduced population

of problematic objects [30].

Consider a targeted CPM Civ ,jv
. There are d possible

relocation options for this CPM: relocate to one of the (d−1)
auxiliary matrices or keep in H

′
SC, i.e., M(Civ ,jv

) = t and

t ∈ {0, 1, · · ·d − 1}. Each cycle Ok in HSC that has the

targeted CPM in its sequence gives a score for each of these

options, and the collective scoring results are considered for

making a decision. The score R(Ok, t) is proportional to the

length of the cycles that the instances of the CPMs of COk

form after applying the corresponding option (after performing

a relocation or keeping the targeted CPM in H
′
SC):

R(Ok, t) =
L2

gcd(L2, ∆Ok
)
,

∆Ok
= ((−1)v+1rt −

∑

Ciu,ju∈COk
\Civ,jv

[(−1)uM(Ciu,ju
)])L2

.

(9)

Here, we assumed Civ ,jv
is repeated r times in COk

, and v is

the index of one of the repetitions.

In fact, there might be several options for a targeted CPM

such that IRC (i.e., (4)) does not hold. However, the options

that result in larger cycles (with smaller cardinality as a

consequence) are preferable. We use a scoring system in our

algorithm for constructing MD-SC codes in order to convert

short cycles in the constituent SC codes into cycles with

lengths as large as possible.

Example 3. Consider the cycle Ok and a target CPM Civ ,jv
∈

COk
.

Algorithm 1 Score Voting Algorithm for Relocation

1: inputs: targeted CPM Civ ,jv
, k, [M(Ci,j)], d, and L2.

2: Find Ψ, the set of all active/inactive cycles-k that have

Civ,jv
in their sequences.

3: for each Ok ∈ Ψ do

4: for t ← 0 to d − 1 do

5: M(Civ,jv
) = t.

6: ∆Ok
= (−

∑k
u=1[(−1)uM(Ciu,ju

)])L2
.

7: R(Ok, t) = L2/ gcd(L2, ∆Ok
).

8: Φ = {0, · · · , d − 1}.

9: for x ← 1 to 	L2/2
 do

10: if L2
x
= 0 then

11: Φ ← arg mint∈Φ |{Ok|Ok ∈ Ψ, R(Ok, t) = x}|.

12: output: relocation options Φ.

Scenario 1. No CPMs of Ok are previously relocated, and

Civ ,jv
appears once in COk

(i.e., r = 1). Thus, IRC does

not hold after a relocation, regardless of the auxiliary matrix

that Civ ,jv
is relocated to. For the option M(Civ,jv

) = t,
R(Ok, t) = L2/ gcd(L2, t). For instance, Ok gives score 1 to

the option “keep in H
′
SC”, and gives score L2 to the option

“relocate to A1”.

Scenario 2. Ciw,jw
∈ COk

is already relocated to A1,

DOk
(Civ ,jv

, Ciw,jw
) = 2, and both CPMs appear once in

COk
(i.e., r = 1). Then, IRC does not hold for options “no

relocation" and “relocation to At", when t �= L2 − 1. In fact,

for the option M(Ciu,ju
) = t, t ∈ {0, · · · , d − 1}, Ok gives

score R(Ok, t) = L2/ gcd(L2, t + 1). For instance, Ok gives

score 1 to “relocate to AL2−1”, and gives score L2 to “keep

in H
′
SC” and “relocate to At′” where (t′ + 1) and L2 are

relatively prime.

The relocation options are {relocate to A1,…, relocate to

Ad−1, keep in H
′
SC}. We identify the best options for a

targeted CPM as follows: We first identify and keep the options

that receive the least number of scores with value x = 1,

as these options result in fewer cycle-k in the MD-SC code.

Among these options, we keep the ones that that receive the

least number of scores with value x = 2, as these options

result in fewer cycle-2k in the MD-SC code. We continue

until we reach x = 	L2/2
 or there is only one option left for

the targeted CPM. Then, all survived options are recorded as

branches of a tree, and the next targeted CPM is chosen and

similarly evaluated for each branch.

Remark 3. The score value is by definition a divisor of L2.

Thus, x is only considered for the above analysis if L2
x
= 0.

Moreover, we do not continue the procedure until reaching x =
L2. This is because two options that receive the same number

of scores with value x, x ∈ {x|x ∈ {1, 2, . . . , L2/2}, L2
x
= 0},

receive the same number of scores with value x = L2.

Algorithm 1 shows the procedure to find the best relocation

options. We consider all cycles-k in HSC that visit CPMs in

the middle replica. We call the cycles for which IRC holds the

active cycles and the rest as the inactive cycles. We highlight

three points here: (1) The targeted CPM Civ ,jv
is chosen

from {Ci,j |Ci,j �= 0 and M(Ci,j) = 0} to increase the MD
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coupling. (2) The most problematic CPM is the one that is

visited by the most active cycles. (3) Each active/inactive cycle

that visits Civ ,jv
(has Civ ,jv

in its sequence) gives a score

to each relocation option, since the status of cycles-k (being

active or inactive) changes by relocations.

Now, we are ready to describe our algorithm for construct-

ing MD-SC codes. A solution for constructing an MD-SC

code is a sequence of up to T relocations. Our algorithm

for constructing MD-SC codes is greedy in the sense that,

at each step, it chooses the relocation options that result in the

least number of short cycles. The solutions for constructing an

MD-SC code are recorded in a tree structure.

The root of the tree corresponds to the initial state, where

H
′
SC = HSC and At = 0 for t ∈ {1, · · · , L2−1}. Other nodes

correspond to one relocation each, and the path from the root

node to a node at level 	, 	 ∈ {1, . . . , T }, describes a solution

with 	 relocations for constructing the MD-SC code. At each

iteration of our algorithm, we expand the tree by one level and

trim the solutions that do not result in MD-SC codes with the

best cycle properties amongst the solutions at that level.

Expanding. At iteration 	, we consider all nodes at level

	 − 1, individually. For each node at level 	 − 1, we perform

the relocations described by the path from the root to the node,

and form matrix H
′
SC and the auxiliary matrices, accordingly.

Next, all CPMs in the middle replica of H
′
SC are ranked, in a

decreasing order, based on the number of active cycles-k that

they are visited by. Then, we target one CPM from the top of

the list and find its best relocation options, by Algorithm 1.

If the option “keep in H
′
SC” is among the best options, the next

problematic CPM in the sorted list is targeted. We continue

this process until the most problematic CPM, such that its

relocation reduces the population of short cycles, is found.

Then, its best relocation options are added as children of the

current node. If there is no CPM in the list such that its

relocation reduces the population of short cycles, the node

is not expanded.

Trimming. At the end of each iteration, all solutions (there

is one solution per leaf node) that do not result in MD-SC

codes with the least number of active cycles are trimmed. If all

children of a node are trimmed, that node is also trimmed.

Termination. We proceed with expanding and trimming the

tree of solutions, until no node is expanded in an iteration (the

relocation process does not help anymore) or the maximum

density is achieved (it happens at the end of iteration T ). Then,

we construct the MD-SC code according to the relocations

suggested by the nodes on the path from the root to a randomly

chosen, non-trimmed, leaf.

Example 4. Fig. 5 illustrates an example for the tree of

solutions to construct an MD-SC code with parameters L2 =
3, d = 3, and T = 5.4 At iteration 1, there are two winning

relocation options for the targeted CPM, and they both result

in 161 cycles-6. At iteration 2, each node at level 1 is expanded

to two nodes. All 4 solutions result in 140 active cycles-6.

At iteration 3, each node at level 2 is expanded to one node. All

4The remaining code parameters that result in this realization are κ = z =

17, γ = 4, m = 1, L = 10, girth 6, and OO-CPO technique is used for
constructing the constituent SC codes.

Fig. 5. An illustration for a tree of solutions. The information associated
with each node are the relocation option and the number of cycles-6 for the
solution described by the path from the root up to this node. The nodes with
dashed borders show the trimmed solutions. The nodes with hatch background
show the winning solutions.

4 solutions result in 123 active cycles-6. At iteration 4, the 1st

and 4th nodes at level 3 are expanded to two nodes each, and

the 2nd and 3rd nodes at level 3 are expanded to one node

each. Among the 6 solutions, two of them result in 107 active

cycles-6, and the remaining result in 108 active cycles-6 and

are trimmed. At iteration 5 (the last iteration), each (non-

trimmed) node at level 4 is expanded to one node. The two

solutions (shown with nodes that have hatch backgrounds)

result in 92 active cycles-6, and one of them can be chosen

randomly for constructing the MD-SC code.

Algorithm 2 shows the procedure for constructing MD-SC

codes.

V. LOW-LATENCY DECODING OF MD-SC CODES

In this section, we implement and analyze a low-latency

windowed decoding for MD-SC codes. First, we describe the

decoding method. Then, we provide the latency analysis of

our decoder.

A. Multi-Dimensional Windowed Decoding

In this subsection, we describe a low-latency windowed

decoder for our MD-SC codes. Our decoder extends the well-

studied windowed decoder of the conventional SC codes,

[31], [32], to allow for low-latency decoding across multiple

constituent SC codes. Such a decoder was briefly introduced in

[14]. In our paper, we thoroughly define and analyze the multi-

dimensional windowed decoder which, to our knowledge, has

not been done before.

First, note that each segment of an MD-SC code has the

staircase structure of an SC code, see Definition 1.2. Therefore,

if two VNs do not to share CNs within one constituent SC

code before MD coupling, any instance of these two VNs

across different constituent SC codes also do not share CNs

after MD coupling. This observation motivates the low-latency

windowed decoding, similar to 1D-SC codes.

We define an MD window as a collection of several smaller

(local) windows that are each defined over one segment of

H
MD
SC . Let WD be the size of the local windows and lD be

the MD window index, where m + 1 ≤ WD ≤ L and 1 ≤
lD ≤ L. Let Rk@Sa,b refer to the kth replica in segment Sa,b

of H
MD
SC . Recall that S(a+t)L2

,a = 0 for t ∈ {d, · · · , L2 − 1}
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Algorithm 2 Algorithm for Constructing MD-SC Codes

1: inputs: HSC, k, L2, d, and T .

2: initialize: A tree with one node (root), 	 = 1.

3: Find Γ, i.e., the set of all cycles-k in HSC that visit CPMs

in the middle replica of HSC.

4: while 	 ≤ T and there are nodes at level 	 − 1 do

5: for each node at level 	 − 1 do

6: Set [M(Ci,j)] according to the relocations suggested

by the path from root to node.

7: Find status (active/inactive) of cycles-k in Γ using

IRC or (4).

8: S = {Ci,j |Ci,j ∈ R�L/2� and M(Ci,j) = 0}.

9: Sort S in a decreasing order according to the number

of times they are visited by active cycles in Γ.

10: Flag= 0.

11: while |S| > 0 and Flag= 0 do

12: Select the first CPM Civ ,jv
in S for relocation.

13: Find best relocation options Φ for Civ ,jv
by Algo-

rithm 1.

14: if 0 ∈ Φ then S = S \ Civ ,jv

15: else

16: Flag= 1.

17: for ∀t ∈ Φ do

18: Add a child to node with content

M(Civ ,jv
) = t.

19: Count the number of active cycles for each solution

suggested by the nodes at level 	.

20: Trim all leaves (and their parents if needed) that do not

result in minimum active cycles-k.

21: 	 = 	 + 1.

22: Pick a random solution, set M(Ci,j) accordingly, and

construct H
MD
SC using (3).

23: output: H
MD
SC .

and a ∈ {0, . . . , L2 − 1}, which results in Rk being zero for

these segments. Therefore, the local windows are only defined

for the non-zero segments, and the number of local windows

is L2d.

Consider the lth
D MD window. For this MD window,

we define a local window W lD
a,b, where 0 ≤ a ≤ L2 − 1

and 0 ≤ b ≤ d − 1, as the edges between VNs and CNs

that exclusively belong to replicas {Rk@S(a+b)L2
,a, lD ≤

k ≤ min(lD + WD − 1, L)}. As such, the lth
D MD window

is defined as the collection of local windows W lD
a,b, and we

call it the multi-dimensional window configuration. We assume

that the VNs corresponding to replicas {R1,R2 . . . ,RlD−1}
in all segments have already been decoded, and their decoded

values contribute to the decoding of VNs in later MD windows.

The lth
D window performs decoding on its own MD window

configuration and aims to decode the VNs corresponding to

replica RlD of all segments, known as the MD targeted VNs.

This operation is performed sequentially from the first to the

Lth MD window until all the VNs are decoded. For example

in Fig. 6(a), the small rectangles represent an MD window

configuration. The green columns are VNs that have already

been decoded, and the blue columns are the targeted VNs.

Fig. 6. In both figures, the color green with horizontal lines represents
the decoded VNs and the color blue with diagonal lines represents the
MD targeted VNs: (a) MD window configuration for an MD-SC code with
parameters L = 6, m = 2, L2 = 3, d = 2, WD = 4, and lD = 2. (b) Each
smaller rectangle represents a replica and each horizontal chain is a constituent
SC code. The bigger rectangle shows the MD window configuration.

One can view each constituent SC code as a chain of

replicas. In the MD-SC code, constituent SC chains can only

be connected together through their similar replicas. MD

windowed decoding exploits this limited connectivity to allow

for lower decoding latency, Fig. 6(b). The structure of our

MD-SC codes allows for a simpler decoder implementation.

For all MD window configurations, the graphs have the same

structure (edge connectivity). Thus, the same, small decoder

can be used for all MD windows and the only change across

MD windows is the initial values of the VNs. This is another

advantage of our deterministic construction compared to the

random constructions, e.g., [11], [14], where the MD window

configurations vary.

We now briefly mention a viable variant of the MD win-

dowed decoding that is an interesting direction for future

research. To further reduce the complexity and latency, one can

limit the number of constituent SC codes that are considered

in an MD window configuration to be less than L2. The major

challenge with this decoder is that the degree distribution

of the MD window can be very different from the global

degree distribution, affecting the decoding threshold of the MD

windows [33]. Since the MD window configurations depend

on the selected relocations, the score voting algorithm would

need to take into account the degree distribution change. This

observation requires more analysis which is left as future work.

B. Latency Analysis

In this subsection, we provide a latency analysis of our

MD windowed decoder.5 For decoding a group of VNs,

5The presented latency analysis is inspired by the analysis in [31] performed
for the one-dimensional windowed decoding.
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we consider the decoding latency as the time the first VN is

acquired until the whole VNs in that group are decoded, which

is an upper bound for the latency of all VNs in the group. First,

we consider the latency of a block decoder. The block decoder

requires all the VNs to start decoding. Therefore, its decoding

latency T is given by T = Trec + Tdec, where Trec is the

time needed to receive the full codeword and Tdec is the time

needed to decode the codeword.

We define the window latency as the time needed to decode

the targeted VNs for a single MD window. This latency gives

the time elapsed between successive decoding of the MD

targeted VNs.6 We can define window latency as T WD =
T WD

rec + T WD

dec , where T WD
rec is the time needed to receive the

VNs in the MD window and T WD

dec is the time needed to decode

the targeted VNs. We can relate T WD
rec and Trec by

T WD
rec ≤

(WD + m)κL2z

LκL2z
Trec =

(WD + m)

L
Trec, (10)

since all MD windows, except for a few trailing and leading

ones, require (WD +m)κL2 z values for the VNs in their MD

configurations before they can start decoding.

We assume that the number of iterations is the same for

both the block decoder and the MD windowed decoder. For

iterative decoding, the decoding time grows linearly with the

number of VNs in consideration. Each MD configuration has

WDκL2 z VNs, except for the last (WD − 1) MD windows

that have fewer VNs. Therefore, T WD

dec and Tdec are related

by:

T WD

dec ≤
WDκL2z

LκL2z
Tdec =

WD

L
Tdec. (11)

Using (10) and (11), T WD ≤ WD+m
L Trec + WD

L Tdec ≤
WD+m

L T . As expected, the latency reduction is similar to

windowed decoding of 1D-SC codes, which shows that our

MD-SC construction preserves the latency benefits of the

1D-SC codes.

VI. SIMULATION RESULTS

Our simulation results demonstrate the outstanding per-

formance of our new framework for constructing MD-SC

codes, and it is organized as follows: Subsections A and B

are dedicated to the analysis of MD-SC codes with girths

6 and 8, respectively. In each subsection, we study the effect

of parameters T , d, and L2 on the performance of MD-SC

codes. Additionally, we compare the MD-SC codes con-

structed by our new framework with their 1D-SC counterparts

(1D-SC codes having the same length and nearly the same

rate as the MD-SC codes). In Subsection C, we compare

the performance of our well-designed MD-SC codes with

random constructions. In Subsection D, we evaluate the per-

formance of the MD windowed decoding. In our simulations,

we consider the AWGN channel, and we use quantized

min-sum algorithm with 4 bits and 15 iterations for the

decoding.

6This definition of latency is commonly used in the literature on windowed
decoding, e.g., [31], [32].

Fig. 7. The number of active cycles-6 for various densities and depths. After
a point, increasing T does not decrease the population of active cycles-6, e.g.,
after 18 relocations for depth 2, which results an early termination.

TABLE I

POPULATION OF CYCLES-6 FOR MD-SC CODES WITH SC-CODE 1 AS THE

CONSTITUENT SC CODE, L2 = 5, AND DENSITY 26.47%

A. Analysis for MD-SC Codes With Girth 6

We first describe the code parameters of SC-Code 1 with

girth 6 that is used as the constituent SC code in the rest of this

subsection. SC-Code 1 has parameters κ = z = 17, γ = 4,

m = 1, L = 10, rate 0.74, and length 2,890 bits, and it is

constructed by the OO-CPO technique [7]. The partitioning

and CPM powers of SC-Code 1 are given in Appendix. The

cycles of interest here have length 6, i.e., k = 6.

First, we consider MD-SC codes with L2 = 5 constructed

by Algorithm 2. Fig. 7 shows the effect of increasing the MD

coupling density T on the population of cycles-6 for various

MD coupling depths. The horizontal axis shows T , and the

vertical axis shows the number of active cycles-6. We remind

that an active cycle-k is a cycle-k that visits CPMs of the

middle replica of the constituent SC code and IRC (i.e., (4))

holds for it. As we see, increasing T does not decrease the

population of active cycles-6 after 18 (resp. 23) relocations for

depth 2 (resp., 5), resulting in an earlier termination for the

smaller depth.

Table I shows the number of cycles-6 for MD-SC codes with

L2 = 5, density 18 (26.47% of CPMs), and for various MD

coupling depths. As we see, increasing the depth improves the

cycle properties of the MD-SC codes. According to Table I,

MD-SC codes with depths 4 and 5 have similar number of

active cycles-6, and the small difference in the total number of

cycles-6 is due to the different multiplicity of the active cycles-

6 in the final MD-SC codes. Fig. 8 shows a similar comparison

in terms of the BER performance. For example, at SNR=
3.94 dB, the MD-SC code with depth 5 shows more than

1.5 orders of magnitude improvement in BER performance

compared to MD-SC code with depth 2.
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Fig. 8. The BER curves over AWGN channel at density 26.47% and for
various depths.

Next, we study the effect of increasing the MD cou-

pling length L2 on the performance of MD-SC codes.

We first describe the MD-SC codes and their 1D counterparts.

MD-SC-Code 1 has L2 = 1, and it is, in fact, one instance of

SC-Code 1. MD-SC-Code 2 has L2 = 3, d = 3 (maximum

depth), and T = 23 (maximum density). After reaching the

maximum density, relocation does not decrease the population

of the cycles of interest. SC-Code 2 is an SC code similar to

SC-Code 1 but with L = 30 (three times the coupling length of

SC-Code 1); thus it has comparable length and rate to MD-SC-

Code 2. MD-SC-Code 3 has L2 = 5, d = 5 (maximum depth),

and T = 23 (maximum density). SC-Code 3 is an SC code

similar to SC-Code 1 but with L = 50; thus it has comparable

length and rate to MD-SC-Code 3. The MD mapping matrices,

i.e., M = [M(Ci,j)], for MD-SC-Codes 2 and 3 are shown

below:

M
2 =

⎡

⎢

⎢

⎣

0 1 2 0 2 2 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 1 1 1 0 2 0 0 0 0 0 2 2
2 0 0 0 0 0 0 1 2 0 0 0 1 1 0 0 2
0 0 0 0 0 0 2 0 1 1 2 0 0 0 0 1 0

⎤

⎥

⎥

⎦

,

M
3 =

⎡

⎢

⎢

⎣

0 3 3 0 2 2 0 0 0 1 0 0 0 0 1 0 0
1 1 3 0 0 0 0 3 0 3 4 0 0 0 0 4 2
0 0 0 0 0 0 0 1 1 0 0 3 4 3 0 0 4
0 0 0 0 3 0 0 0 4 0 0 0 2 0 0 0 0

⎤

⎥

⎥

⎦

.

Table II shows the number of cycles-6 for SC-Codes 2 and

3 and MD-SC-Codes 1-3. MD-SC-Code 2 has nearly

90% fewer cycles-6 compared to SC-Code 2, and

MD-SC-Code 3 has nearly 99% fewer cycles-6 compared

to SC-Code 3. Furthermore, by increasing the number of

constituent SC codes, although the overall code length

increases, the number of cycles-6 decreases thanks to the

higher amount of the MD coupling.

Fig. 9 compares the BER performance for our MD-SC codes

and their 1D-SC counterparts. MD-SC-Code 2 shows about

4 orders of magnitude performance improvement compared

to SC-Code 2 at SNR= 4.10 dB. This improvement is very

pronounced for MD-SC-Code 3 compared to SC-Code 3

(about 6 orders of magnitude at SNR= 3.85 dB). These results

demonstrate that the freedom offered by MD-SC codes is

TABLE II

POPULATION OF CYCLES-6 FOR MD-SC CODES AND THEIR

1D COUNTERPARTS

Fig. 9. The BER curves over AWGN channel for MD-SC codes compared
to their 1D counterparts: (a) L2 = 3, (b) L2 = 5.

thoroughly exploited by our efficient construction framework,

resulting in a large improvement in the BER performance.

One interesting observation here is that although increasing

the coupling length improves the BER performance for 1D-SC

codes, the improvement becomes incremental for large values

of L. Therefore, adding the MD coupling to achieve an even

better error correction is a promising choice.

B. Analysis for MD-SC Codes With Girth 8

We first describe the code parameters of SC-Code 4 with

girth 8 that is used as constituent SC code in the rest of this

subsection. SC-Code 4 has parameters κ = 19, z = 23, γ = 3,

m = 2, L = 10, rate 0.81, and length 4,370 bits, and it is

constructed by the OO-CPO technique [7]. The partitioning
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Fig. 10. The number of active cycles-8 for various densities and depths.

TABLE III

POPULATION OF CYCLES-8 FOR MD-SC CODES AND THEIR

1D COUNTERPARTS

and CPM powers of SC-Code 4 are given in Appendix. The

cycles of interest here have length 8, i.e., k = 8.

We consider MD-SC codes with L2 = 4 constructed by

Algorithm 2. Fig. 10 shows the effect of increasing the MD

coupling density T on the population of cycles-8 for various

MD coupling depths. We have two interesting observations

here: First, increasing T does not decrease the population

of active cycles-8 after 24 (resp. 22 and 21) relocations for

depth 2 (resp., 3 and 4), implying that a larger depth does not

necessarily result in an earlier termination. Second, for some

relocations, although the population of active cycles-8 does not

decrease, Algorithm 2 proceeds with relocations (for example,

see relocations 18th and 19th in Fig. 10). This is because

although these relocations do not reduce the population of the

shortest cycles (cycles with length 8 here), they reduce the

population of cycles with length 2k = 16.

Next, we study the BER performance of MD-SC codes

with various depths and their 1D-SC counterpart. We first

describe the codes: MD-SC-Codes 4-6 have L2 = 4, T = 19,

SC-Code 4 as their constituent SC codes, length 17,480, and

rate 0.81. MD-SC-Code 4, resp. 5 and 6, have depth 2, resp.,

3 and 4. SC-Code 5 is an SC code similar to SC-Code 4 but

with L = 40 (four times the coupling length of SC-Code 4);

thus it has comparable length and rate to MD-SC-Codes 4-6

(length 17,480 and rate 0.83).7

According to Fig. 11, MD-SC-Codes 4-6 show about

2 orders of magnitude performance improvement compared

to SC-Code 5 at SNR= 4.50 dB. Table III shows the

number of cycles-8 for SC-Code 5 and MD-SC-Codes 4-6.

MD-SC-Code 6 has nearly 82% fewer cycles-8 compared

7The MD mapping matrices for MD-SC-Codes 4-6 can be found in
Appendix.

Fig. 11. The BER curves over AWGN channel at density 25% and for
various depths along with the BER performance for the 1D-SC counterpart
(SC-Code 5).

to SC-Code 5 and nearly 15% fewer cycles-8 compared

to MD-SC-Code 4. As we see, the MD coupling consider-

ably improves the performance of the SC codes; however,

the improvement by increasing the MD coupling depth is small

in this case, and thus, using a lower depth is sufficient to

achieve a good error floor performance.

C. Comparison with Random Constructions

Previous works on MD-SC codes, while promising, either

consider random constructions or are limited to specific

topologies. In this subsection, we compare our new MD-SC

code construction with random constructions for connecting

several SC codes together. Random constructions are inspired

by [10], [11], [14], [15], where the purpose of random

constructions is performing an ensemble asymptotic analysis

over a family of the MD-SC codes. In order to perform a

fair comparison, all MD-SC codes in this section have the

same constituent SC code, i.e., SC-Code 6. SC-Code 6 has

parameters κ = 17, z = 17, γ = 3, m = 1, L = 15,

rate 0.81, and length 4,335 bits, and it is constructed by the

OO-CPO technique [7]. The partitioning and CPM powers of

SC-Code 6 are given in Appendix. The cycles of interest here

have length 6, i.e., k = 6.

MD-SC-Codes 7-10 have L2 = 3, T = 9, SC-Code 6 as

their constituent SC codes, length 13,005 bits, and rate 0.81.

MD-SC-Codes 7 and 8, have depths 2 and 3, respectively,

and they are constructed by Algorithm 2 introduced in this

paper.8 MD-SC-Codes 9 and 10 are constructed by random

relocations, and they both have depth 2. For MD-SC-Code 9,

the relocated CPMs are chosen uniformly at random, and

similar relocations are applied to all replicas of one constituent

SC code. However, different constituent SC codes can have

different relocations. MD-SC-Code 10 is constructed in a

similar way to MD-SC-Code 9, but the same relocations

are applied to all constituent SC codes. The later random

construction has the benefit of avoiding the creation of cycles-4

if the constituent SC codes do not have cycles-4.

8The MD mapping matrices for MD-SC-Codes 7 and 8 can be found in
Appendix.
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TABLE IV

POPULATION OF SHORT CYCLES FOR MD-SC CODES CONSTRUCTED BY

VARIOUS POLICIES

Fig. 12. The BER curves over AWGN channel for MD-SC codes with
SC-Code 6 as the constituent SC code, L2 = 3, density 18%, and constructed
based on a random policy and our new score-voting policy.

Table IV shows the population of short cycles for

MD-SC-Codes 7-10. As we see, MD-SC-Code 7 has 65%
fewer cycles-6 compared to MD-SC-Code 10, and they

both have zero cycles-4. These two codes have the same

structure, but the relocated CPMs are chosen randomly

for MD-SC-Code 10, while they are chosen to specifi-

cally reduce the number of cycles-6 for MD-SC-Code 7.

MD-SC-Code 8, which is similar to MD-SC-Code 7 but

with depth 3, has zero cycles-6 and 6.1% fewer cycles-

8 compared to MD-SC-Code 7. MD-SC-Code 9 is similar

to MD-SC-Code 10, but without the constraint of similar

relocations for all constituent SC codes, thus it could not

preserve the girth of the constituent SC codes and has cycles-4.

Fig. 12 shows the BER performance comparison for MD-

SC-Code 7 and MD-SC-Code 10. These two codes both

have depth 2 and have the MD structure described in (3).

At SNR = 6.0 dB, MD-SC-Code 7 shows nearly 1.3 orders of

magnitude BER improvement compared to MD-SC-Code 10.

D. Evaluation of MD Windowed Decoding

In this subsection, we use SC-Code 1 as the constituent

code and construct MD-SC-Code 11 with L2 = 5, d = 2,

T = 18, length 14,450 bits, and rate 0.74. We evaluate

the BER performance of MD-SC-Code 11 using the MD

windowed decoder with MD window sizes 3 and 4. As a

reference, we also show the BER performance using a block

decoder. Both the MD windowed decoder and the block

decoder use min-sum algorithm with 15 iterations. The results

are illustrated in Fig. 13. As expected, there is a slight

degradation in the BER performance for windowed decoder

Fig. 13. The BER performance comparison for MD windowed decoder, with
MD window sizes 3 and 4, and block decoder for decoding an MD-SC code.

compared to the block decoder. In addition, the degradation

decreases as the MD window size increases, and it is already

small for MD window size 4.

APPENDIX

The partitioning matrix PM = [hi,j ] and CPM power

matrix CM = [fi,j ], with dimensions γ × κ, describe par-

titioning and CPM powers, respectively. A CPM with row

group index i and column group index j in the block code

H is assigned to the component matrix Hhi,j
, and it has

power fi,j . For SC-Codes 1-3, these two matrices are given

below:

PM
1

=

�
���

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

�
��� ,

CM
1 =

�
���

0 10 2 8 2 0 5 7 15 0 0 0 0 10 0 0 0

11 15 2 14 10 3 6 7 8 9 4 11 12 8 14 10 16

11 2 4 12 8 11 12 9 15 4 13 5 6 1 11 13 15

11 3 6 9 2 16 8 4 7 10 13 16 2 5 8 6 14

�
���.

For SC-Codes 4-5, these two matrices are given below:

PM
2 =

�
�

0 1 1 0 1 2 0 2 2 0 1 1 0 1 2 0 2 2 2

1 0 0 1 0 0 1 0 0 2 2 2 2 2 1 2 1 1 1

2 2 2 2 2 1 2 1 1 1 0 0 1 0 0 1 0 0 0

�
�,

CM
2 =

�
�

21 0 16 3 19 1 0 0 21 5 0 0 1 0 9 0 16 1 0

0 11 7 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0 17 0 6 8 10 12 14 16 18 20 22 1 3 5 19 9 11 13

�
�.

For SC-Code 6, these two matrices are given below:

PM
3 =

�
�

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 0 1 0 1 1 0 0 1 1 0 1 0 1 1 0

�
� ,

CM
3 =

�
�

0 0 2 9 0 7 4 16 2 4 2 9 0 4 13 1 1

13 1 2 6 4 5 6 7 8 9 10 13 12 0 14 8 16

0 2 0 0 8 10 8 14 16 1 3 5 7 15 5 5 2

�
�.

For MD-SC-Codes 4-8, the MD mapping matrices are given
below:

M
4 =

�
�

0 1 1 0 1 0 0 0 0 0 1 0 0 1 1 0 0 0 0

1 1 0 1 0 0 0 1 0 1 0 0 1 0 1 0 0 0 1

0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 1 0

�
�,

M
5 =

�
�

0 2 1 0 1 2 0 0 0 0 1 0 0 1 0 0 0 2 0

2 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 2

0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 1 2 0 0

�
�,
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M
6 =

�
�

0 2 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 3 0

1 0 0 1 1 0 0 0 0 0 0 3 2 0 3 0 0 0 2

0 1 0 3 0 1 0 0 0 1 3 0 0 0 0 0 2 3 0

�
�,

M
7 =

�
�

1 0 1 1 0 1 0 0 1 0 0 1 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0

�
�,

M
8 =

�
�

2 0 1 1 0 1 0 0 0 0 2 2 0 0 1 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0

�
�.

VII. CONCLUSION

We expanded the repertoire of SC codes by establishing

a framework for MD-SC code construction with an arbitrary

number of constituent SC codes and an arbitrary multi-

dimensional coupling depth. The MD-SC codes can be clas-

sified as SC LDPC codes, but they indeed have specific

structures beyond the traditional SC codes that are well-

exploited in our design to improve the cycle properties.

We presented a new code construction realized by jointly

using traditional spatial coupling (in the constituent codes)

and our new MD coupling (for connecting constituent codes).

For MD coupling, we rewire connections (relocate CPMs) that

are most problematic within each SC code. Our framework

encompasses a systematic way to sequentially identify and

relocate problematic CPMs, thus utilizing them to connect

the constituent SC codes. Our MD-SC codes show a notable

reduction in the population of small cycles and a significant

improvement in the BER performance compared to the 1D

setting. We also presented a windowed decoder for the MD-

SC codes that exploits the locality of the constituent SC codes

to attain a low decoding latency.

Two promising research directions are to investigate MD-SC

codes on non-uniform channels, such as multilevel Flash and

multi-dimensional magnetic recording channels, in addition to

improve the presented windowed decoder by incorporating the

MD coupling depth to further reduce the decoding latency

and complexity. Furthermore, the presented methodology for

constructing MD-SC codes can be extended to use circulant-

based underlying block codes that have circulants of weight

0, 1, or larger than 1. This can possibly result in constructing

irregular MD-SC codes, and it is an interesting research

direction for future studies.
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