
4834 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 8, AUGUST 2020

A Channel-Aware Combinatorial Approach to Design
High Performance Spatially-Coupled Codes

Ahmed Hareedy , Member, IEEE, Ruiyi Wu, Student Member, IEEE,

and Lara Dolecek , Senior Member, IEEE

Abstract— Because of their capacity-approaching performance
and their complexity/latency advantages, spatially-coupled (SC)
codes are among the most attractive error-correcting codes for
use in modern dense data storage systems. SC codes are con-
structed by partitioning an underlying block code and coupling
the partitioned components. Here, we focus on circulant-based
SC codes. Recently, the optimal overlap (OO), circulant power
optimizer (CPO) approach was introduced to construct high
performance SC codes for additive white Gaussian noise (AWGN)
and Flash channels. The OO stage operates on the proto-
graph of the SC code to derive the optimal partitioning that
minimizes the number of graphical objects that undermine
the performance of SC codes under iterative decoding. Then,
the CPO optimizes the circulant powers to further reduce
this number. Since the nature of detrimental objects in the
graph of a code critically depends on the characteristics of
the channel of interest, extending the OO-CPO approach to
construct SC codes for channels with intrinsic memory is not
a straightforward task. In this paper, we tackle one relevant
extension; we construct high performance SC codes for practical
1-D magnetic recording channels, i.e., partial-response (PR)
channels. Via combinatorial techniques, we carefully build and
solve the optimization problem of the OO partitioning, focusing
on the objects of interest in the case of PR channels. Then,
we customize the CPO to further reduce the number of these
objects in the graph of the code. SC codes designed using
the proposed OO-CPO approach for PR channels outperform
prior state-of-the-art SC codes by up to around 3 orders of
magnitude in frame error rate (FER) and 1.1 dB in signal-to-
noise ratio (SNR). More intriguingly, our SC codes outperform
structured block codes of the same length and rate by up to
around 1.8 orders of magnitude in FER and 0.4 dB in SNR. The
performance advantage of SC codes designed using the devised
OO-CPO approach over block codes of the same parameters is
not only pronounced in the error floor region, but also in the
waterfall region.
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I. INTRODUCTION

A
S other data storage systems, magnetic recording (MR)
systems operate at very low frame error rate (FER)

levels that are typically below 10−12 [1]–[5]. Consequently,
to ensure high error-correction capability in such systems,
binary [3], [4], [6] and non-binary (NB) [5], [7]–[10]
graph-based codes are used. Under iterative quantized decod-
ing, the objects that dominate the error floor region of
low-density parity-check (LDPC) codes simulated in partial-
response (PR) and additive white Gaussian noise (AWGN)
systems are different in their combinatorial nature because
of the detector-decoder looping and the intrinsic memory
in PR systems [5]. In particular, the authors in [5] intro-
duced balanced absorbing sets (BASs) to characterize the
detrimental objects in the case of PR (1-D MR) channels.
Moreover, the weight consistency matrix (WCM) framework
was introduced to systematically remove any type of absorbing
sets (ASs) from the graph of an NB-LDPC code [11], [12].

Spatially-coupled (SC) codes [13]–[15] are graph-based
(LDPC) codes constructed by partitioning an underlying block
code into components of the same size, then rewiring these
components multiple times [16]. Literature works studying
the asymptotic performance of SC codes include [15], [17],
and [18]. In this work, the underlying block codes, and conse-
quently our constructed finite-length SC codes, are circulant-
based (CB) codes. SC codes offer not only complexity/latency
gains (if windowed decoding [19] is used), but also an
additional degree of freedom in the code design; this added
flexibility is achieved via the partitioning of the parity-check
matrix of the underlying block code. This observation makes
SC codes attractive across a range of applications. Contigu-
ous [16] and non-contiguous [20]–[22] partitioning schemes
were introduced in the literature for various applications.
Recently, the optimal overlap (OO), circulant power opti-
mizer (CPO) approach was introduced to design SC codes with
superior performance for AWGN [23] and practical asymmet-
ric Flash [24] channels. The OO partitioning operates on the
protograph to compute the optimal set of overlap parameters
that characterizes the partitioning. The CPO operates on the
unlabeled graph (all edge weights are set to 1’s) to adjust the
circulant powers. The objective is to minimize the number
of instances of a common substructure that exists in several
detrimental objects, i.e., a parent of multiple detrimental
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absorbing-set children. If the SC code is binary, the unlabeled
graph is the final graph. If the SC code is non-binary, the WCM
framework [11], [12] is used to optimize the edge weights after
applying the OO-CPO approach.

In this paper, we propose an approach based on tools
from combinatorics, optimization, and graph theory, to con-
struct high performance time-invariant SC codes for PR
channels. Unlike the case of AWGN and Flash channels
(see [23] and [24]), the common substructure, whose number
of instances we seek to minimize, in the case of PR channels
can appear in different ways in the protograph of the SC
code, making the optimization problem considerably more
challenging. For that reason, we introduce the concept of
the pattern, which is a configuration in the protograph that
can result in instances of the common substructure in the
unlabeled graph of the SC code after lifting. We derive an
optimization problem, in which we express the weighted sum
of the counts (numbers of instances) of all patterns in terms of
the overlap parameters. Then, we compute the optimal set of
overlap parameters (OO) that minimizes this sum. Moreover,
we propose the necessary modifications to the CPO algorithm
presented in [23] and [24] to make it suitable for the common
substructure in the case of PR channels.

We demonstrate the gains achieved by our OO-CPO (-WCM
for NB-SC codes) approach through tables and performance
plots that compare our codes not only with SC codes, but
also with CB block codes of the same length and rate. The
reduction achieved by the OO-CPO approach in the number of
detrimental objects reaches 92% compared with the uncoupled
setting and 72% compared with a prior state-of-the-art SC code
design technique. Furthermore, the performance gain achieved
by the OO-CPO approach reaches 3 orders of magnitude
and 1.1 dB compared with the prior state-of-the-art. Most
interestingly, the proposed SC codes outperform block codes
of the same parameters, and the gain reaches 1.8 orders of
magnitude and 0.4 dB. A code threshold gain of up to 0.25 dB
is also achieved for our SC codes compared with block codes
of the same parameters, highlighting that the performance
advantage is there even in the early waterfall region.

The rest of the paper is organized as follows. Section II
introduces the necessary preliminaries. Different patterns
of the common substructure are discussed in Section III.
The analysis of the optimization problem is presented in
Section IV. The needed modifications over the baseline CPO
are detailed in Section V. We present our experimental results
in Section VI. Finally, the work is concluded in Section VII.

II. PRELIMINARIES AND MOTIVATION

In this section, we review the construction of SC codes,
provide a motivating example for SC codes simulated in
a PR system, and present the definitions of the objects of
interest. Here, each row (resp., column) in a parity-check
matrix corresponds to a check node (CN) (resp., variable node
(VN)) in the equivalent graph of the matrix (the graph of
the code). Additionally, each non-zero entry in a parity-check
matrix corresponds to an edge in the equivalent graph of the
matrix. We focus on circulant-based (protograph-based) codes.

Fig. 1. The parity-check matrix of an SC code with parameters m and L.
Replicas are also illustrated.

Since the contribution of this work (the OO-CPO) is to
optimize the topology of the underlying graph, we will focus
on the unlabeled graphs and binary matrices. Labeled graphs
and non-binary matrices will be discussed as needed. Let M be
a binary matrix, and let the protograph matrix (PM) of M be
M

p. Given M
p, the matrix M is constructed through a process

named lifting; that is, each 1 in M
p is replaced by a z×z non-

zero circulant, and each 0 is replaced by a z×z zero circulant.
Let σ be the z × z identity matrix after cyclically shifting its
columns one unit to the left. Each non-zero circulant in M is
σ raised to some power in {0, 1, . . . , z − 1} representing the
number of units with which its columns are cyclically shifted
to the left. The circulant size, z, and powers are defined as the
lifting parameters.

Let H be the binary parity-check matrix of the underlying
regular CB code. The matrix H is constructed from its PM
H

p through lifting. The matrix H (and also H
p) has column

weight (VN degree) γ and row weight (CN degree) κ, and it
consists of γκ non-zero circulants in our design, i.e., Hp is all
1’s. The circulant size is z, and in our design we use z ≥ κ.
Each circulant in H is of the form σfi,j , where 0 ≤ i ≤ γ−1,
0 ≤ j ≤ κ − 1. Circulant powers are fi,j , ∀i, j. Separable
CB (SCB) codes have fi,j = f(i)f(j).

The binary SC code is constructed as follows. First, H is
partitioned into (m + 1) disjoint component matrices (they
all have the same size as H): H0,H1, . . . ,Hm, where m is
defined as the memory of the SC code. Each component matrix
Hy, 0 ≤ y ≤ m, contains some of the γκ circulants of H and
zero circulants elsewhere such that H =

∑m

y=0 Hy . Then,
H0,H1, . . . ,Hm are coupled L times, as shown in Fig. 1,
to construct the binary parity-check matrix of the SC code,
HSC, which is of size γz(L + m) × κzL. In the OO-CPO
approach, partitioning is determined on the protograph level.
Our approach is general; it works for any m and any γ ≥ 3.
A replica is any γz(L + m) × κz submatrix of HSC that

contains
[
H

T
0 H

T
1 . . . H

T
m

]T
and zero circulants elsewhere.

Replicas are denoted by Rρ, 1 ≤ ρ ≤ L (see Fig. 1).
The PM of a component matrix Hy, 0 ≤ y ≤ m, is H

p
y , and

we call it a protograph component matrix. The PMs of H and
its component matrices are all of size γ × κ. The PM of HSC
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is H
p
SC, and it is of size γ(L+m)×κL. This H

p
SC also has L

replicas, Rρ, 1 ≤ ρ ≤ L, but with 1×1 circulants. Non-binary
SC (NB-SC) codes can be constructed from binary SC codes
as described in [24] and guided by [12]. Finite-length NB-SC
codes are also discussed in [25]. The NB codes we use have
parity-check matrices with their elements in GF(q), where GF
refers to Galois field, q = 2λ is the GF size (order), and λ ∈
{2, 3, . . .} (in the binary case, q = 2). The SC code has block
length = κzL log2(q) bits and rate ≈ [1 − γ(L + m)/(κL)].

A partitioning is contiguous if the non-zero circulants in
any component matrix Hy, 0 ≤ y ≤ m, are contiguous;
otherwise, the partitioning is non-contiguous. A technique for
contiguously partitioning H to construct HSC, namely cutting
vector (CV) partitioning, was investigated aiming to generate
SC codes for PR channels [16]. Several non-contiguous par-
titioning techniques were recently introduced in the literature,
e.g., minimum overlap (MO) partitioning [20], [21], general
edge spreading [22], in addition to OO partitioning [23], [24].
These non-contiguous partitioning techniques significantly
outperform contiguous ones [20], [23], [24]. However, as far
as we know, no prior work has proposed non-contiguous
techniques in the context of PR channels. The goal of this work
is to derive the effective OO-CPO approach for partitioning
and lifting to construct high performance SC codes optimized
for PR channels.

Consider the graph of an LDPC code. An (a, b) AS in
this graph is defined as a set of a VNs with b unsatisfied
neighboring CNs such that each VN is connected to strictly
more satisfied than unsatisfied neighboring CNs, for some set
of VN values (these a VNs have non-zero values, while the
remaining VNs are set to zero) [26]. If the configuration is
unlabeled, d1, which is the number of degree-1 neighboring
CNs of the set, is used instead of b. We focus on connected
configurations. For canonical channels, e.g., the AWGN chan-
nel, elementary ASs (EASs) are the objects that dominate the
error floor region of LDPC codes. EASs have the property that
all satisfied CNs are of degree 2, and all unsatisfied CNs are of
degree 1 [11], [27]. Unique characteristics of storage channels
(compared with the AWGN channel) result in changing the
combinatorial properties of detrimental objects in graph-based
codes simulated over such channels [11].

We now present a motivating example demonstrating the
combinatorial properties of detrimental objects in codes sim-
ulated over PR channels. We use the PR system described
in [5]. The MR channel incorporates inter-symbol interference
(intrinsic memory), jitter, and electronic noise. The normalized
channel density [28], [29], which is the ratio of the read-
head impulse response duration at half the amplitude to the
bit duration, is 1.4. The PR equalization target is [8 14 2]. The
receiver consists of filtering units followed by a Bahl-Cocke-
Jelinek-Raviv (BCJR) detector [30], which is based on pattern-
dependent noise prediction (PDNP) [31], in addition to a fast
Fourier transform based q-ary sum-product algorithm (FFT-
QSPA) LDPC decoder [32], with q being set to 2 in the case
of binary codes. The number of global (detector-decoder) iter-
ations is 10, and the number of local (decoder only) iterations
is 20. Unless a codeword is reached, the decoder performs its
prescribed number of local iterations for each global iteration.
More details about this PR system can be found in [5]. We note

TABLE I

ERROR PROFILE OF CODE 1 AT SNR = 15.5 dB OVER THE PR CHANNEL

TABLE II

ERROR PROFILE OF CODE 2 AT SNR = 15.5 dB OVER THE PR CHANNEL

that this PR system is recommended by industry. In fact,
the MR channel was directly provided to us by industry.

Example 1: Consider Codes 1 and 2 that are defined over
GF(4). The two codes have γ = 3, κ = 19, z = 46, m = 1,
and L = 5. Thus, these codes have block length = 8,740 bits.
Code 1 is uncoupled. Code 2 is an SC code designed using the
CV technique for PR channels as described in [16], and it has
rate ≈ 0.81. The optimal cutting vector used for Code 2 is
[4 9 15]. Codes 1 and 2 have SCB circulant powers of the
form fi,j = f(i)f(j) = (i2)(2j), and no specific optimization
is performed on the edge weights.1 The simulation plots of
these codes are provided in Section VI.

We present the error profile of both codes at signal-to-noise
ratio (SNR) = 15.5 dB, which is in the error floor region
of both codes when simulated over the PR channel. The error
profile classifies the collected errors according to the graphical
configurations resulting in them. All the errors collected for
both codes are AS errors. According to Table I of Code 1 and
Table II of Code 2, the dominant errors are AS errors with
few, if any, unsatisfied CNs.2 Observe that the unlabeled
configurations of the non-elementary (6, 1) and (8, 1) ASs
with γ = 3 are (6, 0) and (8, 0) configurations, respectively.
All ASs in Tables I and II have the (4, 4) configuration with
γ = 3 as a common substructure; see Fig. 2, upper panel,
for example. Moreover, in the case of γ = 4, our simulations
indicate that all dominant ASs have the (4, 8) configuration as
a common substructure; see Fig. 2, lower panel, for example.

The intrinsic memory in PR channels [2], [5] can result in
VN errors having high magnitudes, which is typically not the
case for canonical channels. These VN errors with high mag-
nitudes make it very difficult for unsatisfied CNs with degree
> 1 to participate in correcting an AS error. Consequently,
it becomes more likely to have AS errors with unsatisfied CNs
having degree ≥ 2, which are non-elementary AS errors, e.g.,
the (6, 1) and (8, 1) AS errors in Example 1. Moreover, the
detector-decoder looping (global iterations) helps the decoder
correct AS errors with bigger numbers of unsatisfied CNs.
In particular, when the number of global iterations is sufficient,
the detector becomes capable of providing enough innovation
at the decoder input in order to correct AS errors that are
“unbalanced”. Thus, the objects that dominate the error floor
region of LDPC codes simulated over PR channels can be

1The multiplication fi,j = f(i)f(j) performed to compute circulant
powers in SCB codes is (mod z)-multiplication.

2Here, few (a small number of) and many (a big number of) unsatisfied
CNs are always relative to the number of VNs in the object.
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Fig. 2. The UBSs of multiple detrimental BASTs and the associated common substructures. Upper panel (γ = 3): two non-isomorphic (6, 0, 9, 0) UBSs,
and the common substructure is the (4, 4) UAS. Lower panel (γ = 4): an (8, 2, 15, 0) UBS and a (10, 0, 20, 0) UBS, and the common substructure is the
(4, 8) UTS. Common substructures are marked with dashed blue and dashed brown lines. Internal connections in a cycle of length 8 are shown in dotted
green lines in the (4, 4) UAS. BASTs have the same configurations with appropriate edge labeling.

non-elementary, and they have a smaller number of unsatisfied
(particularly degree-1) CNs, which is the reason why they are
called “balanced”, i.e., harder to correct. Our extensive simula-
tions confirm these combinatorial properties of the detrimental
objects in the case of PR channels, which is consistent with
the motivating example we introduced. These findings were
introduced in [5] and then in [16] in the context of SC codes.
BASs and BASs of type two (BASTs) were introduced in [5]
and [11] to capture the detrimental objects in PR systems.

According to our prior results, the nature of detrimental
objects in PR systems remain the same (BASTs) regardless
from the PR equalization target being used. While we are
using the PR equalization target [8 14 2] in our simulations
in this paper, other targets like the PR2 target, [1 2 1], and
extended PR4 (EPR4) target, [1 1 −1 −1], were extensively
examined in [5] and the conclusions were the same. The
variations in channel density values between 1 and 1.5 also did
not affect the conclusions [5]. For various SC codes and with
γ ∈ {3, 4}, the common substructure in different detrimental
BASTs was shown in [16] to be consistent with the results
in Example 1.

Remark 1: Typically, altering the quantization settings of
the decoder changes the classes of detrimental absorbing sets
in AWGN systems. In particular, more precise quantization
results in the dominance of absorbing sets with fewer, if any,
unsatisfied CNs. However, and as described above, a sufficient
number of global iterations in PR systems already has the
same result. As long as the quantization is reasonable (at
least 2 bits for the integer part), altering it does not have a
considerable effect on the classes of detrimental absorbing sets
in PR systems.

We now present the definitions of different objects of
interest. Examples of these objects of interest are in Fig. 2.
Circles represent VNs. Grey squares (resp., white squares)
represent degree-1 CNs in the unlabeled and unsatisfied CNs in
the labeled (resp., degree-2 CNs in the unlabeled and satisfied
CNs in the labeled) configurations. Let g =

⌊
γ−1

2

⌋
, which is

the maximum number of unsatisfied CNs a VN can have in
an AS.

Definition 1: Consider a subgraph induced by a subset V
of VNs in the (Tanner) graph of a code. Set all the VNs in
V to values ∈ GF(q)\{0} and set all other VNs to 0. The
set V is said to be an (a, b, d1, d2, d3) balanced absorbing

set of type two (BAST) over GF(q) if the size of V is
a, the number of unsatisfied neighboring CNs of V is b,
0 ≤ b ≤ �ag

2 �, the number of degree-1 (resp., 2 and > 2)
neighboring CNs of V is d1 (resp., d2 and d3), d2 > d3, all the
unsatisfied neighboring CNs of V (if any) have either degree
1 or degree 2, and each VN in V is connected to strictly more
satisfied than unsatisfied neighboring CNs, for some set of
VN values.

While the above definition was introduced in the context
of non-binary codes [5], [11], it is valid in the binary case
as well (set q = 2, and b becomes the number of odd-degree
CNs). An (a, d1, d2, d3) unlabeled BAST (UBS) is a BAST
with the weights of all edges of its graph replaced by 1’s. All
our abbreviations are short-handed for simplicity.

Definition 2: Let V be a subset of VNs in the unlabeled
graph (all edge weights are 1’s) of a code. Let O (resp., T
and H) be the set of degree-1 (resp., 2 and > 2) neighboring
CNs of V . This graphical configuration is an (a, d1) unlabeled

elementary trapping set (UTS) if |V| = a, |O| = d1, and
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|H| = 0. A UTS is an unlabeled elementary absorbing set

(UAS) if each VN in V is connected to strictly more neighbors
in T than in O.

A binary protograph configuration is also defined by (a, d1)
for simplicity. The WCM framework removes a BAST from
the graph of an NB code by careful processing of its edge
weights (see [5], [11], and [12] for details).

III. THE COMMON SUBSTRUCTURE AND ITS PATTERNS

The idea of focusing on a common substructure in the
design of the unlabeled graph of an SC code simplifies the
optimization procedure. Additionally, minimizing the number
of instances of the common substructure significantly reduces
the multiplicity of several different types of detrimental objects
simultaneously [16], [23], which is a lot more feasible com-
pared with operating on all these detrimental objects separately
(especially for partitioning). Example 1 demonstrates that in
the case of γ = 3, the (4, 4) UAS is the common substructure
of interest for PR channels. More generally, it was shown
in [16] that for γ ≥ 3, the (4, 4(γ − 2)) UAS/UTS is
the common substructure of interest for PR channels (unlike
the case for AWGN [22], [23] and Flash channels [24],
where the substructure of interest is the (3, 3(γ − 2))). Fig. 2
shows UBSs of multiple detrimental BASTs for codes with
γ ∈ {3, 4} simulated over PR channels, demonstrating that the
common substructure of interest is the (4, 4(γ−2)) UAS/UTS.

Remark 2: There are two reasons why we focus on the case
of γ ≥ 3 in our analysis:

1) Codes with γ = 2 have poor error floor performance
since their graphs have large multiplicities of detrimental
unlabeled low weight codewords. In fact, each cycle in
a code with γ = 2 is an unlabeled codeword, i.e., an
(a, 0) UAS with a being half the cycle length, where
a ≥ 4 if the code has girth = 8. In order that these codes
can have better error floor performance, bigger GF sizes
should be used in the code design, which significantly
increases the complexity of decoding and thus, is not
advisable for data storage [9].

2) For codes having γ = 2, the concept of the common
substructure of interest becomes inapplicable. This is
because most of the unlabeled low weight codewords
of interest, which are (a, 0) UASs, with different values
of a do not share any graphical structure (they are cycles
having different lengths) in these codes.

Having said that the OO-CPO approach can still be useful
to some extent for SC codes with γ = 2. For example,
after applying some minor changes, the modified OO-CPO
approach detailed here can be used to minimize the number
of (4, 0) UASs.

A configuration that is a cycle of length 2θ with no internal

connections has exactly θ pairs of adjacent VNs, i.e., exactly
θ pairs of directly connected VNs. Any additional pair of
adjacent VNs is considered an internal connection. We note
that the (4, 4(γ − 2)) UAS/UTS is a cycle of length 8 with
no internal connections (ignore degree-1 CNs). From [33]
(see also [24]), it is known that each cycle in the unlabeled

graph (the graph of HSC) is derived from a configuration in
the protograph (the graph of the PM H

p
SC) under specific

conditions on the powers of the circulants involved in that
cycle. Thus, in the OO stage, we operate on the protograph.
Then, in the CPO stage, we operate on the circulant powers.

Remark 3: Let x− be a positive integer s.t. x− < x. The
(4, 4(γ − 2)) UAS/UTS has 4 VNs, 4 degree-1 CNs, and also
4 degree-2 CNs. Note that a configuration with 4− VNs and/or
4− degree-2 CNs in the protograph of the code can result in
(4, 4(γ − 2)) UASs/UTSs in the unlabeled graph depending
on the circulant power arrangement. This is also true for a
configuration with 4− VNs and/or 4− degree-1 CNs in the
protograph of the code. Thus, in the OO stage, we operate on
all protograph configurations that can result in (4, 4(γ − 2))
UASs/UTSs (cycles of length 8 with no internal connections)
in the unlabeled graph, including the protograph configurations
that do have internal connections. Then in the CPO stage,
we treat the (4, 4(γ−2)) UASs/UTSs and the (4, 4(γ−2)−2δ)
UASs/UTSs differently, where δ ∈ {1, 2} is the number of
existing internal connections in the configuration after lifting.

The major difference between the (4, 4(γ − 2)) UAS/UTS
and the (3, 3(γ − 2)) UAS/UTS is that there are multiple dis-
tinct configurations in the protograph, ignoring degree-1 CNs
and internal connections, that can generate the former object
in the unlabeled graph. We call these different configurations
patterns. A pattern is defined by the dimensions of the matrix
of its subgraph. The following lemma investigates the number
and nature of these patterns.

Lemma 1: The number of distinct patterns (with different
dimensions) in the protograph of a code that can result in
(4, 4(γ − 2)) UASs/UTSs in the unlabeled graph of the code
after lifting is 9 in the case of γ ≥ 4. The numbers of CNs
and VNs in these 9 patterns are both in {2, 3, 4}. This number
of distinct patterns reduces to 7 in the case of γ = 3.

Proof: Since the objects of interest in the unlabeled graph
are cycles of length 8 with 4 CNs and 4 VNs, a protograph
pattern that can generate some of them must have at most 4
CNs and 4 VNs. Moreover, to result in cycles of length 8 after
lifting, the pattern must have at least 2 CNs and 2 VNs. Com-
bining these two statements yields that the numbers of CNs
and VNs of a protograph pattern that can result in (4, 4(γ−2))
UASs/UTSs in the unlabeled graph must be in {2, 3, 4}.

Consequently, in order to have 9 distinct patterns for the
case of γ ≥ 4, we show that selecting any number of CNs
in {2, 3, 4} and any number of VNs in {2, 3, 4} can result in
a distinct pattern (one or more instances) that is capable of
generating cycles of length 8 in the unlabeled graph. Fig. 3
illustrates this statement, focusing on the matrix representation
of patterns and cycles. In the case of γ = 3, a pattern cannot
have 4 ones in a column, which reduces the number of distinct
patterns to 7.

We define the 9 patterns according to the dimensions of their
submatrices in H

p
SC as follows. Pattern P1 is 2×2, Pattern P2

is 2 × 3, Pattern P3 is 3 × 2, Pattern P4 is 2 × 4, Pattern P5

is 4 × 2, Pattern P6 is 3 × 3, Pattern P7 is 3 × 4, Pattern P8

is 4 × 3, and Pattern P9 is 4 × 4 (all illustrated in Fig. 3).
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Fig. 3. The 9 protograph patterns that can result in cycles of length 8 in the unlabeled graph after lifting. One way of traversing each pattern to generate
cycles of length 8, which is a cycle-8 candidate, is depicted in solid red. Note that only Pattern P9 represents a cycle of length 8 in the protograph.

Remark 4: Following the same logic we used in Lemma 1
and its proof for the (3, 3(γ − 2)) UAS/UTS leads to a
possibility to also have patterns for this case, with the number
of CNs and VNs in {2, 3}. However, a careful analysis guides
to the fact that only one protograph pattern can result in
(3, 3(γ − 2)) UASs/UTSs (cycles of length 6) after lifting,
which is the 3 × 3 pattern, and it is itself a cycle of
length 6 [23], [24].

The following lemma discusses the relation between differ-
ent protograph patterns and the resulting cycles after lifting.
Define a cycle-8 candidate of Pattern P� as a way to traverse
P� in order to reach cycles of length 8 in the unlabeled graph
of the code after lifting. Some candidates are shown in Fig. 3.

Lemma 2: Let ζP�
be the number of distinct cycle-8 candi-

dates of Pattern P�. Then,

ζP�
=

⎧
⎪⎪⎨
⎪⎪⎩

1, 
 ∈ {1, 6, 9},
2, 
 ∈ {7, 8},
3, 
 ∈ {2, 3},
6, 
 ∈ {4, 5}.

(1)

Proof: We define a cycle-8 candidate according to the
connectivity as follows: c1 − v1 − c2 − v2 − c3 − v3 − c4 − v4

(each CN connects the next two VNs in a circular fashion, see
Fig. 2).3 From Fig. 3, there is only one cycle-8 candidate for

3In this paper, the notation v (resp., c) refers to the ontology or the index
of a VN (resp., CN) depending on the context.

Pattern P1, which is c1 − v1 − c2 − v2 − c1 − v1 − c2 − v2,
and this is the case for all square patterns. Thus, ζP�

= 1 for

 ∈ {1, 6, 9}. It can be understood from Fig. 3 that ζP�

	= 1 for
all the remaining patterns. In particular, we have two cycle-
8 candidates for Pattern P7, that are: c1 − v1 − c2 − v2 −
c1 − v3 − c3 − v4 and c1 − v1 − c2 − v3 − c1 − v2 − c3 − v4

(which is the red cycle on P7 in Fig. 3). The situation is the
same for Pattern P8 because it is the transpose of P7. Thus,
ζP�

= 2 for 
 ∈ {7, 8}. The rest of the cases can be derived
similarly.

Pattern P1 has ζP�
= 1 (see (1)), and it results in z/2 or 0

cycles of length 8 after lifting (since P1 is only 2× 2), while
all the remaining patterns result in z or 0 cycles of length
8 after lifting [24], [33]. Thus, we define the pattern weight,
βP�

, which plays an important role in the discrete optimization
problem of the OO, as follows:

βP�
=

{
1/2, 
 = 1,
ζP�

, 
 ∈ {2, 3, 4, 5, 6, 7, 8, 9}.
(2)

IV. OO: BUILDING AND SOLVING THE

OPTIMIZATION PROBLEM

Now, we are ready to build the optimization problem.
Consider the protograph of an SC code. The weighted sum

of the total number of instances of all patterns is given by:

Fsum =

9∑

�=1

βP�
FP�

, (3)
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where FP�
is the total number of instances of Pattern P�. The

goal is to express Fsum, through FP�
, ∀
, as a function of

the overlap parameters, then find the optimal set of overlap
parameters that minimizes Fsum for OO partitioning. We first
recall the definition and the properties of overlap parameters.
More details can be found in [23].

Definition 3: For any m, let Π
1
1 =

[
H

T
0 H

T
1 . . . H

T
m

]T
,

and let Π
1,p
1 be its PM (of size (m + 1)γ × κ). Consequently,

Π
1,p
1 =

[
(Hp

0)
T (Hp

1)
T . . . (Hp

m)T
]T

. A degree-µ overlap

among µ rows (or CNs) of Π
1,p
1 indexed by {i1, . . . , iµ},

1 ≤ µ ≤ γ, 0 ≤ i1, . . . , iµ ≤ (m + 1)γ − 1, is defined
as a position (column) in which all these rows have 1’s
simultaneously. A degree-µ overlap parameter, t{i1,...,iµ},
is defined as the number of degree-µ overlaps among the rows
indexed by {i1, . . . , iµ} in Π

1,p
1 . A degree-1 overlap parameter

ti1 , 0 ≤ i1 ≤ (m + 1)γ − 1, is defined as the number of 1’s
in row i1 of Π

1,p
1 .

Note that a degree-µ overlap parameter, if µ > 1, is always
zero if in the set {i1, . . . , iµ} there exists at least one pair
of distinct row indices, say (iτ1

, iτ2
), with the property that

iτ1
≡ iτ2

(mod γ) [23]. In words, the same rows at different
protograph component matrices do not overlap at any position.
This follows from the definition of component matrices, par-
ticularly that they are disjoint. Denote the set of all non-zero
overlap parameters by O. In the context of overlap parameters,
non-zero means not guaranteed to be zero. The parameters in
O are not entirely independent. The set of all independent
non-zero overlap parameters, Oind, is:

Oind = {t{i1,...,iµ} | 1 ≤ µ ≤ γ, 0 ≤ i1, . . . , iµ ≤ mγ − 1,

∀{iτ1
, iτ2

} ⊆ {i1, . . . , iµ} iτ1
	≡ iτ2

(mod γ)}. (4)

The other non-zero overlap parameters in O\Oind are obtained
from the parameters in Oind according to [23, Lemma 3]. In
other words, any overlap parameter with at least one of its
rows in the last protograph component matrix H

p
m can be

derived via a linear combination involving overlap parame-
ters with no rows in the last protograph component matrix
H

p
m. This follows from that H

p =
∑m

y=0 H
p
y . Example 2

further illustrates the concept of independent non-zero overlap
parameters.

The cardinality of the set Oind, which determines the com-
plexity of the discrete optimization problem of the OO stage,
is given by (see also [23, Lemma 4] for more details):

Nind = |Oind| = (m + 1)γ − 1. (5)

As demonstrated in Fig. 3, for all the patterns of interest,
the highest overlap degree is µ = 4 (a pattern has at most 4
CNs). Note that while the overlap parameters themselves must
be restricted to Π

1,p
1 , the concept of the degree-µ overlap can

be generalized from Π
1,p
1 to the PM of the SC code, H

p
SC.

We will use this generalization in the analysis of patterns.

Example 2: Consider the case of γ = 4 and m = 1.
From (5), we have Nind = 24 − 1 = 15 independent
non-zero overlap parameters. In particular, Oind = {t0, t1,
t2, t3, t{0,1}, t{0,2}, t{0,3}, t{1,2}, t{1,3}, t{2,3}, t{0,1,2}, t{0,1,3},
t{0,2,3}, t{1,2,3}, t{0,1,2,3}}. Any overlap parameter that is not

in Oind involves at least one row with its index in {4, 5, 6, 7}
(a row in H

p
m). Such overlap parameter can be obtained from

the ones in Oind. For example, the overlap parameter t{0,6}

involves the row indexed by 6, which is the third row in
H

p
m = H

p
1. This overlap parameter is not independent, and

it is computed as follows: t{0,6} = t0 − t{0,2}. Similarly,
the overlap parameter t{6,7} involves the rows indexed by 6
and 7, which are the third and fourth rows in H

p
m = H

p
1,

respectively. This overlap parameter is not independent, and
it is computed as follows: t{6,7} = κ− t2 − t3 + t{2,3}. These
calculations can be verified using Fig. 12.

We aim at expressing FP�
, ∀
, in terms of the parameters

in Oind. Let Rr be a replica in which at least one VN of the
pattern being studied exists. We call Rr the reference replica.
Moreover, let the CNs (or rows) of the pattern be of the form
cx = (r − 1)γ + ix, 1 ≤ x ≤ 4. Here, cx is the index of
the row in H

p
SC corresponding to the CN. In the following,

we consider the protograph of an SC code with parameters
γ ≥ 3, κ, m, L, and O. We define (x)+ = max{x, 0}, and
F k

P�,1 as the number of instances of Pattern P� that start at
replica R1 and span k consecutive replicas. Here, “start” and
“span” are both with respect to the VNs of these instances.
Note that each VN in a pattern corresponds to an overlap (see
the patterns in Fig. 3).

As we shall see later, a Pattern P� spans at most χ
consecutive replicas, where χ either = m + 1 or = 2m + 1,
depending on the value of 
. In the math, we always consider
the case of L ≥ χ.

We say here that ix is the start of replica Rρ if ix is the
index of the first non-zero row in Rρ relative to Rr. We also
say that iy is the end of replica Rρ if iy is the index of the last
non-zero row in Rρ relative to Rr. In particular, the start and
end of replica Rr+ν are νγ and (m+ν+1)γ−1, respectively.
For example, the start and end of Rr are 0 and (m+1)γ− 1,
respectively, regardless from the value of r since Rr is the
reference replica. Moreover, the start and end of Rr+2 (resp.,
Rr−1) are 2γ and (m + 3)γ − 1 (resp., −γ and mγ − 1).
Furthermore, the indices 1, h, w, and k of replicas are always
s.t. 1 < k for two replicas, 1 < h < k for three replicas, and
1 < h < w < k for four replicas.

The steps we take to compute FP�
, for any Pattern P�,

in terms of the overlap parameters are as follows:

1) We find the maximum number of consecutive replicas
P� can span, which is χ. If all pairs of VNs in the pattern
are adjacent (directly connected), χ = m+1. Otherwise,
χ = 2m + 1.

2) We specify the different existence possibilities of P� (the
cases) according to all feasible distributions of its VNs
across replicas. For example, P6 has three VNs, two
correspond to degree-2 overlaps and one corresponds to
a degree-3 overlap. Thus, the existence possibilities are:
a) All overlaps are in one replica. b) The two degree-2
overlaps are in one replica, and the degree-3 is in another
replica. c) One degree-2 overlap along with the degree-3
overlap are in one replica, and the other degree-2 overlap
is in another replica. d) The three overlaps are in three
distinct replicas.
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3) For each of the cases specified above, we find an
expression for the number of instances of P�.

4) We compute F k
P�,1, for all k ∈ {1, 2, . . . , χ}, through the

case expressions from the previous step. In particular,
F 1

P�,1 (P� spans one replica) is a summation, over all
possible overlap parameter values, of the case expression
when all overlaps are in one replica. Then, F 2

P�,1 (P�

spans two replicas) is a summation of the case expres-
sion(s) when overlaps are in two replicas. Then, F 3

P�,1

(P� spans three replicas) is a summation of the case
expression(s) when overlaps are in two replicas (the first
and the last of the three) and the case expression(s) when
overlaps are in three replicas (if possible). This continues
until until Fχ

P�,1.

5) We use [23, Theorem 1] to find FP�
from F k

P�,1, for all
k ∈ {1, 2, . . . , χ}, as follows:

FP�
=

χ∑

k=1

(L − k + 1)F k
P�,1. (6)

The idea of (6) is to exploit the repetitive nature of the
SC parity-check matrix in order to significantly reduce the
computations in the OO stage (and later on, simplify enumer-
ating objects in the CPO stage). In particular, an instance of
Pattern P� that starts at Replica R1 and spans k consecutive
replicas appears again starting from Replica R2, Replica R3,
…, Replica RL−k+1. Thus, it suffices to compute F k

P�,1, for
any k, and then multiply by (L − k + 1).

In the forthcoming subsections, we provide the analysis for
Patterns P1, P2, and P6. For each pattern, there is a lemma
performing Steps 2 and 3, followed by a theorem performing
Steps 4 and 5. The proofs of all lemmas and theorems in this
section are in Appendices A, B, and C. The analysis of the
remaining six patterns is in [34], and it is left out of the paper
for better readability.

A. Analysis of Pattern P1 (size 2 × 2)

This pattern has two VNs, which are adjacent (connected
via at least one path with only one CN). Thus, Pattern P1 has
its VNs located in at most two replicas, and the pattern spans
(i.e., its VNs span) at most m + 1 consecutive replicas (see
[23, Lemma 1]). Suppose P1 has the CNs c1 and c2. The two
overlaps forming the pattern are of degree 2, and they are both
c1 − c2 overlaps (among c1 and c2).

Lemma 3: Case 1.1: The number of instances of P1 with
CNs c1 and c2, and all overlaps in one replica, Rr, is:

AP1

(
t{i1,i2}

)
=

(
t{i1,i2}

2

)
. (7)

Case 1.2: The number of instances of P1 with CNs c1 and c2,
and overlaps in two replicas, Rr and Re, r < e, is:

BP1

(
t{i1,i2}, t{i1+(r−e)γ,i2+(r−e)γ}

)

= t{i1,i2}t{i1+(r−e)γ,i2+(r−e)γ}. (8)

The two cases are illustrated in Fig. 4.

Theorem 1: The total number of instances of Pattern P1

in the binary protograph of an SC code that has parameters

Fig. 4. An instance of Pattern P1 in Case 1.1 (overlaps are in one replica) and
in Case 1.2 (overlaps are in two replicas), from left to right. For simplicity,
we have e = r + 1.

γ ≥ 3, κ, m, L ≥ m + 1, and O, is:

FP1
=

m+1∑

k=1

(L − k + 1)F k
P1,1, (9)

where F k
P1,1, k ∈ {1, 2, . . . , m + 1}, are given by:

F 1
P1,1 =

∑

{i1,i2}⊂{0,...,(m+1)γ−1}

AP1

(
t{i1,i2}

)
,

F k≥2
P1,1 =

∑

{i1,i2}⊂{(k−1)γ,...,(m+1)γ−1}

BP1

(
t{i1,i2}, t{i1+(1−k)γ,i2+(1−k)γ}

)
,

(10)

with i1 	= i2, and ix is defined by: ix = (ix mod γ).

B. Analysis of Pattern P2 (size 2 × 3)

This pattern has three VNs, with each two of them being
adjacent. Thus, P2 spans at most m + 1 consecutive replicas.
Suppose P2 has the CNs c1 and c2. The three overlaps forming
P2 are of degree 2, and they are all c1 − c2 overlaps.

Lemma 4: Case 2.1: The number of instances of P2 with
CNs c1 and c2, and all overlaps in one replica, Rr, is:

AP2

(
t{i1,i2}

)
=

(
t{i1,i2}

3

)
. (11)

Case 2.2: The number of instances of P2 with CNs c1 and c2,
and all overlaps in two replicas s.t. two overlaps are in Rr,
and one overlap is in Re, is:

BP2

(
t{i1,i2}, t{i1+(r−e)γ,i2+(r−e)γ}

)

=

(
t{i1,i2}

2

)
t{i1+(r−e)γ,i2+(r−e)γ}. (12)

Case 2.3: The number of instances of P2 with CNs c1 and c2,
and overlaps in three replicas (one in each), Rr, Re, and Rs,
r < e < s, is:

CP2

(
t{i1,i2}, t{i1+(r−e)γ,i2+(r−e)γ}, t{i1+(r−s)γ,i2+(r−s)γ}

)

= t{i1,i2}t{i1+(r−e)γ,i2+(r−e)γ}t{i1+(r−s)γ,i2+(r−s)γ}.

(13)

The three cases are illustrated in Fig 5.
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Fig. 5. An instance of Pattern P2 in Case 2.1 (overlaps are in one replica), in Case 2.2 (overlaps are in two replicas), and in Case 2.3 (overlaps are in three
replicas), from left to right. For simplicity, we have e = r + 1 and s = e + 1.

Theorem 2: The total number of instances of Pattern P2

in the binary protograph of an SC code that has parameters
γ ≥ 3, κ, m, L ≥ m + 1, and O, is:

FP2
=

m+1∑

k=1

(L − k + 1)F k
P2,1, (14)

where F k
P2,1, k ∈ {1, 2, . . . , m + 1}, are given by:

F 1
P2,1 =

∑

{i1,i2}⊂{0,...,(m+1)γ−1}

AP2

(
t{i1,i2}

)
,

F 2
P2,1 =

∑

{i1,i2}⊂{γ,...,(m+1)γ−1}

BP2

(
t{i1,i2}, t{i1−γ,i2−γ}

)

+
∑

{i1,i2}⊂{0,...,mγ−1}

BP2

(
t{i1,i2}, t{i1+γ,i2+γ}

)
,

F k≥3
P2,1 =

∑

{i1,i2}⊂{(k−1)γ,...,(m+1)γ−1}

BP2

(
t{i1,i2}, t{i1+(1−k)γ,i2+(1−k)γ}

)

+
∑

{i1,i2}⊂{0,...,(m−k+2)γ−1}

BP2

(
t{i1,i2}, t{i1+(k−1)γ,i2+(k−1)γ}

)

+

k−1∑

h=2

∑

{i1,i2}⊂{(k−1)γ,...,(m+1)γ−1}

CP2

(
t{i1,i2}, t{i1+(1−h)γ,i2+(1−h)γ}

, t{i1+(1−k)γ,i2+(1−k)γ}

)
, (15)

with i1 	= i2.

C. Analysis of Pattern P6 (size 3 × 3)

This pattern has three VNs, with each two of them being
adjacent. Thus, P6 spans at most m + 1 consecutive replicas.
Suppose P6 has the CNs c1, c2, and c3. Define distinct over-

laps to be overlaps from different families, i.e., overlaps among
different sets of CNs. Pattern P6 is formed of three overlaps;
two (distinct) of degree-2 and one of degree-3. Define c1 as the
CN connecting the three VNs. Thus, the overlaps are c1 − c2,
c1 − c3, and c1 − c2 − c3 (see P6 in Fig. 3). Again, each
VN corresponds to an overlap.

Lemma 5: Case 6.1: The number of instances of P6 with
CNs c1, c2, and c3 as defined in the previous paragraph, and

all overlaps in one replica, Rr, is:

AP6

(
t{i1,i2}, t{i1,i3}, t{i1,i2,i3}

)

= t{i1,i2,i3}

(
t{i1,i2,i3} − 1

)+ (
t{i1,i3} − 2

)+

+ t{i1,i2,i3}

(
t{i1,i2} − t{i1,i2,i3}

) (
t{i1,i3} − 1

)+
. (16)

Case 6.2: The number of instances of P6 with CNs c1, c2,
and c3 as defined in the previous paragraph, and all overlaps
in two replicas s.t. the two degree-2 overlaps are in Rr, and
the degree-3 overlap is in Re, is:

BP6

(
t{i1,i2}, t{i1,i3}, t{i1,i2,i3}

, t{i1+(r−e)γ,i2+(r−e)γ,i3+(r−e)γ}

)

=
[
t{i1,i2,i3}

(
t{i1,i3} − 1

)+

+
(
t{i1,i2} − t{i1,i2,i3}

)
t{i1,i3}

]

· t{i1+(r−e)γ,i2+(r−e)γ,i3+(r−e)γ}. (17)

Case 6.3: The number of instances of P6 with CNs c1, c2,
and c3 as defined in the previous paragraph, and all overlaps
in two replicas s.t. the degree-3 overlap and the c1−c2 overlap
are in Rr, and the c1 − c3 overlap is in Re, is:

CP6

(
t{i1,i2}, t{i1,i2,i3}, t{i1+(r−e)γ,i3+(r−e)γ}

)

= t{i1,i2,i3}

(
t{i1,i2} − 1

)+
t{i1+(r−e)γ,i3+(r−e)γ}. (18)

Case 6.4: The number of instances of P6 with CNs c1, c2, and
c3 as defined in the previous paragraph, and overlaps in three
replicas s.t. the c1 − c2 overlap is in Rr, the c1 − c3 overlap
is in Re, and the degree-3 overlap is in Rs, r < e, is:

DP6

(
t{i1,i2}, t{i1+(r−e)γ,i3+(r−e)γ}

, t{i1+(r−s)γ,i2+(r−s)γ,i3+(r−s)γ}

)

= t{i1,i2}t{i1+(r−e)γ,i3+(r−e)γ}

· t{i1+(r−s)γ,i2+(r−s)γ,i3+(r−s)γ}. (19)

Three of the four cases are illustrated in Fig. 6.

Theorem 3: The total number of instances of Pattern P6

in the binary protograph of an SC code that has parameters
γ ≥ 3, κ, m, L ≥ m + 1, and O, is:

FP6
=

m+1∑

k=1

(L − k + 1)F k
P6,1, (20)
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Fig. 6. An instance of Pattern P6 in Case 6.1 (overlaps are in one replica), in Case 6.3 (overlaps are in two replicas), and in Case 6.4 (overlaps are in three
replicas), from left to right. For simplicity, we have e = r + y, where y ∈ {−1, 1}, and s = e + 1.

where F k
P6,1, k ∈ {1, 2, . . . , m + 1}, are given by (21),

shown at the bottom of the page, with i1 	= i2, i1 	= i3,
and i2 	= i3.

As mentioned before, the analysis of the remaining six
patterns is in [34].

After deriving the expressions of FP�
, ∀
, as functions of the

overlap parameters in O, we use (3), (4), and [23, Lemma 3] to
express Fsum as a function of the parameters in Oind (which is
the set of all independent non-zero overlap parameters). Thus,

our discrete optimization problem is:

F ∗
sum = min

Oind

Fsum. (22)

The constraints of the optimization problem in (22) are lin-
ear constraints capturing the interval constraints under which
the resultant partitioning is valid. These constraints can be
directly obtained from the combinatorial formula used to
compute the number of partitioning choices given a specific set
of values for Oind (there is an example below). We also add the

F 1
P6,1 =

∑

i1∈{0,...,(m+1)γ−1},{i2,i3}⊂{0,...,(m+1)γ−1}

AP6

(
t{i1,i2}, t{i1,i3}, t{i1,i2,i3}

)
,

F 2
P6,1 =

∑

i1∈{γ,...,(m+1)γ−1},{i2,i3}⊂{γ,...,(m+1)γ−1}

BP6

(
t{i1,i2}, t{i1,i3}, t{i1,i2,i3}, t{i1−γ,i2−γ,i3−γ}

)

+
∑

i1∈{0,...,mγ−1},{i2,i3}⊂{0,...,mγ−1}

BP6

(
t{i1,i2}, t{i1,i3}, t{i1,i2,i3}, t{i1+γ,i2+γ,i3+γ}

)

+
∑

i1∈{γ,...,(m+1)γ−1},i2∈{0,...,(m+1)γ−1},i3∈{γ,...,(m+1)γ−1}

CP6

(
t{i1,i2}, t{i1,i2,i3}, t{i1−γ,i3−γ}

)

+
∑

i1∈{0,...,mγ−1},i2∈{0,...,(m+1)γ−1},i3∈{0,...,mγ−1}

CP6

(
t{i1,i2}, t{i1,i2,i3}, t{i1+γ,i3+γ}

)
,

F k≥3
P6,1 =

∑

i1∈{(k−1)γ,...,(m+1)γ−1},{i2,i3}⊂{(k−1)γ,...,(m+1)γ−1}

BP6

(
t{i1,i2}, t{i1,i3}, t{i1,i2,i3}, t{i1+(1−k)γ,i2+(1−k)γ,i3+(1−k)γ}

)

+
∑

i1∈{0,...,(m−k+2)γ−1},{i2,i3}⊂{0,...,(m−k+2)γ−1}

BP6

(
t{i1,i2}, t{i1,i3}, t{i1,i2,i3}, t{i1+(k−1)γ,i2+(k−1)γ,i3+(k−1)γ}

)

+
∑

i1∈{(k−1)γ,...,(m+1)γ−1},i2∈{0,...,(m+1)γ−1},i3∈{(k−1)γ,...,(m+1)γ−1}

CP6

(
t{i1,i2}, t{i1,i2,i3}, t{i1+(1−k)γ,i3+(1−k)γ}

)

+
∑

i1∈{0,...,(m−k+2)γ−1},i2∈{0,...,(m+1)γ−1},i3∈{0,...,(m−k+2)γ−1}

CP6

(
t{i1,i2}, t{i1,i2,i3}, t{i1+(k−1)γ,i3+(k−1)γ}

)

+

k−1∑

h=2

∑

i1∈{(k−1)γ,...,(m+1)γ−1},i2∈{(k−1)γ,...,(m+1)γ−1},i3∈{(k−1)γ,...,(m+h)γ−1}

DP6

(
t{i1,i2}, t{i1+(1−h)γ,i3+(1−h)γ}, t{i1+(1−k)γ,i2+(1−k)γ,i3+(1−k)γ}

)

+

k−1∑

h=2

∑

i1∈{(k−1)γ,...,(m+1)γ−1},i2∈{(h−1),...,(m+1)γ−1},i3∈{(k−1)γ,...,(m+h)γ−1}

DP6

(
t{i1,i2}, t{i1+(1−k)γ,i3+(1−k)γ}, t{i1+(1−h)γ,i2+(1−h)γ,i3+(1−h)γ}

)

+

k−1∑

h=2

∑

i1∈{(k−h)γ,...,(m−h+2)γ−1},i2∈{0,...,(m−h+2)γ−1},i3∈{(k−h)γ,...,(m−h+2)γ−1}

DP6

(
t{i1,i2}, t{i1+(h−k)γ,i3+(h−k)γ}, t{i1+(h−1)γ,i2+(h−1)γ,i3+(h−1)γ}

)
. (21)
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balanced partitioning constraint, which guarantees a balanced
distribution of the non-zero circulants among the (m + 1)
component matrices (see also [23] and [24]). A balanced
partitioning is preferred in order to prevent the situation where
a group of non-zero elements in a particular component matrix
are involved in significantly more cycles than the remaining
non-zero elements. This constraint, although it might result in
a slightly suboptimal solution in the protograph (in few cases),
is observed to be very beneficial when we apply the CPO to
construct the final code.

As with the set Oind, the optimization constraints depend
only on code parameters, and not on the common substructure
of interest (which depends on the channel). For example, in the
case of γ = 3, m = 1, and any κ, Oind = {t0, t1, t2,
t{0,1}, t{0,2}, t{1,2}, t{0,1,2}}. Let, Z be the number of par-
titioning choices given a specific set of values for Oind. Then,

Z =

(
k

t0

)(
t0

t{0,1}

)(
κ − t0

t1 − t{0,1}

)

·

(
t{0,1}

t{0,1,2}

)(
t0 − t{0,1}

t{0,2} − t{0,1,2}

)(
t1 − t{0,1}

t{1,2} − t{0,1,2}

)

·

(
κ − t0 − t1 + t{0,1}

t2 − t{0,2} − t{1,2} + t{0,1,2}

)
. (23)

The optimization constraints can be derived from the terms
in (23), and thus they are (see also [23] and [24]):

0 ≤ t0 ≤ κ, 0 ≤ t{0,1} ≤ t0,

t{0,1} ≤ t1 ≤ κ − t0 + t{0,1}, 0 ≤ t{0,1,2} ≤ t{0,1},

t{0,1,2} ≤ t{0,2} ≤ t0 − t{0,1} + t{0,1,2},

t{0,1,2} ≤ t{1,2} ≤ t1 − t{0,1} + t{0,1,2},

t{0,2} + t{1,2} − t{0,1,2} ≤ t2

≤ κ − t0 − t1 + t{0,1} + t{0,2} + t{1,2} − t{0,1,2},

and �3κ/2� ≤ t0 + t1 + t2 ≤ �3κ/2
 . (24)

The solution of this optimization problem is not unique.
However, since all the solutions have the same performance
(e.g., they all achieve F ∗

sum, see also [24]), we work with one
of these solutions, and call it an optimal vector, t

∗.

V. CPO: CUSTOMIZATION FOR PR SYSTEMS

Using an optimal vector t
∗, computed as described in

the previous section, H
p is partitioned and the protograph

matrix of the SC code, H
p
SC, is constructed. The next step

is preventing as many objects in the protograph as possible
from being reflected in the unlabeled graph of the SC code, via
optimizing the circulant powers using the CPO. Here, the CPO
is customized for the (4, 4(γ−2)) object, which is the common
substructure for detrimental configurations in the case of PR
systems (see also Fig. 2).

From the previous analysis, a Pattern P� spans at most either
m+1 or 2m+1 consecutive replicas, depending on the value
of 
. Let ξ = 2m+1. Thus, in the CPO, it suffices to operate on
the PM Π

ξ,p
1 , which is the non-zero part of the first ξ replicas

in H
p
SC and has the size (ξ + m)γ × ξκ. The circulant powers

associated with the 1’s in H
p are denoted by fi,j , where

0 ≤ i ≤ γ − 1 and 0 ≤ j ≤ κ − 1. Let the circulant powers

associated with the 1’s in Π
ξ,p
1 be f 0

i′,j′ , where 0 ≤ i0 ≤
(ξ +m)γ − 1 and 0 ≤ j0 ≤ ξκ− 1. From the repetitive nature
of the PM Π

ξ,p
1 , f 0

i′,j′ = f
i′,�j′

, where i0 = (i0 mod γ) and

j̃0 = (j0 mod κ). Define our cycle-8 candidate in the graph of
Π

ξ,p
1 as c1 − v1 − c2 − v2 − c3 − v3 − c4 − v4, which is again

a particular way of traversing a pattern and not necessarily a
protograph cycle (see also Figures 2 and 3). This candidate
results in z (or z/2 in the case of P1 only) cycles of length 8
after lifting if and only if [33]:

f 0
c1,v1

+ f 0
c2,v2

+ f 0
c3,v3

+ f 0
c4,v4

≡ f 0
c1,v2

+ f 0
c2,v3

+ f 0
c3,v4

+ f 0
c4,v1

(mod z). (25)

The goal is to prevent as many cycle-8 candidates in the
graph of H

p
SC as possible from being converted into z (or z/2

in the case of P1) (4, 4(γ − 2)) UASs/UTSs in the graph of
HSC, which is the unlabeled graph of the SC code. A cycle-
8 candidate in the graph of H

p
SC is allowed to be converted

into multiple (4, 4(γ − 2)− 2δ) UASs/UTSs, with δ ∈ {1, 2},
as long as they are not (4, 0) UASs, in the unlabeled graph
since these are not instances of the common substructure of
interest. These (4, 4(γ− 2)− 2δ) UASs/UTSs, δ ∈ {1, 2}, are
cycles of length 8 with internal connections, which means v1

and v3 are adjacent or/and v2 and v4 are adjacent (see Fig. 2).
For the cycle-8 candidate in the graph of Π

ξ,p
1 that is described

in the previous paragraph and has a CN, say c5, connecting v1

and v3, in order to have this internal connection in the lifted
cycles, the following condition for a cycle of length 6 must
be satisfied in addition to (25):

f 0
c1,v1

+f 0
c2,v2

+f 0
c5,v3

≡ f 0
c1,v2

+f 0
c2,v3

+f 0
c5,v1

(mod z). (26)

Similarly, for that cycle-8 candidate in the graph of Π
ξ,p
1 that

has a CN, say c6, connecting v2 and v4, in order to have this
internal connection in the lifted cycles, the following condition
for a cycle of length 6 must be satisfied in addition to (25):

f 0
c1,v1

+f 0
c6,v2

+f 0
c4,v4

≡ f 0
c1,v2

+f 0
c6,v4

+f 0
c4,v1

(mod z). (27)

Note that the two CNs, c5 and c6, have to be different from
the CNs the pattern encompasses in order that we consider
them in the CPO algorithm as possible internal connections.
The reason is that the final unlabeled graphs of our codes must
have no cycles of length 4 (which is also why (25) is applied
for P1 since f 0

c1,v1
+ f 0

c2,v2
≡ f 0

c1,v2
+ f 0

c2,v1
(mod z) is not

allowed for any protograph cycle of length 4, c1−v1−c2−v2).
The following lemma discusses the internal connections for

different patterns in the protograph.

Lemma 6: Let ηP�
be the maximum number of internal

connections Pattern P� can have (multiple internal connections
between the same two VNs are only counted once). Then,

ηP�
=

⎧
⎨
⎩

0, 
 ∈ {1, 3, 5},
1, 
 ∈ {2, 6, 8},
2, 
 ∈ {4, 7, 9}.

(28)

Proof: A protograph pattern, P�, with only two VNs
(
 ∈ {1, 3, 5}) cannot have any internal connections. A proto-
graph pattern with three VNs (
 ∈ {2, 6, 8}) can have at most
one internal connection. A protograph pattern with four VNs
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Algorithm 1 Optimizing Circulant Powers of SC Codes for
PR Systems

1: Inputs: SC code parameters γ ≥ 3, κ, m, and L ≥ 2m+1,
in addition to an optimal vector t

∗.

2: Assign initial circulant powers to all the γκ 1’s in H
p.

In this work, our initial powers are as in SCB codes. For
example, fi,j = (i2)(2j), 0 ≤ i ≤ γ−1 and 0 ≤ j ≤ κ−1.
(initially, no cycles of length 4 are in HSC)

3: Construct Π
ξ,p
1 via H

p and t
∗. Circulant powers of the 1’s

in Π
ξ,p
1 , f 0

i′,j′ , are obtained from the 1’s in H
p.

4: Define a counting variable ψi,j , 0 ≤ i ≤ γ − 1 and 0 ≤
j ≤ κ − 1, for each of the 1’s in H

p.

5: Define another counting variable ψ0
i′,j′ , 0 ≤ i0 ≤ (ξ +

m)γ − 1 and 0 ≤ j0 ≤ ξκ− 1, for each of the elements in
Π

ξ,p
1 .

6: Initialize all the variables in Steps 4 and 5 with zeros. Only
ξγκ counting variables of the form ψ0

i′,j′ are associated

with 1’s in Π
ξ,p
1 . The other variables remain zeros all the

time.

7: Locate all instances of the nine patterns in Π
ξ,p
1 . Note that

locating P1 means also locating all cycles of length 4 in
Π

ξ,p
1 , which is needed.

8: Determine the ζP�
ways to traverse each instance of P�, ∀
,

to reach (4, 4(γ − 2)) UASs/UTSs in the unlabeled graph,
which are the ζP�

cycle-8 candidates.
9: Specify all internal connections (CNs) in each candidate

determined in Step 8 if they can exist.
10: for each cycle-8 candidate in Π

ξ,p
1 do

11: Check whether (25) is satisfied for its circulant powers
or not.

12: if ((25) is satisfied and the candidate has no internal
connections) || ((25) is satisfied and the candidate has
internal connection(s) but neither (26) nor (27) is satisfied
for any internal connection) then

13: Mark this cycle-8 candidate as an active candidate.
14: end if

15: end for

16: Define F k,a
P�,1, k ∈ {1, 2, . . . , ξ}, as the number of active

candidates of P� starting at the first replica and spanning
k consecutive replicas in Π

ξ,p
1 .

17: The number of active candidates of P� spanning k consec-
utive replicas in Π

ξ,p
1 is (ξ−k+1)F k,a

P�,1. (for example, for

k = 1, ξF 1,a
P�,1 is the number of active candidates of P�,

for any value of 
, spanning one replica in Π
ξ,p
1 )

18: Compute the number of (4, 4(γ − 2)) UASs/UTSs in HSC

using the following formula (see also [23]):

FSC =

9∑

�=1

ξ∑

k=1

(
(L − k + 1)F k,a

P�,1

)
zP�

, (29)

where zP�
= z/2 if 
 = 1, and zP�

= z otherwise. Recall
that ξ = 2m + 1.

19: Initialize the flag stop_iterating with 0.
20: while stop_iterating = 0 do

21: Determine all the active candidates each 1 in Π
ξ,p
1 is

involved in.

22: Assign weight wk = (L − k + 1)/(ξ − k + 1) to
the number of active candidates from Step 21 that span k
consecutive replicas in Π

ξ,p
1 (see also [23]). (for example,

for k = ξ, the weight of the number of active candidates

spanning ξ consecutive replicas is (L − ξ + 1))
23: Multiply wk by 1/2 if the candidate is associated with

P1. Then, compute the weighted sum.
24: Store this weighted count associated with each 1 in

Π
ξ,p
1 , which is indexed by (i0, j0), in ψ0

i′,j′ .
25: Calculate the counting variables ψi,j , ∀i, j, associated

with the 1’s in H
p from the counting variables ψ0

i′,j′ asso-

ciated with the 1’s in Π
ξ,p
1 (computed in Steps 21 through

24) using the following formula:

ψi,j =
∑

i′:i′=i

∑

j′:�j′=j

Π
ξ,p
1

[i′][j′] 6=0

ψ0
i′,j′ . (30)

26: Sort the γκ 1’s of H
p in a list descendingly according

to the counts in ψi,j , ∀i, j.
27: Initialize the flag update_occurred with 0.
28: while update_occurred = 0 do

29: Pick a subset of 1’s from the top of this list, and
change the circulant powers associated with them. (each

time, a different set of circulant powers or/and a different

subset of 1’s (from the 1’s in H
p) is picked)

30: Using these interim powers, do Steps 10 through 18.
31: if FSC is reduced while maintaining no cycles of

length 4 and no (4, 0) objects (in the case of γ = 3) in
HSC then

32: Update FSC and the circulant powers.
33: Set the flag update_occurred to 1. (this is to exit

the current while loop)

34: end if

35: end while

36: if (the target FSC (set by the code designer) is achieved)
|| (the reduction in FSC approaches zero) then

37: Set the flag stop_iterating to 1. (this is to exit the

current while loop)

38: end if

39: end while

40: Assign the optimized circulant powers to the 1’s in H
p to

construct H. Then, partition H (using t
∗) and couple L

times to construct HSC.
41: Output: Binary parity-check matrix HSC with optimized

circulant powers.

(
 ∈ {4, 7, 9}) can have up to two internal connection, which
completes the proof.

The case of multiple internal connections between the same
two VNs is addressed in the CPO algorithm.

Algorithm 1 is the customized CPO algorithm for SC codes
designed for PR systems.

Step 29 in the CPO algorithm is performed heuristically.
The number of 1’s to work with depends on the circulant size,
the values of the counts, and how these values are distributed.
Moreover, tracking the counts of active candidates and the
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Fig. 7. Upper panel: the OO partitioning of H
p (or H) of the SC code in

Example 3. Entries with circles (resp., squares) are assigned to H
p
0

(resp.,
H

p
1

). Lower panel: the circulant power arrangement for the circulants in H.

distribution of their values over different 1’s in H
p is the main

factor to decide which 1’s to select in each iteration.
The reduction in the number of detrimental objects achieved

by the CPO algorithm depends on the value of the circulant
size z relative to the row weight κ of the underlying block
code. In particular, as the ratio z/κ increases, more percentage
reduction is achievable. Increasing the column weight γ results
in less percentage reduction. Increasing the memory m results
in more percentage reduction. We note that the CPO algorithm
always reaches a solution for the circulant power arrangement
that results in less (worst case the same) number of detrimental
objects compared with the initial arrangement.

Example 3: Suppose we are designing an SC code with
γ = 3, κ = 7, z = 13, m = 1, and L = 10 using
the OO-CPO approach for PR systems. Solving the optimiza-
tion problem in (22) gives an optimal vector t

∗ = [t∗0 t∗1 t∗2
t∗{0,1} t∗{0,2} t∗{1,2} t∗{0,1,2}]

T = [3 3 4 0 1 2 0]T, with F ∗
sum =

5,170 patterns (rounded weighted sum) in the graph of H
p
SC.

Fig. 7, upper panel, shows how the partitioning is applied on
H

p (or H). Next, applying the CPO results in 2,613 (4, 4)
UASs in the graph of HSC. Fig. 7, lower panel, shows the
final circulant power arrangement for all circulants in H.

Remark 5: After introducing the concept of patterns in this
work, the OO-CPO approach can be extended to target other
common substructures if needed.

VI. EXPERIMENTAL RESULTS

In this section, we propose experimental results demonstrat-
ing the effectiveness of the OO-CPO approach compared with
other code design techniques in PR (1-D MR) systems.

Remark 6: In this section, all the codes used have no cycles
of length 4. The codes with γ = 3 (resp., γ = 4) have a
minimum distance of at least 6 (resp., 8). Moreover, we opted
to work with circulant sizes z > κ in order to give more
freedom to the CPO, which results in less detrimental objects.

First, we compare the total number of instances of the
common substructure of interest in the unlabeled graphs of SC

TABLE III

NUMBER OF (4, 4) UASS IN SC CODES WITH γ = 3, m ∈ {1, 2},
AND L = 10 DESIGNED USING DIFFERENT TECHNIQUES

TABLE IV

NUMBER OF (4, 8) UTSS IN SC CODES WITH γ = 4, m = 1,
AND L = 10 DESIGNED USING DIFFERENT TECHNIQUES

codes designed using various techniques. We present results
for two groups of codes.

All the codes in the first group have γ = 3 (i.e., the common
substructure of interest is the (4, 4) UAS in Fig. 2) and
m ∈ {1, 2}. We also choose L = 10 for this group. In addition
to the uncoupled setting (H0 = H and H1 = 0), we show
results for the following five SC code design techniques:

1) The CV technique (see [16]) with m = 1.
2) The OO technique with no CPO applied and with

m = 1.
3) The OO technique with circulant powers optimized via

the CPO (the OO-CPO approach) and with m = 1.
4) The OO technique with no CPO applied and with

m = 2.
5) The OO technique with circulant powers optimized via

the CPO (the OO-CPO approach) and with m = 2.

In the uncoupled setting in addition to the first, second,
and fourth techniques, circulant powers as in SCB codes,
fi,j = (i2)(2j), are used. This choice of circulant powers
guarantees no cycles of length 4.

The results of the first group of codes for different choices
of κ and z are listed in Table III.4 For a particular choice
of κ, z, m, and L, SC codes designed using these different
techniques all have block length = κzL log2(q) bits and
rate ≈ [1 − 3(L + m)/(κL)]. Table III demonstrates the
significant gains achieved by the OO-CPO approach compared
with other techniques. In particular, for m = 1, the proposed
OO-CPO approach achieves a reduction in the number of

4In Tables III and IV, “with SCB” means “with SCB circulant powers”.
Similarly, in Figures 9 and 13, “w SCB” means “with SCB circulant powers”.
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Fig. 8. Upper panel: the OO partitioning of H
p (or H) of Code 3. Entries with circles (resp., squares) are assigned to H

p
0

(resp., H
p
1

). Lower panel: the
circulant power arrangement for the circulants in H of Code 3.

Fig. 9. Simulation results over the PR channel for SC codes having γ = 3
and m = 1 designed using different techniques and a BL code of the same
length and rate. Significant gains are achieved by the OO-CPO approach (the
plots of Codes 3 and 4).

(4, 4) UASs that ranges between 85% and 92% compared with
the uncoupled setting, and between 61% and 72% compared
with the CV technique. The table also illustrates the positive
effect of increasing the memory of the SC code. In particular,
the OO-CPO approach with m = 2 achieves a reduction in
the number of (4, 4) UASs that ranges between 54% and 69%
compared with the OO-CPO approach with m = 1. Moreover,
the importance of the two stages (the OO and the CPO) is
highlighted by the numbers in Table III.

As for the second group, all the codes have γ = 4 (i.e.,
the common substructure of interest is the (4, 8) UTS in Fig. 2)
and m = 1. We also choose L = 10 for this group. In addition
to the uncoupled setting (H0 = H and H1 = 0), we show
results for the following three SC code design techniques:

1) The CV technique (see [16]).
2) The OO technique with no CPO applied.
3) The OO technique with circulant powers optimized via

the CPO (the OO-CPO approach).

In the uncoupled setting in addition to the first and second
techniques, circulant powers as in SCB codes, fi,j = (i2)(2j),
are used. This choice of circulant powers guarantees no cycles
of length 4.

The results of the second group of codes for different
choices of κ and z are listed in Table IV. For a particular
choice of κ, z, and L, SC codes designed using these different
techniques all have block length = κzL log2(q) bits and rate
≈ [1 − 4(L + 1)/(κL)]. Table IV again demonstrates the
significant gains achieved by the OO-CPO approach compared
with other techniques. In particular, the proposed OO-CPO
approach achieves a reduction in the number of (4, 8) UTSs
that ranges between 82% and 87% compared with the uncou-
pled setting, and between 55% and 64% compared with the
CV technique. Moreover, the importance of the two stages
(the OO and the CPO) is again highlighted by the numbers
in Table IV.

Additionally, we construct SC codes through the OO tech-
nique only and pseudo random circulant powers such that
the codes have no cycles of length 4. Table V shows the
comparison between these codes, whose design approach is
called OO-Rand, with the codes designed using the OO-CPO
approach. In the case of γ = 3 and m = 1, the reduction in
the number of (4, 4) UASs achieved by the OO-CPO approach
compared with the OO-Rand approach ranges between 16%
and 56%. In the case of γ = 3 and m = 2, this reduction
ranges between 29% and 61%. In the case of γ = 4 and
m = 1, this reduction ranges between 10% and 27%. These
numbers further demonstrate the importance of the CPO stage.

Second, we present simulation results of binary and non-
binary SC codes designed using various techniques over the
PR channel. We present results for three groups of codes.
We use the PR channel described in Section II. In the
simulations, we reach FER levels as low as ≈10−9 in order
to demonstrate the suitability of the designed codes to MR
applications. Levels below 10−12 can only be reached via Field
Programmable Gate Array (FPGA) simulations.

The first group of simulated codes contains five different
codes. All the five codes are defined over GF(4). Codes 1,
2, 3, and 4 have γ = 3, κ = 19, z = 46, m = 1, and
L = 5. Thus, these codes have block length = 8,740 bits,
and the SC codes have rate ≈ 0.81. Code 1 is uncoupled.
Code 2 is an SC code designed using the CV technique for
PR channels as described in [16]. The optimal cutting vector
used for Code 2 is [4 9 15]. Codes 1 and 2 have SCB circulant
powers of the form fi,j = (i2)(2j). Code 3 is an SC code
designed using the OO-CPO approach. The partitioning and
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TABLE V

NUMBER OF (4, 4(γ − 2)) UASS/UTSS IN SC CODES WITH L = 10 DESIGNED USING THE OO TECHNIQUE WITH RANDOM CIRCULANT POWERS

VERSUS THE OO-CPO APPROACH

Fig. 10. Upper panel: the OO partitioning of H
p (or H) of Code 6. Entries with circles (resp., squares and triangles) are assigned to H

p
0

(resp., H
p
1

and
H

p
2

). Lower panel: the circulant power arrangement for the circulants in H of Code 6.

the circulant power arrangement of Code 3 are given in Fig. 8.
Codes 1, 2, and 3 have unoptimized edge weights.5 Code 4 is
the result of applying the WCM framework to Code 3 in order
to optimize its edge weights. The numbers of (4, 4) UASs
in the unlabeled graphs of Codes 1, 2, and 3 are 2,425,120,
845,434, and 184,667, respectively. Code 5 is a block (BL)
code, which is also protograph-based (PB), designed as
in [11] and [12]. Code 5 has column weight = 3, circulant
size = 46, block length = 8,832 bits, rate ≈ 0.81 (same as
all SC codes), and unoptimized weights (similar to all codes
except Code 4).

Fig. 9 demonstrates the effectiveness of the proposed
OO-CPO approach in designing high performance SC codes
for PR channels. In particular, Code 3 (designed using the OO-
CPO approach) outperforms Code 2 (designed using the CV
technique) by about 3 orders of magnitude at SNR = 15 dB,
and by about 1.1 dB at FER = 10−5. More intriguingly,
Code 3 outperforms Code 5 (the block code) by about 1.6
orders of magnitude at SNR = 15 dB, and by almost 0.4 dB
at FER = 10−6. The performance of Code 3 is better than
the performance of Code 5 not only in the error floor region,
but also in the waterfall region. An interesting observation
is that in the error profile of Code 3, we found no code-
words of weights ∈ {6, 8} (which are (6, 0, 0, 9, 0) and
(8, 0, 0, 12, 0) BASTs) despite the dominant presence of such
low weight codewords in the error profiles of Codes 1, 2,
and 5 (see also [5], [12], and [16]). This indicates a significant
improvement in the minimum distance properties of the code
designed using the OO-CPO approach. From Fig. 9, the WCM
framework achieves 1 order of magnitude additional gain.

An important reason behind the improved waterfall per-
formance of Code 3 is the significant reduction in the

5Codes 1 and 2 are the two codes used in Example 1.

Fig. 11. Simulation results over the PR channel for an SC code having
γ = 3 and m = 2 designed using the OO-CPO approach and a BL code
of the same length and rate. Significant gains are achieved by the OO-CPO
approach (the plot of Code 6).

multiplicity of low weight codewords achieved by the OO-
CPO approach. This reduction is a result of the fact that such
low weight codewords also have the (4, 4) UAS as a common
substructure in their configurations (see Fig. 2). More details
about minimum distance analysis of SC codes can be found
in [35] and [36].

The second group of simulated codes contains two different
codes. The two codes are defined over GF(4). Code 6 has
γ = 3, κ = 17, z = 37, m = 2, and L = 7. Thus, this code
has block length = 8,806 bits and rate ≈ 0.77. Code 6 is an SC
code designed using the OO-CPO approach. The partitioning
and the circulant power arrangement of Code 6 are given
in Fig. 10. Code 6 has unoptimized edge weights. The number
of (4, 4) UASs in the unlabeled graph of Code 6 is reduced to
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Fig. 12. Upper panel: the OO partitioning of H
p (or H) of Code 10. Entries with circles (resp., squares) are assigned to H

p
0

(resp., H
p
1

). Lower panel: the
circulant power arrangement for the circulants in H of Code 10.

Fig. 13. Simulation results over the PR channel for SC codes having γ = 4
and m = 1 designed using different techniques and a BL code of the same
length and rate. Significant gains are achieved by the OO-CPO approach (the
plot of Code 10).

75,850 via the OO-CPO approach. Code 7 is a BL PB code
designed as in [11] and [12]. Code 7 has column weight = 3,
circulant size = 43, block length = 8,944 bits, rate ≈ 0.77
(same as the SC code), and unoptimized weights (similar to
the SC code).

The purpose of Fig. 11 is to stress on the intriguing conclu-
sion that SC codes designed using the OO-CPO approach out-
perform block codes having the same parameters. In particular,
Code 6 (designed using the OO-CPO approach) outperforms
Code 7 (the block code) by about 1.8 orders of magnitude at
SNR = 14 dB, and by about 0.3 dB at FER = 10−7. These
gains are projected to be significantly bigger as we go deeper
in FER noting that we could not collect a single error after
simulating around 109 frames of Code 6 at SNR = 14.25 dB.
Moreover, the performance of Code 6 is better than the
performance of Code 7 not only in the error floor region, but
also in the waterfall region.

The third group of simulated codes contains four different
codes. All the four codes are defined over GF(2), i.e., binary

codes. Codes 8, 9, and 10 have γ = 4, κ = 17, z = 37, m = 1,
and L = 6. Thus, these codes have block length = 3,774 bits,
and the SC codes have rate ≈ 0.73. Code 8 is uncoupled.
Code 9 is an SC code designed using the CV technique for
PR channels as described in [16]. The optimal cutting vector
used for Code 9 is [3 7 11 14]. Codes 8 and 9 have SCB
circulant powers of the form fi,j = (i2)(2j). Code 10 is an SC
code designed using the OO-CPO approach. The partitioning
and the circulant power arrangement of Code 10 are given
in Fig. 12. The numbers of (4, 8) UTSs in the unlabeled
graphs of Codes 8, 9, and 10 are 4,248,858, 1,589,816, and
705,849, respectively. Code 11 is a BL PB code designed as
in [11] and [12]. Code 11 has column weight = 4, circulant
size = 41, block length = 3,690 bits and rate ≈ 0.73 (same
as all SC codes).

Fig. 13 again demonstrates the effectiveness of the OO-CPO
approach in designing high performance SC codes with var-
ious parameters for PR channels. In particular, Code 10
(designed using the OO-CPO approach) outperforms Code 9
(designed using the CV technique) by more than 1.8 orders
of magnitude at SNR = 14 dB, and by nearly 0.75 dB at
FER = 3 × 10−5. More intriguingly, Code 10 outperforms
Code 11 (the block code) by about 0.8 of an order of
magnitude at SNR = 14 dB, and by about 0.35 dB at
FER = 3 × 10−6. A very interesting observation here is that
Code 10 achieves an early waterfall gain of about 0.25 dB
compared with Code 11 (see, for example, the performance of
the two codes at FER = 10−1). In other words, Code 10 has a
0.25 dB threshold improvement compared with Code 11. Note
that in the error profile of Code 10, we found no (6, 2, 2, 11, 0),
no (8, 0, 0, 16, 0), no (8, 2, 2, 15, 0), and no (8, 4, 4, 14, 0)
BASTs despite the dominant presence of such objects in the
error profiles of Codes 8, 9, and 11 (see also [12], and [16]).
Note also that the codes here have a relatively low rate, which
demonstrates the gains achieved by the OO-CPO approach for
a diverse range of rates.

There are two key takeaways from these experimen-
tal results. First, SC codes constructed using the pro-
posed OO-CPO approach significantly outperform SC codes
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constructed using the techniques currently available in
the literature. Second, and most important, appropriately
exploiting the additional degree of freedom provided by par-
titioning in the construction of SC codes enables designing
SC codes that outperform block codes of the same total
length and rate, which conclusively answers an open ques-
tion about whether SC codes can outperform block codes
under equal total length and rate. This proper exploitation
is performed exclusively through taking into account the
characteristics of the channel of interest, which is what we do
in this work.

Remark 7: Unlike a lot of literature works that compare
an SC code to a block code having a length equal to the
constraint length of the SC code, which is κz(m + 1) log2(q)
bits, we compare an SC code to a block code having the
same length of the SC code in total, which is κzL log2(q)
bits, approximately. Moreover, while our high performance SC
codes designed using the OO-CPO approach do outperform
block codes of the same parameters, other SC codes available
in the literature do not. An example demonstrating this state-
ment is presented in Fig. 9 and Fig. 13, where block codes
outperform SC codes designed using the CV technique and of
the same parameters.

Remark 8: Because our main focus in this work is the
performance, a relatively small to average values of L (5 ≤
L ≤ 7) along with block decoding are used for all SC Codes.

VII. CONCLUSION

We proposed the OO-CPO approach to optimally design
binary and non-binary SC codes for PR channels, via mini-
mizing the number of detrimental objects in the graph of the
code. A common substructure was first identified in the graphs
of the detrimental configurations in the case of PR systems.
We graphically determined the protograph patterns that are
capable of generating instances of this common substructure
in the final graph of the code. Next, through combinatorial
techniques, we built a discrete optimization problem in which
the weighted sum of the total number of instances of these
patterns is expressed in terms of the partitioning parameters.
The partitioning that achieves the minimum weighted sum
was obtained. Then, the lifting parameters were optimized in
order to achieve more reduction in the number of detrimental
objects of interest. SC codes designed using the proposed
OO-CPO approach were shown to significantly outperform SC
codes designed using techniques from the literature over PR
channels. More importantly, our channel-aware combinatorial
approach demonstrated that appropriate exploitation of the
available degrees of freedom in the SC code design can give
SC codes significant performance advantages over structured
block codes having the same parameters. We believe this
research will open the door for engineers to deploy high
performance SC codes in a wide variety of applications in
addition to data storage. Possible future directions include
theoretical analysis of how the multiplicities of different BASs
affect the SC code performance in PR systems in addition to
minimum distance analysis of SC codes designed using the
OO-CPO approach.

APPENDIX A
PROOFS OF PATTERN P1

A. Proof of Lemma 3

Proof: In Case 1.1, the number of instances is the number
of ways to choose 2 overlaps out of t{i1,i2} overlaps (the
pattern has two c1 − c2 overlaps), which is given by (7).
In Case 1.2, the number of instances is the number of ways
to choose 1 overlap out of t{i1,i2} and 1 overlap out of
t{i1+(r−e)γ,i2+(r−e)γ}, which is given by (8).

B. Proof of Theorem 1

Proof: To compute FP1
, we use Formula (6) with χ,

which is the maximum number of replicas the pattern can span,
equals m + 1. Since the overlaps of P1 can exist in up to 2
replicas, we need to find expressions only for F 1

P1,1 (overlaps

are in 1 replica) and F k≥2
P1,1 (overlaps are in 2 replicas).

Then, F 1
P1,1 is the sum of function AP1

in (7), with r = 1,
over all possible values of {i1, i2}. Here, {i1, i2} can take any
distinct two values in the range from the start to the end of
R1, i.e., from 0 to (m + 1)γ − 1 (see Fig. 4).

Moreover, F k≥2
P1,1 is the sum of function BP1

in (8), with
r = 1 and e = k, over all possible values of {i1, i2}. Here,
{i1, i2} can take any distinct two values in the range from the
start of Rk to the end of R1, i.e., from (k−1)γ to (m+1)γ−1
(see also Fig. 4).

APPENDIX B
PROOFS OF PATTERN P2

A. Proof of Lemma 4

Proof: In Case 2.1, the number of instances is the number
of ways to choose 3 overlaps out of t{i1,i2} overlaps (the
pattern has three c1 − c2 overlaps), which is given by (11).
In Case 2.2, the number of instances is the number of ways
to choose 2 overlap out of t{i1,i2} and 1 overlap out of
t{i1+(r−e)γ,i2+(r−e)γ}, which is given by (12). In Case 2.3,
the number of instances is the number of ways to choose 1
overlap out of t{i1,i2}, 1 overlap out of t{i1+(r−e)γ,i2+(r−e)γ},
and 1 overlap out of t{i1+(r−s)γ,i2+(r−s)γ}, which is given
by (13).

B. Proof of Theorem 2

Proof: To compute FP2
, we use Formula (6) with χ =

m + 1. Since the overlaps of P2 can exist in up to 3 replicas,
we need to find expressions only for F 1

P2,1, F 2
P2,1, and F k≥3

P2,1 .
Then, F 1

P2,1 is the sum of function AP2
in (11), with r = 1,

over all possible values of {i1, i2}. Here, {i1, i2} can take any
distinct two values in the range from the start to the end of
R1, i.e., from 0 to (m + 1)γ − 1 (see Fig. 5).

Regarding F 2
P2,1, we need to distinguish between two situ-

ations; when r < e (i.e., replica Rr, which has two overlaps,
comes before replica Re), and when r > e (i.e., replica
Rr comes after replica Re). This distinction gives the two
summations of function BP2

in F 2
P2,1. For the first summation,

BP2
in (12) has r = 1 and e = 2. Thus, {i1, i2} can take any

distinct two values in the range from the start of R2 to the
end of R1, i.e., from γ to (m + 1)γ − 1 (see Fig. 5 for more
illustration). For the second summation, BP2

in (12) has r = 2
and e = 1. Thus, {i1, i2} can take any distinct two values in
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the range from the start of R2 (which is now Rr) to the end
of R1, i.e., from 0 to mγ − 1.

As for F k≥3
P2,1 , the overlaps can be in 2 replicas (the first two

summations in F k≥3
P2,1 ) or 3 replicas (the third summation in

F k≥3
P2,1 ). The first two summations are derived in a way similar

to what we did for F 2
P2,1, with a change in the summation

indices; R2 is replaced by Rk here. For the third (double)
summation, CP2

in (13) has r = 1, e = h, and s = k. Thus,
{i1, i2} can take any distinct two values in the range from the
start of Rk to the end of R1, i.e., from (k−1)γ to (m+1)γ−1
(see Fig. 5). The outer summation is over all possible values
of h, and we have 1 < h < k.

APPENDIX C
PROOFS OF PATTERN P6

A. Proof of Lemma 5

Proof: In Case 6.1, the number of instances is the number
of ways to choose 1 overlap from each family in Rr (there
exist three different families for P6; c1 − c2 − c3, c1 − c2,
and c1 − c3). We choose the c1 − c2 − c3 degree-3 overlap
first. Then, in order to avoid over-counting, it is required
to distinguish between the two situations when the c1 − c2

degree-2 overlap is part of a c1 − c2 − c3 degree-3 overlap,
and when this is not the case. Taking this requirement into
account yields the two added terms in (16). The same applies
for Case 6.2, with the exception that here the degree-3 over-
lap is chosen from t{i1+(r−e)γ,i2+(r−e)γ,i3+(r−e)γ} overlaps,
resulting in (17). Following the same logic of Case 6.1 for
Case 6.3, with the exception that the c1−c3 overlap is chosen
from t{i1+(r−e)γ,i3+(r−e)γ} overlaps, gives (18). In Case 6.4,
the number of instances is the number of ways to choose 1
overlap out of t{i1,i2}, 1 overlap out of t{i1+(r−e)γ,i3+(r−e)γ},
and 1 overlap out of t{i1+(r−s)γ,i2+(r−s)γ,i3+(r−s)γ}, which
is given by (19).

B. Proof of Theorem 3

Proof: To compute FP6
, we use Formula (6) with χ =

m + 1. Since the overlaps of P6 can exist in up to 3 replicas,
we need to find expressions only for F 1

P6,1, F 2
P6,1, and F k≥3

P6,1 .
Then, F 1

P6,1 is the sum of function AP6
in (16), with r = 1,

over all possible values of i1 and {i2, i3}. In Pattern P6, CN
c1, which connects all three VNs, is different from the other
two CNs. Moreover, in a group of three CNs that can form
P6, c1 can be any one of these three CNs, which means we
have three possible ways to form P6 from these three CNs.
These facts combined are the reason why i1 of c1 has to be
separated from {i2, i3}, despite having the same range, in the
expression of F 1

P6,1 (this applies for other expressions too).
Here, i1 (resp., {i2, i3}) can take any value (resp., distinct two
values) in the range from the start to the end of R1, i.e., from
0 to (m + 1)γ − 1 (see also Fig. 6).

Regarding F 2
P6,1, we need to account for Case 6.2 and

Case 6.3. For each of the two cases, we need to distinguish
between two situations; when r < e and when r > e. This
distinction gives the two summations of BP6

and the two
summations of CP6

in F 2
P6,1. In Case 6.2, each of the three CNs

of P6 connects overlaps in Rr and Re (because the degree-3

overlap is moved to Re). For the first summation in F 2
P6,1,

BP6
in (17) has r = 1 and e = 2. Thus, i1 (resp., {i2, i3}) can

take any value (resp., distinct two values) in the range from
the start of R2 to the end of R1, i.e., from γ to (m+1)γ−1.
For the second summation, BP6

in (17) has r = 2 and e = 1.
Thus, i1 (resp., {i2, i3}) can take any value (resp., distinct
two values) in the range from 0 to mγ − 1. In Case 6.3, and
as shown in Fig. 6, c1 and c3 each connects overlaps in Rr

and Re, while c2 connects overlaps in Rr only (because the
c1−c3 overlap is moved to Re here). For the third summation
in F 2

P6,1, CP6
in (18) has r = 1 and e = 2. Thus, i1 (resp., i2

and i3) can take any value in the range from the start of R2

(resp., R1 and R2) to the end of R1, i.e., from γ (resp., 0
and γ) to (m+1)γ−1. For the fourth summation, CP6

in (18)
has r = 2 and e = 1 (see Fig. 6). Thus, i1 (resp., i2 and i3)
can take any value in the range from the start of R2 to the
end of R1 (resp., R2 and R1), i.e., from 0 to mγ − 1 (resp.,
(m + 1)γ − 1 and mγ − 1). Note that the ranges of i2 and i3
are different in Case 6.3, unlike Case 6.2, which is the reason
why i2 and i3 are not in a set in the summations of CP6

.
As for F k≥3

P6,1 , the overlaps can be in 2 replicas (the first

four summations in F k≥3
P6,1 ) or 3 replicas (the following three

summations in F k≥3
P6,1 ). The first four summations are derived

in a way similar to what we did for F 2
P6,1, with a change in the

summation indices; R2 is replaced by Rk here. The following
three summations are associated with Case 6.4. In Case 6.4,
c1 connects overlaps in Rr, Re, and Rs. On the other hand,
c2 (resp., c3) connects overlaps in Rr (resp., Re) and Rs. For
the fifth (double) summation, DP6

in (19) has r = 1, e = h,
and s = k (see Fig. 6). Thus, i1 (resp., i2 and i3) can take
any value in the range from the start of Rk to the end of
R1 (resp., R1 and Rh), i.e., from (k − 1)γ to (m + 1)γ − 1
(resp., (m+1)γ−1 and (m+h)γ−1). For the sixth (double)
summation, DP6

in (19) has r = 1, e = k, and s = h. Thus,
i1 (resp., i2 and i3) can take any value in the range from the
start of Rk (resp., Rh and Rk) to the end of R1 (resp., R1

and Rh), i.e., from (k − 1)γ (resp., (h − 1)γ and (k − 1)γ)
to (m + 1)γ − 1 (resp., (m + 1)γ − 1 and (m + h)γ − 1).
For the seventh (double) summation, DP6

in (19) has r = h,
e = k, and s = 1. Thus, i1 (resp., i2 and i3) can take any
value in the range from the start of Rk (resp., Rh and Rk) to
the end of R1, i.e., from (k − h)γ (resp., 0 and (k − h)γ) to
(m − h + 2)γ − 1. The outer summation is over all possible
values of h, and we have 1 < h < k.
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