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Abstract

The ability of tumors to metastasize is preceded by morphological instabilities such as chains or
fingers that invade the host environment. Therefore, parameters that control the morphology of
the tumor may also contribute to its invasive ability. Previous analyses on morphological changes
were performed using surface energy of the tumor-host interface. In an effort to understand the
role the interface stiffness plays on tumor evolution, here we model the tumor-host interface as an
elastic membrane governed by the Helfrich bending energy. Using an energy variation approach,
we derive a modified Laplace-Young condition for the stress jump across the interface in the Stokes
equation. We then perform a linear stability analysis and investigate how physical parameters such
as viscosity, bending rigidity, and apoptosis affect the morphological instability. Results show that
increased bending rigidity versus mitosis rate contributes to a more stable morphological tumor
behavior. On the other hand, increasing tumor viscosity or apoptosis may lead to invasive fingering
morphologies. Comparison with experimental data on glioblastoma spheroids shows good agreement
especially for tumors with high adhesion and low proliferation.
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1. Introduction

Advances in cancer research are hampered, to some extent, by the lack of theoretical models
capable of describing the tumor evolution in vitro or in vivo. In turn, this gap leads to excessive

and expensive biological experiments of limited utility (e.g. Byrne [1]). Understanding tumor
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morphology through the development of theoretical models has the potential to provide insights
into critical parameters that control the dynamics of tumor growth [2, 3].

In order to understand the bio-mechanical properties of the tumor and its host environment,
models based on fluid mechanics were employed. The Darcy model was used by Greenspan [4], Byrne
and Chaplain [5], Friedman and Reitich [6] and Cristini et al. [7] among others. The Stokes model
was considered by Friedman and Hu [8], and Friedman and Reitich [9]. Darcy & Stokes models were
also considered by Franks and King [10, 11, 12]. Friedman and Hu [13] acknowledged that tumors
grown in vitro tend to develop a more spherical shape, however, in vivo tumors usually develop
a variety of shapes due to accelerated formations of protrusions. Furthermore, the morphological
stability is characterized using an aggressiveness parameter defined by the ratio of the proliferation
rate and the cell-to-cell adhesiveness, and it is shown that spherical tumors become unstable before
the aggressiveness parameter reaches its bifurcation point (at least for certain unperturbed radial
values). Recently, Pham et al. [14] evaluated the morphological stability of growing tumors using
three continuum models (Darcy law, Stokes law, and a combined Darcy-Stokes law). Their analysis
suggests that the Stokes model is more consistent with experimental findings for in vitro spheroids.

Tumor tissues may have different mechanical properties compared to their surroundings. Ex-
amples include breast, lung, head & neck, and brain metastasis. In particular, breast cancer can be
found simply by physical examinations, as the cancerous lump is stiffer than the healthy host [15].
For this type of cancer, tumor elasticity can be associated with prognostic histologic features (size,
tumor histological type, grade, or lymph node status) [16], or metastasis [17]. The study conducted
by Fenner at al. [17] suggests that increased tumor stiffness contributes to smaller local recurrence
and less extensive metastases than softer elastic tumors. Also, it has been reported that changes in
stiffness of Extra-Cellular Matrix (ECM) contribute to tumor growth and metastasis [18], and can
lead to increased mitosis and migration [15].

In this work we develop a model to address the difference of mechanical properties between
the tumor and its host. We model the tumor-host interface as an elastic membrane with bending
rigidity v and consider the elastic Helfrich bending energy instead of the surface energy of a fluid-
fluid interface. Using an energy variation approach, we derive a modified stress jump boundary
condition for the Stokes equation. Moreover, our study introduces a new parameter S characterizing
the relative ratio of cell mitosis rate to membrane rigidity. We hope our studies can shed light on

the elastic behavior of the tumor-host interface and help physicians to design more effective cancer-
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therapies. Note that the bending energy has been considered in other physical and biophysical
contexts, e.g. [19, 20, 21, 22, 23].

Our purpose is two-fold. Firstly, we aim to establish a mathematical framework for studying the
morphological growth stages of tumor spheroids in a two-phase Stokes flow in 2D. We model the
tumor and its host as viscous fluids and use the Stokes equation to describe the tumor dynamics.
We assume that the tumor cell population is homogeneous, and pressure acts as an expansion
force due to cell proliferation. The externally supplied cell substrates contribute to tumor growth
and regulate processes such as apoptosis and mitosis. After nondimensionalizing and redefining
the entire system of equations (derived in section 3), we seek a linear solution to the nutrient
concentration, pressure and the velocity field using a perturbed circular interface.

Secondly, using a parameter—the relative time variation of the shape factor (defined later in
Sec.2), we perform a sensitivity analysis to investigate the key parameters, including apoptosis, the
effect of blood (also found in [7]), the ratio of the exterior to interior viscosities (also found in [24]),
the membrane’s bending rigidity, and the ratio of mitosis rate to rigidity. Linear stability analysis
suggests that all the parameters listed above influence tumor morphology.

We found that during the avascular stage, larger apoptosis values produce increased morpho-
logical instabilities. Meanwhile, the mitosis rate to rigidity is the most influential parameter. As
expected, larger bending rigidity leads to higher morphological stability. For most of the parameter
values in this study, we find that larger radial tumors tend to maintain their level of stability. Our
model is consistent with experimental results in the case of high adhesion and low proliferation and
low cell adhesion and high proliferation.

The rest of the paper is organized as follows. In section 2, we present the Governing Equations
for the growth of the tumor and the ones representing the host environment. In section 3, we
nondimensionalize the entire system and reformulate the interior model to a divergence free Stokes
model. In section 4, we obtain the linear solutions of the newly created systems of equations. In
section 5, we analyze tumor’s morphology during different stages of avascular and vascular growth.
Section 6 evaluates our findings based on our model against observations from experiments with in

vitro tumor growth. Finally, in section 7, we draw our conclusions.
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2. Mathematical Model

Here we consider a domain 2 consisting of a tumor region Q_(t) and a healthy surroundings
tissue Q4 (t). In between, there is a sharp interface X(¢) separating the two regions, as shown in
Figure 1. The ” —” and ” 4+ ” subscript notations indicate the interior tumor and exterior host,

respectively. Our work considers the following elastic energy

n 2,(1)
host

2(t)

Figure 1: Tumor and its exterior host environment.

1
FE = fJ‘ vokC2ds, (1)
2 s

where IC is the local curvature, vq is the constant bending rigidity factor, s is the arc length.
The governing equations for the growth of a non-necrotic tumor can be written as follows,

(A) Incompressibility in Q_(¢) and Q4 (¢):
V-v_=Ap (in Q_(t)), (2)
where v_ is the fluid velocity in tumor region, and Ap is the net cell-proliferation rate given by
Ap = bo — A4, 3)

where o is the concentration of the cell substrates (e.g. oxygen, nutrients, and growth factors), b
the blood factor and A4 the rate of apoptosis. Assuming that both b and A4 are uniform, and no
proliferation in the host,

Vovi=0 (in Q) (1)

where v is the host tissue velocity.



(B) Diffusion in 2_(t) and Q4 (¢):
oo =V-(DVo)+T (in Q_(t)), (5)

where D represents the diffusion coefficient and I" the rate at which cell substrates are brought into

Q)_. The substrates are supplied by a vasculature at a rate I'p:
FB=—/\B(0—O'B)7 (6)

where A\p is the transfer rate between the blood and the tissue, and opg is the substrate concentra-

tion, which is uniform in the blood. The net consumption rate I' is given by
I'=—-Xoo+T5, (7)

where A, is the uptake rate. We assume that the cell substrate concentration o is constant in 4 (¢):

0= 0u. (8)

(C) The Stokes equation in Q_(t) and Q4 (¢):
V. Ty =0, (9)
where T4 are stress tensors for interior tumor (-) and exterior host (+),

Ty = pg (Vv + (Vve)") + s (V-vi)l - pyl, (10)
where parameters py and fiy are the viscosity coefficients, and pi are pressures. Note that the
stress tensors take into account the rate of strain, dilatation and pressure.

(D) Across the interface X(t):

Oy, = O, (11)

[v]=vy—v_=0. (12)

The interface X(¢) is sharp and treated here as a one-dimensional curve with zero-thickness.

(E) Boundary condition:
1
[Tn] =l <2K3 + Kss) n, (13)
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which is the stress jump across the interface [19] given by the vanishing of the first variation of
Eq. (1). Here (-), represents derivative with respect to the arclength s, and n is the outward unit

normal to the interface.

3. Non-dimensionalization and Model Reformulation

The dimensional variables are rescaled by their characteristic values yielding the following non-

dimensional parameters:

, T'i=&, K' =LK, § == (14)

X (o
X = tl = )\tta OJ = ) p/i = T ) L7

L’ Oop

N

where L, A\; and oo, are scales used for length, time and nutrient concentration, respectively. Also,
P_=T_=p_Xy. The effective mitosis rate is considered to be proportional to the cell substrate
level at the interface, i.e., Ay = bos. The non-dimensional velocity reads

/ Vit
_ Ve 15
Vi L ( )

>

From Eq. (2), the intrinsic time scale is obtained as
At = A (16)

And by Eq. (5) we can obtain the following intrinsic length scale

[ D
L=p——. 1
AB + Ao ( 7)

The nondimensionalization process leads to the following nondimensional parameters:

o The relative effect of vascularization:

op )\B
B=——"—. 18
O AB + Ao ( )
e The relative ratio of cell apoptosis to mitosis rates:
A
A=——-B8B. 19
ot (19)
e The relative ratio of membrane rigidity to cell mitosis rate:
_ o
STt= —— . 20



e The ratio between two interior viscosity:

A=t (21)

e The ratio between the exterior and interior viscosities:

M+
A="—. 22
- (22)

By introducing a redefined concentration
od=B+(1-B) (23)

and dropping the bars and the primes, we obtain the following non-dimensional system for the

two-sided tumor model.

(1) Equations for the tumor region, Q_(¢):

Incompressibility V-v_ = (1 —B)o — A,
Stokes equation V-T_ =0, (24)

Nutrient equation Ao = o,

where T_ =Vv_ + (Vv_)? —p_Tand p_ =p_ — AV -v_ is a modified pressure.
We arrived at the simplified version of the nutrient equation presented in (24) by using the

assumption that the nutrient diffusion happens much faster than mitosis, i.e. (AyL?/D) « 1.

(2) Equations for the host environment, Q. (¢):

Incompressibility V-v, =0,
Stokes equation V-T, =0, (25)

Nutrient equation o =1,

where T, = A(Vv, + (Vv )T) —p, L
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(3) Boundary conditions at the interface X(¢):

o=1,
vy —v_ =0, (26)
Tin—T_n=-S"(3K°+K)n

Next, the equations related to the tumor region are reformulated to a standard Stokes divergence-
free model, by redefining the velocity as:

u_=v_—(1-B)Vo + %, (27)

where d is the spatial dimension (d = 2 for our two dimensional model). As such, the interior
redefined tumor model becomes:
(1’) The redefined interior model equations:
Incompressibility V-u_ =0,
Stokes equation Au_ = Vp_, (28)
Nutrient equation Ac = o.

where p_ is the renamed interior pressure p_ = p_ — V- v_ — (1 — B)o. Meanwhile, the boundary
conditions become:

(3’) The reformulated boundary conditions:

o=1,
vi(%)|s —u_(x)|s = (1 = B)Vol|y — 422 (29)
Tin—T'n=-S"!(3K>+Ks)n+2(1-B)VVon—2(1 — B)on — 4(2—d)n,

where T" = Vu_ + (Vu_)T —p_1.

4. Linear Solutions
We assume the interface X(¢) is a perturbed circle
r(t,0) = R(t) + o(t)e™’, (30)

where R(t) is the radius of the underlying circle, [ is the polar wave number, 6 the polar angle, and

0(t) the size of the perturbation as shown in Figure 2.



Figure 2: The perturbed tumor with mode [ = 4.

The radial solutions can then be written as:

w2 (r) =0, in Q_(t) (31)

where Ij(r) is the k-th modified Bessel function of the first kind and Aj is a constant, and

PO (r) = A,

v (r) = 4, in Q. (t) (32)
o) =1,

where A, and A, are also constants.
We next perform a linear stability analysis using the reformulated, non-dimensional system in

two dimensions. On the perturbed interface, the linear solutions for the systems described by (1°),
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(2) and (3’) take the following form:

u_(r,0) = u(_o)(r)f‘ + 6u(_1,) (r,0)¢ + 6u£1(3 (r,0)0,

p-(r,0) =50 (r) + 650 (r,6), (33)
o_(r,0) = a9 (r) + 55 (r,0).

where T, 6 are the unit base vectors for polar coordinates, and

vy (r,0) = 0\ (1)F + 60 (r,0) + 601 (r, 0)8,

py(r,0) = pO(r) + 6p(r,0), (34)

or(r)=1.

I) Equations and linear solutions for the interior tumor Q_(¢):
By applying Eq. (33) to system (1’), a new system can be formed representing the perturbed
portion of the interior system:
Incompressibility V - u(_l) =0,
Stokes equation Aul!) = V~(_1), (35)
Nutrient equation Ac® = 1),

The linear solutions for the Eq. (35) can be shown to take the following form:

15(_1) = Bprleilt,

u) = (St + 1Bur'~)e?, "
(1) _ (Bp(+2)r'*! B. =1 5,eil0 ( )
u_g = (Fqgrn— + Bur')dee™,

oM = A, gy (ir)etd.
where B,,; and B,, are coefficients to be determined, A, = —%ﬁ, and Jy(r) is the k-th order
Bessel function of the first kind.

Therefore, we write the linear solutions of the equations represented by system (1°):

B = A+ 6Bprle®,

e =6 (gl + B )ets 4 (P2 4 Burt=1)a,e8) (37)

o = 15 4 Agdi(ir)ett?s,

10
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IT) Equations and linear solutions for the host region 24 (t):
The perturbed portion of the system represented by the system (2), for the exterior model, can

similarly be grouped as follow:
. (1)
Incompressibility V-v}’ =0,
Stokes equation Av(f) = Vp(f), (38)
Nutrient equation o(!) = 0.

Similarly, the linear solutions to Eq. (38) are given by:

p(+1> _ Bp,r—leiw’

0 = (B — Bl e, (39)
_ _ -t L i
oy = (PG + B )dge,

where B, and B, are coefficients to be determined. Using Egs. (32) and (39), the linear solutions

for system (2) take the following form

py = Ay + 6Byrlel?,

vi = A48 (G0 - Bl ) €tk 4 6 (“EEITT 4 Bur1o) ) 00?9, (40)

O'+:1.

5. Morphological Stability Analysis

The continuous change in tumor morphology is analyzed by comparing the normal component
of the velocity field in the following two forms:

_ dR(t)  d3(t) g (41)

v dt dt ’

and

l=r)e" + 50\")(R), (42)




9o where the unit normal to the surface n = r — (1/7)il5e’?8.
From the velocity continuity condition (29) and Egs. (41) and (42), the rate at which the circular

radius is evolving is found to take the following form:
dR Ii(R) AR
- - —. 4
dt ( )IO(R) 2 (43)

In Figure 3 we show the rate of change of a radial tumor with respect to R for different A values.

The plot suggests that for A = 0 (no apoptosis), radial tumors exhibit growth only. For 0 < A < 1,

= 0 according to the value of A.

radial tumors grow to a stationary state g

1

-3
0 5 10 15

Figure 3: Growth rate from Eq. (43) for the radially symmetric tumor as a function of R. B = 0.
By equating the corresponding coefficients of ¢ provided by Egs. (41) and (42), we obtain the
growth rate of the perturbation:

= (5) B 0o G X (- i) 0
(44)

where ¢ represents the relative time variation of the shape factor (%), and describes the tumor

os morphological stability. Note that here we focus on the normal contribution of the term VVe in

the stress jump.

12
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It is known that the time variation of the shape factor can be categorized as positive, zero, or
negative values, which correspond to unstable, self-similar, or stable growths, respectively. Equation
(44) suggests that increased A values lead to increased morphological instability, which is consistent
with previous findings [24]. It can also be seen from equation (44) that greater bending rigidity

value leads to increased morphological stability.

5.1. Tumor’s morphological stability during the avascular stage (B = 0)

0.2 w \ ‘ 0.2
=0.1

(b)

Figure 4: Relative change of the shape factor c as a function of ! for different A values; B = 0, A = 0.5, and S™! = 1/4
(a) versus S~ = 4 (b).

Considering A = 0.5, the right side of Eq. (43) equals to 0 (steady-state) when R = 3.32585.
For these parameter values, we plot ¢ against [ in Figure 4 for S™' = 1/4 and S™! = 4. Recall
S™! is defined as the bending rigidity over mitosis rate. It can be seen from the two plots that
S—! decreases the growth rate of the perturbation, suggesting that increased bending rigidity and
viscosity ratio contributes to a more stable behavior. Note that Figure 4 shows continuous curves
of [ in order to provide all the values that illustrate clearly the boundary between the stable and
unstable regions.

In Figure 5, we plot the evolution of the shape factor ¢ against the tumor size R. For simplicity,
we set S™1 = 1/4 for these calculations. Similar results hold for other S~1 values (not shown). From
Eq. (43), we know R will grow unbounded if the apoptosis parameter A = 0. Interestingly, as R
increases, we observe the growth rate ¢ — 0 asymptotically in Figure 5 [a], i.e. the linear theory

predicts that the morphologies of growing tumors tend to limiting shapes that evolve self-similarly.

13
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Figure 5: Relative change of the shape factor ¢ as a function of R with S™ = 1/4. [a] A=0and ! =3; [b] A =05
and ! =3;[c] A=10and ! =3; [d] A=0and A =0.1.

We next set A = 0.5 in Figure 5 [b]. From Eq. (43), we know there exist both growth (when the
size of the tumor R < 3.326) and shrinkage (when the size of the tumor R > 3.326). In particular,
there exists a critical tumor size at R = 5.939 such that the growth rate of the shape factor c is
independent of the viscosity ratio. That is at this point, the tumor shrinks at the same rate. If
we continue to increase the value of A = 1.0 as shown in Figure 5 [c], there exists shrinkage only
from Eq. (43). However, for large tumor size with ¢ > 0, we have shrinking instability. That is the
perturbation actually grows while the tumor size is shrinking. This might explain the formation of
branched fingering structures that could occasionally take place after the treatment of chemo- or
radiotherapy. In Figure 5 [d], we demonstrate how the evolution of shape factor ¢ depends on the
perturbation mode ! using A = 0.1 and A = 0. Similar to the case [ = 3, the growth rate ¢ — 0

asymptotically as R — c0.

14



5.2. Tumor’s morphological stability during the vascular stage (B # 0)

Next, we investigate the changes in ¢ for different vascular stages. In Figure 6, we plot the
evolution of the shape factor, ¢ as a function of tumor size R. When 0 < B < 1, the growth rate
of R exhibits similar behavior as shown in Figure 3 governed by Eq. (43). We first set B = 0.5
and A = 0 (the mitosis rate is twice the rate of apoptosis), i.e. we study an ever-growing tumor in
Figure 6[a]. Similar to what we obtained in Figure 5 [a], we observe linear self-similar growth, and
the growth rate ¢ — 0 asymptotically as R — oo. Figure 6a] also suggests that the morphology
is becoming slightly more stable with increasing A values (host viscosity becoming larger than the
one of the tumor). Moreover, when B = 1 and A = 0, we have @ =0, and ¢c = % g — 12>,
the tumor displays a stable morphology for small radial values (¢ < 0) and self similar evolution for

larger ones (¢ ~ 0), independent of viscosity, as shown in Figure 6[b].

0.1 0.1
0 Of —— e

0.1 0.1
© -02r o 202

03] 03

047 0.4

_0'5100 10" 10° 03 5 10 15

R (a) R (b)

Figure 6: Relative change of the shape factor c as a function or R for different \ values; A = 0,1 =3, S™! = 1/4 and
B =0.5(a) vs. B=1 (b).

6. Model Assessment During the Avascular Stage

Next, we evaluate our model and linear predictions against experimental results. Experimental
data was obtained using glioblastoma in vitro cultures [25]. Nine sets of measurements were collected
from using three levels of glucose (mainly affecting adhesion / bending rigidity) and three levels of
bovine serum (mainly affecting proliferation) [25, 14]. Cell clusters were initially grown to tumor

spheroids using a liquid-overlay technique [26]. Spheroids were then placed in 48-well plates. A Leitz

15
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microscope with magnification x100 was used to observe spheroid growth for 36 days. Photographs
had a magnification of x160 and they were taken using an Olympus camera using a 1130 by 1430
um window [25]. For each of the levels of glucose and serum, glioblastoma cultures were growing up
to a steady state, which corresponds to a diffusion-limited steady-state size. Sample photographs

are shown in Figure 7.

(b)

()

Figure 7: Sample experimental pictures of glioblastoma spheroids |25, 14]. Low Adhesion - High Proliferation (a)
and High Adhesion - Low Proliferation (b). Measured protrusion for ! = 3; high cell adhesion and high proliferation

(c) -

We first set ¢ = 0 in Eq. (44) and solve for a marginally stable S, which we name Sj; hereafter

! 1 I 1-B L(R) 141 (R) 2 I,(R)
S = g ) o s (i)~ P ek | 6

Next, we evaluate our model and linear stability analysis by comparing Sj; with estimated S, from
the experimental results. The calculation of apoptosis and cell adhesion using a Darcy model had

been performed in [25] and [14]. In this work, using our two-phase Stokes model, we estimate A

16



and S, and use the latter for evaluation against experimental results.

6.1. Apoptosis estimates

Since A was shown earlier to promote shape instability (see Eq. (44)), we focus on critical A
values obtained from Eq. (43) by setting % = 0. This corresponds to a steady state stage of the
in vitro glioblastoma culture [14]. Assuming B = 0, equation (43) reads as

_2L(R
" RIyR

~

A

: (46)

~

Note that R is a scaled radius obtained from the experimental results. The experiments presented
in [14, 25] suggest that by considering a scaling of L ~ 125um [14], the nondimensional spheroid
radii range: 6.24 < R < 7.528. Therefore, the corresponding range for the apoptosis parameter,
0.247342 < A < 0.293569, following Eq. (46).

In Figure 8[a], we take A = 0.1 and show the Sj; curves as functions of R for different / values.
For each [, the curve divides the parameter region into unstable (top right) and stable (bottom left)
subregions. The figure suggests that larger [ values lead to sharper increases of the Sy, curves for
the range of radial values considered in this study (especially for 6.24 < R < 7.528). Figure §[b]
shows how the Sj; curves change with respect to A for a given mode [ = 3, indicating that a small

viscosity ratio gives a large unstable region.

4 - 4 ‘ o
| 1 \
| i \
35 | 35 || \
| I\ unstable
3r 3 | \
unstable \
2.5 \
@a 2
1.5F
1k
stable
0.5

(b)

Figure 8: (a) Sps as a function of R, for different ! values, here A = 0.1. (b) Sj; as a function of R, for different A

values, here [ = 3.

17
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6.2. Bending rigidity estimates

We approximate ‘fi—lf near R ~ 0 and obtain the following net mitosis rate [14]

~ 1
At = 5(1=A)ar. (47)

Without loss of generality, we focus our study on an interface perturbed by a cosine mode, 7(6) =
R+ 0 cos(1f), where R = RL and 6 = §L represent the dimensional tumor radius and perturbation,
respectively. The linear form of the bending energy reads as

1 1 5(12 —1)(212 - 3)
§IC + KSS = TRS — 2R4 COS(ZG). (48)

Using the Stokes equation and the stress jump condition, we obtain the following characteristic

values
_ N N )
T~ App— + )\MM_E cos(10), (49)
- 1 5(12 —1)(21? - 3)
T ~ 1y (21:23 - 5 cos(10) |, (50)

where Eq. (49) represents the characteristic stress in the proliferating rim and Eq. (50) represents

the characteristic stress from tumor boundary. Dividing by bYY: [—, we obtain

- 5cos_(l9) Yo ( 1 5(12 —1)(212 - 3)

. ~ | 19)) . 51
R Narp \ 2R3 2R* cos( )) (51)

Using the definition of S™' = and combining with Eq. (47), we obtain the maximum S,

"
[1,,)\1\/[.[/3
by taking cos(l0) = —1,

We next compare the marginally stable Sy; against the predicted S, by using the experimental
data in [14, 25]. We take L ~ 125um for the spheroid radii [14], and set mode number [ = 3,4,
and 5. In [25], the authors considered that A was small and therefore neglected its effects. In this
paper, we would like to explore this parameter and consider the minimum apoptosis found in the
previous subsection with A = 0.247342. Note that the calculation of Eq. (52) also requires the
value of perturbation 0. This can be done by equating the corresponding coefficients from Eqgs. (41)
and (42) to get §(I = 3) = 0.894403, 6(I = 4) = 0.70909, and §(I = 5) = 0.590181.

In Figure 9, we plot the predicted S, as a function of the non-dimensional R scaled by L ~

125pm, which is denoted by markers. The analytic critical Sy; as a function of R for different

18



185

values of A\ are plotted using colored lines. Here low proliferation is denoted by circles, medium
proliferation by stars, and high proliferation by triangles. The high cell adhesion is denoted by
blue color, medium cell adhesion by black color, and low cell adhesion by red color. Note that
the experimental qualitative values, where index 1 indicates a very stable morphology and index 5
indicates very unstable [14], are listed together with the corresponding markers. For example, the
points indicated by index "2" (almost stable), represent the nondimensional steady tumor spheroid
radius of R = 7.528 and its corresponding predicted S,.

As shown in Figure 9, for [ = 3, analytic critical Sy, with smaller A agrees with the predicted
Sp better. As I increases, larger A yields better agreement between S, and Sps, e.g. A = 0.1 for
l =4 and A\ = 0.2 for [ = 5. For mode values [ = 4 and [ = 5, Figure 9 suggests that our model
is consistent with the experimental findings for all scenarios except the medium cell bending and
medium proliferation. A possible reason for this is that the value of the viscosity ratio A is not
always known from experiments, and A can be a value varying from one experiment to another. It’s
possible that the A value in the experiment for the medium cell bending and medium proliferation

case is higher than others, which increases the tumor stability.

7. Conclusion

In this paper, we performed a linear stability analysis of a 2D, non-circular tumor with isotropic
bending rigidity growing in a host tissue. The interior tumor and exterior host were modeled by
the Stokes flow and the tumor host interface was modeled by an elastic membrane governed by the
Helfrich bending energy. Using an energy variation approach, we derived a modified Laplace-Young
condition for the stress jump across the interface in the Stokes equation. We then investigated how
physical parameters such as viscosity, bending rigidity, and apoptosis contribute to the morpholog-
ical stability of the interface.

The linear analysis shows that an increase in bending rigidity contributes to an increase in
tumor’s morphological stability, almost independently of changes in other parameters. During
avascular growth, it is observed that an increase in the apoptosis leads to an overall increase in
shape instabilities. It was also observed that without apoptosis, an increase in vascularization leads
to a self-similar growth for large tumor size, almost independently of the viscosity ratio. It should
be noted that these results do not necessarily mean that there is a biological causal relationship,

and more research, especially experimental studies, need to be done to build such a reliable causal
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relationship. Nevertheless, these results are still able to provide potential insight to reduce shape
instabilities of certain kinds of tumors.

Our findings are consistent with previously conducted simulations, which reveal that when the
tumor is more viscous than its environment, its morphology becomes more unstable and patterns like
fingers and branched structure could occur [24, 7, 14]. In addition, comparison with experimental
data on glioblastoma spheroids shows good agreement, especially for tumors with high bending
and low proliferation. We are currently performing nonlinear simulations to confirm that our 2D
model indeed captures the significant features discovered in linear theory. In future work, we will
also consider adding a stochastic component to our work and establish a linear stability theory
consistent with the newly developed model.
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Figure 9: Sps as a function of R, for | = 3(a), I = 4(b), and I = 5(c). Sp points represented by their qualitative
numbers. Here low proliferation is denoted by circles, medium proliferation by stars, and high proliferation by
triangles. The high bending is denoted by blue color, medium cell bending by black color, and low cell bending by
red color. 23
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