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Abstract

The ability of tumors to metastasize is preceded by morphological instabilities such as chains or

fingers that invade the host environment. Therefore, parameters that control the morphology of

the tumor may also contribute to its invasive ability. Previous analyses on morphological changes

were performed using surface energy of the tumor-host interface. In an effort to understand the

role the interface stiffness plays on tumor evolution, here we model the tumor-host interface as an

elastic membrane governed by the Helfrich bending energy. Using an energy variation approach,

we derive a modified Laplace-Young condition for the stress jump across the interface in the Stokes

equation. We then perform a linear stability analysis and investigate how physical parameters such

as viscosity, bending rigidity, and apoptosis affect the morphological instability. Results show that

increased bending rigidity versus mitosis rate contributes to a more stable morphological tumor

behavior. On the other hand, increasing tumor viscosity or apoptosis may lead to invasive fingering

morphologies. Comparison with experimental data on glioblastoma spheroids shows good agreement

especially for tumors with high adhesion and low proliferation.
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1. Introduction

Advances in cancer research are hampered, to some extent, by the lack of theoretical models

capable of describing the tumor evolution in vitro or in vivo. In turn, this gap leads to excessive

and expensive biological experiments of limited utility (e.g. Byrne [1]). Understanding tumor
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morphology through the development of theoretical models has the potential to provide insights5

into critical parameters that control the dynamics of tumor growth [2, 3].

In order to understand the bio-mechanical properties of the tumor and its host environment,

models based on fluid mechanics were employed. The Darcy model was used by Greenspan [4], Byrne

and Chaplain [5], Friedman and Reitich [6] and Cristini et al. [7] among others. The Stokes model

was considered by Friedman and Hu [8], and Friedman and Reitich [9]. Darcy & Stokes models were10

also considered by Franks and King [10, 11, 12]. Friedman and Hu [13] acknowledged that tumors

grown in vitro tend to develop a more spherical shape, however, in vivo tumors usually develop

a variety of shapes due to accelerated formations of protrusions. Furthermore, the morphological

stability is characterized using an aggressiveness parameter defined by the ratio of the proliferation

rate and the cell-to-cell adhesiveness, and it is shown that spherical tumors become unstable before15

the aggressiveness parameter reaches its bifurcation point (at least for certain unperturbed radial

values). Recently, Pham et al. [14] evaluated the morphological stability of growing tumors using

three continuum models (Darcy law, Stokes law, and a combined Darcy-Stokes law). Their analysis

suggests that the Stokes model is more consistent with experimental findings for in vitro spheroids.

Tumor tissues may have different mechanical properties compared to their surroundings. Ex-20

amples include breast, lung, head & neck, and brain metastasis. In particular, breast cancer can be

found simply by physical examinations, as the cancerous lump is stiffer than the healthy host [15].

For this type of cancer, tumor elasticity can be associated with prognostic histologic features (size,

tumor histological type, grade, or lymph node status) [16], or metastasis [17]. The study conducted

by Fenner at al. [17] suggests that increased tumor stiffness contributes to smaller local recurrence25

and less extensive metastases than softer elastic tumors. Also, it has been reported that changes in

stiffness of Extra-Cellular Matrix (ECM) contribute to tumor growth and metastasis [18], and can

lead to increased mitosis and migration [15].

In this work we develop a model to address the difference of mechanical properties between

the tumor and its host. We model the tumor-host interface as an elastic membrane with bending30

rigidity ν0 and consider the elastic Helfrich bending energy instead of the surface energy of a fluid-

fluid interface. Using an energy variation approach, we derive a modified stress jump boundary

condition for the Stokes equation. Moreover, our study introduces a new parameter S characterizing

the relative ratio of cell mitosis rate to membrane rigidity. We hope our studies can shed light on

the elastic behavior of the tumor-host interface and help physicians to design more effective cancer-35
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therapies. Note that the bending energy has been considered in other physical and biophysical

contexts, e.g. [19, 20, 21, 22, 23].

Our purpose is two-fold. Firstly, we aim to establish a mathematical framework for studying the

morphological growth stages of tumor spheroids in a two-phase Stokes flow in 2D. We model the

tumor and its host as viscous fluids and use the Stokes equation to describe the tumor dynamics.40

We assume that the tumor cell population is homogeneous, and pressure acts as an expansion

force due to cell proliferation. The externally supplied cell substrates contribute to tumor growth

and regulate processes such as apoptosis and mitosis. After nondimensionalizing and redefining

the entire system of equations (derived in section 3), we seek a linear solution to the nutrient

concentration, pressure and the velocity field using a perturbed circular interface.45

Secondly, using a parameter–the relative time variation of the shape factor (defined later in

Sec.2), we perform a sensitivity analysis to investigate the key parameters, including apoptosis, the

effect of blood (also found in [7]), the ratio of the exterior to interior viscosities (also found in [24]),

the membrane’s bending rigidity, and the ratio of mitosis rate to rigidity. Linear stability analysis

suggests that all the parameters listed above influence tumor morphology.50

We found that during the avascular stage, larger apoptosis values produce increased morpho-

logical instabilities. Meanwhile, the mitosis rate to rigidity is the most influential parameter. As

expected, larger bending rigidity leads to higher morphological stability. For most of the parameter

values in this study, we find that larger radial tumors tend to maintain their level of stability. Our

model is consistent with experimental results in the case of high adhesion and low proliferation and55

low cell adhesion and high proliferation.

The rest of the paper is organized as follows. In section 2, we present the Governing Equations

for the growth of the tumor and the ones representing the host environment. In section 3, we

nondimensionalize the entire system and reformulate the interior model to a divergence free Stokes

model. In section 4, we obtain the linear solutions of the newly created systems of equations. In60

section 5, we analyze tumor’s morphology during different stages of avascular and vascular growth.

Section 6 evaluates our findings based on our model against observations from experiments with in

vitro tumor growth. Finally, in section 7, we draw our conclusions.
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2. Mathematical Model

Here we consider a domain Ω consisting of a tumor region Ω´ptq and a healthy surroundings

tissue Ω`ptq. In between, there is a sharp interface Σptq separating the two regions, as shown in

Figure 1. The ” ´ ” and ” ` ” subscript notations indicate the interior tumor and exterior host,

respectively. Our work considers the following elastic energy

() 

() 

n () 

host 

tumor 

Figure 1: Tumor and its exterior host environment.

E “ 1

2

ż

Σ

ν0K2ds, (1)

where K is the local curvature, ν0 is the constant bending rigidity factor, s is the arc length.65

The governing equations for the growth of a non-necrotic tumor can be written as follows,

(A) Incompressibility in Ω´ptq and Ω`ptq:

∇ ¨ v´ “ λP pin Ω´ptqq, (2)

where v´ is the fluid velocity in tumor region, and λP is the net cell-proliferation rate given by

λP “ bσ ´ λA, (3)

where σ is the concentration of the cell substrates (e.g. oxygen, nutrients, and growth factors), b

the blood factor and λA the rate of apoptosis. Assuming that both b and λA are uniform, and no

proliferation in the host,

∇ ¨ v` “ 0 pin Ω`ptqq, (4)

where v` is the host tissue velocity.
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(B) Diffusion in Ω´ptq and Ω`ptq:

σt “ ∇ ¨ pD∇σq ` Γ pin Ω´ptqq, (5)

where D represents the diffusion coefficient and Γ the rate at which cell substrates are brought into

Ω´. The substrates are supplied by a vasculature at a rate ΓB :

ΓB “ ´λBpσ ´ σBq, (6)

where λB is the transfer rate between the blood and the tissue, and σB is the substrate concentra-

tion, which is uniform in the blood. The net consumption rate Γ is given by

Γ “ ´λσσ ` ΓB , (7)

where λσ is the uptake rate. We assume that the cell substrate concentration σ is constant in Ω`ptq:

σ “ σ8. (8)

(C) The Stokes equation in Ω´ptq and Ω`ptq:

∇ ¨ T˘ “ 0, (9)

where T˘ are stress tensors for interior tumor (-) and exterior host (+),

T˘ “ µ˘p∇v˘ ` p∇v˘qT q ` µ̄˘p∇ ¨ v˘qI´ p˘I, (10)

where parameters µ˘ and µ̄˘ are the viscosity coefficients, and p˘ are pressures. Note that the

stress tensors take into account the rate of strain, dilatation and pressure.

(D) Across the interface Σptq:

σΣ “ σ8, (11)

rvs “ v` ´ v´ “ 0. (12)

The interface Σptq is sharp and treated here as a one-dimensional curve with zero-thickness.

(E) Boundary condition:

rTns “ ´ν0

ˆ
1

2
K3 `Kss

˙
n, (13)
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which is the stress jump across the interface [19] given by the vanishing of the first variation of

Eq. (1). Here p¨qs represents derivative with respect to the arclength s, and n is the outward unit

normal to the interface.

3. Non-dimensionalization and Model Reformulation

The dimensional variables are rescaled by their characteristic values yielding the following non-

dimensional parameters:

x1 “ x

L
, t1 “ λtt, σ1 “ σ

σ8
, p1̆ “ p˘

P̄´
, T1̆ “ T˘

T̄´
, K1 “ LK, s1 “ s

L
, (14)

where L, λt and σ8 are scales used for length, time and nutrient concentration, respectively. Also,

P̄´=T̄´=µ´λM . The effective mitosis rate is considered to be proportional to the cell substrate

level at the interface, i.e., λM “ bσ8. The non-dimensional velocity reads

v1̆ “ v˘
λtL

. (15)

From Eq. (2), the intrinsic time scale is obtained as

λt “ λM . (16)

And by Eq. (5) we can obtain the following intrinsic length scale

L “
c

D
λB ` λσ . (17)

The nondimensionalization process leads to the following nondimensional parameters:70

• The relative effect of vascularization:

B “ σB
σ8

λB
λB ` λσ . (18)

• The relative ratio of cell apoptosis to mitosis rates:

A “ λA
λM

´ B. (19)

• The relative ratio of membrane rigidity to cell mitosis rate:

S´1 “ ν0

µ´λML3
. (20)

6



• The ratio between two interior viscosity:

λ̄ “ µ̄´
µ´

. (21)

• The ratio between the exterior and interior viscosities:

λ “ µ`
µ´

. (22)

By introducing a redefined concentration

σ1 “ B` p1´ Bqσ̄ (23)

and dropping the bars and the primes, we obtain the following non-dimensional system for the

two-sided tumor model.

(1) Equations for the tumor region, Ω´ptq:
$
’’’’&
’’’’%

Incompressibility ∇ ¨ v´ “ p1´ Bqσ ´ A,

Stokes equation ∇ ¨T´ “ 0,

Nutrient equation ∆σ “ σ,

(24)

where T´ “ ∇v´ ` p∇v´qT ´ p̄´I and p̄´ “ p´ ´ λ̄∇ ¨ v´ is a modified pressure.

We arrived at the simplified version of the nutrient equation presented in p24q by using the

assumption that the nutrient diffusion happens much faster than mitosis, i.e. pλML2{Dq ! 1.

(2) Equations for the host environment, Ω`ptq:
$
’’’’&
’’’’%

Incompressibility ∇ ¨ v` “ 0,

Stokes equation ∇ ¨T` “ 0,

Nutrient equation σ “ 1,

(25)

where T` “ λp∇v` ` p∇v`qT q ´ p`I.
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(3) Boundary conditions at the interface Σptq:
$
’’’’&
’’’’%

σ “ 1,

v` ´ v´ “ 0,

T`n´T´n “ ´S´1
`

1
2K3 `Kss

˘
n.

(26)

Next, the equations related to the tumor region are reformulated to a standard Stokes divergence-

free model, by redefining the velocity as:

u´ “ v´ ´ p1´ Bq∇σ ` Ax
d
, (27)

where d is the spatial dimension (d “ 2 for our two dimensional model). As such, the interior

redefined tumor model becomes:

(1’) The redefined interior model equations:
$
’’’’&
’’’’%

Incompressibility ∇ ¨ u´ “ 0,

Stokes equation ∆u´ “ ∇p̃´,
Nutrient equation ∆σ “ σ.

(28)

where p̃´ is the renamed interior pressure p̃´ “ p̄´ ´∇ ¨ v´ ´ p1´ Bqσ. Meanwhile, the boundary

conditions become:

(3’) The reformulated boundary conditions:
$
’’’’&
’’’’%

σ “ 1,

v`pxq|Σ ´ u´pxq|Σ “ p1´ Bq∇σ|Σ ´ AxΣ

2 ,

T`n´Tu´n “ ´S´1
`

1
2K3 `Kss

˘
n` 2p1´ Bq∇∇σn´ 2p1´Bqσn´ A

d p2´ dqn,

(29)

where Tu´ “ ∇u´ ` p∇u´qT ´ p̃´I.

4. Linear Solutions

We assume the interface Σptq is a perturbed circle

rpt, θq “ Rptq ` δptqeilθ, (30)

where Rptq is the radius of the underlying circle, l is the polar wave number, θ the polar angle, and75

δptq the size of the perturbation as shown in Figure 2.
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Figure 2: The perturbed tumor with mode l “ 4.

The radial solutions can then be written as:
$
’’’’&
’’’’%

p̃
p0q
´ prq “ Ap̃,

u
p0q
´ prq “ 0, in Ω´ptq
σ
p0q
´ prq “ I0prq

I0pRq ,

(31)

where Ikprq is the k-th modified Bessel function of the first kind and Ap̃ is a constant, and

$
’’’’&
’’’’%

p
p0q
` prq “ Ap,

v
p0q
` prq “ Av

r , in Ω`ptq
σ
p0q
` prq “ 1,

(32)

where Ap and Av are also constants.

We next perform a linear stability analysis using the reformulated, non-dimensional system in

two dimensions. On the perturbed interface, the linear solutions for the systems described by (1’),
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(2) and (3’) take the following form:
$
’’’’&
’’’’%

u´pr, θq “ u
p0q
´ prqr̂` δup1q´rpr, θqr̂` δup1q´θpr, θqθ̂,

p̃´pr, θq “ p̃
p0q
´ prq ` δp̃p1q´ pr, θq,

σ´pr, θq “ σ
p0q
´ prq ` δσp1q´ pr, θq.

(33)

where r̂, θ̂ are the unit base vectors for polar coordinates, and
$
’’’’&
’’’’%

v`pr, θq “ v
p0q
` prqr̂` δvp1q`r pr, θqr̂` δvp1q`θpr, θqθ̂,

p`pr, θq “ p
p0q
` prq ` δpp1q` pr, θq,

σ`prq “ 1.

(34)

I) Equations and linear solutions for the interior tumor Ω´ptq:80

By applying Eq. (33) to system (1’), a new system can be formed representing the perturbed

portion of the interior system:
$
’’’’&
’’’’%

Incompressibility ∇ ¨ up1q´ “ 0,

Stokes equation ∆u
p1q
´ “ ∇p̃p1q´ ,

Nutrient equation ∆σp1q “ σp1q.

(35)

The linear solutions for the Eq. (35) can be shown to take the following form:
$
’’’’’’’’&
’’’’’’’’%

p̃
p1q
´ “ Bptr

leilθ,

u
p1q
´r “ pBptlr

l`1

4pl`1q ` lBurl´1qeilθ,
u
p1q
´θ “ pBptpl`2qrl`1

4lpl`1q `Burl´1qBθeilθ,
σ
p1q
´ “ AσJlpirqeilθ.

(36)

where Bpt and Bu are coefficients to be determined, Aσ “ ´ I1pRq
I0pRq

1
JlpiRq , and Jkprq is the k-th order

Bessel function of the first kind.

Therefore, we write the linear solutions of the equations represented by system (1’):
$
’’’’&
’’’’%

p̃´ “ Ap̃ ` δBptrleilθ,
u´ “ δ

´
pBptlr

l`1

4pl`1q ` lBurl´1qeilθ r̂` pBptpl`2qrl`1

4lpl`1q `Burl´1qBθeilθθ̂
¯
,

σ´ “ I0prq
I0pRq `AσJlpirqeilθδ.

(37)

10



II) Equations and linear solutions for the host region Ω`ptq:85

The perturbed portion of the system represented by the system (2), for the exterior model, can

similarly be grouped as follow:
$
’’’’&
’’’’%

Incompressibility ∇ ¨ vp1q` “ 0,

Stokes equation ∆v
p1q
` “ ∇pp1q` ,

Nutrient equation σp1q “ 0.

(38)

Similarly, the linear solutions to Eq. (38) are given by:
$
’’’’&
’’’’%

p
p1q
` “ Bpr

´leilθ,

v
p1q
`r “ pBplr

1´l

4pl´1q ´Bvlr´1´lqeilθ,
v
p1q
`θ “ p´Bpp´2`lqr1´l

4pl´1ql `Bvr´1´lqBθeilθ,

(39)

where Bp and Bv are coefficients to be determined. Using Eqs. (32) and (39), the linear solutions

for system (2) take the following form
$
’’’’&
’’’’%

p` “ Ap ` δBpr´leilθ,
v` “ Av

r r̂` δ
´
Bplr

1´l

4pl´1q ´Bvlr´1´l
¯
eilθ r̂` δ

´´Bpp´2`lqr1´l

4pl´1ql `Bvr´1´lq
¯
Bθeilθθ̂,

σ` “ 1.

(40)

5. Morphological Stability Analysis

The continuous change in tumor morphology is analyzed by comparing the normal component

of the velocity field in the following two forms:

V “ dRptq
dt

` dδptq
dt

eilθ, (41)

and

V “ v` ¨ n “ v
p0q
` pRq ` δp

dv
p0q
`
dr

|r“Rqeilθ ` δvp1q`r pRq, (42)
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where the unit normal to the surface n “ r´ p1{rqilδeilθθ.90

From the velocity continuity condition (29) and Eqs. (41) and (42), the rate at which the circular

radius is evolving is found to take the following form:

dR

dt
“ p1´BqI1pRq

I0pRq ´
AR
2
. (43)

In Figure 3 we show the rate of change of a radial tumor with respect to R for different A values.

The plot suggests that for A “ 0 (no apoptosis), radial tumors exhibit growth only. For 0 ă A ă 1,

radial tumors grow to a stationary state
dR

dt
“ 0 according to the value of A.

0 5 10 15

R

-3

-2

-1

0

1

 d
R

/d
t 

A=0

A=0.3

A=0.5

A=0.7

A=1

Figure 3: Growth rate from Eq. (43) for the radially symmetric tumor as a function of R. B “ 0.

By equating the corresponding coefficients of δ provided by Eqs. (41) and (42), we obtain the

growth rate of the perturbation:

c “
ˆ
δ

R

˙´1 dp δR q
dt

“ A
ˆ

1´ 1

λ` 1

˙
` lS

´1

4R3

ˆ
3

2
´ l2

˙
`1´B

1` λ
ˆ

1´ I1pRqIl`1pRq
I0pRqIlpRq

˙
´p1´Bq 2

R

I1pRq
I0pRq ,

(44)

where c represents the relative time variation of the shape factor ( δR ), and describes the tumor

morphological stability. Note that here we focus on the normal contribution of the term ∇∇σ in95

the stress jump.
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It is known that the time variation of the shape factor can be categorized as positive, zero, or

negative values, which correspond to unstable, self-similar, or stable growths, respectively. Equation

(44) suggests that increased A values lead to increased morphological instability, which is consistent

with previous findings [24]. It can also be seen from equation p44q that greater bending rigidity100

value leads to increased morphological stability.

5.1. Tumor’s morphological stability during the avascular stage pB “ 0q

0 2 4 6 8
-0.8

-0.6

-0.4

-0.2

0

0.2
=0.1

=1

=5

=20

(a)
0 1 2 3

-0.8

-0.6

-0.4

-0.2

0

0.2

=0.1

=1

=5

=20

(b)

Figure 4: Relative change of the shape factor c as a function of l for different λ values; B “ 0, A “ 0.5, and S´1 “ 1{4
(a) versus S´1 “ 4 (b).

Considering A “ 0.5, the right side of Eq. (43) equals to 0 (steady-state) when R “ 3.32585.

For these parameter values, we plot c against l in Figure 4 for S´1 “ 1{4 and S´1 “ 4. Recall

S´1 is defined as the bending rigidity over mitosis rate. It can be seen from the two plots that105

S´1 decreases the growth rate of the perturbation, suggesting that increased bending rigidity and

viscosity ratio contributes to a more stable behavior. Note that Figure 4 shows continuous curves

of l in order to provide all the values that illustrate clearly the boundary between the stable and

unstable regions.

In Figure 5, we plot the evolution of the shape factor c against the tumor size R. For simplicity,110

we set S´1 “ 1{4 for these calculations. Similar results hold for other S´1 values (not shown). From

Eq. (43), we know R will grow unbounded if the apoptosis parameter A “ 0. Interestingly, as R

increases, we observe the growth rate c Ñ 0 asymptotically in Figure 5 [a], i.e. the linear theory

predicts that the morphologies of growing tumors tend to limiting shapes that evolve self-similarly.
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Figure 5: Relative change of the shape factor c as a function of R with S´1 “ 1{4. [a] A “ 0 and l “ 3; [b] A “ 0.5

and l “ 3; [c] A “ 1.0 and l “ 3; [d] A “ 0 and λ “ 0.1.

We next set A “ 0.5 in Figure 5 [b]. From Eq. (43), we know there exist both growth (when the115

size of the tumor R ă 3.326) and shrinkage (when the size of the tumor R ą 3.326). In particular,

there exists a critical tumor size at R “ 5.939 such that the growth rate of the shape factor c is

independent of the viscosity ratio. That is at this point, the tumor shrinks at the same rate. If

we continue to increase the value of A “ 1.0 as shown in Figure 5 [c], there exists shrinkage only

from Eq. (43). However, for large tumor size with c ą 0, we have shrinking instability. That is the120

perturbation actually grows while the tumor size is shrinking. This might explain the formation of

branched fingering structures that could occasionally take place after the treatment of chemo- or

radiotherapy. In Figure 5 [d], we demonstrate how the evolution of shape factor c depends on the

perturbation mode l using λ “ 0.1 and A “ 0. Similar to the case l “ 3, the growth rate c Ñ 0

asymptotically as RÑ8.125
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5.2. Tumor’s morphological stability during the vascular stage pB ‰ 0q
Next, we investigate the changes in c for different vascular stages. In Figure 6, we plot the

evolution of the shape factor, c as a function of tumor size R. When 0 ă B ă 1, the growth rate

of R exhibits similar behavior as shown in Figure 3 governed by Eq. (43). We first set B “ 0.5

and A “ 0 (the mitosis rate is twice the rate of apoptosis), i.e. we study an ever-growing tumor in130

Figure 6[a]. Similar to what we obtained in Figure 5 [a], we observe linear self-similar growth, and

the growth rate c Ñ 0 asymptotically as R Ñ 8. Figure 6[a] also suggests that the morphology

is becoming slightly more stable with increasing λ values (host viscosity becoming larger than the

one of the tumor). Moreover, when B “ 1 and A “ 0, we have
dR

dt
“ 0, and c “ lS´1

4R3

ˆ
3

2
´ l2

˙
,

the tumor displays a stable morphology for small radial values (c ă 0) and self similar evolution for135

larger ones (c « 0), independent of viscosity, as shown in Figure 6[b].
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(b)

Figure 6: Relative change of the shape factor c as a function or R for different λ values; A “ 0, l “ 3, S´1 “ 1{4 and

B “ 0.5 (a) vs. B “ 1 (b).

6. Model Assessment During the Avascular Stage

Next, we evaluate our model and linear predictions against experimental results. Experimental

data was obtained using glioblastoma in vitro cultures [25]. Nine sets of measurements were collected

from using three levels of glucose (mainly affecting adhesion / bending rigidity) and three levels of140

bovine serum (mainly affecting proliferation) [25, 14]. Cell clusters were initially grown to tumor

spheroids using a liquid-overlay technique [26]. Spheroids were then placed in 48-well plates. A Leitz
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microscope with magnification x100 was used to observe spheroid growth for 36 days. Photographs

had a magnification of x160 and they were taken using an Olympus camera using a 1130 by 1430

µm window [25]. For each of the levels of glucose and serum, glioblastoma cultures were growing up145

to a steady state, which corresponds to a diffusion-limited steady-state size. Sample photographs

are shown in Figure 7.

(a) (b)

(c)

Figure 7: Sample experimental pictures of glioblastoma spheroids [25, 14]. Low Adhesion - High Proliferation (a)

and High Adhesion - Low Proliferation (b). Measured protrusion for l “ 3; high cell adhesion and high proliferation

(c) .

We first set c “ 0 in Eq. (44) and solve for a marginally stable S, which we name SM hereafter

SM “ 1

p3{2´ l2q
„
A
ˆ

1´ 1

λ` 1

˙
` l

4R3
` 1´B

1` λ
ˆ

1´ I1pRqIl`1pRq
I0pRqIlpRq

˙
´ p1´Bq 2

R

I1pRq
I0pRq


. (45)

Next, we evaluate our model and linear stability analysis by comparing SM with estimated Sp from

the experimental results. The calculation of apoptosis and cell adhesion using a Darcy model had

been performed in [25] and [14]. In this work, using our two-phase Stokes model, we estimate A150
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and S, and use the latter for evaluation against experimental results.

6.1. Apoptosis estimates

Since A was shown earlier to promote shape instability (see Eq. (44)), we focus on critical A

values obtained from Eq. (43) by setting dR
dt “ 0. This corresponds to a steady state stage of the

in vitro glioblastoma culture [14]. Assuming B “ 0, equation (43) reads as

A “ 2

R

I1pRq
I0pRq . (46)

Note that R is a scaled radius obtained from the experimental results. The experiments presented

in [14, 25] suggest that by considering a scaling of L « 125µm [14], the nondimensional spheroid

radii range: 6.24 ď R ď 7.528. Therefore, the corresponding range for the apoptosis parameter,155

0.247342 ď A ď 0.293569, following Eq. (46).

In Figure 8[a], we take λ “ 0.1 and show the SM curves as functions of R for different l values.

For each l, the curve divides the parameter region into unstable (top right) and stable (bottom left)

subregions. The figure suggests that larger l values lead to sharper increases of the SM curves for

the range of radial values considered in this study (especially for 6.24 ď R ď 7.528). Figure 8[b]160

shows how the SM curves change with respect to λ for a given mode l “ 3, indicating that a small

viscosity ratio gives a large unstable region.
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Figure 8: (a) SM as a function of R, for different l values, here λ “ 0.1. (b) SM as a function of R, for different λ

values, here l “ 3.
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6.2. Bending rigidity estimates

We approximate dR
dt near R « 0 and obtain the following net mitosis rate [14]

λ̃M “ 1

2
p1´ AqλM . (47)

Without loss of generality, we focus our study on an interface perturbed by a cosine mode, r̄pθq “
R̄` δ̄ cosplθq, where R̄ “ RL and δ̄ “ δL represent the dimensional tumor radius and perturbation,

respectively. The linear form of the bending energy reads as

1

2
K3 `Kss “ 1

2R̄3
´ δ̄pl2 ´ 1qp2l2 ´ 3q

2R̄4
cosplθq. (48)

Using the Stokes equation and the stress jump condition, we obtain the following characteristic

values165

T̄´ „ λ̃Mµ´ ` λ̃Mµ´ δ̄
R̄

cosplθq, (49)

T̄´ „ ν0

ˆ
1

2R̄3
´ δ̄pl2 ´ 1qp2l2 ´ 3q

2R̄4
cosplθq

˙
, (50)

where Eq. (49) represents the characteristic stress in the proliferating rim and Eq. (50) represents

the characteristic stress from tumor boundary. Dividing by λ̃Mµ´, we obtain

1` δ̄ cosplθq
R̄

„ ν0

λ̃Mµ´

ˆ
1

2R̄3
´ δ̄pl2 ´ 1qp2l2 ´ 3q

2R̄4
cosplθq

˙
. (51)

Using the definition of S´1 “ ν0

µ´λML3
and combining with Eq. (47), we obtain the maximum Sp

by taking cosplθq “ ´1,

Sp “ 1

1´ A

ˆ
1

R3
` 1` pl2 ´ 1qp2l2 ´ 3q

R4
δ

˙
. (52)

We next compare the marginally stable SM against the predicted Sp by using the experimental

data in [14, 25]. We take L « 125µm for the spheroid radii [14], and set mode number l “ 3, 4,

and 5. In [25], the authors considered that A was small and therefore neglected its effects. In this

paper, we would like to explore this parameter and consider the minimum apoptosis found in the

previous subsection with A “ 0.247342. Note that the calculation of Eq. (52) also requires the170

value of perturbation δ. This can be done by equating the corresponding coefficients from Eqs. (41)

and (42) to get δpl “ 3q “ 0.894403, δpl “ 4q “ 0.70909, and δpl “ 5q “ 0.590181.

In Figure 9, we plot the predicted Sp as a function of the non-dimensional R scaled by L «
125µm, which is denoted by markers. The analytic critical SM as a function of R for different
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values of λ are plotted using colored lines. Here low proliferation is denoted by circles, medium175

proliferation by stars, and high proliferation by triangles. The high cell adhesion is denoted by

blue color, medium cell adhesion by black color, and low cell adhesion by red color. Note that

the experimental qualitative values, where index 1 indicates a very stable morphology and index 5

indicates very unstable [14], are listed together with the corresponding markers. For example, the

points indicated by index "2" (almost stable), represent the nondimensional steady tumor spheroid180

radius of R “ 7.528 and its corresponding predicted Sp.

As shown in Figure 9, for l “ 3, analytic critical SM with smaller λ agrees with the predicted

Sp better. As l increases, larger λ yields better agreement between Sp and SM , e.g. λ “ 0.1 for

l “ 4 and λ “ 0.2 for l “ 5. For mode values l “ 4 and l “ 5, Figure 9 suggests that our model

is consistent with the experimental findings for all scenarios except the medium cell bending and185

medium proliferation. A possible reason for this is that the value of the viscosity ratio λ is not

always known from experiments, and λ can be a value varying from one experiment to another. It’s

possible that the λ value in the experiment for the medium cell bending and medium proliferation

case is higher than others, which increases the tumor stability.

7. Conclusion190

In this paper, we performed a linear stability analysis of a 2D, non-circular tumor with isotropic

bending rigidity growing in a host tissue. The interior tumor and exterior host were modeled by

the Stokes flow and the tumor host interface was modeled by an elastic membrane governed by the

Helfrich bending energy. Using an energy variation approach, we derived a modified Laplace-Young

condition for the stress jump across the interface in the Stokes equation. We then investigated how195

physical parameters such as viscosity, bending rigidity, and apoptosis contribute to the morpholog-

ical stability of the interface.

The linear analysis shows that an increase in bending rigidity contributes to an increase in

tumor’s morphological stability, almost independently of changes in other parameters. During

avascular growth, it is observed that an increase in the apoptosis leads to an overall increase in200

shape instabilities. It was also observed that without apoptosis, an increase in vascularization leads

to a self-similar growth for large tumor size, almost independently of the viscosity ratio. It should

be noted that these results do not necessarily mean that there is a biological causal relationship,

and more research, especially experimental studies, need to be done to build such a reliable causal
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relationship. Nevertheless, these results are still able to provide potential insight to reduce shape205

instabilities of certain kinds of tumors.

Our findings are consistent with previously conducted simulations, which reveal that when the

tumor is more viscous than its environment, its morphology becomes more unstable and patterns like

fingers and branched structure could occur [24, 7, 14]. In addition, comparison with experimental

data on glioblastoma spheroids shows good agreement, especially for tumors with high bending210

and low proliferation. We are currently performing nonlinear simulations to confirm that our 2D

model indeed captures the significant features discovered in linear theory. In future work, we will

also consider adding a stochastic component to our work and establish a linear stability theory

consistent with the newly developed model.
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Figure 9: SM as a function of R, for l “ 3(a), l “ 4(b), and l “ 5(c). Sp points represented by their qualitative

numbers. Here low proliferation is denoted by circles, medium proliferation by stars, and high proliferation by

triangles. The high bending is denoted by blue color, medium cell bending by black color, and low cell bending by

red color. 23
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