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Abstract—Resistive random-access memory (ReRAM) with the
crossbar structure is one promising candidate to be used as a next
generation non-volatile memory device. In a crossbar ReRAM, in
which a memristor is positioned on each row-column intersection,
the sneak-path problem is one of the main challenges for a
reliable readout. The sneak-path problem can be solved with
additional selection devices. When some selection devices fail
short, the sneak-path problem re-occurs. The re-occurred sneak-
path problem is addressed in this paper. The re-occurred sneak-
path event can be described combinatorially and its adverse effect
can be modeled as a parallel interference. Based on a simple
pilot construction, we probabilistically characterize the inter-
cell dependency of the re-occurred sneak-path events. Utilizing
this dependency, we propose adaptive thresholding schemes for
resistive memory readout using side information provided by
pilot cells. This estimation theoretic approach effectively reduces
the bit-error rate while maintaining low redundancy overhead
and low complexity.

Index Terms—Resistive memory, sneak-path, selection devices,
adaptive thresholding, inter-cell dependency.

I. INTRODUCTION

Crossbar Resistive random-access memory (ReRAM), in
which a memristor is positioned on each row-column intersec-
tion of the crossbar structure, is considered to be a promising
candidate to be used as a next generation non-volatile memory
device because of its many unique advantages including a
simple structure and high density [2]. One fundamental prob-
lem in purely passive crossbar ReRAM that demands detailed
attention is the sneak-path problem [3]. When a cell in a
crossbar array is read, a voltage is applied to the memristor and
the resistance is measured to determine whether it is in Low-
Resistance State (logic 1) or High-Resistance State (logic 0).
Sneak paths are undesirable paths in parallel to the selected
cell; they traverse through unselected cells. This problem is
especially severe when a cell in High-Resistance State (logic
0) is read because parallel low resistances, due to sneak-
paths, lower the resistance measured from the cell at High-
Resistance State, thus causing difficulties in distinguishing
between the High-Resistance State and the Low-Resistance
State. The sneak-path problem is commonly solved by adding
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a selection device in series of each memory cell [4]. Adding
diodes results in the IDI1R structure [5], [6]; adding transistors
results in the 1T1R structure [7]; and adding selectors results
in the 1S1R structure [8].

Although introducing selection devices can eliminate the
sneak-path problem, selection devices are also prone to failure
[9], [10]. As modern storage devices have ultra high reliability
requirements, it is of interest to study crossbar resistive memo-
ries with failed selection devices. A study on crossbar resistive
memories with failed selection devices can also aid a memory
architecture designer in understanding how selection device
reliability affects the memory reliability. In this work, we first
focus on 1DIR structured arrays with shorted diodes, and
then we generalize the results to 1SIR structured arrays with
shorted selectors [11]. The case that diodes/selectors fail open
is not considered in this work. In this case, the information
stored in the cells to which the open diodes/selectors are
connected, is lost, and this case is best treated with erasure
correcting codes.

In a 1IDIR/ISIR structured array, the sneak-path problem
re-occurs when some diodes/selectors fail short, motivating
the study on the re-occurred sneak-path problem and ap-
proaches to mitigate it. Similar to what is observed in [12],
the events that cells on the same row/column are affected
by the re-occurred sneak path problem are highly dependent.
This dependency causes natural difficulties for standard cod-
ing theoretic solutions which assume independent bit-errors.
Investigation of alternative techniques which can utilize this
dependency is therefore of interest.

In this paper, our goal is to study the re-occurred sneak-
path problem and to provide simple yet effective approaches
to mitigate it. When viewing the effect of the re-occurred
sneak-path problem as a parallel interference, the dependency
between cells can be utilized to mitigate the re-occurred sneak-
path problem. From an estimation theoretic point of view,
we utilize the dependency between cells to provide improved
estimation schemes based on our probabilistic characterization
of the inter-cell dependency. We propose adaptive thresholding
schemes that adaptively change the threshold using side infor-
mation provided by pilot cells. With a simple pilot construction
and our proposed adaptive thresholding schemes, we demon-
strate up to 50% reduction in bit-error rate (BER) comparing
to the fixed threshold scheme. In addition to ReRAM that is
built out of memristors, our approaches are also applicable
to other memory with crossbar structure, such as the Phase



Changing Memory (PCM).

The content of this paper is organized as follows. Section
II provides modeling of the re-occurred sneak-path event and
its adverse effect in two types of memory structure. The pilot
construction used in this paper is also introduced in Section
II. Section III formally characterizes the dependency of the
re-occurred sneak-path event between the pilot cells and the
information cells by calculating joint probabilities of the re-
occurred sneak-path events among cells. In Section IV, the
adaptive thresholding idea is introduced and the thresholds for
different cases are derived. Section V provides bit-error rate
analysis and present results comparing our proposed scheme
with the fixed threshold scheme for various parameters. We
present a case study comparing our proposed schemes with
a comparable coding theoretic solution in Section VI. We
conclude and discuss future research in Section VIL.

II. SNEAK-PATH MODELING AND THE PILOT
CONSTRUCTION

In this paper, since it is clear that we are addressing the “re-
occurred” sneak-path problem, we drop the repeated attribute
“re-occurred” for simplified language. As an initial step, we
use the sneak-path definition in [12] with modification to
model the sneak-path event. In this work, we restrict ourselves
to the sneak-path of length 3 because a sneak-path of length
3 is more likely to occur than sneak-paths of other lengths
and the adverse effect of a sneak-path of length 3 is more
prominent than the adverse effects of a sneak-path of other
lengths. Other factors that affect the occurrence of the sneak-
path problem, such as wire resistance, are not considered in
this paper and are left for future work. In this section, we
first propose the model of a sneak-path event for crossbar
resistive memory with the 1DIR structure and then extend
the model to the 1SIR structured array. Our models assume
that the selection devices fails short i.i.d. with probability py
due to reliability issues. Note that these models can be easily
extended to crossbar resistive memory without any selection
device by setting py = 1. We define A € {0,1}"*" to be
the data matrix representing data stored in a crossbar resistive
memory of size m x n, and let A;; denote the bit value at cell
(i, 7). For simplicity, we assume m < n and that m divides n
with n/m = r. The case when m does not divide n will be
briefly discussed at the end of Section II.D. After presenting
the modeling of the sneak-path event for the two different
crossbar resistive memory structures, we describe a modeling
of the adverse effect of a sneak-path event. At the end of
this section, we provide the pilot construction that we use
throughout this paper.

A. Modeling of the Sneak-path Event for the IDIR Structure

By our definition, a sneak-path event occurs at cell (i, 7)
for an array with a IDIR structure if the following three
conditions are met:

1) The bit value stored is O.
2) There exists at least one combination of ¢ €
[1,---,m],s € [1,---,n],c # j,r # i that induces

a sneak-path, defined by
Aic = Asc = Asj =1 (1)

3) The diode at cell location (s, c) fails short.

We define e;; to be a boolean random variable denoting
the occurrence of the sneak-path event at location (i,7),
conditioned on the bit value stored at cell (¢, j) being 0. That
is, e;; = 1 if and only if the cell storing a 0 at position (¢, j)
incurs a sneak-path event. We also refer to the realization of
e;; as the sneak-path state of cell (7, 7). Note that the sneak-
path event is defined only for those cells that store 0’s because
the adverse effect of a sneak-path event on a cell that stores
1 is not detrimental to the read process. We have the third
condition because in a 1DIR structured array, the diode in
series prevents current from flowing in the reverse direction.
The failure of the diode at cell location (s, ¢) to short circuit is
therefore necessary to allow current flowing along the sneak-
path.

B. Modeling of the Sneak-path Event for the 1SIR Structure

The only difference between our definition for the sneak-
path event in a ISIR structured array and the definition in
a 1DIR structured array is the third condition. The third
condition for a sneak-path event to occur at cell (¢,7) in a
1S1R structured array is:

o The selectors at cell location (4, ¢), (s,c) and (s, j) fail
short.

A cell selector is a device that has a high resistance when
the voltage across it is below a certain threshold, e.g., when
the cell is on the sneak-path. Therefore, all three selectors
in series of the three cells on the sneak-path, i.e., cells that
store A;c, Asc and Agj, need to fail short for the sneak-path
event to occur. Modeling for the 1D1R and 1SIR structures
share the same notation. In this paper, when it is necessary to
differentiate these two set-ups, it will be clear from the context
which one is being considered.

C. Adverse Effect of a Sneak-Path Event

As this is an initial study, and with limited prior work,
we focus on a simplified model described as follows. Our
modeling of the adverse effect of a sneak-path event is adapted
from [11] as a parallel interference. We first define the O state
resistance of the memristor to be Ry, and the 1 state resistance
of the memristor to be R;. The adverse effect of a sneak-
path event is modeled as a parasitic resistor with value R,
that is parallel to the read cell. We then denote r;; to be the
measured resistance value of cell (7, j), with an additive noise
n. This additive noise captures two noise sources: the noise
introduced by the resistance variation of resistive memory
cells [13], and the measurement noise introduced by the
sensing circuit [11]. To consider the noise introduced by the
resistance variation, we first model the noise caused by the
variation of HRS resistance and LRS resistance as Gaussian
[14], [15]. As shown in [16], parallel combination of two
Gaussian random variables can be approximated with another
Gaussian random variable. As a result, we also model the



noise caused by the variation of the sneak-path resistance as
a Gaussian additive noise added to the parallel combination
of the sneak-path resistance and HRS resistance. Collectively,
and for mathematical simplicity, we assume 7 to be Gaussian
with mean 0 and variance o2, i.e., the same noise is added
to the LRS resistance, the HRS resistance, and the parallel
combination of the sneak-path resistance and HRS resistance.
Adaptation to different noise models, including Gaussians with
different variances are discussed at the end of Section IV B.
Together, we have the following model:

-1
(Rio + %) +n when 0 is stored,

Tij = 2)
Ri+n when 1 is stored.

In this paper, we assume R; < (1/Rp+ 1/R,)~! to avoid
analyzing degenerate scenarios.

D. Pilot Construction

In a crossbar resistive memory, and as noted in [12], it is not
hard to observe that the occurrence of a sneak-path event at one
cell is not independent of the occurrence of a sneak-path event
at another cell. For example, knowing that e;; = 1 increases
the probability of e;;« = 1,5 € [1,--- ,n],j* # j, as well
as e;+; = 1,4 € [1,---,m],i* # 4. This special behavior
of resistive memory presents natural difficulties to standard
coding theoretic solutions when viewing the occurrence of a
sneak-path event as a bit error. However, when viewing the
effect of a sneak-path event as a parallel interference, one can
utilize this inter-cell dependency to develop better estimation
schemes based on side information provided by cells with
known bit values.

We note that two cells are correlated the most when they
are on the same row or column. It is also observed in [3]
that the location of the cell (¢ and j) does not affect the
probability of e;;. Moreover, the event that two cells in the
same row (column) simultaneously incur sneak-path events
is also independent of the relative position of cells, i.e., the
(joint) probability that these two cells simultaneously incur
sneak-path events is independent of their positions, given that
we do not consider wire resistance in this study. As a result,
knowledge of the occurrence of a sneak-path event at a cell
provides the same information as for all other cells on the same
row (column). Based on this observation, we wish to explore
robustness to selection device failure when a cell is allowed
to access a few other cells with known states by utilizing their
inter-cell dependency. The simplest yet effective case is that
each information cell (a cell that can store either O or 1), has
at least one pilot cell (a cell with known state) on its row and
at least one pilot cell on its column. We therefore propose the
following pilot construction.

Pilot Construction 1. Let A € {0,1}™*" denote the data
matrix representing data stored in a crossbar resistive memory
array of size m X n, and let A;; denote the bit value at cell
(1,7). We assume m < n (A is fat) and m divides n with
n/m = r. We preset all cells (i, j) such that i = j (mod m) to
store 0, i.e., A;j = 0,if 1=j (modm),Vie{l,..m},je

{1,...,n}. These preset cells are pilot cells and the rest of the
cells are information cells.

For an array of size m X n, to have at least one pilot cell
on the row of each information cell, we need at least m pilot
cells. To have at least one pilot cell on the column of each
information cell, we need at least n pilot cells. Together, to
have at least one pilot cell on both row and column of each
information cell, we need at least n pilot cells. Therefore the
rate is at most (m — 1)/m. It is easy to check that Pilot
construction 1 achieves this upper bound and satisfies our pilot
cell requirements.

The general term “pilot cells” can be thought of as the set of
some pre-selected cells that are accessed first in order to infer
certain characteristics of the array. In lithium battery, pilot cells
are tested to determine the charge and discharge current for
the entire battery. In [17], pilot cells are used to estimate the
sneak current in resistive memory. In our work, pilot cells are
used to estimate the sneak-path states of other cells on their
rows and columns. Specifically, we use the resistance of pilot
cells with known resistance states to infer the probabilities of
other cells incurring the sneak-path events. We provide details
on the usage of pilot cells in both Section III and Section IV.

With this simple pilot construction, each cell at location
(i,7), with i # j (mod m), has 1 pilot cell that stores a
0 in its column and r pilot cells that store 0’s in its row.
We will use these pilot cells for our improved estimation
schemes in latter section. Although there are r pilot cells in
the row of an information cell, we only use one of them.
Here and elsewhere, we define j/ = j mod m + m1l(j
mod m = 0), =m|j/m] +i—ml(j modm = 0) where
1(-) is the indicator function. For an information cell that
stores A;;, with i # j (mod m), we refer to the cells that store
Aj; and Ay to be its two reference cells. This construction
generalizes the construction in [1] that is only applicable to a
square array, i.e., m = n. For an array where m does not divide
n, Pilot Construction 1 is still applicable. In this case, some
of the information cells at the lower right side of the array
do not have reference cells in their rows as defined before.
Instead, they can use other pilot cells on their rows as the
reference cells. The probabilistic characterization for this case
could be done using the same techniques that will be discussed
in the following section. We omit the explicit discussion of it
because, while considerably more tedious, it does not provide
further insight.

III. PROBABILITIES AND JOINT PROBABILITIES OF THE
SNEAK PATH EVENT

In the previous section, we proposed a pilot construction
for the resistive memory array. In order to utilize the known
0’s stored in pilot cells for more informed estimation schemes,
several important probabilities need to be calculated analyti-
cally. First, in order to determine the sneak-path state of a pilot
cell, we need Py(e;;) for i = j (mod m). Second, in order to
use the sneak-path state of pilot cells for improved estimation
schemes, we need P(eij|eii/,A1;j = 0), P(6¢j|6j/j,Aij = 0)
and P(e;jleir,ej;, Aij = 0) for i # j (mod m). The three
sets of conditional probabilities are used in different estimation



schemes in latter sections. To make a comparison with the
scheme that does not use any side information, we also need
P(e;j|A;; = 0). Although similar probabilistic characteri-
zations of sneak-path event(s) for a single cell and for two
cells can be found in [12], modifications need to be made
to consider the pilot construction. In addition, characterizing
dependency between three cells is necessary to allow for a
more accurate estimation scheme.

To keep the discussion clear, in this section, we simply
state the probabilities that are used to obtain the necessary
probabilities mentioned above, and we refer readers to Ap-
pendix for the lemmas that calculate these probabilities. All
probabilities that we stated are conditioned on the usage of
our pilot construction, and, for clarity, we omit explicitly
specifying this condition. Apart from P (e;;), the probabilities
stated in this section also conditioned on the event A;; = 0.
We also omit specifying this condition explicitly, and instead
use the subscript 0 to highlight that Py(e;;) is not conditioned
on a known information cell. We assume that the bit values to
be stored in information cells are chosen i.i.d. Bernoulli with
parameter g representing the prior probability of a 1 being
stored. Note that although we include the indexes ¢ and j in the
argument of probabilities, these probabilities are independent
of 7 and j. We only require ¢ and j to satisfy certain conditions
based on the context.

All probabilities have two versions, one for the 1DIR
structure and one for the 1S1R structure. In this section and
the following sections, we do not differentiate them in most
cases unless specified. In Appendix, we provide lemmas that
calculate the stated probabilities for the 1D1R structure. The
corresponding probabilities for the ISIR structure can be
calculated using the following claim, which readily follows
from the definitions of the sneak-path event in Sections II.A
and II.B.

(151R)

Claim 1. For a ISIR structured array, let Py be the se-

lector failure probability, and ¢S be the prior probability
of a 1 being stored. In order to calculate a certain probability
for the ISIR structured array for which the corresponding
equation for the IDIR structure is already available, it suffices
to use that equation for the 1DIR structure with substitution:
ps=1and q = gIS1R) % p&lsm)‘

To obtain the set of probabilities Po(eij), we calculate
Py(e;; = 0) (Lemma 1 in Appendix). To obtain the set of
probabilities P(e;;), we calculate P(e;; = 0) (Lemma 2 in
Appendix). There are two reference cells for each information
cell. We first consider the case of using the sneak-path state
of only one reference cell. To obtain probabilities of form
P(eij|eii/) and P(eij|ej/j), we first need P(eij = 07 €0 = 0)
(Lemma 3 in Appendix) and P(e;; = 0,e;,; = 0) (Lemma
4 in Appendix). We also need P(e;;y = 0) (Lemma 5
in Appendix) and P(ej;; = 0) (Lemma 6 in Appendix).
When using the sneak-path states of two reference cells,
we need P(e;jle;i,ej;). To obtain the set of probabilities
P(eij|eii/,ej/j), we first need P(e,‘j = O,ei,‘/ = O,ej/j = 0)
(Lemma 7 in Appendix). We also need the set of probabilities
P(e;ir,ejr;) obtained by calculating P(e;» = 0,e;,; = 0)
(Lemma 8 in Appendix).

IV. ADAPTIVE THRESHOLDING SCHEMES

With all necessary conditional probabilities calculated, we
propose our adaptive thresholding schemes. We propose two
schemes, the Single Reference Scheme based on a single
reference cell, and the Double Reference Scheme based on
two reference cells. The Single Reference Scheme is further
separated into two sub-schemes, the Single Reference (Row)
Scheme that uses the reference cell on the row of an informa-
tion cell, and the Single Reference (Column) Scheme that uses
the reference cell on the column of an information cell. We
need to consider both the Single Reference (Row) Scheme and
the Single Reference (Column) Scheme because in a strictly
non-square array, due to asymmetry, the two reference cells
do not provide the same side information. For comparison,
we also state the No Reference Scheme which uses no side
information. For the two adaptive thresholding schemes, first
we determine the sneak-path states of the reference cells for
a targeted information cell, then, based on these sneak-path
states, we choose appropriate thresholds to decide the states
of the information cells to be read. All decisions are made
through threshold estimators for implementation simplicity.
In this section and the next section, the probability density
function of the Gaussian noise 7 in Equation (2) is defined to
be fy ().

In the remainder of this section, we first calculate the
threshold of the threshold estimator that determines the sneak-
path states of pilot cells. Then, we calculate the thresholds of
the threshold estimators that determine the states of informa-
tion cells, assuming known sneak-path states. Afterwards, we
further discuss the proposed adaptive thresholding schemes
that are based on the derived threshold estimators.

A. Optimal Threshold Estimation for Pilot Cells

We define 7y to be the threshold of the threshold estimator
used to determine whether or not a sneak-path event occurs
at a pilot cell. For a given resistance measurement r;;, taken
for a pilot cell (4, ) where i = j (mod m), the output of this
threshold estimator is

R 1
€ij = 0

Next, we derive the optimal threshold for this threshold
estimator. For an arbitrary pilot cell that stores A;; = 0 with
1 = j (mod m), there are two hypotheses, e;; = 0and e;; = 1.
Based on our modeling in Equation (2), the posterior functions
of the two hypotheses can be expressed as,

Ae,,=0(rij) = fn (135 — Ro) Po(ei; = 0), 4)

it 0<ry; <,

if 70 Srij < o0.

3)

and

1 1\!
Aeiy=1(rij) = fy (Tij - <Ro + R) ) Po(es; = 1),
&)

where Py(e;; = 0) and Py(e;; = 1) can be calculated using
Lemma 1 in Appendix.



Minimizing the average error probability of this threshold
estimator by Bayes Criterion gives the condition:

Ac,;=1(10) = Ae;;=0(70)- (6)

Solving (6) gives the following optimal threshold:

2
1 1 Po(eij=1)
B 1R3_<E+E) + 207 log (RO)TJ:O)>

2 Ry — (RiOJrRLS)_l v

70

B. Optimal Threshold Estimation for Information Cells

In this subsection, we calculate the optimal thresholds for
the three thresholding schemes, assuming the sneak-path states
of the pilot cells are known. The three thresholding schemes
are alike and only differ in the side-information used for each
scheme. It is thus convenient to use c to denote the side-
information, i.e., sneak-path state(s), used in each scheme
to describe the three schemes collectively. Depending on the
corresponding scheme, ¢ may be nothing, a scalar or a vector.
For an arbitrary information cell with ¢ # j (mod m), we let
¢ = none for the No Reference Scheme, c = e;; for the Single
Reference (Row) Scheme, ¢ = ej; for the Single Reference
(Column) Scheme, and ¢ = [e;;, e ;] for the Double Reference
Scheme.

There are two hypotheses for an information cell (i,7),
A;; = 0 and A;; = 1. We are interested in the threshold
estimators that decide between these two hypotheses, while
considering different realizations of ¢. Let 7(c) be the thresh-
old used for a particular thresholding scheme under a certain
realization of the corresponding c. For example, 7(none) is the
threshold to be used when no sneak-path state of reference
cells is used; 7(e;» = 1,e5,; = 1) is the threshold to be
used when the Double Threshold Scheme is used and both
reference cells of this information cell incur sneak-path events.
Therefore, when reading cell (4, j), the output of the threshold
estimator, using the selected threshold 7(c) where ¢ is known
sneak-path state(s) of reference cell(s), is:

A 1
Ay =
s

Based on the selected thresholding scheme and the real-
ization of ¢, the posterior functions of each hypothesis as a
function of r;; are

if 0<ry <7(e),

if 7(c) <ry < o0. ®

Aay=o(rij) = (1 —q)
1
+ f (Tij - (1%0 + Ii) ) Pleij = 10)]7

Aa,=1(rij) = qfy(rij — R1),

where P(e;; = 0|c) and P(e;; = 1|c) can be calculated using
Lemmas 2-8 in Appendix.

fa(rij = Ro)P(ei; = 0c)

€))

and

(10)

Minimizing the average error probability of the threshold
estimator by Bayes Criterion gives the following condition for
the optimal threshold:

Aay=1(7(€) = Aay=o(7(c))- (11)

Note that unlike in Equation (6) where both sides have
simple Gaussian density functions, Equation (11) has the
right hand side expressed as an addition of two Gaussian
density functions. As a result, Equation (11) has two solutions,
and the solution lying in the middle of the two distribu-
tions (9) and (10) is the desired threshold that minimizes
the error probability. We can solve 7(c) easily using avail-
able numerical methods, e.g., using vpasolve(A 4,,=1(7(c)) =
AA”.:O(T(C)),[Rl, Ro]) in MATLAB.

We quickly remark that in the case that a closed form
solution of 7(c) is needed, one can use the following approx-
imation:

—2
1 1
(370 + ﬁ) - R% + 202 log (7(1_(1)};((]6”:1'0))
71 .
1 1
(H+#) —m
(12)

This approximation follows by replacing the two Gaus-
sian density functions in (9) with a single Gaussian den-

-1
sity function, i.e., (1 —q)f, <r7;j - (R%) + Rl ) ) P(e;; =
1le), which is closest to the Gaussian density function
in (10). As a result,1 this approximation is valid when

Ry and (F% + I%)

1
fn (rij_(l'%o—'_]%s) )P(ez‘j = e > fylriy -

-1
Ro)P(ei; = 0|c) around (R% + %) . While being closed-
form, this approximation loses the optimality of the threshold
estimator. For the BER results in latter section, we use the
thresholds that are solved numerically.

Note that although Gaussian additive noise with the same
variance and zero mean is used for mathematical simplic-
ity, other models of the additive noise, such as log-normal
distribution [18], or Gaussian additive noise with different
variances for the HRS, LRS, and sneak-path resistances, can
be easily adopted with appropriate changes in the thresholds
calculations, e.g., by using different 7 in (2) and replacing
fn(-) with an appropriate density function(s). The case that
the diode is partially shorted (ohmic) can be considered as
a bias term among the noise modeling for the sneak-path
resistances. If the noise distribution is unimodal, the validity of
the approximation in (12) follows analogously to the Gaussian
case.

Also note that, for mathematical tractability, only one sneak-
path of length 3 is considered in this paper. As a result of this
simplification, the sneak-path resistance R is the dominant
term when the sneak-path event occurs. In a more precise
model, one storage cell can be affected by multiple sneak-paths
with different structures, [19]. Probabilistic characterization
of how a single cell is affected by multiple sneak-paths is
provided in [19]. Meanwhile, characterization of how multiple
cells are affected by differently structured multiple sneak-paths

7(c) =

DN =

are sufficiently apart, and when




is still an open problem. To adopt the adaptive thresholding
schemes, one would need to consider sneak-path(s) with
different structures as separate events. For example, the content
within the bracket of Equation (9) would be replaced with the
summation of many terms. Each term would be the product
between the pdf of the measured resistance given a sneak-path
event with a particular length and structure, and the probability
of this sneak-path event given the sneak-path state(s) of the
reference cell(s). The sneak-path state of a reference cell would
also have multiple states (not just O and 1) when multiple
sneak-paths with different structures are considered. In this
paper, given the limited space, we only provide an analysis
for the to the elementary case to illustrate the basic idea of
adaptive thresholding.

C. Estimation Using Adaptive Thresholding Schemes

Because the failures of selection devices are hard and are
typically found during the writing process, we seek to re-
estimate the sneak-path states of pilot cells after a write
operation:

o Whenever new data is written to the memory, except for
the case when the No Reference Scheme is used, measure
ri; for each pilot cell (¢,j) with ¢ = j (mod m). Then
use 7 to decide €é;;, and store these estimated sneak-path
states of pilot cells.

To read an information cell (4, j), i.e., the cell that stores A,;;
with 7 #Z j (mod m), the following procedure is performed
depending on the selected adaptive thresholding scheme:

o If the No Reference Scheme is used, measure r;; and use
7(none) to decide A;.

o If the Single Reference (Row or Column) Scheme is used,
retrieve the previously stored é;;; or €;/;. Then measure
ri; and use T(e;;r = é;;7) or T(e;r; = é;1;) to decide fl”

o If the Double Reference Scheme is used, retrieve the
previously stored é;; and é;.;. Then measure r;; and use
T(eii/ = éii/,ej/j = éj/j) to decide A”

From the above statements, we notice that the adaptive
thresholding schemes are particularly efficient for applications
in which memory cells are read more frequently than they are
written. In addition, the Single Reference (Column) Scheme, in
a fat array, possesses a special property amenable for simple
implementation: all memory cells on the same column use the
same threshold, which depends on the estimated sneak-path
state of the pilot cell in this column. Therefore, this threshold
could be hardware configured to be used for the entire column.

V. BER ANALYSIS AND RESULTS

In Section IV, we proposed adaptive thresholding schemes
and the associated threshold estimators. Based on these pro-
posed methods, in this section, we derive an analytical result
for the bit-error rate (BER), and present a comparison between
different schemes.

To read an information cell (i,7), we assume resistance
measurements r;;, 7;; and r;.; are available. Which r is being
used depends on which thresholding scheme is being selected.
Let ¢ = [e;;r, €j/;] denote the true sneak-path states for the two

reference cells, and let C' denote the support of c. Let ¢ denote
the estimated sneak-path state(s) for zero (¢ = none), one
(¢ = é;i or ¢ =€) or two (¢ = [é;i7,€;;]) reference cells,
depending on the selected thresholding scheme, and let C be
the support of the corresponding ¢. Since the sneak-path events
involving the two reference cells are only weakly dependent,
for the sake of simplified analysis of P.(c) in Equation
(13), and without sacrificing qualitative findings, we shall
assume that they are independent. Specifically, since P,.(c)
is only a weight term in Equation (13), unlike in the threshold
calculations, this calculation is insensitive to the small error
introduced by the independence assumption. For the exact
evaluation of P, (e;,ej ), one can use P,(e;r = 0,ej; =
O) = (1 — q)P(eii/ = O,@j/j = 0|A” = O) + qP(eii/ =
O,Ej/j = O|A7] = 1),Where P(Bm‘/ = O,Ej/j = O|AU = O) is
calculated in Lemma 8 and P(e;;» = 0,ej; = 0/4;; = 1) can
be obtained using an argument similar to Lemma 8.

Let P(/L-j # A;;) be the average probability of a decision
error. We have the following expression:

P(Aij 75 Aij) = Z PT(C) Z P(é|C)P(A” 75 Aij\c, é)
c€C eeC
(13)

In Equation (13), P,(c) is the probability of certain real-
izations of ¢, and can be calculated using P,(c) = FPy(e;; =
eiir)Po(ei; = ejrj); P(élc) is the probability of deciding é
given ¢; P(Ay; # Ayjlc,¢) is the decision error probability
given certain realizations of ¢ and ¢, where the latter governs
the choice of the threshold. Probabilities P(¢|c) for the No
Reference Scheme and the Single Reference (Row/Column)
Scheme are summarized in Table L.

Probability P(é|c) for the Double Reference Scheme is
calculated as follows using the probabilities in Table I:

P([éiir, éj0j:]|c) = P(&iir|c)P(&j:5|c). (14)

The decision error probability P(/L-j # Aijle, €) is given
by the following equation:

P(A;j # Ajle,e) = qQ (T(C)U_Rl> +(1-9q)

RoRs _ (¢ —7(¢
< Q <R+Ro()> + Pleg; = 0]0)0 (ROU()> ]
(15)

P(eij; = 1|c)

where ¢ is the prior probability of 1 being stored. In
the above equations, Q(-) is the @-function, ie., Q(z) =
\/% fmoo exp(—“;)du. These probabilities are obtained using
our modeling, the estimators introduced in Section IV, and
simple estimation theory.

With the theoretical expression for the bit-error rate derived,
we evaluate the results for different schemes. In the following
evaluations, we use prior probability ¢ = 0.5 and the following
resistance values, which are the same as in [11]: R; = 1001,
Ry = 100012, Ry = 250 (the value of the parameter Ry will
be changed for the upcoming Figure 4) and ¢ = 0.5. We
vary the parameters o, n and p; to test their influence on the
performance of our proposed schemes.
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Fig. 1: BER for a 1D1R structured square array with various
noise magnitude.

We first evaluate results for a square array, i.e., r = 1. In
this case, there is no need to differentiate the Single Reference
(Row) Scheme and the Single Reference (Column) Scheme.
We first set m = 8, py = 0.001, and vary o from 10 to 100.
The results are shown in Figure 1. We observe that both the
Single Reference Scheme and the Double Reference Scheme
offer noticeable improvements in terms of BER compared
with the No Reference Scheme. Using the Double Reference
Scheme provides better BER than using the Single Reference
Scheme. We observe that under moderate noise (o from
20 to 40), we can get consistently over 40% reduction in
BER by using the Double Reference Scheme, and over 20%
reduction in BER by using the Single Reference Scheme. In
the high noise regime (o > 40), all three schemes start to
saturate and the improvement offered by our proposed schemes
becomes smaller. However, by using our proposed schemes,
the saturation of BER becomes slower. For example, for a
targeted BER of 1.6 x 1073, in terms of the noise standard
deviation o, 50% more noise can be tolerated by using the
Single Reference Scheme and almost 100% more noise can be
tolerated by using the Double Reference Scheme.

Next, we set 0 = 40, m = 8, and vary p; from 1 x 107!
to 1 x 1072, The results are shown in Figure 2. We observe
that as the diode becomes more reliable, i.e. as py becomes
smaller, the improvement resulting from our proposed schemes
increases. We conjecture that as the diodes become more

BERVv.s. Pe sigma=40, m=8, r=1
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Fig. 2: BER for a 1DIR structured square array with various
Df-

reliable, the sneak-path events become more rare so that
the information provided by the reference cells impacts the
threshold more profoundly. For example, for py =1 x 1071,
knowing e;;» = 1 only changes P(e;; = 1|none) = 0.3017 to
P(ei; = 1le; = 1) = 0.5609. In contrast, for py = 1 x 1074,
knowing e;; = 1 changes P(e;; = 1l|none) = 0.0003749
to P(e;; = 1lle;y = 1) = 0.4168. The relative larger
change of P(e;; = 1|c) in the latter case shifts the threshold
more towards the left thus reducing the estimation error more
effectively.

3 BER v.s. m, sigma=40, p'=0A001, r=1
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Fig. 3: BER for a 1DIR structured square array with various
array dimension.

Next, we set o = 40, py = 0.001 and vary m from 8 to 16
to test the performance of our proposed schemes in arrays with
different sizes. The results are shown in Figure 3. We observe



consistent improvement in using the proposed schemes in the
range of tested array size. We also observe that as the array
size gets larger, the relative improvement using our proposed
scheme decreases by a small amount, akin to the reasoning for
decrease in performance improvement in the case of increased
py. For a large array, one can divide the large array into small
sub-arrays to keep the relative larger improvement. However,
this approach induces a larger circuit overhead and a larger
storage overhead, resulting in the familiar trade-off between
reliability and overhead observed in e.g., channel coding. Also,
for a large array, i.e., large m, the probabilities in Appendix
are hard to compute due to the combinatorial nature of these
calculations. This difficulty can potentially limit the usage
of the proposed schemes but it can be mitigated in two
ways. First, these probabilities are only computed once for
an array of a given size so these probabilities along with the
induced thresholds can be precomputed at the design stage.
Second, if the exact probabilities are prohibitively difficult to
compute, one can use the approximations mentioned at the end
of the Appendix to compute the approximated probabilities
and then the induced suboptimal thresholds. This simplified
approach still maintains most of the relative gain of the
adaptive thresholding schemes while reducing the burden of
computing those probabilities exactly.

BER v.s. Rs, pf=0.001, m=8, r=1, 0=40
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Fig. 4: BER for a 1DIR structured square array with various
sneak-path resistance.

We also test the sensitivity of our proposed schemes under
different values of the sneak-path resistance Rz, which is
governed by cell nonlinearity [20]. We set o = 40, py = 0.001
and vary Ry from 150 to 950. As shown in Figure 4,
the improvement using our proposed schemes is consistent
throughout this range, except when R is very small, i.e., in
the case when RI?)(;RIQS is very close to ;. When RRo(is—Rli is very
close to R;, knowledge of the sneak-path state(s) of reference
cell(s) does not change threshold significantly. As a result, the
adaptive thresholding schemes are ineffective. From this result,
we can also infer the performance of our proposed scheme for
other values of the Ry, R; parameters, as the ()-function in
the BER calculation is invariant to the same scaling of Ry,
Ry, R, and 0.

Next, we turn our attention to the performance of the
proposed schemes for an array with non-unity aspect ratio,
ie., for r # 1. We first set m = 8, r = 2, py = 0.001
and vary o from 10 to 100. The results are shown in Figure
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Fig. 5: BER for a 1D1R structured 8x 16 array with various
noise magnitude.

5. From the results, we note that the Single Reference (Row)
Scheme outperforms Single Reference (Column) Scheme. This
observation suggests that the reference cell in the row of an
information cell provides more information than the reference
cell in the column of this information cell. Intuitively, with
more available information cells in the row than in the column,
an information cell is more likely to incur a sneak-path event
given that we know a sneak-path event occurs at the reference
cell in its row than given that we know a sneak-path event
occurs at the reference cell in its column. For example, for
the parameters in Figure 5, we have P(e;; = 0,e,7 = 0) =
0.9959 and P(e;; = 0,ej; = 0) = 0.9955.

Next, we present the results for two arrays with the same
total number of cells, one array being a square array and the
other array being a non-square array. We set o = 40, py =
0.001. The square array is 16 x 16 with 240 information cells,
and the non-square array is 8 x 32 with 224 information cells.
The results are reported in Figure 6. We observe that although
the non-square array has fewer information cells relative to
the square array, the non-square array is less susceptible to
bit-errors relative to the square array under the same amount
of noise and the same thresholding scheme. Intuitively, this
can be partially explained by the observation that a decrease
in one dimension (here from 16 to 8), which decreases the
probability of a sneak-path event, has a stronger effect on the
occurrence of sneak-path event than the same simultaneous
multiplicative increase in the other dimension (here from 16
to 32), which in contrast increases the probability of a sneak-
path event. For example, the extreme case of the array of size
1 x 256 is indeed free of sneak-path events.

Finally, we report the performance for an array with a 1S1R
structure. We set m = 8, py = 0.1, and vary o from 10 to
100. We choose py = 0.1 because the 1SIR structure is less
susceptible to the sneak-path event compared to the 1DIR
structure. 1SIR structure with py = 0.1 gives P(e;; = 0),
comparable to P(e;; = 0) for IDIR structure with py =
0.001. The result is reported in Figure 7.

We observe that although the Single Reference Scheme and
the Double Reference Scheme still offer improvements in terms
of BER, the improvements are incremental. This observations
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noise magnitude.

suggests that, in the 1S1R structured array, with the stronger
isolation provided by the cell selectors, the dependency of
the sneak-path event between the reference cells and the
information cell is weaker than this dependency is in the ID1R
structured array. For example, in a 1S1R structured array, with
m=28,r=1and pf = 1075, we get P(e;; = 0) = 0.8896,
P(eij = 0|6“'/ = 0) = 08961, P(eij = 0|6i7;/ = 0,€j/j =

O) = 0.8325, and P(eij = 0|€ii’ = 1,6]'/]' = 1) = 0.3899; in
a 1DIR structured array, with m =8, r = 1 and py = 10715,
we get P(e;; = 0) = 0.8961, P(e;; = Ole;iy = 0) = 0.9433,
P(eij = O‘Gii/ = O,Cj/]‘ = 0) = 09709, and P(eij =
Ole;i» = 1,e5,; = 1) = 0.1208. It is clear from this example
that with comparable P(e;; = 0), in an array with the 1SIR
structure, the reference cells provide less side information than
the amount of side information provided by reference cells in
an array with the 1D1R structure.

VI. A COMPARISON WITH THE BCH (239, 255) CODE

The adaptive thresholding approach proposed in this paper is
not a direct substitute to the channel coding approaches. First,
the adaptive thresholding approach requires extra read opera-
tions and multiple threshold detectors while the channel coding
approaches require a channel encoder/decoder. Second, this
adaptive thresholding approach, which is estimation theoretic,
reduces the BER for a certain noise magnitude while some
channel coding techniques have guaranteed error-correction
capability.

A comparison between the adaptive thresholding approach
and the channel coding approaches is nonetheless valuable, as
it can help in better understanding the property of this special
problem (the re-occurrence of sneak-path due to selection
device failure) and can provide insight into the memory design.
We therefore present the following case study.

We consider 1DIR structured 16 x 16 arrays. For a 16 x 16
array, 16 cells are used as pilot cells when our proposed
pilot construction is used. We compare our adaptive thresh-
olding schemes using the pilot construction with the standard
BCH (239, 255) code, which corrects up to 2 bit-errors also
also uses 16 bits of redundancy. To make the BCH code
compatible with the array architecture, we assume that the
BCH (239, 255) code can correct up to 2 bit-errors among
256 (instead of 255) bits. In our simulations, we set py =
0.001,Ry = 1000,R; = 100,R; = 250,¢ = 0.5 and
vary o. Note that for the BCH coded array without the pilot
construction, we also use the optimal threshold, which is
calculated similar to 7(none), to determine the state of a cell.

In Figure 8, under both linear and log scale, we report
our simulation results of the raw bit-error rate (RBER) for
an array with pilot cells, with the No Reference Scheme and
the Double Reference Scheme. We also report the RBER and
undetectable bit-error rate (UBER) for an array that is coded
with the BCH (239,255) code. To gain further insight on
how the inter-cell dependency of sneak-path events affects
the coding performance, we also report a lower bound of the
UBER for BCH (239, 255) coded array assuming bit-errors
are independent.

It is first worth noting that by simply using the pilot
construction without adaptively changing the threshold, i.e.,
using the No Reference Scheme, we get better RBER per-
formance comparing to the RBER of the array without the
pilot construction. This can be explained as follows: by using
the pilot construction, we effectively reduce the fraction of
cells with LRS. The pilot construction can be considered as a
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Fig. 8: A Comparison with the BCH (239, 255) Code

simple shaping code in this case. As a result, the probability
of a sneak-path event is also reduced, as noted in [12]. The
reduced sneak-path probability therefore reduces the RBER.
Second, by comparing the UBER of the BCH (239, 255) code
with its lower bound, which is obtained using the RBER in the
BCH coded array under the independence assumption, we note
that the bit-errors are highly dependent. In the rare case that a
diode fails, all cells are more prone to error due to the adverse
effect of the sneak-path. Most of bit-errors are concentrated
in this case and are therefore dependent.

Next, we compare the performance of the coding approach
and the adaptive thresholding approach in two representative
noise regimes. In the low noise regime (o < 25), even if the
sneak-path event occurs, the number of bit-errors is usually
less than 3, i.e., the number is within the error-correction
capability of the BCH (239, 255) code. We observe that in this
case, the BCH (239, 255) code reduces BER very effectively.
The implication for the memory design is that if the additive
noise is small, e.g., there is a large read margin, the sneak-
path problem is not severe and it can be handled with an
appropriate ECC. In the high noise regime we studied, when
a diode fails, the number of bit-errors is often beyond the error-
correction capability of the BCH (239,255) code because
the adverse effect of the sneak-path event dominates in this
setting. In this case, we observe a much smaller coding
gain compared to the improvement achieved by using the
Double Reference Scheme with pilot cells. Note that in this
high noise regime, while this simple error-correction code is
ineffective, the Double Reference Scheme only reduces the
number of errors but does not eliminate them entirely, in
most cases. This observation opens up the possibility of
combining our proposed adaptive thresholding schemes with
more sophisticated error-correction code over large (multiple)

array(s). In this sense, the adaptive thresholding schemes can
be viewed as a preprocessing set that provides a lower RBER
for the subsequent ECC solution.

VII. CONCLUSION

In this paper, utilizing the inter-cell dependency of the
re-occurred sneak-path events, we provide light-weight esti-
mation theoretic schemes to mitigate the re-occurred sneak-
path problem in resistive memory with failed selection de-
vices. For future theoretical study, the adaptive thresholding
technique can be combined with more sophisticated error-
correction code. The proposed schemes can also serve as the
starting point to studying the incorporation of more precise
modeling, including but not limited to the noise model that is
not necessarily Gaussian, multiple sneak-paths with different
structures, and the ohmic failure modeling of the diodes.
SPICE simulation with real memristor model can be also done
to test our adaptive thresholding schemes.

APPENDIX

In the appendix, under the modeling of the sneak-path event
of a 1DIR structured array, we calculate the probabilities
introduced in Section III. Note that although some of the latter
lemmas we present may look complicated, they in fact rely on
elementary combinatorics of the sneak-path event defined by
our modeling. We include Figure 10 that contains some of the
useful notation and indexes used in the proof of following
lemmas. We comment on possible approximations for the
following lemmas at the end of the appendix. We use the
binomial coefficient () that is defined for 0 < k& < n and
equals O otherwise.

j-th column i-th column

(@) [0) 23

i-th row

@) a0 @)

Fig. 9: Some notation and indexes used in the proofs.

Lemma 1. Without conditioning on any known information
cell, the probability that a pilot cell (cell that stores A;j with
1=j',i.e., 7 =1') does not incur a sneak-path event is:

Py(ei; = 0)
= im—1

= (L= )" T [Po(ey = Olu)]”,
; < . )q q 0

where

m—1 min(u,v)
u\/m-—1-u
Po(eij = Olu) = ; ;; K’f) ( vk > (a7)

<" (1 = g)™ 1= (1 — pqu“} .

(16)



Proof: This probability is derived by conditioning on
certain parameters and then summing, over all possible con-
figurations, the probabilities that each of these configurations
does not cause a sneak-path event at cell (i,7) with i = j', i.e
j = 1'. The term configuration, here and elsewhere, refers to an
array (sub-array) with known information (depending on the
parameters) on the row(s) and column(s) of cell(s) of interest,
i.e., cell(s) which we want to not incur a sneak-path event. We
first condition on the number of 1’s on the j-th column (u),
i.e., we select u rows, with an index set I, that have 1’s on
the j-th column. We then divide the fat array into r square
sub-arrays, and consider each square sub-array separately,
conditioned on the selected w rows. This condition allows us
to consider each square sub-array independently. For each
square sub-array, we condition on the number of 1’s on the i-
th row (v), i.e., we select v columns, with an index set I, that
have 1’s on the i-th row. Here and elsewhere in the appendix,
since we consider the square sub-arrays separately, all index
sets have indexes that represent the positions in the square
sub-array. Therefore, we define all index sets to be subsets
of Iy = {1,--- ,m}\{4,4'}. For each square sub-array, we
also condition on k = |I,, N I,|. For each configuration with
parameters u, v and k, in order to guarantee no sneak-path
event at cell (1,7), we need the uv — k information cells, lying
on the intersection of the u rows and v columns, to either store
a 0 or store a 1 with a non-failing diode (with probability

1—pra) [ |

In the following lemmas, the probabilities are all condi-
tioned on A;; = 0 (omitted for clarity) where i # j’, i.e

EXS
Lemma 2. The probability that an information cell does not
incur a sneak-path event is:

m—2
—2
P(e;; =0) = Z {(mu >q“(1 — g
u=0 (18)
r—1
xP(l)(eij = 0|u) [P(2)(€ij = 0|u)} },
where
" m—2 min(u,v) m—2—u
1 .
-5 E ()
v=0 = (19)
Xqv(]. o q)mf2fv(1 —pr)uvk},
and
P(es =0 (20)

=qP(es; = 0[u)(1 = pra)* + (1 — ) PV (ei; = Olu).
Proof: We first condition on selecting u rows that have

1’s on the j-th column. Again, we divide the fat array into r
square sub-arrays. For an information cell, the probabilities
that no sneak-path event occurs at cell (i, ), conditioned on
u selected rows, are different for the square sub-array that
contains cell (i,j) and the r — 1 square sub-arrays that do not
contain cell (i,7), and thus need to be considered separately.
We use the superscripts (1) and (2) to denote this difference

in our probability calculation. The calculation of P(l)(eij =
O|u) is similar to Py(e;; = O|u) in Lemma 1 except |I| =
m — 2. The calculation of P®)(e;; = O|u) is divided into two
cases, and the probability for each case can be calculated
by utilizing P (e;; = O|u). In the case that the cell (i, j*),
j* = J (mod m), stores a 0, the configuration of this square
sub-array is the same as the configuration of the square sub-
array that contains cell (i, j). In the case that the cell (i,7*)
stores a 1, we additionally require u cells on the intersection
of 3*-th column and the u rows to either store a 0 or store a
1 with a non-failing diode. ]
Lemma 3. Let P(e;; = 0,e;s = 0) denote the joint
probability that both an information cell that stores 0 and
the reference cell on the same row do not incur sneak-path
Pe;; = 0,e;7 =0)

events simultaneously. We have:
m—2)\(u
u o
<m —2—-u
X /
u — o
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and

PP (ei; =0, e = Olu, ', 0, Ajy =1)
= qPW(es; = 0, €50 = Olu, ', 0, Ajrir = 1)(1 — py q)”+“/_°
+(1—q)PY(eij = 0,650 = Olu,u’, 0, Ajrr = 1),

(25)

Proof: To calculate P(e;; = 0,e;; = 0), we condition on
selecting u rows, with an index set I, that have 1’s on the j-th



column. We also select u' rows, with an index set I/, that have
1’s on the i'-th column and let o = |I,, N I,,/|. Conditioned on
these three parameters, we further divide the calculation into
four cases. We separately consider whether or not the square
sub-array contains cell (i,j) and whether or not cell (j',i)
stores a 0. For the two cases that the square sub-array contains
cell (i,7), we select v columns, with an index set I, that have
1’s on the i-th row. We also condition on k = |I,N (I, UIL,)|.
For each configuration with parameters u,u’,0,v and k, the
number of information cells that need to either store a 0 or
store a 1 with a non-failing diode is v(u + u' — o) — k when
Ajryr =0, and v(u+u' —o+1)—k when Aj;» = 1. For the two
cases that the square sub-array does not contain cell (i, ),
we consider two sub-cases, conditioning on the value stored
in cell (i,7*) with j* = j (mod m). When A;j+ = 0, these
two configurations are the same as their counterparts when
the square sub-array contains cell (i,j). When A;j» =1, the
number of additional information cells, for which we need
them to either store a 0 or store a 1 with a non-failing diode,
is u+u —owhen Ajy =0 and Ajiy = 1. ]
Lemma 4. Let P(e;; = 0,e5; = 0) denote the joint
probability that both an information cell that stores 0 and the

reference cell on the same column do not incur sneak-path
events simultaneously. We have:

m—2
m— 2 u m—2—u
P(eZJ_O,eJ/J_O)_Z{< u >q (lfq) 2
u=0

x |(1=q)PM(es; = 0,e;; = Ou, Ajry = 0)

r—1 (26)
X [P(2>(ez‘j =0,e; = 0|uaAj’i’ = 0)]

+qPW(eij = 0,e51; = Olu, Ajrir = 0)
(2 r—1
X [P )(eij = O,ej/j = 0|u,A]-/i/ = 1):| 5

where

PW(e;; = 0,ej,; =0Ju, Ajr =0)

u m—2—uk+t+w v

TR E) @

k+w+0( )Qm—4—k—w—0(1 _pfq)(k+1u)u—k7

1—gq

P(g) (eij = 0, €j/j = 0|’LL7 Aj/i/ = 0)
= ¢ PW(ey; = 0,5, = Olu, Ajrgr = 0)(1 — prq)™

i N (28)
+2q(1 — )P (es; = 0,55 = Olu, Ajrir = 0)(1 — prq)
+(1- q)2P(1>(€2‘j =0,e5; =0Ju, Ajryy =0),

P(l)(eij = O, €515 = ()|u, Aj’i/ = 1) (29)
=PW(es; =0,ej1; = Olu, Ajryr = 0)(1 —psq)*,
and,
2
P< )(eij = O, €515 = O\u, Aj’i/ = 1) (30)

:P(2)(€” = O7 6]'/j = O‘U, Aj/z" = 0)

Proof: To calculate P(e;; = 0,ej; = 0), we condition
on selecting u rows, with an index set I, that have 1’s on
the j-th column. Next, conditioning on the selected u rows,
we consider the same four cases as in the previous proof. For

the two cases that the square sub-array contains cell (i, 7), we
condition on these four parameters: k,w,v and o. Let v be the
number of columns, with an index set I, that have 1’s on the
i-th row and let v' be the number of columns, with an index set
I, that have 1’s on the j'-th row. We let k = |I,N (I, UL,)|,
w = |(I, UTy)\I| and o = |I, N I+|. Note that we do not
condition on v’ explicitly but instead use v' =k +w —v + o.
For each configuration with parameters u, k,w,v and o, the
number of information cells that need to either store a 0 or
store a 1 with a non-failing diode is u(k+w)—k when Aj; =
0 and u(k + w + 1) — k (additional w) when Aj; = 1. For
the case that the square sub-array does not contain cell (i, j)
and Ay = 0, four sub-cases are considered for the values
stored in cell (i,j*) with 7* = j (mod m) and cell (j',i*)
with i* = i’ (mod m). When A;;» = 0 and Aji;« = 0, the
configuration is the same as the configuration when the square
sub-array contains cell (i,7). When A;j« =1, Aj;» =0 or
Aij+ = 0, Ajry» = 1, the number of additional information
cells that need to either store a 0 or store a 1 with a non-
failing diode is u. When A;j« =1 and Aji« =1, the number
of additional information cells that need to either store a 0 or
store a 1 with a non-failing diode is 2u. For the case that the
square sub-array does not contain cell (i,j) and A = 1,
the configuration is the same as the configuration when the
square sub-array does not contain cell (i,j) and Aj; = 0.

|

Lemma 5. Let P(e; = 0) be the probability that the
reference cell on the row of an information cell, which stores
Aij = 0, incurs a sneak-path event. We have:

Plew =0) = (1-q)P(ei; =0) +4 3 { <mu 2) Y

-1

T
X P(l)(eii/ = O|U,A]~/i/ = 1) |:P(2)(e“‘/ = 0|u, Aj/i’ = 1):| ,

3D
where
W m—2 min(u,v) w m 9 w
L B o _9_
P === 3 (1) (72
v=0 k=0
xq'(1—q)" V(1 - pr)("“”’k}
(32)
and
PP (e = 0lu, Ayrir = 1) = PV (esr = Olu, Ajry = 1) (33)

X (1=psq)* + (1 — )PV (esir = Olu, Ajrr = 1).

Proof: We again separate the calculation of P(e;; = 0)
into four cases. When Aj;; = 0, we have the same config-
uration as in the proof of P(e;; = 0) in Lemma 2. When
Aj/i/ = 1, we condition on selecting u rows that have 1’s
on the i'-th column and divide the fat array into square sub-
arrays. For the square sub-array that contains cell (i,1"), the
calculation is similar to the calculation of PW(e;; = 0lu)
in Lemma 2 except we have u + 1 rows that have 1’s on the
i'-th column because Aj;; = 1. For the square sub-array that
does not contain cell (i,i'), we consider whether or not the
cell (i,7%) with j* = j (mod m) stores a 0. When A;j+ = 1,



the number of additional information cells that need to either
store a 0 or store a 1 with a non-failing diode is u. When
Ajj« = 0, the configuration is the same as the configuration
when the square sub-array contains cell (i,1"). [ |

Lemma 6. Let P(ej:;; = 0) be the probability that the
reference cell on the column of an information cell, which
stores A;j = 0, incurs a sneak-path event. We have:

X qu(l — q)miziup(l)(ej/j = O|U7Aj/i/ = 1) 34

r—1
x [P ey = Ofu, Ay = 1)} :

where

PW(ejr; = 0lu, Ajry = 1) = PW(e;; = 0u) (1 — prq)*,
(35)

and

PP (eji; =0lu, Ajrr = 1) = PP (ey; = 0lu).  (36)

Proof: We again separate the calculation of P(e;; = 0)
into four cases. When Ajy = 0, we have the same config-
uration as in the calculation of P;; = 0 in Lemma 2. When
Ajiy = 1, we condition on selecting u rows that have 1’s
on the i'-th column and divide the fat array into square sub-
arrays. For the square sub-array that contains cell (i,i'), the
calculation is similar to the calculation of PM) (e;; = Olu) in
Lemma 2 except we have one additional column that has an
1 on the j'-th row because Aj;; = 1. This additional column
therefore requires additional u information cells to either store
a 0 or store a 1 with a non-failing diode. For the square sub-
array that does not contain cell (i,i'), the calculation is the
same as the calculation of P (e;; = Olu) since they have
the same configuration. |

Lemma 7. The probability that an information cell and its two
reference cells do not incur sneak-path events simultaneously
u=0 u/=0 o=0

is given by:
m — 2
U
U m—2—u ut-u’ m—4—u—u’
X()( ' >q+ (17(1)2 4
o u —o

(1—q)PW(ei; = 0,e50 =0,e1; = Olu,u’, 0, Ajrir = 0)

m—2 m—2 min(u,u’)

=2 > >

P(eij = O,eii/ = O,Ej/j = 0

X

(2) / r—1
X |:P (eij = 07 €iit = 07 €45 = O"U/,U , 0, Aj/i’ = O)j|
+qPW(es; =0, €0 = 0,55 = OJu, v, 0, Ajriy = 1)
2 r—1
[P()(eq,j:oe“lf()ej]—()"uu oA,/il)] ,

(37

where

P(l)(e'LJ = 0 €t = 0 €515 = Ol'LL ’LL , 0, A]/z’ _0

k+k* 4w min(v,k*) k+k*+w u\ (v —o m_2—u—u+0
s 2[(0(1««)( ")

v=0 v*=max(0, v =k+k*

v—k—w) tFw—v

k* k+w v v+’ 2m—4—v—v’
1—
X<v*)<v—v*>(v—k—k*—w+v’)q ( 9)

uv+uv/+vu/70v7u(v7k7k*7w+v/)7k7'u*
x (1—-psq) ;

(38)
PP (e;; =0, =0, ejrj =O0lu,u’,0,Ajiy =0) = [(1 —q)°

+q(1— (1 —prg)"t °+q(1 —)(1 — pra)" + ¢*(1 — prq)™

x (1 —Pf‘Z)u,_o} PW(es; =0,e50 = 0,e5; = 0w, u’, 0, Ajryr = 0),
(39)
m727u

uw u'—o —u +o

P(>(62J_Oeu’_0€]j—0|'uu OA//_I Z Z

* min(v,k* *
S S () (e
k k*
v=0 v*=max(0, v'=k+k*

v—k—w) tFw—v

k* k+w v v+’ 2m—4—v—v’
1—
X(v*)(v—v*)(v—k—k*—w—i—v’)q ( 9)

wvtuv +ovu’ —ov—u(v—k—k* —w+v’ ) —k—v*
(1 =prg)™ ™" ( TRV (] )
(40)
and
PP (e = 0,e0 = 0,650, = Olu, 0, Ay = 1) = Z
m—Q—u - -

_uzfo k+kz+w mm(zv:k ) k+kz+w {( >< ,:0>

v=0 p*=max(0, v'=k+k*

v—k—w) tw—v

(e

v’ 2m—4—v—v
1-—
< —k— k* w+v’>q ( q)

( uv+uv +ou’ —ov— u(v—k— k*7w+v) k—v*

—py )“” TRkt [(1 — ¢ +q(1 - q)(1 —psg)"*°

X

X

+a(l = @)1= psa)" + (1= pya)™+* ] }
(41)

Proof: To calculate P(e;; = 0,e;# = 0), we condition
on selecting u rows, with an index set I, that have 1’s on
the j-th column. We also select u' rows, with an index set I,
that have 1’s on the i’-th column, and we let o = |I, N I,/|.
Next, we consider the same four cases that are considered in
the previous proofs. Let v be the number of columns, with an

ot+vtv —k—k*—w



index set I, that have 1’s on the i-th row and let v' be the
number of columns, with an index set I, that have 1’s on the
j'-th row. We let k be |(I, U I,,) N I,| and let k* be |(I, U
I)N (I \1y,)|. We also let w be |(I, UL, )\ (I, UL,)| and let
v* be |I,N(I,\1I,)|- For the cases when the square sub-array
contains cell (i,7) and Ay = 0, for each configuration with
parameters v,v' , k, k*, w and v*, the number of information
cells that need to either store a O or store a 1 with a non-failing
diode is uv+uv'+vu' —ov—u(v—k—k* —w+v")—k—v* by
inclusion and exclusion. For the cases when the square sub-
array contains cell (i,j) and Ajy = 1, additionally, these
otv+v —k—k*—w = |[,NILy|+|I,NI,| cells on the j'-th
row and the i'-th column that we know store 1’s can not have
a failed diode . For the two cases when the square sub-array
does not contain cell (i,j), four sub-cases are considered for
the values stored in cell (i, j*) with j* = j (mod m) and cell
(47,3%) with i* =4’ (mod m). When Ajy = 0, the number
of additional information cells that need to either store a 0
or store a 1 with a non-failing diode is 0, u, u+u' — o and
2u +u' — o for the sub-cases A;j+ = 0,Aj;» =0, Ajj» =
0 Ajz* :1 Az]* —1Ajl* —OandA”* =1 Aj’z* _1
respectively. When Aj; =1, addltlonally, these v+v' — k —
k*—w=|I,N 1, cells on the j'-th row that we know store
1’s can not have a failed diode. ]

Lemma 8. Let P(e;y = 0,e;,; = 0) be the probability that
both reference cells of an mformatwn cell, which stores A;; =
0, incurs sneak-path events simultaneously. We have:

N
N

P(eii’ =0,e5; =0) =

u=0 u/=

m—2 min(u,u’) m—2 w
=0 u o

« <’ITL —2— u) qu+u'(1 _ q)2m747u7u'

o

u' —o

X (1 — q)P(l)(e”/ = 07 6j’j = 0|’M7 ’U/, o, Aj’i’ = 0) (42)
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and

m=—2-u k1+ka k1+ka

ka—v1 k3 +kztw +k3t+w o w—o
sry r @0
v2 v =ky+ko+ks

—u'—o ko
v3 v=v1
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tvetvs Ly ey
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Proof: To calculate P(e;; = 0,e;# = 0), we condition
on selecting u rows, with an index set I, that have 1’s on
the j-th column. We also select u' rows, with an index set I,
that have 1’s on the i'-th column and we let o = |I,, N L/|.
Next, we consider the same four cases that are considered in
the previous proofs. Let v be the number of columns, with an
index set I,,, that have 1’s on the i-th row and let V' be the
number of columns, with an index set I/, that have 1’s on the
j'-th row. We let k1 = |(I,NI)N(L,ULy)|, ke = |(Ly/Lw )N
(LUL)|, ks = |(Iy /L)N(I,ULy)|, w = |T,UIL, /(I,UL.)),
vy = |(Lu/Lw) N (I, N 1y)|, v1 = |(Tu/Lw) N (1y/Ly)| and
vy = |(Ly /Iw) N I,|. For the cases when the square sub-array
contains cell (i,j) and Aj;y = 0, for each configuration with
the above parameters, the number of information cells that
need to either store a 0 or store a 1 with a non-failing diode
is uv' +ovu’ —o(v+v' —ky — ko — ks —w) — k1 — (ks —vg) —v3
by noting that |[IvN Iy = v+v — kg — ko — ks — w and
[(I, N I,) U (I, N Iy)| = k1 + ko — va + v3. For the cases
when the square sub-array contains cell (i,j) and Aj; = 1,
additionally, these |I, N I,/ |+ |I, N I| cells on the j'-th row
and the i'-th column that we know store 1’s can not have a
failed diode . For the two cases when the square sub-array
does not contain cell (i, j), four sub-cases are considered for
the values stored in cell (i, j*) with j* = j (mod m) and cell
(4',4%) with i* = i’ (mod m). When Aj; = 0, the number
of additional information cells that need to either store a 0
or store a 1 with a non-failing diode is 0, u, v’ and u + v’
for the sub-cases Aij* = O,Aj/i* =0, Aij* = O,Aj/i* =1,
Ajj» = 1, Aj» = 0 and Ay~ = 1, Aj» = 1, respectively.
When Aj/y = 1, additionally, these |I, N1, cells on the j'-th
row that we know store 1’s can not have a failed diode. 1

All lemmas in the appendix are verified with Monte Carlo
simulations. These probabilities can be approximated with
simplified calculations by neglecting the fact that the array has
preset pilot cells, therefore avoiding the somewhat complicated
enumeration through the overlapping indexes between the row
indexes and column indexes. The approximated versions of
Lemma 2 and Lemma 4 with py = 1 can be found in [12].
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