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SUMMARY

The choroid plexus (ChP) epithelium is a source of secreted signaling factors in cerebrospinal
fluid (CSF) and a key barrier between blood and brain. Here, we develop imaging tools to
interrogate these functions in adult lateral ventricle ChP in wholemount explants and in awake
mice. By imaging epithelial cells in intact ChP explants, we observed calcium activity and
secretory events that increased in frequency following delivery of serotonergic agonists. Using
chronic two-photon imaging in awake mice, we observed spontaneous subcellular calcium events
as well as strong agonist-evoked calcium activation and cytoplasmic secretion into CSF. Three-
dimensional imaging of motility and mobility of multiple types of ChP immune cells at baseline
and following immune challenge or focal injury revealed a range of surveillance and defensive
behaviors. Together, these tools should help illuminate the diverse functions of this understudied

body-brain interface.

KEYWORDS
Choroid plexus, cerebrospinal fluid, two-photon imaging, calcium activity, serotonin, secretion,

epithelial cells, immune cells
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INTRODUCTION

The choroid plexus (ChP) is a distinct, vital organ that extends into each ventricle in the
brain. It is composed predominantly of epithelial cells that envelop a network of stromal cell
types including immune, mesenchymal, and vascular cells (Dani et al., 2019). The epithelial cells
provide a source of cerebrospinal fluid (CSF) (Damkier et al., 2013) and associated growth-
promoting factors for neural stem cells (Lehtinen et al., 2011; Fame and Lehtinen, 2020; Silva-
Vargas et al., 2016). They also form a blood-CSF barrier that gates passage of nutrients, toxins,
and immune cells from body to brain (Ghersi-Egea et al., 2018; Reboldi et al., 2009; Schwartz
and Baruch, 2014; Shechter et al., 2013), and may regulate CSF composition via clearance of
toxins and waste (Crossgrove et al., 2005). Thus, the sensing, secretory, and transcytotic
functions of the ChP suggest diverse roles in regulating brain function. These roles may be
disrupted in neurologic conditions ranging from hydrocephalus (Karimy et al., 2017) to
Alzheimer’s disease (Balusu et al., 2016a; Marques et al., 2013). Further, the ChP is an attractive
target for enhancing drug delivery to the brain (Gonzalez et al., 2011; Haddad et al., 2013; Hudry
and Vandenberghe, 2019).

Despite the importance of the ChP-CSF system, little is known about the behavior of
mammalian ChP cell types in vivo. In vitro approaches exist for culturing ChP cell lines (Zheng
and Zhao, 2002), dissociated ChP cells (Zheng et al., 1998), ChP epithelial cell sheets in
transwell models (Strazielle and Ghersi-Egea, 1999), and ChP organoids (Pellegrini et al., 2020;
Watanabe et al., 2012). Isolated ChP explants have also been used for analyzing secretion into
conditioned medium (Gudeman et al., 1987, 1989; Lun et al., 2015a; Silva-Vargas et al., 2016),
or for fixation and immunostaining (Dani et al., 2019; Lun et al., 2015a). Anatomical studies

using light and electron microscopy (EM) have provided clues as to the cellular architecture of
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the ChP (e.g. Netsky and Shuangshoti, 1975). However, a major obstacle to progress in
understanding the roles of ChP cells has been the lack of available tools for stable visualization
and manipulation of specific ChP cell types in intact tissue in vitro and in vivo in a fluid
environment deep within the brain.

Here, we adapted a suite of modern neuroscience tools to target the lateral ventricle ChP,
providing optical access to this unexplored tissue in mice. We developed methods for volumetric
two-photon imaging and non-rigid alignment of the ChP in acute explant preparations, as well as
in awake mice across hours, days, and weeks. Dynamic cellular functions of other epithelia (e.g.
in retina, lung, and salivary gland) are typically associated with changes in intracellular calcium
(Ambudkar, 2016; Balaji et al., 2017; Concepcion and Feske, 2017; Narciso et al., 2017;
Samanta and Parekh, 2016). For example, calcium signaling in salivary gland is important for
on-demand secretion (Ambudkar, 2018, 2016). We found that ChP epithelial cells exhibited
spontaneous subcellular calcium activity in vitro and in vivo. Serotonergic agonists evoked
distributed increases in calcium activity, as well as secretory events measured using a sensor of
exocytosis. We then visualized the motility and mobility of ChP immune cells in relation to ChP
vasculature in awake mice at baseline and in response to peripheral immune stimulation and to
laser-induced, focal ChP injury. Together, these methods provide a novel imaging platform for a
wide range of studies imaging multiple genetically accessible ChP cell types in intact tissue at

unprecedented spatial and temporal resolution.
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RESULTS
Imaging ChP explants

We first optimized adult lateral ventricle (LV) ChP explant preparations (Dani et al.,
2019; Lun et al., 2015a) to enable histological analyses (Figures 1A-1D) and stable live-cell
imaging (Figures 1E, 1F, and S1A). Epithelial cells constitute the majority of adult ChP cells

(Dani et al., 2019). In addition, the ChP contains immune cells (labeled by Cx;scrl H/GEP

(Jung et
al., 2000)) consisting mostly of monocytes/macrophages but also including a smaller number of
mast cells and dendritic cells (Dani et al., 2019; Van Hove et al., 2019). These immune cells
evenly tiled the entire tissue under baseline conditions (Figures 1A-1C). The ChP could be
divided into stereotyped zones defined by arterial and venous landmarks (Figures 1D, S1B, and
S1C) (Dani et al., 2019). This vascular pattern strongly resembles that observed for human ChP
(Hudson, 1960). As such, it provides an anatomical roadmap that allows specific subregions of
the lateral ventricle ChP to be identified and analyzed across mice within the same study, across
studies from different labs, and across species.

ChP explants were stabilized for acute in vitro imaging (Figure 1E). To visualize
calcium activity in epithelial cells, we gently dissected and stabilized the entire LV ChP from
one hemisphere. We expressed the calcium reporter GCaMP6f (using 4i95D mice; Madisen et
al., 2015) in ChP epithelial cells (using FoxJI-Cre mice that selectively target this cell
population) (Figure 1F) (Lun et al., 2015a; Zhang et al., 2007). Using epifluorescence imaging,
we could visualize spontaneous calcium activity across thousands of epithelial cells
simultaneously (Figure 1F; Video S1). We focused on a subregion and performed activity-based

cell segregation (STAR Methods), resulting in time courses of spontaneous activity in individual

epithelial cells (Figures 1F-1K; Video S1). Most epithelial cells showed large, transient
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elevations in calcium activity lasting several seconds (Figures 1K and 1L). Such events were
not synchronized across cells (Figure 1M). These findings suggest baseline regulation of

calcium levels and calcium-dependent signal transduction in ChP epithelial cells.

Activation of serotonin receptors stimulates secretion via VAMP3-mediated exocytosis

Elevated calcium regulates many cellular processes including gene transcription and
secretion in other body epithelia such as the salivary gland (Ambudkar, 2016). One factor
previously shown to elevate calcium levels in ChP cell lines in culture is serotonin (5-HT, 5-
hydroxytryptamine) (Esterle and Sanders-Bush, 1992; Sanders-Bush and Breeding, 1990).
Metabolites of the 5-HT signaling pathway are present in the CSF (Toda et al., 2013). CSF-5-HT
can originate from multiple sources, including direct release by dorsal raphe nucleus serotonergic
neurons that course along the ventricles and in close proximity to the ChP (Narboux-Neme et al.,
2008; Okaty et al., 2020; Tong et al., 2014), and via peripheral circulation, originating, for
example, from 5-HT secretion in the gut (Stasi et al., 2019) or platelets (Cloutier et al., 2012).
We found that 5-HT (Audhya et al., 2012; Toda et al., 2013) triggered coordinated waves of
calcium activity that recruited increasing numbers of ChP epithelial cells across the explant with
higher concentrations of 5-HT (Figures 2A, 2B, and S2E; Video S2).

The 5-HT,c serotonin receptor (Figure 2C) (Lein et al., 2007), a Gq/Gj;-coupled G-
protein coupled receptor (GPCR), is the most highly expressed GPCR in ChP epithelial cells
(Lun et al., 2015a). We found that subcutaneous (SC) injection of WAY-161503, a selective
agonist of 5-HT,c (Rosenzweig-Lipson et al., 2006), drove robust immediate early gene
expression in ChP (Figures 2D, S2A, and S2B). Antibodies available for this receptor have

typically shown low signal quality. Thus, we used genome editing to generate a Her2¢™®?3
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mouse line in which the fluorescent protein mRuby3 was inserted at the C-terminus of 5-HT,¢
(Figures S2C and S2D). 5-HT,c-mRuby3 was functional in these mice, as subcutaneous
injection of WAY-161503 in Htr2¢"**** mice induced c-fos expression similar to that observed

mRuby3 mice

in wild type mice (Figure 2D; fold increase in c-fos mRNA expression in Htr2c
receiving WAY-161503 [3 mg/kg] vs. vehicle: 80.6 £ 17.3, mean + s.e.m., n = 4 heterozygous
male mice; Htr2c expressed from X chromosome). Fluorescence of the mRuby3 tag revealed
receptor localization throughout ChP epithelial cells, including at the apical and basal
membranes (Figure 2E). This localization is consistent with the prediction that ChP epithelial
cells can sense both central and peripheral sources of 5-HT (Figure S1C). Accordingly, using
higher-magnification two-photon calcium imaging, we obtained similar patterns of activation of
an increasing number of cells with increasing concentrations of the 5-HT,c agonist, WAY-
161503 (Figures 2F and S2E; Video S3).

Application of 5-HT to dissociated ChP cells in culture can increase the transfer of water
and protein secretion (Conn and Sanders-Bush, 1986; Esterle and Sanders-Bush, 1992; Watson et
al., 1995). Our expression analyses confirmed that the secretory machinery commonly required
for calcium-dependent gene induction, protein secretion, vesicle trafficking/release machinery,
and/or homologs of proteins from other epithelia are expressed in ChP epithelial cells (e.g.
Vamp3, Snap23, Stx12, Stxbp4), implicating vesicular exocytosis as a mechanism of protein
secretion (Figures S2F-2SJ) (Dani et al., 2019; Lun et al., 2015a). In EM images of ChP
epithelial cells, a high density of vesicles was observed near the apical membrane (Figure S2I,
black arrows). VAMP3 showed the highest gene expression amongst vesicle proteins in the ChP

(Figure S2G, RNA-seq data from (Lun et al., 2015a)), and VAMP3 protein expression was

confirmed by immunoblotting and immunostaining (Figures S2ZH and S2J). These data led us to
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investigate activity-dependent and VAMP3-mediated ChP exocytosis. Specifically, we used
AAV-VAMP3-pHluorin (Urbina et al., 2018), a pH-sensitive variant of GFP, to visualize
individual secretory events. pHluorin fluoresces upon plasma membrane fusion, when the lower
pH (~5.6) inside intact exocytic vesicles changes to a pH of 7.4 upon exposure to the
extracellular environment. The fluorescence signal disappears following endocytosis and re-

acidification of the vesicles (Sankaranarayanan et al., 2000).

We first expressed VAMP3-pHluorin in the Z310 ChP epithelial cell line (Zheng and
Zhao, 2002). Using total internal reflection fluorescence (TIRF) microscopy, a method with high
signal-to-noise ratio, fast frame rate (2 frames/s), and narrow fluorescence excitation and
emission ranges, we could capture numerous spontaneous vesicle fusion events (Figure S2K;
Video S4). To evaluate ChP secretion in a more naturalistic setting, we transduced ChP in vivo
with AAV-VAMP3-pHluorin, dissected ChP explants, and investigated vesicle fusion events in
vitro. Due to the elaborate apical structure of ChP epithelial cells including multiple microvilli
and cilia (Figure S2I), these cells were not amenable to TIRF microscopy (axial resolution <100
nm) without compressing the cells against a coverglass — a procedure that could compromise
cellular integrity or induce cellular responses to mechanical distortion. Instead, we used Airyscan
confocal microscopy (ZEISS LSM880) that afforded comparable signal-to-noise ratio and frame
rates (1.59 frames/s). We observed spontaneous VAMP3-mediated exocytosis in individual
epithelial cells in whole ChP explants (Video S5). We extracted fluorescence time courses of the
localized secretion events following spatial filtering of each image (Figure 2G). We then defined
regions with co-active pixels and extracted time courses (Figures 2G, 2H, and S2L). Strikingly,
5-HT,c activation by WAY-161503 (delivered at levels similar to those that drove calcium

activity in Figure 2F) drove an increase in the rate of VAMP3-mediated exocytosis (Figures 2H
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and S2L; Video S5). Our data using live imaging at subcellular resolution demonstrate that 5-
HT stimulates ChP exocytosis via activation of 5-HT,c. More generally, our findings validate a
platform for fluorescence imaging in ChP explants, enabling high-resolution studies of calcium

activation, secretion, and other processes.

In vivo imaging of ChP in awake mice

Virtually nothing is known about the activity of ChP cell types in vivo. We developed a
deep-brain cannula implantation strategy that enables acute and longitudinal imaging of the ChP
over weeks and months in awake mice. A cannula and glass window were surgically implanted
above the lateral ventricle (Figures 3A-3D), similar to our recent approach for imaging in visual
thalamus (Liang et al., 2018). At 2-3 weeks post-surgery, windows were typically translucent,
allowing brightfield imaging of ChP (Figure 3E).

Similar to brain surgery in the clinical setting, insertion of the imaging cannula is an
invasive procedure. We performed additional control experiments to determine the extent of the
injury response and to verify the health of the preparation following recovery from surgery at the
time of imaging. As anticipated, GFAP-positive astrocytes and Cx3crl-positive immune cells
were enriched in cerebral cortical tissue adjacent to the cannula (Figures S3A-S3G). The density
of glial cells (GFAP-positive) and immune cells (Cx3cri-positive) dropped to baseline levels by
~100 pm from the edge of the cannula (Figures S3A-S3G). The ventricular lining of the lateral
ventricle below and lateral to the implant did not show accumulation of GFAP- or Cx3cri-
positive cells, and retained characteristic S100B-positive ependymal cells (Figure S3B).
Importantly, immune cells from the ChP tissue located below the implant exhibited a ramified,

non-activated morphology with extended processes and a level of tiling of the ChP that was
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indistinguishable from observations in contralateral ChP and in ChP from control mice that did
not undergo surgery (see Figures 1A, 1B, 1C, S3H, and S3I). Elevated CSF cytokine levels that
were evident in some mice one day following surgery also returned to undetectably low levels in
all mice by 3 weeks post-surgery (Figure S3J). These data demonstrate that, at the time that
imaging began several week post-surgery, our imaging preparation did not show signs of
persistent inflammation.

Epifluorescence images of lateral ventricle ChP from transgenic mice expressing
GCaMPo6f in ChP epithelial cells (FoxJI-Cre::Ai95D; Figure 3F; Video S6) demonstrated
consistently high image quality across mice. Notably, anatomical features of the ChP were stable
upon repeated imaging across weeks and months, with no evidence of substantial remodeling of
vasculature across imaging sessions beginning several weeks following surgery (Figure 3G).
While the location of the ChP in the lateral ventricle showed moderate mouse-to-mouse
variability following surgery (Figure 3F), identification of arterial and venous landmarks
allowed longitudinal imaging of a similar anatomical region of the ChP across mice, and within
the same mouse across sessions (Figures 3 and S1B).

To maximize spatial resolution and minimize bleaching during cellular imaging, we
performed two-photon imaging using a long working-distance, high numerical aperture objective
coupled to the imaging window (see STAR Methods). We targeted local regions of interest
within previously acquired epifluorescence images (Figures 4A-4C). In contrast to other brain
tissues that can be largely pressurized and stabilized for two-photon imaging (Goldey et al.,
2014; Liang et al., 2018), the ChP is only anchored at one edge near the base of the lateral
ventricle, and is otherwise suspended in CSF. Therefore, the ChP often exhibited large and non-

rigid motion in three dimensions during changes in behavior such as locomotion or adjustment of
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body posture (Video S6). As described below, we used different imaging strategies and custom
registration algorithms to overcome these technical challenges.

First, video-rate two-photon imaging of a single plane allowed precise and high-speed
tracking of small numbers of cells following in-plane alignment, particularly during periods of
minimal brain motion while the mouse was stationary. For these analyses, occasional large tissue
movement could be stabilized or omitted from further analyses. Second, for longitudinal tracking
across hours, for which larger non-rigid motion and drift of the tissue out-of-plane were often
evident, we instead used a volumetric imaging strategy (0.25-0.5 volumes/s, 31-62
planes/volume, volume dimensions: 170 x 170 x 350 um® or 355 x 230 x 100 pm’; see STAR
Methods). This approach was important for achieving stable cell tracking following non-rigid

alignment in three dimensions (see Figure 5, below).

Imaging calcium activity and apocrine secretion in ChP epithelial cells in vivo

We imaged ChP epithelial cell calcium activity using a transgenic mouse expressing
GCaMPo6f, which provided similar expression levels across cells and stable expression across
days (Figures 4A-4C; see also Figure 1F). We first performed single-plane two-photon calcium
imaging (Figure 4D). High-speed imaging (33-41 frames/s) revealed spontaneous subcellular
calcium events lasting ~200 ms (Figure 4G; Videos S7-S8). To quantify this observation, we
manually outlined the borders and nuclei of individual cells (Figures 4D-4F). A typical
subcellular event from one example cell is shown in Figure 4G. We segmented each cell into 12
radial sectors extending from the center of the nucleus (Figure 4E, bottom), and “unwrapped”
the sectors to create a kymograph of averaged subcellular activity across frames (Figure 4H). A

maximum intensity projection across sectors revealed large subcellular events (Figure 4I) of a
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consistent duration and characteristic exponential decay (Figure 4J). The consistent dynamics
and correlated changes across nearby pixels for this and other cells (Figure S4) further suggested
that these events were not due to photon noise or brain motion. In contrast to maximum-intensity
projections across sectors, median projections showed no significant fluctuations (Figures 4K,
S4A, and S4B), consistent with the subcellular nature of these events.

Our earlier findings demonstrated that application of 5-HT,c agonist WAY-161503
evoked robust calcium responses in ChP epithelial cells in vitro and induced immediate early
gene expression following peripheral injection in vivo (Figures 2D, 2F, S2A, S2B, and S2E;
Video S3). Further, signatures of apocrine section (Figures 4M and 4N; Video S9) have
previously been reported to occur in ChP ex vivo (Agnew et al., 1980; Farkas§, 2015; Gudeman et
al., 1989). We therefore sought to define the dynamics of ChP calcium activity and apocrine
secretion upon WAY-161503 delivery in vivo. To obtain stable estimates of calcium transients
across tens of minutes (see above), we used volumetric imaging (0.32 volumes/s, 93
planes/volume, 3.8 um spacing between planes). Subcutaneous injection of WAY-161503
resulted in robust increases in calcium activity that progressed along the epithelium over tens of
minutes (Figure 4L; Video S9). The large differences in timing of activation of various cells
may relate to cell-to-cell differences in 5-HT,c expression (Figure 2E), to slow changes in the
concentration of WAY-161503, or to sequential sensing of signals release from activated
neighboring cells. Cellular increases in calcium activity culminated in apocrine secretion,
reflected by a release of cytoplasmic protrusions from the apical surface of the cell and cellular
release of cytoplasmic contents directly into the CSF (Figures 4L-4N; Video S10). The basal
portion of the cells including the nucleus remained intact. Taken together, these findings

highlight novel in vitro and in vivo approaches to test and visualize calcium activity and distinct
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modes of exocrine signaling by ChP epithelial cells. Further, these data establish a platform for
testing how exogenous signals such as serotonin can stimulate calcium activation, gene

transcription, and exocrine secretion.

ChP immune cells at baseline and in response to local or peripheral stimulation

The ChP is not only important for secretion of water and proteins into the CSF, but is also
an essential barrier that protects the brain from harmful blood-borne factors (Ghersi-Egea et al.,
2018; Saunders et al., 2018) and is implicated as a site of immune cell entry into the brain (Fame
and Lehtinen, 2020; Ghersi-Egea et al., 2018; Reboldi et al., 2009; Schwartz and Baruch, 2014;
Shechter et al., 2013). However, the in vivo functions of ChP immune cells in physiological or
pathological conditions remain largely unexplored (Kierdorf et al., 2019). Thus, we investigated
ChP immune cells under homeostatic, immune-challenged, and injury conditions.

We repeated the surgical approach described above in transgenic mice expressing GFP in
Cx;scrj-positive immune cells (Jung et al., 2000). Following surgical recovery, we performed
intraperitoneal (IP) injection of Texas Red-conjugated dextrans that rapidly filled the major
vessels and fine capillary networks of the ChP. These large dextrans (70 kDa) did not
immediately leak into the ChP stromal space. We then performed two-color imaging of ChP
immune cells and vasculature (Figure 5A), focusing on regions of ChP that were oriented
parallel to the imaging plane, and thus amenable to time-lapse volumetric imaging across the
thickness of the tissue (Video S11).

For tracking of fine immune cell processes across seconds, minutes and hours in awake
mice, it was critical to develop a procedure for accurate alignment of the 3D imaging volumes

(see Figure 5B and legend). It was useful to estimate shifts in ChP using the stable, bright red
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dextran signal, and then apply these shifts to both the imaged vasculature (red) and immune cells
(green). Given that the individual frames were acquired at 15.5 frames/s, there was minimal
within-plane non-rigid motion. However, brain motion could result in X and Y shifts in
successive imaging planes within a volume (Video S12). Thus, alignment of each Z-plane to a
reference plane within each volume was important (Figures 5C and 5D). We then performed
rigid-body 3D alignment. Following these corrections, images of static objects (e.g. vasculature)
could be effectively stabilized (Figures SE and 5F). As a final step, we calculated the mean
intensity across Z-planes for each volume and ran a second translational alignment. Across all 20
sessions from 13 mice, estimated intra-volume and inter-volume shifts in X, Y and Z could be
quite large, reflecting ChP suspension in CSF (Figures 5G-5J).

We observed substantial exploratory movements of ChP immune cell bodies and/or distal
processes. In each of 26 fields of view from 14 mice, we observed large numbers of GFP-
positive immune cells. Some of the cells were located within the ChP stromal space, while others
were located on the apical surface of the ChP, in contact with lateral ventricle CSF (i.e.,
epiplexus or Kolmer cells) (Figures 6A-6G). Epiplexus cell bodies often exhibited substantial
mobility. For example, the cell in Video S13 (top left) traveled 210 pm in 1 hour. Some
epiplexus cell bodies moved at a constant rate, while others displayed saltatory movements
(Figure 6D; Video S13). In contrast, the majority of GFP-positive immune cells located within
the stromal space showed minimal cell body mobility. However, these cells possessed highly
dynamic processes that extended and contracted (Figures 6E-6G; Video S13), similar to
microglia in other brain areas (Hierro-Bujalance et al., 2018). These processes appeared to serve

a surveillance function, as they frequently contacted vessels within the stromal space, and
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retracted upon contact with other processes from the same or neighboring immune cells (Figures
6E-6G; Video S13).

These surveillance-like behaviors were reminiscent of immune cells in other parts of the
brain that play key roles in sensing environmental perturbations and protecting against injury
(Hickman et al., 2018; Kierdorf et al., 2019; Li and Barres, 2018). Indeed, we found that immune
cells in the ChP appear to partake in similar functions. First, we noted that the fluorescent
dextrans used to label vasculature were cleared from circulation over several days. In these
experiments, ChP immune cells in the stromal space, but not epiplexus cells, took up fluorescent
dextrans 30 minutes following injection (Figures 6H and 6I; Videos S14 and S15), and
dextran-labeled punctae could be observed even 26 days following injection (Figures SSA-S5C).
These data demonstrate that ChP immune cells participate in uptake of foreign material from the
peripheral circulation, consistent with the known housekeeping functions of immune cells in
other parts of the body and brain.

The ChP contributes to blood-brain communication during peripheral inflammation
(Balusu et al., 2016b), and the effects of immune challenges on the ChP have been implicated in
several neurologic conditions. For example, genetic markers of immune function and
inflammation are upregulated in ChP of schizophrenia patients (Kim et al., 2016). Thus, we next
considered the effects of peripheral administration of the bacterial endotoxin lipopolysaccharide
(LPS), which induces inflammatory responses in mouse ChP (Balusu et al., 2016b; Marques et
al., 2009), on ChP immune cell morphology ex vivo and in vivo. As expected, LPS induced an
inflammatory cytokine response in serum and CSF (Figures 7A and S6A). Using
immunohistochemistry, we found that while peripheral LPS administration did not affect tiling

of immune cells across the ChP (Figures 1A-1C, S3H, and S3I), it triggered a marked
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repositioning of GFP-positive immune cell bodies and processes to regions surrounding the
vasculature within the ChP (Figures 7B, 7C, and S6B).

To define the morphological dynamics of individual immune cells in response to LPS, we
performed in vivo two-photon imaging during peripheral delivery of LPS. Many GFP-positive
ChP immune cell bodies and processes that were initially located distal to vessels prior to LPS
moved towards and spread along nearby vessels within ~45-60 minutes of LPS delivery (Figure
7D; Video S16). Using a custom algorithm to segment vasculature and define periluminal
regions (Figures 7E, 7F, and S6C; STAR Methods), we confirmed that immune cell
fluorescence increased in periluminal regions (Figure 7F). Not all Cxscr;-expressing cells
responded to LPS, consistent with the multiplicity of Cx;cr-expressing ChP immune cell types
that likely exhibit distinct responses to peripheral stimuli (Dani et al., 2019; Van Hove et al.,
2019). This repositioning of ChP immune cells along the periluminal region may provide an
extra layer of brain protection from harmful blood-borne signals during peripheral inflammation
(Mottahedin et al., 2019).

In addition to the robust response of ChP immune cells following peripheral
inflammation, we found that these cells often move towards sites of local injury. We induced a
focal injury by high-power two-photon heating of a small area in the center of the field of view
(89x57 um’, Figure 7G). This triggered rapid recruitment of immune cells to the injury site from
nearby regions of the ChP. Immune cells initiated movement immediately following the laser
injury, transitioned to an apparently more activated state (retracted processes, larger cell bodies),
and continued moving until they stabilized in an aggregate surrounding the injury site (Figure
7H; Video S17). Across three mice, most but not all immune cells moved towards the injury site

(Figure 7I). The majority of the cells that did move towards the injury site were confirmed to be
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epiplexus cells (Video S18). Together, these findings reflect diverse contributions of different

types of resident ChP immune cells to host defense.

DISCUSSION

The scarcity of experimental tools for selectively targeting, monitoring, and manipulating
ChP cells has hindered progress in understanding this essential and distinct organ located deep
within the brain. Despite its principal roles in producing CSF, forming a brain barrier, and
secreting important health and growth promoting factors for the brain (Fame and Lehtinen, 2020;
Ghersi-Egea et al., 2018; Lun et al., 2015b; Saunders et al., 2018), remarkably little is known
regarding the functions of its cellular networks. Here, we developed imaging and analysis
approaches for monitoring and pharmacological manipulation of multiple ChP cell types in live
explants and in awake mice. Using a combination of epifluorescence, confocal, and two-photon
microscopy in ChP explants, we observed spontaneous calcium activity as well as spontaneous
exocytotic fusion events in individual epithelial cells. Both of these processes were enhanced by
application of agonists of the 5-HT,c receptor, which is highly expressed in ChP epithelial cells.
Epifluorescence and two-photon microscopy in awake mice revealed subcellular spontaneous
calcium activity and 5-HT,c agonist-evoked calcium activity and apocrine-type exocrine release.
By developing tools for volumetric, multi-color two-photon imaging of vasculature and immune
cells within and on the surface of the ChP in vivo, we uncovered spontaneous surveillance
behaviors of immune cells as well as profound immune cell activation and translocation
following peripheral or local perturbations. We hope this ChP imaging toolkit will accelerate the

pace of discoveries regarding the diverse functions of this vital deep brain tissue.
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Imaging the ChP in vitro and in vivo

We hope these methods for imaging ChP explants can be of broad utility, as this
approach is relatively simple and inexpensive, and allows tracking of tissue prior to and
following controlled delivery of multiple drugs to the apical surface of the ChP. Our description
of vascular landmarks should also improve repeatability within and across studies. The lateral
ventricle ChP tissue is thin and delicate, and not entirely flat (albeit much flatter than third and
fourth ventricle ChP). Thus, in order to obtain high-quality data, it was important to carefully
extract the explant, stably mount it, and adjust fluid flow and osmolarity to avoid undue
stretch/pressure (Figure S1A).

In vivo methods enabled monitoring of ChP in a largely natural environment during
systemic delivery of drugs or perturbations (Figures 4, 6, and 7). While in vivo imaging using a
cannula has been demonstrated in many deep brain areas (e.g., Dombeck et al., 2010; Liang et
al., 2018), motion of ChP tissue posed a particularly challenging problem, as the ChP is anchored
at the ventromedial aspect of the lateral ventricle, far from the dorsal ChP regions that we
imaged. This likely contributed to substantial non-rigid motion in three dimensions beyond what
is observed in other brain tissues that are pressurized and anchored by the imaging window.
Thus, while our use of a treadmill to minimize head torque applied by the limbs likely reduced
motion artifacts to some extent (Dombeck et al., 2007), it was critical to additionally use several
methods for 2D and non-rigid 3D co-registration of imaging datasets in order to attain
subcellular resolution (Figure 5). Another option to reduce coupling of body and brain motion
could be to anesthetize mice prior to imaging. While this may be particularly useful for structural

imaging studies, anesthesia could significantly alter the functional properties of the ChP.
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We did not observe sustained inflammation of ChP for time points at which imaging was
performed, several weeks following implantation (Figure S3). Intracranial pressure also
normalized to baseline levels following this recovery period (data not shown). This recovery
period also improved imaging clarity in comparison to acute imaging immediately following
surgery (not shown), consistent with deep imaging in other brain regions (Goldey et al., 2014;
Liang et al., 2018). Nevertheless, additional improvements to our approach could further
minimize the invasive nature of the cannula implant. For example, with improved red and
infrared fluorescent indicators, window implants for two- and three-photon imaging of ChP can
be placed well above the dorsal surface of the lateral ventricle (e.g. Wang et al., 2018;
Weisenburger et al.,, 2019). Alternatively, lower-profile GRIN lenses may be used for

intraventricular imaging, albeit with a much smaller field of view and range of imaging depths.

Spontaneous and evoked calcium activity and vesicle fusion in ChP

We observed diverse rates of spontaneous calcium activity and diverse thresholds for
evoked activity across nearby cells. These differences may relate to differences in activity states
or to subtypes of epithelial cells. In future, such functional characterizations of epithelial cells
can be merged with single-cell transcriptomics (Dani et al., 2019) to better understand potential
divisions of labor across cells.

Spontaneous calcium transients were restricted to subregions of a cell. Future studies can
assess whether these subcellular events relate to the subcellular vesicle fusion events we
observed in explants, or to activation of a single protrusion among the many protrusions on the

apical surface of each epithelial cell (evident in EM images in Figure S2I). These events were
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particularly fast (~200 ms) when measured in vivo, possibly due to calcium imaging at warmer
ambient temperatures in vivo vs. in vitro.

Application of a 5-HT,¢ receptor agonist drove strong increases in calcium activity and
increased rates of vesicular fusion. This calcium sensitivity of epithelial tissue to serotonin and
associated agonists is consistent with previous reports using cultured, dissociated ChP cells
(Watson et al., 1995). Higher concentrations of 5-HT,c agonist evoked large, apocrine-type
secretory events (Figures 4L-4N; Video S9 and S10) that have been reported in ChP and other
epithelia including sweat and mammary glands (Farkas, 2015). While these secretory events
involve massive release of internal contents from an epithelial cell, they do not imply that cell
health is compromised. Rather, this process may represent an efficient and rapid means for
activity-dependent secretion of large amounts of cargo in response to an external stimulus,
possibly in conjunction with other rapid changes (e.g. rapid activation of water and ion
channels). Our studies set the stage for more in-depth investigations of how the ChP dynamically

regulates the molecular composition of the CSF that bathes the CNS.

Immune surveillance at the ChP

Immune cells have been proposed to enter the brain via the ChP (Ghersi-Egea et al.,
2018; Reboldi et al., 2009; Schwartz and Baruch, 2014; Shechter et al., 2013), but little is known
about the functions of resident ChP immune cells during baseline conditions or in response to
peripheral immune challenge or local injury. Tracking of Cxscr;-expressing ChP immune cells
together with vascular labeling in vivo revealed vascular surveillance by stromal immune cell
processes, while cell bodies remained largely immobile. This surveillance points to active

maintenance and phagocytic roles at the blood-CSF barrier. Notably, we found that these stromal
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immune cells still contained 70 kDa dextrans weeks after IP injection. In contrast, epiplexus cells
on the apical surface of the ChP showed much greater cell body mobility but did not take up
dextrans.

ChP immune cells also responded to systemic LPS delivery by spreading their cell bodies
and processes along the periluminal region near blood vessels, a finding confirmed using
immunohistochemistry. This cellular response may reflect a means of protection against
peripheral insults, and differs from that of cortical microglia, which retract their processes and
adopt an amoeboid “activated” shape during inflammation (Pozner et al., 2015). Without access
to the time-lapse in vivo imaging, it would not have been possible to determine whether the same
local immune cells change their morphology and location or whether new immune cells had
entered the same region of ChP. Indeed, despite previous reports that immune cells cross at the
ChP (Ghersi-Egea et al., 2018; Reboldi et al., 2009; Schwartz and Baruch, 2014; Shechter et al.,
2013), our imaging sessions did not reveal arrival or departure of new immune cells from either
the CSF or the vasculature during baseline conditions or following LPS. Future studies should
examine deeper regions of the lateral ventricle across a broader range of conditions to more fully
assess potential subregions that mediate transit of immune cells to and from the brain.

We also noted rapid mobilization of nearby immune cells following deliberate heating of
a focal region of the field of view using transient, high-magnification and high-power two-
photon imaging. Many of these cells were epiplexus cells, which acted as “first responders” by
accumulating at the injury site. This behavior is strikingly different from that of Cxscr;-positive
microglia in cortex and other brain regions (Davalos et al., 2005; Pozner et al., 2015), which

extend their processes towards a laser-induced lesion to contain the injury while their cell bodies
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remain stationary (Davalos et al., 2005). Our findings can inform surgical procedures involving
focal heating of ChP, such as during cauterization of ChP to treat hydrocephalus (Warf, 2005).

In future, it should be possible to use the in vivo imaging approach described here to
assess the role of changes in calcium and other intracellular signals in immune cells, epithelial
cells and other stromal cell types in the ChP during these and other immune challenges and brain
injuries. A better understanding of the dynamic roles of multiple ChP cell types in various barrier
functions in the intact brain should spark new ideas for penetrating this barrier for drug delivery
to the brain, as well as for fortifying this barrier across the lifespan. More generally, given that
repeated in vivo access and chronic imaging may be more amenable in the ChP than in most
other body epithelia other than skin epithelium (Mesa et al., 2015; Rompolas et al., 2016), this
platform may provide a unique window into the general functions of barrier epithelia in their

natural environments.
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FIGURE LEGENDS

Figure 1. Isolation, immunostaining, and calcium imaging of lateral ventricle ChP explants.
(A) Lefi: large leaf of LV ChP from a Cxscr; """ mouse immunostained with anti-GFP (green,
immune cells) and PECAM (red, vasculature). Scale, 500 um. Right: zoom-in of small dashed
box. Scale, 100 um. Cxser; " cells tile the ChP (confirmed in 8 other mice). (B) Positions of
1781 ngcr1+/GFP cells from A. (C) Cumulative distribution of nearest-neighbor distances of each
Cx3crl™ " cell. Immune cells showed regular spacing (~30 pm) relative to random Poisson
spacing (red trace; gray envelope: 1% acceptance interval). (D) PECAM (red) and ACTA2
(green) immunostains demarcate stereotyped LV ChP regions (confirmed in 3 other mice). Blue
arrowheads: veins. Scale, 500 pm. (E) Light path and setup for imaging LV ChP. (F)
Epifluorescence image containing a Fox.JI-Cre::Ai95D LV ChP explant expressing GCaMP6f in
multiciliated ChP epithelial cells. Cells near stabilizing glue attachments at explant borders

(asterisks) showed elevated GCaMPO6f fluorescence (indicating unhealthy cells) and were
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excluded from subsequent analyses. Scale, 1 mm. (G) Zoom-in of 122 epithelial cells (dashed
box in F). Scale, 50 um. (H) Cell masks (see STAR Methods). (I) Twenty labeled cells
corresponding to traces in K. (J) Pink: traces surrounding each calcium transient with a
fractional change in fluorescence, AF/F > 5c (235 events across 122 cells from H). Red: mean
calcium transient across traces. (K) Five-minute time courses from cells in I. (L) 76% (93/122)
of cells in H exhibited calcium events. (M) Average of all cross-correlations between binarized
event time courses of all pairs of cells from H (computed at delays from -5 to +5 s),
demonstrating that spontaneous events were uncorrelated across cells. We observed qualitatively

similar results as in G-M in 25 other mice, not shown. See also Figure S1; Video S1.

Figure 2. Evoked calcium activity and exocrine secretion in ChP epithelial cells. (A)
Epifluorescence calcium imaging of ChP epithelial cells from FoxJI-Cre::Ai95D LV ChP
explant. Mean baseline fluorescence (/eff) and changes in fluorescence from baseline in response
to 0, 5, 50, and 500 nM 5-HT. Scale, 100 um. (B) Time course of changes from baseline,
averaged across the explant. Responses to at least one dose of 5-HT were observed in 18/19
mice, and to all three doses in 10/19 mice, not shown. (C) Htr2c expression in LV ChP (from
Allen Brain Atlas, Lein et al., 2007). Scale, 500 um. (D) c-fos induction following injection of 5-
HT,c agonist WAY-161503 (****p < 0.0001, t-test, saline vs. 3 mg/kg SC; left to right: n =
8,8,2,2,2). (E) Htr2¢™"3 LV ChP labels 5-HTac receptors in epithelial cells. Axial (leff) and
side-on (right; from dashed box at left) maximum projections show preferential apical (apposed
to the CSF) vs. basal (closer to vessels) localization. Scale, 10 um. (F) Two-photon imaging of
FoxJI-Cre::Ai95D explants. Higher concentrations of WAY-161503 activated more cells (green

arrowheads), and cells activated at lower concentrations are not reactivated later. Responses were
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observed in 7/7 mice, and to each dose in 5/7 mice (not shown). Scale, 10 um. (G) Confocal
imaging of vesicle release from an example LV ChP epithelial cell following viral expression of
VAMP3-pHluorin. Top left: maximum intensity projection across baseline period shows
fluorescent vesicle release (white punctae). Bottom left: similar projection following Hessian-
based filtering. Middle panels: same as left but following application of WAY-161503 (500 nM).
Right: vesicle release event masks segmented from the filtered movie. Scale, 5 um. (H)
Cumulative number of VAMP3-pHIluorin vesicle release events following application of WAY-

161503 (red) or aCSF (blue). See also Figure S2; Videos S2-S5.

Figure 3. Imaging lateral ventricle ChP in awake mice. (A,B) Schematic of cannula (gray
cylinder) with glass bottom, implanted above the LV ChP (green). (C) Headpost placement. (D)
Head-fixed mouse on a trackball. An immersion well attached to the headpost allowed imaging
via a high numerical aperture objective. (E) Brightfield image of ChP through the cannula, 27
days post-surgery. Dotted line outlines ChP. (F) Epifluorescence images of ChP (arrowheads)
from FoxJI-Cre::Ai95D mice, 42-56 days after surgery. Scale, | mm. (G) Tracking the same
ChP (arrowheads) via a clear window across many days following surgery (similar results

observed in 9 other mice, not shown). Scale, 1 mm. See also Figure S3; Video S6.

Figure 4. Two-photon calcium imaging of epithelial cells in awake mice. (A) Epifluorescence
image of GCaMPo6f-expressing ChP epithelial cells (diagonal vascularized sheet; FoxJI-
Cre::Ai95D mouse). Scale, 1 mm. (B) Zoomed-in image (dashed red square in A). Scale, 100

pm. (C) Maximum projection of two-photon imaging volume encompassing the ChP region in
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B. Scale, 100 um. (D) Average of images at a single plane. Scale, 50 pm. (E) Individual
epithelial cell (red square in D), annotation of cell outline and nucleus, and division into 12
sectors. (F) Annotation of all cell outlines and nuclei in D. (G) Time-lapse of a single subcellular
calcium event. (H) Kymograph of activity across all 12 sectors of cell in E,G. Red arrowhead:
event from G. (I) Time course of brightest-sector activity (black, maximum across sectors in H)
and median activity (red). Asterisks: peaks of subcellular events exceeding 3 std (dashed blue
line) above a running mean. (J and K) Brightest-sector (J) and median-sector (K) activity
surrounding peak (t=0) of all events for cell in E. Thicker lines: mean traces. Similar results were
observed in 3 other mice, not shown. (L) Images of cross-sections of two sheets of GCaMP6-
expressing epithelial cells separated by stromal space, beginning 25 min after injection of WAY-
161503 (3 mg/kg, SC; similar results observed in 2 other mice, not shown). Scale, 50 pm. (M)
Zoom-in of a single epithelial cell reveals release of subcellular plumes (arrowheads) of
intracellular contents including GCaMP6f into CSF. The basal side of the epithelium remained
intact, consistent with apocrine secretion. Scale, 10 pm. Similar events were observed in a
second mouse, not shown. See also Figure S4; Videos S7-S10. (N) Scanning EM of ChP, 15

min following WAY-161403 (3 mg/kg, SC) reveals apocrine blebs (arrowheads). Scale, 5 um.

Figure 5. 3D imaging and registration of ChP in awake mice. (A) Maximum projections

. . . +/GFP
across a time-averaged two-photon imaging volume of Cx;scr;

immune cells (green) and
Texas Red dextran-labeled vasculature (red, IP injection). Projections from two mice are shown
(similar results in 13 other mice, not shown). Scale, 100 um. (B) Registration algorithm (see

STAR Methods). Step 1: correct for depth-dependent magnification due to tunable lens. Step 2:

intra-volume alignment of each plane to its neighbor. Step 3: 3D translation of each volume to a
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local target. Steps 4-5: Z-projection and X-Y alignment. (C) Mean Z-projection of a single
volume, before vs. after Step 2. Scale, 50 pm. (D) Estimated X and Y corrections for each plane
of volume in C. (E) Z-profile time lapse of vasculature, before and after 3D registration.
Columns: 600 volumes spanning ~63 min; rows: average fluorescence in the white box in C at
each Z plane. White trace: estimated Z correction. (F) Index of motion artifact (sliding estimate
of [standard deviation]/[mean] vasculature fluorescence across volumes; see STAR Methods).
Registration reduced both large, transient motion artifacts (peaks in orange trace) and persistent,
higher-frequency motion (see J). (G-I) Cumulative distributions of X and Y displacements of
planes within each volume (G), and XY displacements (H) and Z displacements (I) across
consecutive volumes. Data in G-J from 20 sessions from 13 mice. (J) Mean motion artifact (see

F) per session, pre- vs. post-registration. **** p <(0.0001; paired t-test.

Figure 6. ChP immune cells perform local surveillance and housekeeping in vivo. (A) Cross-
section of ChP. Epiplexus immune cells (orange arrowhead) are located on apical (CSF-sensing)
surface of epithelium (green sheet). Stromal immune cells (blue arrowheads) are located in
stromal space between vasculature (red with purple endothelial cells) and epithelium. (B) 7op:

. . . +/GFP
axial mean projection of Cx;cr,

cells in LV ChP explant ex vivo. Bottom: side-on view.
Arrowheads indicate stromal (blue) and epiplexus (orange) immune cells. Scale, 100 um. (C-G)
Similar to C but from in vivo two-photon imaging (see also Videos S11 and S13). Scale, 25 um.
(C) Example epiplexus cells from 4 mice. Side-on views (bottom) indicate locations outside
vascular plane (likely outside the epithelium). (D) Example epiplexus cell pausing, then traveling

across the ChP surface (colored dots: cell location at 1-min intervals). (E-G) Example stromal

immune cells showed either stationary cell bodies with processes that survey nearby vessels (E-
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F), and that retract following upon contacting a different immune cell (F), or, occasionally, cell
body movement constrained by surrounding vessels (G). (H) Left, middle: 1P-injected red
dextran (70 kDa) fills the ChP vasculature. Right: 2 days later, dextran has leaked into stromal
space and accumulated within immune cells. Scale, 50 pm. (I) Snapshots of dextran punctae

accumulating within immune cell processes (arrowheads). See also Figure S5; Video S14.

Figure 7. ChP immune cells respond to systemic and local insults. (A) Higher CSF cytokine
levels 1-hr after IP injection of LPS vs. saline (mean + s.e.m.; n = 3 samples, each consisting of
25 ul pooled across 3-6 mice; t-test, IL-1ct, p = 0.0017; TNF-a, p = 0.0072; CCL2, p = 0.0260;
IL1B, p=10.0451; IFN-f, p = 0.0212). (B-D) Following LPS, immune cells flatten along vessels.
(B) LV ChP explants from Cxser; " mice that received IP saline (left) or LPS (middle).
Segmentation of immune cells (right panel, green), and periluminal region surrounding
vasculature (blue; Figures S6B and S6C, STAR Methods) allowed assessment of overlap
(yellow). Scale, 50 pm. (C) Percentage of periluminal region occupied by immune cell processes
following IP saline (n = 15 explants, 9 mice) or LPS (n = 20 explants, 10 mice). ****p < 0.0001,
Welch’s t-test. Mean + s.e.m. (D) In vivo imaging of immune cells (green) and vasculature (red)
pre-LPS (left) and 3 hrs following IP LPS (right). Scale, 25 um. Arrowheads: transitions of cell
bodies to splayed morphology (see Video S16). (E) Segmentation of periluminal region (STAR
Methods). (F) Fractional change in immune cell fluorescence (AF/F) in periluminal region across
4 hrs, relative to pre-LPS baseline (red line). (G) Schematic of focal injury via brief, high-power
focusing of a laser on a small region of ChP during in vivo imaging. (H) Maximum projections
of immune cells and vasculature before, 6 min after, and 1 hr after a local burn of the region

within the white box. At 6 min, dextran leaks out of damaged vessels (see Video S17). Immune
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cell bodies then migrate to the injury site. Scale, 50 um. (I) Average pre- and post-injury velocity
of immune cells towards (positive) or away from (negative) the injury site (n = 15 cells, 3 mice).

** p=0.0075, paired t-test.

STAR METHODS

RESOURCE AVAILABILITY

Lead Contact

Further information and requests for resources and reagents should be directed to and will be

fulfilled by the Lead Contact, Maria Lehtinen (maria.lehtinen@childrens.harvard.edu).

Materials Availability

All unique/stable reagents generated in this study are available from the Lead Contact with a
completed Materials Transfer Agreement.

Data and Code Availability

The registration and vascular segmentation algorithms generated for this study are available at

https://github.com/LehtinenLab/Shipley2020. Original data is available from the corresponding

author upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All animal care and experimental procedures were approved by the Institutional Animal
Care and Use Committees of Beth Israel Deaconess Medical Center (Figures 3, 5-7), Boston
Children’s Hospital (Figures 1-7), and Brown University (Figures 3, 4). Mouse lines used
include FoxJI-Cre (Zhang et al., 2007), 4i95D (Jax# 024105; Madisen et al., 2015), Cxzcr, "

(Jax# 005582; Jung et al., 2000), Htr2C™*3 CD-1, and C57BL/6 (Figures 1, 2: male and
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female mice; Figures 3-7 male mice). Htr2C™?? mice were generated by the Gene
Manipulation & Genome Editing Core, IDDRC, BCH. Best-ranked sgRNAs near the targeting
region in Htr2C genome were picked (Doench et al., 2016) and synthesized (Alt-R* CRISPR-
Cas9 crRNA, Integrated DNA Technologies). Donor plasmid was custom made at GeneScript,
prepared with EndoFree Plasmid Maxi Kit (Qiagen). Alt-R® S.p. HiFi Cas9 Nuclease (Integrated
DNA Technologies) was used for the editing. A mixture of ctrRNA (0.61 uM), Cas9 protein (10
ng/ul), and donor (10ng/pl) was injected into 0.5 dpc embryos harvested from C57BL/6NHsd
(Envigo) mating pairs. Embryos that survived the injection were implanted into recipient
pseudopregnant females and allowed to reach term. Tail biopsies from pups were genotyped to

identify founders. The line was maintained in C57BL/6J.

DETAILED METHODS
ChP explant preparation

Whole ChP from the lateral ventricle was harvested using #5 forceps and fine-dissection
scissors. To collect the LV ChP, the hindbrain was separated from the mid- and forebrain
structures using a scalpel, followed by a bilateral cut along the midline to separate the cortex into
two hemispheres. Each hemisphere was stabilized with forceps and a third of the rostral end was
cut off, the developing hippocampus was rolled out using the flat surface of a scalpel, and the
attached LV ChP was gently separated from the hippocampus/fornix using forceps.

LV ChP was transferred onto round coverslips (15 mm, Warner Instruments, Cat. 64-
0733) that had been prepared as follows: briefly, coverslips were lightly coated with Silicone
(Kwik-sil, World Precision Instruments, Item. 600022), and while wet (1xaCSF: 119 mM NaCl,

2.5 mM KCl, 26 mM NaHCO3;, 1 mM NaH,PO,, 11 mM glucose, with fresh 2.0 mM magnesium
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chloride and 2.8 mM calcium chloride), a polycarbonate membrane (Whatman, Nucleopore, 13
mm wide, 8.0 um pore size, Cat. 110414) was placed on the cover slip. Edges of the
polycarbonate membrane were attached to the coverslip using adhesive (3M, Vetbond). These
glass coverslips were kept at room temperature and allowed to cure. The ChP was flattened onto
the membrane and secured using 3M Vetbond. All samples were placed in a holding chamber

with continuously oxygenated (95% O,/ 5% CO,) 1xa CSF.

IN VITRO EPITHELIAL CELL EXPERIMENTS

In vitro epifluorescence calcium imaging

Epifluorescence calcium recordings were acquired from FoxJI-Cre::Ai95D ChP explants (see
above) using a 4x, 0.28 NA objective (Olympus). A halogen lamp and FITC filter set (Olympus)
were used for excitation and emission filtering. Green fluorescence was collected using an
sCMOS camera (Hamamatsu). Images (2048 x 2048 pixels, 3.30 x 3.30 mm?) were acquired at

10 frames/s using MicroManager (NIH).

Segmentation of cell masks
Epifluorescence calcium videos were cropped to a small region (161 x 161 pm?) near the center
of the sample, for ease of processing. We obtained cell masks based on cell shape, as follows:

first, a mean image, /, was generated, and was locally contrast-normalized using:
| _1—-G{; 0=3)

" JGU; 0 =23)

Where G is the 2D Gaussian operation. The normalized image was then binarized and watershed

to separate cells that were joined together. Objects smaller than 5 pixels were considered noise

and discarded. The convex hulls of remaining objects were used as cell masks. Neuropil masks
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were estimated as the annulus spanning the region between the cell perimeter and the perimeter

obtained after dilating the cell by 5 pixels.

Trace extraction
A raw trace, F(t), was extracted from each cell mask by calculating mean intensity across pixels
in each mask, and for each movie frame. A neuropil activity trace, Fyeyropir (), Was calculated in
the same way, using the corresponding neuropil mask. A neuropil-corrected signal, F,y;rectea (t),
was calculated by subtracting the neuropil trace from the raw trace, and adding back the mean of
the signal:

Feorrectea = F = Freuropii + F
The signal was further normalized by:

Fcorrected - medlan(Fcorrected' 500)

AF/F = .
medlan(Fcorrected' 500)

Where median(F,prrecteqd, 500) denotes a moving median filter with a window size of 500
frames (50 seconds) surrounding the time t.
Calcium events were defined as peaks in which AF/F > (5 X std(AF /F)). Cells with traces

that never exceeded this threshold were considered “inactive”.

In vitro two-photon calcium imaging

Two-photon microscopy was used to record calcium activity in explants in which ChP epithelial
cells express GCaMPo6f (in FoxJI-Cre::Ai95D mice, using an Olympus MPE-RS two-photon
microscope; 30.0 frames/s; 512x512 pixels/frame). All imaging was performed with a 25x, 1.0
NA objective (Olympus) at 4.5x digital zoom (~113 x 113 um?). Laser power measured below

the objective at 940 nm was 55 mW using a Mai Tai DeepSee laser (Spectra-Physics). To
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perform 3D recordings, the settings above were used in conjunction with a nPFocus250 piezo
microscope stage (nPoint) moving axially in a sawtooth pattern. 3D volume recordings were
acquired at ~0.25 Hz to capture baseline activity, during which time aCSF flowed through the
perfusion chamber (Warner; performed at room temperature) containing the ChP explant.
Subsequently, increasing concentrations of 5-HT or the 5-HT»c selective agonist, WAY-161503
(Tocris), in aCSF were introduced for one minute per concentration, with ten minute aCSF
washouts in between drug deliveries. To measure bulk tissue fluorescence, a mean volume
projection along the axial (z) dimension was performed to flatten each 3D volume into a 2D
image, resulting in a 2D video across time. Average fluorescence across the 10 minutes baseline
period prior to the first drug delivery was used as a baseline image. A AF image stack was
constructed by subtracting this baseline image from each frame in the video. A trace of AF

activity was calculated as the mean pixel intensity of each frame of the image stack.

VAMP3-pHluorin imaging

Cultured cells: Z310 cells were cultured on glass coverslips and lipofectamine transfected with
pAAV-VAMP3-pHluorin. After 3 days, the cells were imaged using TIRF microscopy (Cocucci
et al., 2012) with a 100x objective (1.46 NA, Carl Zeiss) and a 2x magnification lens placed in
front of the CCD camera (QuantEM, Photometrics). This arrangement provided a final pixel size
of 80 nm. ChP explants: AAV2/5-VAMP3-pHIluroin was injected in utero i.c.v. in E14.5
embryos. LV ChP explants were then harvested at P18-P24. Each ChP was attached directly onto
an imaging dish using Vetbond and immersed with 1.8 ml of aCSF. WAY-161503 was added

until the final bath concentration reached 500 nM. Individual epithelial cells from explants were
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imaged using a ZEISS LSMS880 Airyscan confocal microscope. The chamber, imaging dish
holder, and all buffers used were maintained at 37°C.

To detect secreted vesicles, each image frame was first smoothed with a two-pixel radius
Gaussian filter (160 nm). We then further filtered each image by calculating the determinate of
the Hessian matrix at every pixel, and this image stack was used to isolate VAMP3 fusion events
from cell background. Masks of regions involving a fusion event were obtained by PCA/ICA
segmentation (Mukamel et al., 2009). Fluorescent traces were extracted by averaging
fluorescence of all pixels within each mask. Each fluorescence trace was normalized to peak
fluorescence, and sorted the traces by the time at which this peak occurred, in order to generate a

heatmap of time courses of vesicle release events.

IN VIVO IMAGING EXPERIMENTS
Headpost and cranial window placement

Mice used for in vivo two-photon imaging (8-20 weeks) were outfitted with a headpost
(titanium, 0.7 g, H.E. Parmer) and 3 mm cranial window using minor modifications of
techniques previously described (Goldey et al., 2014; Liang et al., 2018). Briefly, each cranial
window implant was first prepared by gluing a 3 mm x 2 mm (diameter x height) stainless steel
cylindrical cannula (MicroGroup) to a 3 mm diameter glass coverslip (Warner) using a UV-
cured optical adhesive (Norland, type 71). Approximately 3 hours prior to surgical implantation,
dexamethasone sodium phosphate (4 mg/ml, intramuscular) was administered in order to reduce
brain edema. Anesthesia was induced using isoflurane (1-3% in 100% O, with flow rate titrated
to a respiratory rate of 1 breath per minute). Using standard aseptic techniques and a

stereomicroscope, a 3-mm diameter craniotomy was performed over the left side of the skull,
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centered using stereotactic coordinates (2.0 mm lateral and 0.2 mm posterior to Bregma). Next,
portions of neocortex, corpus callosum, and hippocampal tissue were carefully and slowly
aspirated to expose the lateral ventricle, with the specific purpose of preventing undue increase
in intracranial pressure. The ChP was visualized floating within the ventricle. Hemostasis was
achieved with copious irrigation using sterile phosphate-buffered saline and occasional use of
gelfoam. At this point, the cranial window implant was inserted through the craniotomy site and
lowered to a depth of approximately 2.0 mm below the skull where it pressed lightly on the
surface of the thalamus and preserved direct visualization of the intact ChP. The cannula was
temporarily affixed to the skull with Vetbond (3M) followed by a permanent seal with C&B
Metabond (Parkell). A custom two-pronged titanium headpost was then affixed to the skull and
again sealed with C&B Metabond (the headpost implantation can also be performed prior to the
craniotomy according to investigator preference).

To create a low-profile adaptor to accommodate the water-immersion objective and light
shielding, a custom 3D-printed imaging well (outer diameter of the base, inner diameter, height:
20 mm, 10 mm, 4 mm, or 7.5 mm, 5 mm, 1 mm) was then positioned around the cannula and
glued to the cement and headpost. Animals were given Meloxicam (0.5 mg/kg, s.c.), individually
housed, and allowed at least 2 weeks to recover before live imaging. The estimated success rate
in obtaining clear windows was ~80% for a trained surgeon. In the first post-operative week, the
mice were undisturbed and, during the second week, the mice were habituated to the imaging
environment. Each mouse was placed on a custom 3D-printed running wheel and the animal’s
head was fixed using clamps (Thorlabs) that attach to each prong of the two-pronged titanium
headpost. The running wheel and associated flexible hinges were useful for decreasing brain

motion, by decreasing the degree to which hindlimb-related forces couple to brain motion.
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During two-photon imaging sessions, the low-profile imaging well was covered with blackout

fabric (Thorlabs).

IN VIVO EPITHELIAL CELL EXPERIMENTS

Epifluorescence imaging

To initially localize the ChP and assess stability and orientation of the ChP post-surgery, an
epifluorescence video was recorded while scanning axially through the tissue. To account for
lensing effects from changing z planes, planes were registered with scaled rotations to each other

using the StackReg plugin in Fiji (NIH).

Two-photon imaging of spontaneous activity

To capture high-speed subcellular and cellular activity in epithelial cells in vivo, two-photon
microscopy was used to record calcium activity in a ~25 cells. Imaging of GCaMP6f-expressing
epithelial cells (in FoxJI-Cre::A4i95D mice, see above) was performed using a resonant-scanning
two-photon microscope (Olympus, 512x512 pixels/frame; Bruker, 490x372 pixels/frame).
Spontaneous activity was recorded at a single imaging plane (Olympus, 30.0 frames/s; Bruker
41.5 frames/s). All imaging was performed with a 25x, 1.0 NA objective (Olympus) at 4.5x
digital zoom (~113 x 113 pm?). Laser power measured below the objective was 55 mW using a

Mai Tai DeepSee laser at 940 nm (Newport Corp.).

Registration/preprocessing of spontaneous activity
To compensate for rapid ChP motion caused by mouse locomotion and changes in posture, each

frame was registered to a target image created by the mean of the first 500 frames. Registration
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was performed by cross-correlating the Fourier transform of each image with this target image

(i.e. rigid-body translation correction; Guizar-Sicairos and Fienup, 2008).

Cellular and subcellular segmentation — spontaneous activity

After registration, a mean image across the entire recording was generated. Cell outlines and
outlines of cell nuclei were manually drawn for each cell in the field of view (~20-40 cells).
Cytoplasm masks were generated from the difference between cell mask and nucleus mask.
Cytoplasm masks were subdivided into 12 radially symmetric subsections from the center of the
nucleus. The neuropil area was an annulus surrounding the cell, calculated by dilating the
cytoplasm masks by 10 pixels, and excluding pixels in the original cell mask from this dilated

cell mask.

Subcellular trace extraction — spontaneous activity

First, the aligned video was down-sampled by a factor of 4. For each cell, the raw sector activity
(i.e. a pie slice of the cell), F.,,,(6,t), was calculated as mean activity across pixels inside each
of the cytoplasm sectors () for every timepoint, 7. Neuropil activity, Feyropir (t) Was calculated
as mean pixel activity in the neuropil mask defined above, at every timepoint, ¢. Neuropil activity
was subtracted from raw activity to generate a neuropil-corrected time course:

Feorrectea(0,t) = Frqw(8,t) — Fpeyropu (t)
To normalize for different baseline section brightness, a rolling median of 6.67 s was subtracted

from neuropil-subtracted signal:

AF(H' t) = Fcorrected.(e' t) - medianAt=6.67s (Fcorrected(g: t))
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To find subcellular calcium events, the maximum signal across cell sectors was calculated, for
each time t, by taking a maximum projection across sectors, and then subtracting the median
across sectors:
Frax(t) = maxge(AF(6,1))

AFnax () = Fnax (t) — median, (Fpqx(t))
This approach generated a single trace of the largest fluorescence deviation from median
fluorescence across cell sectors at every timepoint.
To identify subcellular events, a peak detector was applied to the above trace using a threshold
based on the trace of median activity across sectors (‘median trace’, Fyp,.q). First, F,,,.q was
calculated as:

Freq(t) = mediangy (AF(6,t))
AFpeq(t) = Freq(t) — median, (Fpeq(t))

Subcellular calcium events were defined as local peaks of epochs in which AF,,, >

(5x5td(AFpeq(t))).

In vivo 3D imaging of epithelial cell responses to delivery of a serotonin agonist
To perform 3D recordings, the same imaging settings described above for spontaneous in vivo
calcium imaging were used, but with the addition of a nPFocus250 piezo microscope stage
(nPoint) that moved the imaging plane axially in a sawtooth pattern (scanning of 93 planes per
volume across 350 um of depth with a scan rate of frame rate of 30.0 frames/s, 512x512
pixels/frame, resulting in volume scanning of a 170x170x350 pm® volume at 0.32 volumes/s).

To register these volumes, we first averaged together every ten volumes in order to

improve signal-to-noise ratio. Since the observed effects of WAY-161503 were slow and long
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lasting, this approach did not overly compromise temporal resolution. Each plane of these
average volumes was registered to the center z plane (middle plane) of the volume using the
StackReg plugin in Fiji (NIH), creating a rectified volume. The maximum intensity projection of
each of these rectified volumes were used to correct for inter-volume motion X-Y motion. Using
the first volume as an anchor point, each volume was registered to the previous volume. X-Y
plane transverse shifts were calculated by cross-correlating the Fourier transformations of the
maximum intensity projection of a given volume and of the previous volume (Guizar-Sicairos

and Fienup, 2008).

IN VIVO IMMUNE CELL EXPERIMENTS

Dextran injection

Mice received intraperitoneal injections of dextran conjugated with Texas Red (70 kDa 0.2
mg/gm IP). ThermoFisher Scientific), delivered 30 minutes before imaging. Presence of dextran

in vasculature was confirmed by two-photon imaging.

Two-photon imaging

3D volume recording was necessary to robustly track the ChP across long timescales due to
mouse motion, changes in posture, and occasional axial drift of ChP. Two-photon imaging of
immune cells and vasculature was performed using a resonant-scanning two-photon microscope
(experiments were performed on two different microscopes: Olympus; 12.8 frame/s; 512x512
pixels/frame; 0.16 volumes/s, 81 planes/volume; volume size: 254x254x400 um’. Neurolabware:
15.5 frames/s; 796x512 pixels/frame; 0.25-0.5 volumes/s, 31-62 planes/volumes; volume size:

355x230x100 pm’). Volume scanning on the Olympus was achieved by using a piezo
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microscope stage (nPFocus250). Volume scanning on the Neurolabware microscope was
achieved using a tunable focus lens (Optotune). All imaging was performed with a 25x, 0.95 NA
objective (Olympus) at 2x zoom (~254 x 254 umz (Olympus), ~ 360 x 230 ],Lm2 (Neurolabware)).
Laser power at 940-960 nm (Mai Tai DeepSee laser, Spectra Physics) measured below the
objective was 30-40 mW. Immune cells were confirmed to be located within or on the outside of

the ChP based on colocalization with the fluorescent dextran-labeled vasculature pattern.

3D registration

Due to the rapid motility of immune cells across seconds, 3D registration of individual
volumes was necessary to properly account for ChP movement at these rapid timescales (see
Figure 5). To account for optical deformation and warping caused by the focus-tunable lens, a
counter-warping correction was calculated for each imaging session. The first 30 volumes were
averaged together to create a mean distorted volume. The affine transformation was used to
iteratively match each plane to its neighbor, beginning with the brightest plane of the volume and
moving up and down until the ends of the volume. Since affine transformations are linear
functions, the adjacent transformations could be combined by multiplication of the augmented
transformation matrix to generate the warp-correction of every focus-tunable lens plane to the
reference. These matrices are calculated using the MultiStackReg plugin in Fiji (NIH). Since
these deformations were due to the optical system, not motion of the sample, these corrections
were applied to every volume prior to subsequent motion correction (Figure 5B, “Step 17). For
the Olympus microscope that uses a piezo microscope stage to scan axially, there is no

deformation, and this step is skipped.
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Due to rapid motion caused by mouse movement, it was necessary to account for intra-
volume changes. Using the brightest plane as a stationary anchor plane, each plane was
registered to its neighbor, using Fourier cross-correlation to estimate the X and Y shifts. These
neighboring X and Y shifts were summed cumulatively so that each plane is aligned with the
anchor plane. (Figure 5B, “Step 2”) (Guizar-Sicairos and Fienup, 2008).

After intra-volume alignment, reference volumes were generated by averaging every 20
volumes. To account for inter-volume lateral and axial shifts, each volume was then registered to
its respective reference volume by cross-correlating the 3D Fourier transformation of the two
volumes to find the X, Y, and Z shifts. Each reference volume was registered to the first
reference volume using the same method (Figure 5B, “Step 3”).

Axial projections, such as mean, median, and maximum projections, were then performed
(Figure 5B, “Step 4”). Finally, the movie of these projected images was further stabilized in
three successive steps: (i.) matching each frame to the average of the first 50 frames, (ii.)
matching each frame of the resulting movie iteratively to its neighbor, (iii.) matching each frame
of the resulting movie to the average of the first 50 frames (Figure 5B, “Step 57).

To estimate the degree of brain motion of ChP in vivo, we quantified the two kinds of
correction for brain motion that were applied (see above). The first correction involved intra-
volume XY displacements for each plane (Figure 5B, “Step 2”). The second involved inter-
volume displacements from 3D translational registration (Figure 5B, “Step 3”), together with
additional XY displacements common to all planes and derived from the registration of the 2D
image stack resulting from axial mean projections of each volume (Figure 5B, “Step 5”). The
intra-volume XY displacement reflected faster frame-to-frame motion within a given Z-scan

(12.8-31 frames per second; 31-81 frames per volume). We quantified the distribution of intra-
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volume XY displacements using the Euclidean distance of intra-volume shifts in X and Y. We
also calculated inter-volume displacements between successive volumes (0.16-0.97 volumes per
second) to estimate the level of motion observed at these somewhat slower timescales (using the
using the Euclidean distance of X and Y displacements between consecutive volumes, AXY, and
using the absolute value of the shift in Z between consecutive volumes). These distributions were
then expressed as cumulative distribution functions for each recording (Figures 5G and 5H).
Overall, the degree of brain motion was substantially larger than what is observed for recordings

in other brain regions such as in the neocortex.

Inter-volume motion artifacts

To assess the efficacy of our 3D registration in removing motion artifacts, we considered sets of
five consecutive volumes of the red channel (vasculature), which was expected to be stable (i.e.
near-constant voxel intensity) in the absence of brain motion at this timescale. Thus, we used the
metric of local standard deviation as a proxy for inter-volume motion artifacts. A rolling standard
deviation across five neighboring volumes was calculated for each 3D voxel. These standard
deviation contributions were averaged to obtain a global estimate of image stability. To account
for global intensity changes within and across recordings, we normalized this mean standard
deviation signal by the mean fluorescence to obtain an estimate of inter-volume motion artifacts

over time.

Re-registration of single-cell regions
After 3D registration of the entire region, individual cell regions of interest (ROIs) were selected

for local re-registration. XYZ regions were determined manually. The selected regions were then
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re-registered in XY with Fourier transformation-based cross-correlation, and individual plane

affine registration, as described in the “3D registration” section, above.

Recording “physiological housekeeping” by immune cells

To assess the uptake of dextran by immune cells, a 3D recording of the ChP was acquired for 1
hour before the injection of 70 kDa red dextran. Immediately after this recording, without
moving the recording field of view, the mouse was injected with 70 kDa red dextran, and
recorded for 1 hour, as the dextran filled the vessels. Another 48 hours later, using local vascular
features and tissue morphology, we imaged the same volume of ChP for an additional hour,

without injecting more red dextran. All three recordings used the same acquisition parameters.

LPS RESPONSE
To elicit a peripheral inflammatory response, 0.5 mg/kg lipopolysaccharide (LPS, Sigma) was

delivered IP (Monje et al., 2003). An equal volume of saline was used as a control.

Quantifying in vitro “vessel coating” by immune cells
To quantify immune cell alignment with the periluminal region immediately adjacent to

/GFP mice were

vessels, wholemount LV ChP explants of LPS- and saline-injected Cxsery "
isolated and immunostained for GFP to label immune cells, and PECAM to label vasculature.
Using a 500 pixel x 500 pixel ROI (225 x 225 um?), the image pixel intensities were rescaled to
the range 0-1 (20™ percentile of pixel brightness rescaled to 0; 90™ percentile of pixel brightness

rescaled to 1). A first step to defining the periluminal region was to develop an automated

algorithm to segment the vasculature. Segmenting vasculature involved identifying image
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regions that contain tube-like structures. Additionally, these tubes may be of different sizes (e.g.,
capillaries vs. veins), and may also join together in junctions. Based on this structural
description, a Jerman filter (Jerman et al., 2016) based on the local second-order derivative of the
image (filter widths from 8 to 15 pixels; regularization factor T = 1) was used to enhance pixels
that were part of tube-like structures. The resulting image was then binarized to separate
vasculature from the background.

To validate the automated vessel segmentation algorithm used as an initial step towards
defining periluminal space surrounding vessels, the vasculature image was manually segmented
as a ground truth comparison. Using the Selection Brush tool in Fiji, the vessels were hand traced
and converted to a manual binary mask. The same region was automatically segmented, as
above, to generate an automatic binary mask. The automated and binary masks were compared
with the contour matching function, bfscore.m, in MATLAB. Briefly, the Boundary F1 score
measures the how closely a predicted boundary matches a ground truth boundary. This algorithm
was chosen over Dice or Jaccard similarity coefficients, as our principal goal involved defining
the accuracy of the estimate of periluminal boundary.

To obtain an estimate of periluminal space, the edge of the binary image of vasculature
(see above) was then dilated with a disk kernel with a width of 5 pixels (~1.6 um). Pixels
belonging to this dilated mask but not to the original vascular mask were considered to belong to
the periluminal region.

Pixels containing immune cell bodies or processes were defined as follows, from the
green emission image. First, the image pixel intensities were rescaled to the range 0-1 (10"
percentile of pixel brightness rescaled to 0; 98" percentile of pixel brightness rescaled to 1). The

image was then binarized, and dilated using a disk kernel with a width of 5 pixels. The degree of
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immune cell process occupancy within the periluminal region (“vessel coating”) was estimated

as the proportion of vessel edge that overlapped with the binarized and dilated immune cells.

In vivo vessel coating

To quantify in vivo changes in immune cell occupancy of periluminal regions near
vessels in response to LPS, a four-hour, four-dimensional (X Y x Z x T stack) dataset was mean-
projected along the Z-axis to produce an XYT image stack. This image stack was downsampled
to 120 volumes (by averaging successive sets of 30 volumes), to improve the signal-to-noise
ratio. This image stack was split into two channels: immune cells and vasculature. To define the
periluminal region, vascular image stack intensity levels were rescaled to the range 0-1 (20™
percentile of pixel brightness rescaled to 0; 98" percentile of pixel brightness rescaled to 1), and
registered using the MultiStackReg function in Fiji, based on motion estimates from the immune
cell image stack (NIH). A median projection of the vascular channel was computed, and pixels
belonging to vessels were enhanced relative to the background using a Jerman filter (Jerman et
al., 2016)(filter width from 8 to 10 pixels; regularization factor, T = 1; see above). The gradient
of the Jerman filtered image was calculated to find the vessel edges, and the gradient image was
binarized, and morphologically closed (dilation, followed by erosion of a binary image, resulting
in the filling of small holes; the structuring element was a disk with radius of 2 pixels), defining
the periluminal regions of the image.

The immune cell image stack intensity levels were rescaled to the range 0-1 (10™
percentile of pixel brightness levels, rescaled to 0; 98" percentile of pixel brightness levels,
rescaled to 1). For each time frame in the image stack, t, the fluorescence in the periluminal

region, F(t) was calculated as mean pixel intensity in the periluminal region defined above.
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GFP fluorescence in the periluminal region, F(t), was measured at each frame in the
image stack as the mean immune cell pixel intensity in the periluminal region defined above. The
average fluorescence in the 1 hour prior to LPS injection was used as a baseline, Fy. Change in

fluorescence in response to LPS was expressed as: AF/Fy.

IMMUNE CELL IMAGING DURING ACUTE ChP INJURY

In this experiment, a local region of the ChP of an adult awake mouse was heated using the
imaging laser, together with two-photon imaging of immune cells and vasculature prior to and
following the heating. After one hour of imaging of 3D volumes of immune cells and vasculature
(as detailed above) at 2x magnification and 30-40 mW power, the scan settings were changed to
8x magnification and ~150 mW for two minutes to induce focal heating of a local region of the
tissue. Immediately following this tissue manipulation, the previous laser scanning settings were

returned to observe immune cell activity in response to the focal damage.

Tracking immune cell acute response to laser burn injury

Immune cell body positions relative to the rectangular region targeted for focal laser heating
were sampled every 5 minutes for 30 minutes before heating and in the one hour after heating. A
distance transformation was used to calculate the closest distance from each cell to the
rectangular injury site at each timepoint (using bwdist.m in MATLAB). Velocities of these cells
toward the burn site (A distance/A time) were calculated for the 30-minute period before the
injury, and separately for the 60-minute period after the injury. In cases where the cell entered
the burn site prior to the end of the recording period, the velocity was calculated using the

displacement that took place until the moment that the cell entered the burn site.
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OTHER SUPPORTING EXPERIMENTS

Immunostaining and immunoblotting

ChP explants were dissected and fixed in 4% paraformaldehyde for 10 min at room temperature.
Samples were incubated in primary antibodies overnight at 4°C and in secondary antibodies at
room temperature for two hours. For ACTA2 staining, samples were permeabilized with 0.1%
Tween 20 in PBS prior to primary antibody incubation. For GFP and CD31 staining, samples
were blocked (0.3% TritonX-100, 5% goat serum in PBS) for 1 hour prior to primary antibody
incubation. All samples were counterstained with Hoechst 33342 (Invitrogen, H3570, 1:10,000)
and mounted onto slides using Fluoromount-G (SouthernBiotech). Standard protocols were used

for immunoblotting.

Nearest-neighbor analysis

Locations of cell centers were selected using the Cell Counter plugin in Fiji. The tissue
outline was drawn manually and made into a binary mask using Fiji. The nearest-neighbor
distance was calculated for each individual cell, and the cumulative distribution function was
plotted using the spatstat package in R (Baddedy et al., 2015).

Simulated distributions based on a 2D Poisson distribution were generated iteratively 100
times. The mean of these simulated distributions yielded the “Poisson” estimate, while their

extrema yielded a p = 0.01 acceptance interval.

Cytokine FACS array
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Pure CSF samples were collected from the cisterna magna. Blood samples were collected by tail-
nick one hour following saline or LPS injection. The samples were coagulated, centrifuged and
diluted five-fold. Post-surgical CSF samples were diluted two- or three-fold; post-LPS CSF
samples were not diluted. For the 13-plex cytokine FACS-ELISA analysis, all samples were
processed according to the manufacturer’s instructions. After resuspension, the beads were run
on a FACS Celesta (BD Biosciences) and FACS results were analyzed by LegendPlex v7.1

software.

Quantitative RT-PCR

RNA samples were prepared using either the RecoverAll Total Nucleic Acid Isolation Kit
(Ambion) or the mirVana miRNA isolation kit, following the manufacturer’s specifications.
Extracted RNA was quantified spectrophotometrically and 100 ng was reverse-transcribed into
cDNA using the ImProm-II Reverse Transcription System (Promega) or ABI High Capacity
cDNA Reverse Transcription Kit (4368813, Thermo Fisher). Primers were purchased from
Thermo Fisher (Tagman Gene expression assays, informed by “Best Coverage”) and q-PCR
reactions were conducted performed in duplicate using Tagman Fast Univ. PCR Master Mix.
Cycling was executed using the StepOnePlus Real-Time PCR System (Invitrogen) and analysis
of relative gene expression was performed using the 2**“" method (Livak and Schmittgen,
2001). Gene expression readouts were normalized to eukaryotic /8S rRNA or Gapdh as internal

controls.

Transmission and Scanning EM
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Lateral ventricle ChP tissue from adult mouse brain was micro-dissected and processed for EM

using standard methods (Coulter et al., 2018).

QUANTIFICATION AND STATISTICAL ANALYSIS

To achieve robust and unbiased results while minimizing animal use, whenever possible, we
focused on within-mouse comparisons (e.g. changes in immune cell motility before and after
tissue injury, Figure 7I), which affords greater sensitivity. It was not possible for experimenter
to be not blinded to experimental conditions, except in analysis of LPS vs. saline control (Figure
7C). We  attempted to adhere to principles of Good Laboratory Practice

(www.who.int/tdr/publications/documents/glp-handbook.pdf). Unbiased results were obtained by

prospectively defining exclusion criteria (e.g., acquisition criteria [alignment, image quality],
viral expression/localization). All descriptions of statistical significance, statistical tests used,
and exact values and representations of n can be found in the figure legends. Software packages
used for statistical tests can be found in the STAR methods Key Resource Table under Software

and Algorithms.

SUPPLEMENTAL VIDEO LEGENDS
Video S1. Imaging calcium activity in adult lateral ventricle ChP explant. Related to Figure

1.

https://www.dropbox.com/s/w0OsoeOuhmv3uwiu/VideoS1 invitro spont.avi?dl=0

Widefield epifluorescence imaging of spontaneous calcium activity of epithelial cells in ChP
explants (large leaf of LV ChP) in FoxJI-Cre::4i95D mice. This method allowed for

simultaneous visualization of activity in many thousands of active epithelial cells (see also
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Figure 1F). Inset: zoom-in of cellular activity in the region outlined by a solid white square
(same subregion as in Figures 1G-1M, spanning 161 x 161 um?). Note uncorrelated activity

throughout the explant. Timestamps are in units of minutes:seconds.

Video S2. Epithelial cells show spontaneous and evoked calcium activity in explants.

Related to Figure 2.

https://www.dropbox.com/s/cadrqaw7rfw2bbw/VideoS2 invitro 5ht montage label.avi?dl=0

Widefield epifluorescence imaging of spontaneous calcium activity of epithelial cells in ChP
explants (large leaf of LV ChP) in FoxJI-Cre.:Ai95D mice during delivery of 5 nM, 50 nM and
500 nM doses of 5-HT, indicated at top of movie. Left: raw movie. Right: change in fluorescence
from pre-drug baseline. Note the increasing magnitude of responses to progressively larger doses
of 5-HT. Note also the progressive decline in spontaneous activity following drug administration.
Movie data and dimensions are same as in Figure 2A. Timestamps are in units of

minutes:seconds.

Video S3. Epithelial cells show spontaneous and evoked calcium activity that can stimulate

exocrine secretory events in explants. Related to Figure 2.

https://www.dropbox.com/s/x95wn26cww2950s/VideoS3 InVitro WAY.avi?dl=0

Two-photon calcium imaging of a LV ChP explant from a FoxJI-Cre::4i95D mouse during
delivery of 5 nM, 50 nM, and 500 nM doses of the 5-HT,c-specific agonist, WAY-161503.

Movie data and dimensions are same as in Figure 2F. Timestamps are in units of
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minutes:seconds. The larger the dose, the more cells showed sustained evoked increases in
calcium, followed by apocrine secretion events involving gradual pinching off and release of

intracellular contents (see, for example, minutes 32-44 of the video).

Video S4. Cultured ChP cell shows spontaneous vesicle fusion events. Related to Figure 2.

https://www.dropbox.com/s/5ply5t3vrgexkbg/VideoS4 VAMP3 Z310.avi?dl=0

TIRF imaging of VAMP3-pHluorin from Z310 cultured ChP cell shows spontaneous vesicle
fusion events (brief, bright dots). Movie data and dimensions are same as in Figure S2K. Scale

in first frame, 10 um. Timestamps are in units of minutes:seconds.

Video SS. Epithelial cell shows spontaneous and evoked vesicle fusion events in explants.

Related to Figure 2.

https://www.dropbox.com/s/ptddqirkpbh14u9/VideoS5 VAMP3 ChP.avi?dI=0

Confocal imaging of a single cultured LV ChP epithelial cell exhibiting increased frequency of
VAMP3-related vesicle release events following delivery of the 5-HT,c agonist WAY-161503
(500 nM). Left: raw confocal images. Right: spatially filtered images (see Figure 2G and
associated legend for details). Movie data and dimensions are same as in Figure 2G. Scale in

first frame, 5 um. Timestamps are in units of minutes:seconds.

Video S6. Imaging lateral ventricle ChP in awake mice. Related to Figure 3.
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https://www.dropbox.com/s/1d2ka5mm8&8r6d8qd/VideoS6 4x epi montage label.avi?dI=0

Epifluorescence imaging from four awake mice (FoxJI-Cre::4i95D) with surgically implanted
imaging cannulae and windows highlighting typical motion of LV ChP (bright tissue in center)
over a 30-second period. These four mice were imaged at 134, 123, 325, and 349 days post-
surgery, respectively. Timestamps are in units of minutes:seconds. Note that mice shown here

are different than those in Figure 3F.

Video S7. Spontaneous in vivo calcium activity of epithelial cells reveals subcellular activity.

Related to Figure 4.

https://www.dropbox.com/s/n716klt165791ml/VideoS7 InVivoEpiSpont.avi?dl=0

Two-photon imaging of spontaneous subcellular calcium activity of ChP epithelial cells in an
awake mouse (FoxJI-Cre::A4i95D) over 16 seconds. The movie was filtered using a 2D spatial
Gaussian (sigma: 0.55 pm), and a 1-dimensional Gaussian in time (sigma: 0.033 s). Dimensions

of the movie are: 282 x 282 um?. Timestamps are in units of minutes:seconds.

Video S8. Spontaneous in vivo calcium activity of epithelial cells shows subcellular activity

in a second mouse. Related to Figure 4.

https://www.dropbox.com/s/rb5tmguc7qn3brr/VideoS8 InVivoEpiSpont mouse2.avi?dl=0

Two-photon imaging of spontaneous subcellular calcium activity of ChP epithelial cells in an

awake mouse (FoxJI-Cre::Ai95D) over 6 seconds (similar to Video S7, but from a second
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mouse). Timestamps are in units of minutes:seconds. Movie data and dimensions are same as in

Figure 4D.

Video S9. Epithelial cells show spontaneous and evoked calcium activity that can stimulate

exocrine secretory events in vivo. Related to Figure 4.

https://www.dropbox.com/s/t02fnrsbja8r2bo/VideoS9 invivo WAY.avi?dl=0

In vivo two-photon calcium imaging of LV ChP epithelial cells (FoxJI-Cre::4i95D mouse) prior
to and following delivery of a 5-HT,c-specific agonist, WAY-161503 (3 mg/kg, SC). Movie data
and dimensions are same as in Figure 4L. Timestamps in top left corner indicate times after
injection of WAY-161503, in units of hours:minutes:seconds. Note the elevation in calcium in
each cell, followed by apocrine secretion events involving release of intracellular contents

including GCaMP6f protein into the CSF.

Video S10. Individual epithelial cells show spontaneous and evoked calcium activity that

can stimulate exocrine secretory events in vivo. Related to Figure 4.

https://www.dropbox.com/s/u2uusu45v3d35wp/VideoS10 invivo WAY singlecell montabe.av

17d1=0

Zoom-in from an in vivo two-photon imaging session involving three individual epithelial cells
expressing GCaMPo6f (from a FoxJI-Cre::Ai95D mouse) following injection of a 5-HTyc-
specific agonist, WAY-161503 (3 mg/kg SC; see also Video S9). Note the apocrine secretion

events involving release of intracellular contents including GCaMP6f into the CSF. Timestamps
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are in units of minutes:seconds. Movie data and dimensions for cell in left panel are same as in

Figure 4M; other panels show two additional example cells (same dimensions).

Video S11. In vivo imaging of ngcr1+/ GFP ChP immune cells reveals diverse functions

including local surveillance. Related to Figure 5.

https://www.dropbox.com/s/id4afe1r88127no/VideoS11 cx3crl fullview.avi?dl=0

Four hour imaging dataset (maximum intensity projections of two-photon imaging volumes,

+/GFP

similar to Figure SA) demonstrates immune cells (green, Cx;cr; mouse) surveying LV ChP

vasculature (red, labeled using subcutaneous injection of Texas Red dextran). Scale in first

frame: 50 um. Timestamps are in units of hours:minutes:seconds.

Video S12. Illustration of within-volume brain motion. Related to Figure 5.

https://www.dropbox.com/s/ge4iypy16n6x2ev/VideoS12 XY registration demo.avi?dl=0

Pan through of a single imaging volume (duration of acquisition of each volume was 6.33 s, and
each volume consisted of 81 planes spanning 400 um in depth), from a volumetric imaging run
collected in an awake head-fixed mouse running on a trackback (top left). We used multi-color

+/GFP .
immune cells, with Z-

two-photon imaging of Texas Red-labeled vessels and Cx;scr;
scanning enabled by a piezoelectric objective stage. Note the X-Y shifts across planes of this
volume. We thus sequentially aligned each frame to a common reference using a translational

alignment procedure (see also Figures SB-5D). The degree that we shifted each frame in X and

in Y directions is illustrated at bottom. The resulting aligned volume is shown at top right (blue
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regions indicate areas where no data is available due to alignment shifts in the imaging plane).

Each frame spans 255 x 255 pm”.

Video S13. Additional movies from in vivo imaging of individual ngcr1+/ ¢FP ChP immune

cells indicates multiple cell subtypes. Related to Figure 6.

https://www.dropbox.com/s/jbuqtk0ifz526it/VideoS13 c¢x3crl individual cells.avi?dl=0

.. +/GFP
Individual Cx;scr;

immune cells surveying the LV ChP across a 44-minute period.
Timestamps are in units of minutes:seconds. Dimensions for movies in top left, top right, bottom
left, and bottom right panels are same as in Figures 6D-6G, respectively. Top left: epiplexus
immune cell that moves freely over neighboring vessels because it is on the apical surface of the
ChP. Top right: stromal immune cell with cell body that remains in place, but with processes
extending beyond neighboring vasculature and then retracting due to apparent contact mediated
inhibition with a neighboring process. Bottom left: stromal immune cell whose processes travel
along vasculature, exhibiting contact mediated inhibition after touching processes from
neighboring cells, and contact with one of its own processes. Bottom right: stromal immune cell

with mobile cell body whose mobility appears constrained by the surrounding vessels, but whose

processes extend beyond these vessels.

Video S14. Uptake of dextran by stromal ChP immune cells. Related to Figure 6.

https://www.dropbox.com/s/ojemOnyqgzknixzv/VideoS14 dextran uptake.avi?dl=0




1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

Shipley et al., 57

Individual Cxscr; """ immune cells surveying the LV ChP across a 61-minute period following

IP injection of Texas Red dextran (70 kDa) in awake mice. Note the gradual uptake of dextran in
immune cell processes in the periluminal region near vessels (Figure 6I). Scale, 25 pum.

Timestamps are in units of hours:minutes:seconds.

Video S15. Identification of stromal and epiplexus cells in the ChP during dextran uptake.

Related to Figure 6.

https://www.dropbox.com/s/b0c0otlol91vqgjo/VideoS15 DextranEpiplexus XY Zscan.avi?dI=0

48 hours after IP injection of Texas Red dextran (70 kDa) (Figure 6H), some immune cells
accumulated dextran in their processes and cell bodies while others did not. Here, we
characterize the immune cells that did not uptake dextran by labeling with white circles in a scan
through the tissue. We then considered a maximum intensity projection image from the same
volume (middle of video), and inspected X-Z and Y-Z cross-section scans of the volume
(rectangular movies at end of video; location of each cross section indicated by yellow and cyan
lines through the maximum intensity image). Note that most immune cells that did not uptake
dextran were located out of the central, vascular layer of the ChP and were classified as

epiplexus cells. Scale, 50 um.

Video S16. ChP immune cells respond to systemic injury. Related to Figure 7.

https://www.dropbox.com/s/4q0dvuej8bzcr85/VideoS16 LPS flattening.avi?dI=0
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In vivo two-photon imaging of LV ChP immune cells (Cxzcr; 7"

mouse) during IP delivery of
LPS (5 mg/kg). Immune cells flatten in the periluminal region near vessels (red) in response to
LPS at ~1 hour post-LPS (indicated at top of movie). Timestamps are in units of hours:minutes
(13 minutes/frame). Movie data are same as in Figure 7D. Dimensions of the movie are: 97 x 90

pum®. Note that many but not all immune cells respond to LPS. White arrowhead tracks an

immune cell that flattens into the periluminal region.

Video S17. ChP immune cells respond to acute injury. Related to Figure 7.

https://www.dropbox.com/s/abbr4es7m2vvibs/VideoS17 LaserBurn2.avi?dl=0

In vivo two-photon imaging of LV ChP immune cells (Cxscr; "

mouse) during focal laser
heating within the region outlined by a white square. Approximately 6 minutes post-burn, Texas
Red dextran leaks out from damaged vessels. Some nearby immune cells change to an activated
state with retracted processes and migrate to the site of injury immediately following focal laser
heating. After reaching the site of injury, these cells aggregate and remain stationary. Other
immune cells appear unaffected. Movie data are same as in Figure 7H. Timestamps indicate

time since focal laser heating and are in units of hours:minutes:seconds. Scale, 50 um. See also

Video S18.

Video S18. Identification of stromal and epiplexus immune cells in the ChP during a focal

injury model. Related to Figure 7.

https://www.dropbox.com/s/fl4nirdq0k1w9m3/VideoS18 LaserBurn XY Zscan.avi?dI=0
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Following a focal ChP injury induced by laser heating (Figures 7G and 7H), some immune cell
bodies moved towards the injury site while others did not. Here, we characterized the immune
cells that did move towards the injury by labeling them with white circles in a flythrough of the
imaging volume (beginning of video; snapshot at 25 minutes following laser burn). We then
considered a maximum intensity projection image from the same volume (middle of video), and
inspected various X-Z and Y-Z cross-sections of the volume (rectangular movies at end of video;
location of each cross-section indicated by yellow and cyan lines through the maximum intensity
projection image). Note that most immune cells that later moved towards the site of injury (6/8
mobile cells) were located outside of the central, vascular layer of the ChP, and were thereby

characterized as epiplexus cells. Scale, 50 um.
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