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ABSTRACT

Origami has emerged as a promising tool for the design of
mechanical structures that can be folded into small volume and
expanded to large structures, which enables the desirable
features of compact storage and effective deployment. Most
attention to date on origami deployment has been on its
geometry, kinematics, and quasi-static mechanics, while the
dynamics of deployment has not been systematically studied. On
the other hand, deployment dynamics could be important in
many applications, especially in high speed operation and low
damping conditions. This research investigates the dynamic
characteristics of the deploying process of origami structures
through investigating a Miura-Ori sheet (Fig. 1(b, ¢)). In this
study, we have utilized the stored energy in pre-deformed spring
elements to actuate the deployment. We theoretically model and
numerically analyze the deploying process of the origami sheet.
Specifically, the sheet is modeled by bar-and-hinge blocks, in
which the facet and crease stiffnesses are modeled to be related
to the bar axial deformation and torsional motion at the creases.
On the other hand, the structural inertia is modelled as mass
points assigned at hinges. Numerical simulations show that,
apart from axial contraction and expansion, the origami
structure can exhibit transverse motion during the deploying
process. Further investigation reveals that the transverse motion
has close relationship with the controlled deploying rate. This
research will pave the way for further analysis and applications
of the dynamics of origami-based structures.
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1. INTRODUCTION

Origami, an ancient paper folding art, has gained new life
recently, as its principles have not only been explored in
mathematics and aesthetics, but also shed light on design and
manufacturing of engineering structures with profuse
functionalities. There have been many applications explored
since the 20th century, which take advantage of the idea that an
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origami-based structure can be folded into small volume and
subsequently deployed into 3D structures, for example,
reconfigurable architectural facade [1] and foldable space
structures [2]. Additionally, origami has also demonstrated its
value in the development of mechanical and material systems
with extraordinary properties originating from folding, such as
reprogrammable stiffness [3], locking and stiffness jump [4], and
multi-stability [5]. Despite the research progress on the static and
quasi static characteristics of origami, the study on origami
dynamics is limited. On one hand, these origami structures could
subject to dynamic load from the environment, thus it is
necessary to understand their dynamic behavior for safety
concerns and better controls [6], where previous studies have
shown the ability of origami structures in noise mitigation [7]
and vibration isolation [8]. On the other hand, the dynamics of
origami deployment has not been explored. Therefore, to
advance the state of art, the goal of this paper is to investigate the
dynamics characteristics of origami deploying process and build
a rigorous and comprehensive framework for exploring origami
dynamic behaviors.

In this research, we focus our effort on the deployment
dynamics of a Miura-Ori sheet. Miura-Ori is a widely used
origami pattern design (Fig. 1(a)) and can achieve flat-
foldability. A Miura-Ori sheet can be constructed by connecting
the Miura-Ori cells repeatedly along their creases (Fig. 1(b, c)).
Various actuation methods have been designed and explored for
deployable structures [9], [10], including pneumatic actuation
[11], stored energy [12], and thermal activation with shape
memory materials [13]. For the purpose of easy illustration
without losing generosity, we have been utilizing the stored
energy method in this study. Instead of assuming rigid folding,
we build our dynamic model with the bar and hinge model [14],
[15]. The panel facet is represented by a N5SB8 model (Fig. 1(d)),
with which the facet could exhibit shear and bending
deformation, thus large transverse motions can be captured
during the deployment process. Mass point is assigned at the
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position of hinges with appropriate values to simulate facet
inertia.

Numerical simulations reveal rich dynamics that has never
been reported. In the case of free deployment driven by stored
energy, time-varying transverse displacement is observed after
fully deployed. In the displacement control case, where the
structure’s free end is controlled to move with prescribed speed,
different types of transverse motions are observed with different
deploying rate. Flapping motion shows up after structure being

(a)

(©) Cell 1

Cell 2

fully deployed. Further analysis shows the relationship between
the intensity of the transverse motion and the deploying rate.
This paper is organized as follows. Section 2 introduces the
dynamic modeling of a Miura-Ori sheet. Section 3 presents the
numerical analysis of the free deployment driven by stored
energy. Section 4 presents numerical analysis of the
displacement-controlled deployments. A brief summary and
discussion is presented in Section 5.

Cell 3 Cell 4 Cell 5

my + my Bars

(@
m, Mass point
Torsional hinge
(fold crease)
my +ms

Torsional hinge

(bend line)

my my +ms +my + ms

Figure 1. 1(a) shows the Miura-Ori cell, and the geometry parameters (a, b,y) can be found here. 1(b) shows the rigid folded configuration of the
Miura-Ori cell with folding angle p = 80°. The coordinate used in this paper can be found here. 1(c) shows the Miura-Ori sheet constructed by
connecting five identical Miura-Ori cells along the creases. The node numbering is also shown here. Details of the embedded bar-and-hinge model in
each Miura-Ori cell are depicted in 1(d). The N5SB8 model consists of eight bars and five nodes. The nodes in green and red represent the mass points
in the center and at vertices respectively. Mass point m, is assigned at the position of the center node; m; at the vertices of long diagonal; m, at the
vertices of short diagonal. The four lines inside each parallelogram are the massless bars and are attached with hinge springs representing fold creases
and bend lines.

2. DYNAMIC
DEPLOYMENT

2.1 Geometry of Miura-Ori Sheet

The Miura-Ori sheet is formed by connecting Miura-Ori
cells head-to-tail along their creases (Fig. 1(b, ¢)). In this work,
the sheet contains five Miura-Ori cells. Miura-Ori is a degree-4
vertex pattern with a pair of collinear creases and reflection
symmetry about these creases. Each Miura-Ori cell consists of

MODELING FOR ORIGAMI four identical parallelograms and can be described by three
parameters: the length of adjacent creases (a, b), and the section
angle y between them. A rigid Miura-Ori cell possesses single
degree of freedom (DOF), and can be described by the dihedral
angle p. If assume rigid, the integrated Miura-Ori sheet has
single DOF, and all cells share the same dihedral angle. In this
work, we use p to describe the structure configuration when

there is no facet deformation.
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2.2 stiffness of Miura-Ori Sheet

In this research, we use the bar-and-hinge model to describe
the elastic behavior of the Miura-Ori sheet [14], [15]. Such
behavior is a combined result of the in-plane deformation of
panel facets, the bending of panels, and the folding along the fold
creases. Each parallelogram in the Miura-Ori cells is replaced
with an N5B8 model, one of the bar-and-hinge models and the
node numbering is as shown in Fig. 1(c). Assumptions made in
this bar-and-hinge model are: (a) a straight fold line between
surfaces remains straight after adjacent material deforms, and (b)
a triangular face remains planar while the quadrilateral face
exhibits bending along its diagonals, local effect around the
boundary neglected. With this model, (i) the in-plane stiffness is
represented by bar elements with axial stiffness, which simulates
the shear and stretching behavior of thin panel facet, (ii) the out-
of-plane bending stiffness of flat panel facets is represented by
torsional hinges around diagonal bars, which simulates the facet
bending motion, and (iii) the bending stiffness along fold creases
is represented by rotational hinges around fold creases, which
simulates the intended bending for kinematic folding of origami
structures.

For a parallelogram panel facet, its important parameters
include the section angle y, short diagonal length D, thickness t,
and material constants Young’s modulus E and Poisson’s
ratio v. Eq. (1-2) shows the relationship between the bending
angle 6z and the torque My at the bending line, while Mgg
deals with small angular deformation, and Mp; deals with large
angular deformation [15]. As the stiffness ratio between fold and
bend creases Kg/Kp falls in range [1/3,20], this model would
provide realistic estimate of structure behaviors. These equations
will provide reasonable approximation for stiffness parameters
in dynamic modeling.
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2.3 Inertia of Miura-Ori sheet

A finite DOF model is applied to simplify the analysis of
origami structures. The continuum panel facet is represented by
an assemblage of mass points located at the positions of five
nodes. This method could provide a simple and effective way to
simulate the inertia origami structures.

We first derive the moment of inertia of the parallelogram
continuum and the mass-point assemblage. There are three kinds
of mass point [my, m;, m,]. m, is located in the center of the
panel facet, m; is located on the long diagonal axis, and m, is
along the short diagonal. The total mass of these mass points is
kept the same as the mass of facet panel. The two independent
variables [m,, m,] are determined by minimizing the error of
moment of inertia between facet panel and the mass point
assemblage. The principal moments of inertia of a parallelogram
continuum are as shown in Egs. (3-5). S is the panel area. Eq.
(6) shows the moment of inertia of a mass point with relative
position r. The error between inertia components is depicted in

Fig. 2. By selecting the mass points [m;,m,] to be [0.25,
0.028] (total mass is 1), the errors in the three principal directions
are [0.8%,0,0.2%] , which are reasonably small. When
assemble the overall inertia matrix, there will be two or four mass
points located at the same nodal position at connecting lines (Fig.
1(d)). Therefore, we could simulate the translational and
rotational inertia of the Miura-Ori sheet.
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Figure 2. The error of the principal moments of inertia between
continuum parallelogram and assemblage of  mass
points (Imass points — lerue)/ Ierue- 2(a) shows the 3D plot of the errors.
2(b) shows the contour lines of zero error.
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2.4 Dynamic Modeling of the Miura-Ori Sheet
The equivalent dynamic model of the Miura-Ori sheet
consists of mass points constrained by massless bars and
massless torsional hinges. Each node has three DOFs, and the
generalized coordinates are the linear displacements of nodes.
Thus, the kinetic energy is as shown in Eq. (7).
r=tmi (M
Each bar in the model can be denoted by the numbering of
its two ending nodes. The strain energy can be derived from the
axial deformation as Eq. (8). W (S¢,) is the strain energy density
function as in Eq. (9), and S;; is the Green-Lagrange strain
tensor. u;, a;, N are material constants, and A, is the axial
stretch.

Lpar
Ubar = W(SGL)Abardx (8)
0
N
Bi e
W) = ) Hofi -1 ©
i=1 '

A= 2S5 + 1 (10)

The potential energy from the torsional hinges is as shown
in Eq. (11). The bending angle 6 is determined by its two
adjacent triangles, or equivalently four nodes. Eq. (12) shows
the i-th nodal force. This nodal force is generated from the hinge
torque at one of the creases connected to this node. Details about
the relationship between the bending angle 6 and its four
dependent nodal displacements x can be found in [14]. Thus the
final i-th nodal force is derived by traverse of all creases
connected to this node and summing up the corresponding nodal
forces with Eq. (12).

6
Verease = M(6)de (11)
o
WVerease  OVirease 00 a6
L= = —=M — 12
crease,i dx; 26 ox, @) ox; (12)

Dissipation comes from bar deformation, as well as fold and
bend creases. At the hinges it has the form shown in Eq. (13).

aD . 00
Fycreasei = SY;GSE =Co E
1 L
13
d p _ deo dx; (13)
2t = o ar

By using the Lagrange’s equations, we could assemble the
equations of motion (EOMs) with respect to each nodal linear
displacement x.

L=T- (Ubar + Vcrease)’
d<aL) oL 9D _ (14)
dat\ox,) ox; ox;

In the numerical simulations, the Young’s modulus takes on
value as 2e11 [N/m?]; dissipation as 0.1 [N -m - sec] at fold

creases, and 1[N - m - sec] atbend creases; mass as 3 [kg] for
each panel.

Two kinds of boundary conditions are applied to evaluate
the deploying behavior of the Miura-Ori sheet. On the left end,
the middle node is fixed in space, and the x direction motion of
the two side nodes are constrained (coordinate system shown in
Fig. 1(b)). In this way, the left end creases have fixed position
and orientation while keeping the flexibility to deploy. On the
right end, the middle node is constrained in the y,z direction
with a roller support, thus it can only move along the axial
direction. In the free deployment case, the middle point can
freely move in the x direction. For a displacement control case,
all three nodes on the right end is controlled to move with
prescribed speed along the axial direction, while the middle node
is fixed in the y and z directions. Once the structure reaches the
flat-deployed configuration, the displacement control will keep
the middle node at that position. In Tables 1 and 2, we denote 1
to the DOF if there are constraints and 0 if it is not constrained
or controlled

EOMs without boundary conditions are first derived, and
thus contain rigid motion DOFs. As for the constrained or
controlled DOF, the generalized coordinate is replaced by its
given position (if fixed) or time-varying position (if
displacement controlled), and then the equation corresponding to
this DOF is deleted from the overall EOMs.

Table 1. Constraints in case 1

Node No. X Y Z

1 1 0 0

2 1 1 1

3 1 0 0

51 0 0 0

52 0 1 1

53 0 0 0

Table 2. Constraints in case 2

Node No. X Y Z
1 1 0 0
2 1 1 1
3 1 0 0
51 Displacement control 0 0
52 Displacement control 1 1
53 Displacement control 0 0
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3. DYNAMIC ANALYSIS OF

CONTROLLED DEPLOYMENT

We first examine the deploying behavior of the Miura-Ori
sheet with displacement control. The stress-free state of this
Miura-Ori is the deployed state. The Miura-Ori sheet is bounded
into a compressed state with p = 80° at the beginning. At this
stage, it is rigidly folded and there is no panel facet deformation,
but the torsional springs at the crease will be deformed and
contain potential energy used to activate the deployment.

As it starts to deploy, the bounding mechanism is released
and the displacement control on the right end starts. Apart from
the single DOF motion based on rigid folding assumption, this
Miura-Ori sheet could have transverse motions. The first kind of
transverse motion being observed is in the xy plane. With
different deploying displacement control rates, there exist
different types of transverse motion. In the case of rate
a/5 [m/sec] (a is the side length of the Miura-Ori panel as
shown in Fig. 1(a)), the rightmost cell deploys first, leaving the
rest of the cells limited expansion space. The structure contains
high level of potential energy at this stage, thus it tends to have
out-of-plane motion out from the xz plane (Fig. 3(c)) because of
the relatively lower bending stiffness than in other directions[15].
The deploying sequence of cells in the Miura-Ori sheet can be
found from the folding angles in Fig. 3(b). As the deployment
continues, the global bending motion can be observed in the xz
plane as well as the time-varying transverse displacement along
the structure. After all the cells are deployed, the flapping motion
starts inside each cell. This is caused by oscillations in the
folding and bending angle. In the case of slower deploying rate
as a/50, the deploying sequence changes, as the center cell
deploys first. Such slow rate allows time for interaction among
all the cells, thus the structure exhibits an almost symmetric
configuration during deployment, as can be seen in Fig. 3(f).

We expand our study to understand the effect of deploying
rate on the structural dynamic behaviors. We explore 11 different
deploying rates, ranging in

[a/50,a/40,a/30,a/20,a/10,a/5,a/2,2a,3a,5a,10al].
We are mainly interested in two aspects in the dynamic behaviors,
the facet bending and the motion range. Motion range, resulting
from out-of-plane motion from xz plane at the early deploying
stage and global bending at the late deploying stage, shows the
deviation from the assumed rigid folding path. In Fig. 4(a), the
motion range in the xy plane, resulting mainly from the out-of-
plane motion from the xz plane, increases with the rate until
a/5 and decreases ever since. This indicates that as deploying
rate increases over a/5, from right to left, the Miura-Ori cells are
stretched to deploy before interaction happens. Additionally,
when the deploying rate is low enough, the Miura-Ori cells
vibrate in a small range beyond its initial configuration, and
settle down around the new configuration before large motion is
triggered. However, one of the drawbacks of fast deployment is
that it would cause more panel facet deformation as shown in Fig.
4(b). Such bending grows rapidly as deploying rate increases
overa/5.
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Figure 3. Plots (a-c) show the deployment with displacement control
rate as a/5, and plots (d-f) correspond to rate a/50. 3(a) and 3(d) show
the maximum angular displacement throughout deployment at bending
and folding lines. 3(b) and 3(e) show the maximum folding angle of the
five cells inside the Miura-Ori sheet, which indicates the deploying
sequence. It can be seen that in the a/5 case, the deploying sequence is
from right to left, and in the a/50 case, it is from center to periphery.
3(c) shows the top view of configuration at 10 sec during deployment,
where there is out-of-plane motion out from the xz plane of the left
three cells. 3(f) shows the configuration at 12 sec, where the center cells
deploy first and exhibits rough symmetry.
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Figure 4. 4(a) shows the max positions reached in the xy and xz
plane respectively throughout the deployment process, scaled with
respect to the facet size a. The facet bending is shown in 4(b), which
consists of elastic deformation of the panel facets.

4. DYNAMIC ANALYSIS OF FREE DEPLOYMENT BY

STORED ENERGY

To Dbetter understand the dynamics of Miura-Ori
deployment, we also investigate the free deployment process.
Similarly, the Miura-Ori sheet starts from the folded state
with p = 80° with stress-free state as the deployed state. When
the Miura-Ori is set free, the stored potential energy drives the
structure to deploy. The deployment starts from the rightmost
cell to the left end, similar to the a/5 case with displacement
control. In this case, the Miura-Ori sheet starts to have global
bending in the xz plane, as depicted in Fig. 5(b-f).

Fig. 5(a) shows that the axial velocity of the middle node
on the right end increases as the deployment begins. It drops to
zero when the structure first reaches the deployed state and then
the global bending begins. The average speed before the
deployed state is 0.48 [m/sec]. In the previous section, the
case a/5 is close to this average velocity. This could provide

insight into the change of behavior with deploying rate. When
the deploying rate is close to the free deploying rate, there would
be less out-of-plane motion among cells from the xz plane than
slower rates. When the deploying rate becomes faster, the
displacement control has a pulling and stretching effect on
Miura-Ori cells, thus facet deformation becomes more
significant. This indicates the possible design strategy of
displacement control for desirable deployment paths of origami
structures.
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Figure 5. 5(a) shows the time-varying axial velocity of the middle

node on the right end. 5(b-f) show the global bending varying with time
after deployment.

5. CONCLUSION AND DISCUSSION

This study focuses on the dynamic behaviors of a Miura-
Ori sheet deploying actuated by stored strain energy. Instead of
quasi-static rigid-folding, facet elasticity and inertial effects are
considered in this study and a dynamic model is established with
bar-and-hinge elements as building blocks. The model is then
analyzed via numerical simulations and multiple deploying
configurations are observed under different deployment rates.
Analyzing the free deployment case provides better
understanding of the relationship between the origami dynamic
behavior and the deploying rate. This study provides the
foundation for exploring dynamic characteristics of the
deployment of origami structures.

ACKNOWLEDGMENTS

This research was partially supported by the National
Science Foundation under Award 1634545 and the University of
Michigan Collegiate Professorship.

Copyright © 2019 ASME

0202 1890300 | uo erx BuoinA ‘uebiyoiy Jo Aysieaiun Aq ypd-9g L 26-610Z10P-920BL0MIS0N FI9ESY9/920V L0.LESON/LF26S/6102310-013A1/Ppd-sBulpesooid/319-013a1/610"swse uonos|j0dje}bipawse//:dpy woly papeojumoq



REFERENCES

(1]
(2]

(3]

(4]

(3]

(6]

(7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

A. E. Del Grosso and P. Basso, “Adaptive building skin
structures,” Smart Mater. Struct., vol. 19, no. 12, 2010.
K. Miura, “Method of packaging and deployment of
large membranes in space,” The Institute of Space and
Astronautical Science report, vol. 618. pp. 1-9, 1985.

J. L. Silverberg et al., “Using origami design principles
to fold reprogrammable mechanical metamaterials,”
Science (80-. )., vol. 345, no. 6197, pp. 647—650, 2014.
H. Fang, S. C. A. Chu, Y. Xia, and K. W. Wang,
“Programmable self-locking origami mechanical
metamaterials,” Adv. Mater., vol. 30, no. 15, pp. 1-9,
2018.

H. Fang, K. W. Wang, and S. Li, “Asymmetric energy
barrier and static diode effect from folding,” Extreme
Mechanics Letters, no. 864, pp. 1-25,2017.

G. V. Rodrigues, L. M. Fonseca, M. A. Savi, and A.
Paiva, “Nonlinear dynamics of an adaptive origami-stent
system,” Int. J. Mech. Sci., vol. 133, pp. 303-318, 2017.
M. Thota and K. W. Wang, “Reconfigurable origami
sonic barriers with tunable bandgaps for traffic noise
mitigation,” J. Appl. Phys., vol. 122, no. 15, 2017.

K. Inamoto and S. Ishida, “Improved feasible load range
and its effect on the frequency response of origami-
inspired vibration isolators with quasi-zero-stiffness
characteristics !,” J. Vib. Acoust., vol. 141, no. 2, p.
021004, 2018.

S. A. Zirbel, B. P. Trease, S. P. Magleby, and L. L.
Howell, “Deployment methods for an origami-inspired
rigid-foldable array,” Proc. 40th Aerosp. Mech. Symp.,
vol. NASA Godda, pp. 189-194, 2014.

E. A. Peraza-Hernandez, D. J. Hartl, R. J. Malak, and D.
C. Lagoudas, “Origami-inspired active structures: A
synthesis and review,” Smart Mater. Struct., vol. 23, no.
9,2014.

S. Li, H. Fang, and K. W. Wang, “Recoverable and
programmable collapse from folding pressurized
origami cellular solids,” Phys. Rev. Lett., vol. 117, no.
11, pp. 1-5, 2016.

T. Neilsen, C. Weston, C. Fish, and B. Bingham, “DICE:
Challenges of spinning cubesats,” Adv. Astronaut. Sci.,
vol. 151, pp. 387-403, 2014.

A. J. Taylor et al., “MR conditional SMA-based origami
joint,” IEEE/ASME Trans. Mechatronics, vol. 4435, no.
617, pp. 1-1, 2019.

K. Liu and G. H. Paulino, “Nonlinear mechanics of non-
rigid origami: an efficient computational approach,”
Proc. R. Soc. 4 473:20170348.

E. T. Filipov, K. Liu, T. Tachi, M. Schenk, and G. H.
Paulino, “Bar and hinge models for scalable analysis of
origami,” Int. J. Solids Struct., vol. 124, pp. 26-45,2017.

Copyright © 2019 ASME

0202 1890300 | uo erx BuoinA ‘uebiyoiy Jo Aysieaiun Aq ypd-9g L 26-610Z10P-920BL0MIS0N FI9ESY9/920V L0.LESON/LF26S/6102310-013A1/Ppd-sBulpesooid/319-013a1/610"swse uonos|j0dje}bipawse//:dpy woly papeojumoq





