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ABSTRACT 
Origami has emerged as a promising tool for the design of 

mechanical structures that can be folded into small volume and 

expanded to large structures, which enables the desirable 

features of compact storage and effective deployment. Most 

attention to date on origami deployment has been on its 

geometry, kinematics, and quasi-static mechanics, while the 

dynamics of deployment has not been systematically studied. On 

the other hand, deployment dynamics could be important in 

many applications, especially in high speed operation and low 

damping conditions. This research investigates the dynamic 

characteristics of the deploying process of origami structures 

through investigating a Miura-Ori sheet (Fig. 1(b, c)). In this 

study, we have utilized the stored energy in pre-deformed spring 

elements to actuate the deployment. We theoretically model and 

numerically analyze the deploying process of the origami sheet. 

Specifically, the sheet is modeled by bar-and-hinge blocks, in 

which the facet and crease stiffnesses are modeled to be related 

to the bar axial deformation and torsional motion at the creases. 

On the other hand, the structural inertia is modelled as mass 

points assigned at hinges. Numerical simulations show that, 

apart from axial contraction and expansion, the origami 

structure can exhibit transverse motion during the deploying 

process. Further investigation reveals that the transverse motion 

has close relationship with the controlled deploying rate. This 

research will pave the way for further analysis and applications 

of the dynamics of origami-based structures. 

Keywords: Origami, deployment, dynamics, deployable. 

1. INTRODUCTION
Origami, an ancient paper folding art, has gained new life

recently, as its principles have not only been explored in 

mathematics and aesthetics, but also shed light on design and 

manufacturing of engineering structures with profuse 

functionalities. There have been many applications explored 

since the 20th century, which take advantage of the idea that an 
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origami-based structure can be folded into small volume and 

subsequently deployed into 3D structures, for example, 

reconfigurable architectural façade [1] and foldable space 

structures [2]. Additionally, origami has also demonstrated its 

value in the development of mechanical and material systems 

with extraordinary properties originating from folding, such as 

reprogrammable stiffness [3], locking and stiffness jump [4], and 

multi-stability [5]. Despite the research progress on the static and 

quasi static characteristics of origami, the study on origami 

dynamics is limited. On one hand, these origami structures could 

subject to dynamic load from the environment, thus it is 

necessary to understand their dynamic behavior for safety 

concerns and better controls [6], where previous studies have 

shown the ability of origami structures in noise mitigation [7] 

and vibration isolation [8]. On the other hand, the dynamics of 

origami deployment has not been explored. Therefore, to 

advance the state of art, the goal of this paper is to investigate the 

dynamics characteristics of origami deploying process and build 

a rigorous and comprehensive framework for exploring origami 

dynamic behaviors. 

In this research, we focus our effort on the deployment 

dynamics of a Miura-Ori sheet. Miura-Ori is a widely used 

origami pattern design (Fig. 1(a)) and can achieve flat-

foldability. A Miura-Ori sheet can be constructed by connecting 

the Miura-Ori cells repeatedly along their creases (Fig. 1(b, c)). 

Various actuation methods have been designed and explored for 

deployable structures [9], [10], including pneumatic actuation 

[11], stored energy [12], and thermal activation with shape 

memory materials [13]. For the purpose of easy illustration 

without losing generosity, we have been utilizing the stored 

energy method in this study. Instead of assuming rigid folding, 

we build our dynamic model with the bar and hinge model [14], 

[15]. The panel facet is represented by a N5B8 model (Fig. 1(d)), 

with which the facet could exhibit shear and bending 

deformation, thus large transverse motions can be captured 

during the deployment process. Mass point is assigned at the 
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position of hinges with appropriate values to simulate facet 

inertia. 

Numerical simulations reveal rich dynamics that has never 

been reported. In the case of free deployment driven by stored 

energy, time-varying transverse displacement is observed after 

fully deployed. In the displacement control case, where the 

structure’s free end is controlled to move with prescribed speed, 

different types of transverse motions are observed with different 

deploying rate. Flapping motion shows up after structure being 

fully deployed. Further analysis shows the relationship between 

the intensity of the transverse motion and the deploying rate.  

This paper is organized as follows. Section 2 introduces the 

dynamic modeling of a Miura-Ori sheet. Section 3 presents the 

numerical analysis of the free deployment driven by stored 

energy. Section 4 presents numerical analysis of the 

displacement-controlled deployments. A brief summary and 

discussion is presented in Section 5. 

 
Figure 1. 1(a) shows the Miura-Ori cell, and the geometry parameters (𝑎, 𝑏, 𝛾) can be found here. 1(b) shows the rigid folded configuration of the 

Miura-Ori cell with folding angle 𝜌 =  80°. The coordinate used in this paper can be found here. 1(c) shows the Miura-Ori sheet constructed by 

connecting five identical Miura-Ori cells along the creases. The node numbering is also shown here. Details of the embedded bar-and-hinge model in 

each Miura-Ori cell are depicted in 1(d). The N5B8 model consists of eight bars and five nodes. The nodes in green and red represent the mass points 

in the center and at vertices respectively. Mass point 𝑚0 is assigned at the position of the center node; 𝑚1 at the vertices of long diagonal; 𝑚2 at the 

vertices of short diagonal. The four lines inside each parallelogram are the massless bars and are attached with hinge springs representing fold creases 

and bend lines. 

 
2. DYNAMIC MODELING FOR ORIGAMI 

DEPLOYMENT 

2.1 Geometry of Miura-Ori Sheet 

The Miura-Ori sheet is formed by connecting Miura-Ori 

cells head-to-tail along their creases (Fig. 1(b, c)). In this work, 

the sheet contains five Miura-Ori cells. Miura-Ori is a degree-4 

vertex pattern with a pair of collinear creases and reflection 

symmetry about these creases. Each Miura-Ori cell consists of 

four identical parallelograms and can be described by three 

parameters: the length of adjacent creases (𝑎, 𝑏), and the section 

angle 𝛾 between them. A rigid Miura-Ori cell possesses single 

degree of freedom (DOF), and can be described by the dihedral 

angle  𝜌 . If assume rigid, the integrated Miura-Ori sheet has 

single DOF, and all cells share the same dihedral angle. In this 

work, we use  𝜌  to describe the structure configuration when 

there is no facet deformation.  
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2.2 Stiffness of Miura-Ori Sheet 
In this research, we use the bar-and-hinge model to describe 

the elastic behavior of the Miura-Ori sheet [14], [15]. Such 

behavior is a combined result of the in-plane deformation of 

panel facets, the bending of panels, and the folding along the fold 

creases. Each parallelogram in the Miura-Ori cells is replaced 

with an N5B8 model, one of the bar-and-hinge models and the 

node numbering is as shown in Fig. 1(c). Assumptions made in 

this bar-and-hinge model are: (a) a straight fold line between 

surfaces remains straight after adjacent material deforms, and (b) 

a triangular face remains planar while the quadrilateral face 

exhibits bending along its diagonals, local effect around the 

boundary neglected. With this model, (i) the in-plane stiffness is 

represented by bar elements with axial stiffness, which simulates 

the shear and stretching behavior of thin panel facet, (ii) the out-

of-plane bending stiffness of flat panel facets is represented by 

torsional hinges around diagonal bars, which simulates the facet 

bending motion, and (iii) the bending stiffness along fold creases 

is represented by rotational hinges around fold creases, which 

simulates the intended bending for kinematic folding of origami 

structures. 

For a parallelogram panel facet, its important parameters 

include the section angle 𝛾, short diagonal length 𝐷𝑆, thickness 𝑡, 

and material constants Young’s modulus  𝐸  and Poisson’s 

ratio 𝜈. Eq. (1-2) shows the relationship between the bending 

angle 𝜃𝐵  and the torque 𝑀𝐵  at the bending line, while  𝑀𝐵𝑆 

deals with small angular deformation, and 𝑀𝐵𝐿 deals with large 

angular deformation [15]. As the stiffness ratio between fold and 

bend creases 𝐾𝐵 𝐾𝐹⁄  falls in range [1 3⁄ , 20], this model would 

provide realistic estimate of structure behaviors. These equations 

will provide reasonable approximation for stiffness parameters 

in dynamic modeling. 

𝑀𝐵𝑆 = 𝜃𝐵 (0.55 − 0.42
2γ

𝜋
)

𝐸𝑡3

12(1 − 𝜈2)
(

𝐷𝑆

𝑡
)

1/3

 (1) 

𝑀𝐵𝐿 = 𝜃𝐵
4 3⁄ 𝐸𝑡3

12(1 − 𝜈2)
(

𝐷𝑆

𝑡
)

1/3

 (2) 

 

2.3 Inertia of Miura-Ori sheet 
A finite DOF model is applied to simplify the analysis of 

origami structures. The continuum panel facet is represented by 

an assemblage of mass points located at the positions of five 

nodes. This method could provide a simple and effective way to 

simulate the inertia origami structures. 

We first derive the moment of inertia of the parallelogram 

continuum and the mass-point assemblage. There are three kinds 

of mass point [𝑚0, 𝑚1, 𝑚2]. 𝑚0 is located in the center of the 

panel facet, 𝑚1 is located on the long diagonal axis, and 𝑚2 is 

along the short diagonal. The total mass of these mass points is 

kept the same as the mass of facet panel. The two independent 

variables [𝑚1, 𝑚2] are determined by minimizing the error of 

moment of inertia between facet panel and the mass point 

assemblage. The principal moments of inertia of a parallelogram 

continuum are as shown in Eqs. (3-5). 𝑆 is the panel area. Eq. 

(6) shows the moment of inertia of a mass point with relative 

position 𝑟. The error between inertia components is depicted in 

Fig. 2. By selecting the mass points [𝑚1, 𝑚2]  to be [0.25, 

0.028] (total mass is 1), the errors in the three principal directions 

are  [0.8%, 0, 0.2%] , which are reasonably small. When 

assemble the overall inertia matrix, there will be two or four mass 

points located at the same nodal position at connecting lines (Fig. 

1(d)). Therefore, we could simulate the translational and 

rotational inertia of the Miura-Ori sheet. 

𝐼1 =
𝑚

24
(𝑎2 + 𝑏2 − √(𝑎2 + 𝑏2)2 − 4𝑆2) (3) 

𝐼2 =
𝑚

24
(𝑎2 + 𝑏2 + √(𝑎2 + 𝑏2)2 − 4𝑆2) (4) 

𝐼3 =
𝑚

12
(𝑎2 + 𝑏2) (5) 

𝐼 = 𝑚(|𝑟|2 − 𝑟𝑟𝑇) (6) 

 
Figure 2. The error of the principal moments of inertia between 

continuum parallelogram and assemblage of mass 

points (𝐼𝑚𝑎𝑠𝑠 𝑝𝑜𝑖𝑛𝑡𝑠 − 𝐼𝑡𝑟𝑢𝑒) 𝐼𝑡𝑟𝑢𝑒⁄ . 2(a) shows the 3D plot of the errors. 

2(b) shows the contour lines of zero error. 
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2.4 Dynamic Modeling of the Miura-Ori Sheet 
The equivalent dynamic model of the Miura-Ori sheet 

consists of mass points constrained by massless bars and 

massless torsional hinges. Each node has three DOFs, and the 

generalized coordinates are the linear displacements of nodes. 

Thus, the kinetic energy is as shown in Eq. (7). 

𝑇 =
1

2
𝑚𝑖𝑟𝑖̇

2 
(7) 

Each bar in the model can be denoted by the numbering of 

its two ending nodes. The strain energy can be derived from the 

axial deformation as Eq. (8). 𝑊(𝑆𝐺𝐿) is the strain energy density 

function as in Eq. (9), and  𝑆𝐺𝐿  is the Green-Lagrange strain 

tensor. 𝜇𝑖 ,  𝛼𝑖 ,  𝑁  are material constants, and  𝜆1 is the axial 

stretch. 

𝑈𝑏𝑎𝑟 =  ∫ 𝑊(𝑆𝐺𝐿)𝐴𝑏𝑎𝑟𝑑𝑥
𝐿𝑏𝑎𝑟

0

 (8) 

𝑊(𝑆𝐺𝐿) = ∑
𝜇𝑖

𝛼𝑖

𝑁

𝑖=1

(𝜆1
𝛼𝑖 − 1) (9) 

𝜆1 = √2𝑆𝐺𝐿 + 1 (10) 

The potential energy from the torsional hinges is as shown 

in Eq. (11). The bending angle  𝜃  is determined by its two 

adjacent triangles, or equivalently four nodes. Eq. (12) shows 

the 𝑖-th nodal force. This nodal force is generated from the hinge 

torque at one of the creases connected to this node. Details about 

the relationship between the bending angle  𝜃  and its four 

dependent nodal displacements 𝑥 can be found in [14]. Thus the 

final 𝑖 -th nodal force is derived by traverse of all creases 

connected to this node and summing up the corresponding nodal 

forces with Eq. (12). 

𝑉𝑐𝑟𝑒𝑎𝑠𝑒 = ∫ 𝑀(𝜃 ̂)𝑑𝜃
𝜃

𝜃0

 (11) 

𝐹𝑐𝑟𝑒𝑎𝑠𝑒,𝑖 =
𝜕𝑉𝑐𝑟𝑒𝑎𝑠𝑒

𝜕𝑥𝑖

=
𝜕𝑉𝑐𝑟𝑒𝑎𝑠𝑒

𝜕𝜃

𝜕𝜃

𝜕𝑥𝑖

= 𝑀(𝜃)
𝜕𝜃

𝜕𝑥𝑖

 (12) 

Dissipation comes from bar deformation, as well as fold and 

bend creases. At the hinges it has the form shown in Eq. (13). 

𝐹𝑑,𝑐𝑟𝑒𝑎𝑠𝑒,𝑖 =
𝜕𝐷𝑐𝑟𝑒𝑎𝑠𝑒

𝜕𝑥𝑖̇

= 𝐶𝜃̇
𝜕𝜃̇

𝜕𝑥𝑖̇

 

(13) 
𝑑

𝑑𝑡
𝜃(𝑥) =

𝑑𝜃

𝑑𝑥𝑖

𝑑𝑥𝑖

𝑑𝑡
 

By using the Lagrange’s equations, we could assemble the 

equations of motion (EOMs) with respect to each nodal linear 

displacement 𝑥. 

𝐿 = 𝑇 − (𝑈𝑏𝑎𝑟 + 𝑉𝑐𝑟𝑒𝑎𝑠𝑒), 

(14) 𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝑥𝑖̇

) −
𝜕𝐿

𝜕𝑥𝑖

+
𝜕𝐷

𝜕𝑥̇𝑖

= 0. 

In the numerical simulations, the Young’s modulus takes on 

value as 2𝑒11 [𝑁/𝑚2]; dissipation as 0.1 [𝑁 ∙ 𝑚 ∙ 𝑠𝑒𝑐] at fold 

creases, and 1 [𝑁 ∙ 𝑚 ∙ 𝑠𝑒𝑐] at bend creases; mass as 3 [𝑘𝑔] for 

each panel. 

Two kinds of boundary conditions are applied to evaluate 

the deploying behavior of the Miura-Ori sheet. On the left end, 

the middle node is fixed in space, and the 𝑥 direction motion of 

the two side nodes are constrained (coordinate system shown in 

Fig. 1(b)). In this way, the left end creases have fixed position 

and orientation while keeping the flexibility to deploy. On the 

right end, the middle node is constrained in the 𝑦, 𝑧 direction 

with a roller support, thus it can only move along the axial 

direction. In the free deployment case, the middle point can 

freely move in the x direction. For a displacement control case, 

all three nodes on the right end is controlled to move with 

prescribed speed along the axial direction, while the middle node 

is fixed in the 𝑦 and 𝑧 directions. Once the structure reaches the 

flat-deployed configuration, the displacement control will keep 

the middle node at that position. In Tables 1 and 2, we denote 1 

to the DOF if there are constraints and 0 if it is not constrained 

or controlled  

EOMs without boundary conditions are first derived, and 

thus contain rigid motion DOFs. As for the constrained or 

controlled DOF, the generalized coordinate is replaced by its 

given position (if fixed) or time-varying position (if 

displacement controlled), and then the equation corresponding to 

this DOF is deleted from the overall EOMs. 

Table 1. Constraints in case 1 

Node No. X Y Z 

1 1 0 0 

2 1 1 1 

3 1 0 0 

51 0 0 0 

52 0 1 1 

53 0 0 0 

Table 2. Constraints in case 2 

Node No. X Y Z 

1 1 0 0 

2 1 1 1 

3 1 0 0 

51 Displacement control 0 0 

52 Displacement control 1 1 

53 Displacement control 0 0 
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3. DYNAMIC ANALYSIS OF DISPLACEMENT-
CONTROLLED DEPLOYMENT 
We first examine the deploying behavior of the Miura-Ori 

sheet with displacement control. The stress-free state of this 

Miura-Ori is the deployed state. The Miura-Ori sheet is bounded 

into a compressed state with 𝜌 = 80° at the beginning. At this 

stage, it is rigidly folded and there is no panel facet deformation, 

but the torsional springs at the crease will be deformed and 

contain potential energy used to activate the deployment.  

As it starts to deploy, the bounding mechanism is released 

and the displacement control on the right end starts. Apart from 

the single DOF motion based on rigid folding assumption, this 

Miura-Ori sheet could have transverse motions. The first kind of 

transverse motion being observed is in the  𝑥𝑦  plane. With 

different deploying displacement control rates, there exist 

different types of transverse motion. In the case of rate 

𝑎 5⁄  [𝑚/𝑠𝑒𝑐] (𝑎 is the side length of the Miura-Ori panel as 

shown in Fig. 1(a)), the rightmost cell deploys first, leaving the 

rest of the cells limited expansion space. The structure contains 

high level of potential energy at this stage, thus it tends to have 

out-of-plane motion out from the 𝑥𝑧 plane (Fig. 3(c)) because of 

the relatively lower bending stiffness than in other directions[15]. 

The deploying sequence of cells in the Miura-Ori sheet can be 

found from the folding angles in Fig. 3(b). As the deployment 

continues, the global bending motion can be observed in the 𝑥𝑧 

plane as well as the time-varying transverse displacement along 

the structure. After all the cells are deployed, the flapping motion 

starts inside each cell. This is caused by oscillations in the 

folding and bending angle. In the case of slower deploying rate 

as  𝑎 50⁄ , the deploying sequence changes, as the center cell 

deploys first. Such slow rate allows time for interaction among 

all the cells, thus the structure exhibits an almost symmetric 

configuration during deployment, as can be seen in Fig. 3(f). 

We expand our study to understand the effect of deploying 

rate on the structural dynamic behaviors. We explore 11 different 

deploying rates, ranging in 

 [ 𝑎 50⁄ , 𝑎 40⁄ , 𝑎 30⁄ , 𝑎 20⁄ , 𝑎 10⁄ , 𝑎 5⁄ , 𝑎 2⁄ , 2𝑎, 3𝑎, 5𝑎, 10𝑎]. 
We are mainly interested in two aspects in the dynamic behaviors, 

the facet bending and the motion range. Motion range, resulting 

from out-of-plane motion from 𝑥𝑧 plane at the early deploying 

stage and global bending at the late deploying stage, shows the 

deviation from the assumed rigid folding path. In Fig. 4(a), the 

motion range in the 𝑥𝑦 plane, resulting mainly from the out-of-

plane motion from the  𝑥𝑧 plane, increases with the rate until 

𝑎/5 and decreases ever since. This indicates that as deploying 

rate increases over 𝑎/5, from right to left, the Miura-Ori cells are 

stretched to deploy before interaction happens. Additionally, 

when the deploying rate is low enough, the Miura-Ori cells 

vibrate in a small range beyond its initial configuration, and 

settle down around the new configuration before large motion is 

triggered. However, one of the drawbacks of fast deployment is 

that it would cause more panel facet deformation as shown in Fig. 

4(b). Such bending grows rapidly as deploying rate increases 

over 𝑎 5⁄ . 

 

 

 
Figure 3. Plots (a-c) show the deployment with displacement control 

rate as 𝑎 5⁄ , and plots (d-f) correspond to rate 𝑎 50⁄ . 3(a) and 3(d) show 

the maximum angular displacement throughout deployment at bending 

and folding lines. 3(b) and 3(e) show the maximum folding angle of the 

five cells inside the Miura-Ori sheet, which indicates the deploying 

sequence. It can be seen that in the 𝑎/5 case, the deploying sequence is 

from right to left, and in the 𝑎/50 case, it is from center to periphery. 

3(c) shows the top view of configuration at 10 sec during deployment, 

where there is out-of-plane motion out from the 𝑥𝑧 plane of the left 

three cells. 3(f) shows the configuration at 12 sec, where the center cells 

deploy first and exhibits rough symmetry. 
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Figure 4. 4(a) shows the max positions reached in the 𝑥𝑦 and 𝑥𝑧 

plane respectively throughout the deployment process, scaled with 

respect to the facet size 𝑎. The facet bending is shown in 4(b), which 

consists of elastic deformation of the panel facets. 
 

4. DYNAMIC ANALYSIS OF FREE DEPLOYMENT BY 
STORED ENERGY 
To better understand the dynamics of Miura-Ori 

deployment, we also investigate the free deployment process. 

Similarly, the Miura-Ori sheet starts from the folded state 

with 𝜌 = 80° with stress-free state as the deployed state. When 

the Miura-Ori is set free, the stored potential energy drives the 

structure to deploy. The deployment starts from the rightmost 

cell to the left end, similar to the 𝑎 5⁄  case with displacement 

control. In this case, the Miura-Ori sheet starts to have global 

bending in the 𝑥𝑧 plane, as depicted in Fig. 5(b-f).  

Fig. 5(a) shows that the axial velocity of the middle node 

on the right end increases as the deployment begins. It drops to 

zero when the structure first reaches the deployed state and then 

the global bending begins. The average speed before the 

deployed state is  0.48 [𝑚/𝑠𝑒𝑐] . In the previous section, the 

case 𝑎 5⁄  is close to this average velocity. This could provide 

insight into the change of behavior with deploying rate. When 

the deploying rate is close to the free deploying rate, there would 

be less out-of-plane motion among cells from the 𝑥𝑧 plane than 

slower rates. When the deploying rate becomes faster, the 

displacement control has a pulling and stretching effect on 

Miura-Ori cells, thus facet deformation becomes more 

significant. This indicates the possible design strategy of 

displacement control for desirable deployment paths of origami 

structures. 

 
Figure 5. 5(a) shows the time-varying axial velocity of the middle 

node on the right end. 5(b-f) show the global bending varying with time 

after deployment. 

 

5. CONCLUSION AND DISCUSSION 
This study focuses on the dynamic behaviors of a Miura-

Ori sheet deploying actuated by stored strain energy. Instead of 

quasi-static rigid-folding, facet elasticity and inertial effects are 

considered in this study and a dynamic model is established with 

bar-and-hinge elements as building blocks.  The model is then 

analyzed via numerical simulations and multiple deploying 

configurations are observed under different deployment rates. 

Analyzing the free deployment case provides better 

understanding of the relationship between the origami dynamic 

behavior and the deploying rate. This study provides the 

foundation for exploring dynamic characteristics of the 

deployment of origami structures. 
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