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ABSTRACT 
Origami designs have attracted significant attention from 

researchers seeking to develop new types of deployable 

structures due to their ability to undergo large and complex yet 

predictable shape changes. The Kresling pattern, which is based 

on a natural accumulation of folds and creases during the twist-

buckling of a thin-walled cylinder, offers a great example for the 

design of deployable systems that expand uniaxially into tubes 

or booms. However, much remains to be understood regarding 

the characteristics of Kresling-based deployable systems, and 

their dynamics during the deployment process remain largely 

unexplored. Hence this research investigates the deployment of 

Kresling origami-inspired structures, employing a full six-

degree-of-freedom truss-based model to study their dynamics 

under different conditions. Results show that tuning the initial 

rotation angle of a structure gives rise to several qualitatively 

distinct mechanical properties and stability characteristics, each 

of which has different implications for the design of the 

deployable systems. Dynamic analyses reveal the robustness of 

Kresling structures to out-of-axis perturbations while remaining 

compliant in the axial direction. These findings suggest that 

Kresling-based designs can form the basis for the development 

of new types of deployable structures and systems with tunable 

performance. 

 

INTRODUCTION 
Origami, a traditional paper-folding art form, transforms a 

flat sheet of material into complex 3D objects through careful 

design of crease folding patterns, opening up a vast design space 

for range of engineering applications. Origami designs have the 

potential to achieve large-scale shape-change as the crease fold 

angles are varied, offering great inspiration for the design of 

deployable or shape-morphing structures. Such structures can be 

assembled, stowed, and/or transported in a space-saving flat 

configuration before being deployed into their larger operational 

configuration when needed [1,2]. This approach has led to novel 

concepts for origami-inspired self-assembling robots [3], 

deployable space booms [4], solar arrays [5], and shelters [6]. 

Significant progress has been made on the design and 

analysis of deployable structures based on tube-like 

compositions of origami due to their ability to bear loads [7], 

change stiffness [8,9], and the natural application of such designs 

for shelters and enclosures [4,6]. Among the most widely-studied 

origami designs that give rise to such features is the well-known 

Miura pattern [5]. Interleaving or connecting multiple Miura 

tubes enables significant volume change and anisotropic 

stiffness adaptivity [10,11]. The Miura pattern is rigidly foldable, 

which means that the flat facets remain undeformed during the 

folding or morphing process, and can hence be modeled as rigid 

panels [12]. Non-rigid foldable designs, on the other hand, result 

in bending and/or stretching deformations of the facets during 

shape change [13]. Several non-rigid folding patterns draw 

inspiration from physical or biological phenomena [14]. A thin 

walled cylinder subject to axial loads will buckle to a topology 

that resembles an arrangement of triangular faces [15]. This 

observation has led to the study of cylindrical origami structures 

with crease patterns that reflect this topology, giving rise to non-

monotonic stiffness responses as portions of the structure 

collapse [16]. When thin-walled cylinders are subject to twist-

buckling, they exhibit a similar behavior, though with discrete 

layers of triangular facets oriented in the same direction. Origami 

crease patterns based on this phenomenon are known as Kresling 

patterns [17,18]. 

Multiple Kresling modules can be serially assembled, 

forming larger, more complex, multistable structures that may be 

deployed to one of its many stable lengths. This is illustrated by 

the commercially available wine bag (Origami Wine Tote, 

BUILT NY, USA) depicted in Figure 1. Due to the non-rigid 

foldability of this pattern, a transition from the collapsed to the 

deployed state of each module requires the triangular facets to 

bend and stretch. This means that traditional kinematic models 

of rigid origami folding cannot be directly employed. 

Researchers have thus adopted various approaches such as 
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adding virtual folds that change position and orientation during 

the deployment process [19], or treating the creases as bars or 

trusses that may change length and store energy [13]. Kresling-

based truss structures have been shown to demonstrate tunable 

stiffness behaviors depending on geometric parameters, and 

possess the ability to bear loads by naturally locking into a 

deployed state [7,20]. Such features, combined with the ability 

to fold into a compact, flat configuration, make the Kresling 

pattern an appealing platform for the development of deployable 

structures [21]. 

While past research suggests strong potential for Kresling-

inspired deployable structures, the behavior of such structures 

during the deployment process remains to be fully understood. 

These behaviors may be rather complex, as the snap-through 

motions of bistable layers between the collapsed and deployed 

states is expected to generate fast dynamic behaviors that depend 

strongly on the structure’s geometry. Furthermore, prior 

investigations of Kresling structures have treated each module as 

a two degree-of-freedom (2 DOF) system. Only axial 

displacements and rotations considered while other degrees of 

freedom are physically constrained [22]. On the other hand, 

examinations of physical realizations of the Kresling architecture 

that do not possess such additional constraints, such as the 

specimen pictured in Figure 1, suggest that out-of-axis 

deformations can occur and need to be considered. Such motions 

may arise if the structure is subject to perturbations and 

disturbances that are not perfectly aligned with the deployment 

axis, or if there are manufacturing imperfections that 

compromise the symmetry of the structure. This is especially 

important if the deployable Kresling structure is intended to 

protect sensitive equipment, as has been proposed for certain 

applications [21] 

The goals of this research are to advance the state of the art 

through, for the first time, investigations of the dynamic 

responses of Kresling-based truss structures during their 

deployment process, and to provide good insight to design them 

as effective and robust deployable structures by explicitly 

considering out-of-axis motions. First, a full, 6 DOF truss model 

of a Kresling module is developed using a Newton-Euler 

approach. The influence of geometric parameters on 

multistability and energy barriers between stable states is then 

discussed, followed by an investigation of different dynamic 

deployment scenarios. Lastly, the performance of Kresling 

structures under off-axis perturbations is examined, aided by an 

analysis of their normal modes in the deployed configuration. 

 

MODEL FORMULATION 
This research adopts a truss-based representation of a 

Kresling module [7,8], as depicted in Figure 2. The top and 

bottom faces are represented as two rigid regular �-sided 

polygons with mass �, circumscribed by a circle with radius ��. 

The module has a natural height ℎ� and rotation �� for which all 

the truss elements, shown by dashed or dotted lines, have zero 

strain. There are two sets of truss elements. Vertical trusses, 

denoted by dashed lines, connect node �� on the lower surface 

with node 	�  on the upper surface, while diagonal trusses, 

FIGURE 2. (a) PERSPECTIVE VIEW OF A KRESLING 

MODULE. TWO n-SIDED POLYGONS ARE CIRCUMSCRIBED 

BY CIRCLES WITH RADIUS ��. THE VERTICES ARE 

CONNECTED BY VERTICAL AND DIAGONAL TRUSSES WITH 

NATURAL LENGTHS 
� AND ��, RESPECTIVELY. (b) TOP 

VIEW, SHOWING THAT IN THE UNDEFORMED STATE, THE 

UPPER LAYER IS ROTATED BY AN ANGLE �� WITH RESPECT 

TO THE LOWER LAYER. COORDINATE SYSTEMS �
�, 
�, 
��
AND ���, ��, ��� ARE ATTACHED TO THE TWO PLATES. 

FIGURE 1. ORIGAMI WINE TOTE (BUILT NY, USA) 

CONSTRUCTED FROM MULTIPLE KRESLING LAYERS, 

SHOWING STABLE INTERMEDIATE CONFIGURATIONS FROM 

LEFT TO RIGHT AS EACH SUCCESSIVE LAYER IS COLLAPSED 

FROM ITS EXPANDED STATE. 
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denoted by dotted lines connect node �� with node 	���, for � ∈�1 … �}. At the module’s initial height ℎ�, the vertical trusses 

have an unstretched length of 
� while the diagonal trusses have 

an unstretched length ��. A set of space-fixed orthonormal 

coordinate vectors, �
�, 
�, 
�� is fixed to the ��, the center of 

the lower plate. A set of body-fixed coordinate vectors ���, ��, ��� is attached to 	�, the center of the upper plate.  

Figure 3 shows the Kresling module with some prescribed 

height �� and rotation � about 
� Under these prescribed 

conditions, the vertical and diagonal trusses deform to a length 
 

and �, respectively. For a given ��, the corresponding total 

rotation � � �� may minimize the energy stored in the trusses, 

though this does not imply that the trusses are undeformed [18]. 

In other words, the trusses generally exhibit some strain in order 

to accommodate the prescribed height and rotation, such that 
 �
� and � � ��.  

Under pure uniaxial compression with rotation about the 

same axis, all vertical and diagonal trusses deform identically. 

However, one of the present research goals is to investigate the 

off-axis dynamics of Kresling structures. Thus, a suitable model 

needs to preserve all degrees of freedom. Figure 4 presents a 

schematic of a Kresling module with an arbitrary orientation, and 

where the vertical and diagonal trusses are not identically 

deformed.  

The center of mass 	� of the upper layer has a position 

vector � !/#! with respect to the origin ��. This vector is 

expressed in space-fixed coordinates as: 

 � !/#! $ �%
� � �&
� � ��
� (1) 

 

The body fixed coordinate system ���, ��, ��� is related to �
�, 
�, 
�� through a rotation tensor '. 

 �� $ '
�  (2) 

 ∀� ∈ �1,2,3+. The rotation tensor is constructed using a set of 

Euler angles, which describes an arbitrary orientation of a rigid 

body through a sequence of three chained rotations. Here, a set 

of 3-2-1 Euler angles , $ ��, -, .�/ is employed [23]. The first 

of the chained rotations rotates the coordinate system around 
� 

by an angle �, and has the following matrix representation in the 

space-fixed frame. 

 

FIGURE 3. (a) PERSPECTIVE VIEW AND (b) TOP VIEW OF A 

KRESLING MODULE UNDER COMPRESSION WITH HEIGHT ��. IN THIS COMPRESSED STATE, THE UPPER PLATE IS 

ROTATED BY AN ANGLE � WITH RESPECT TO THE 

UNDEFORMED STATE SHOWN IN FIGURE 2.  

FIGURE 4. (a) PERSPECTIVE VIEW OF A KRESLING MODULE 

WITH AN ARBITRARY DISPLACEMENT AND ORIENTATION. 

THE MASS CENTER OF THE UPPER PLATE HAS A POSITION�12/32. (b) THE CENTER OF MASS 	� OF THE UPPER BODY HAS 

POSITION �%
� � �&
� � ��
� IN THE SPACE-FIXED FRAME. 



 4 © 2019 by ASME 

'� $ 4cos � − sin � 0sin � cos � 00 0 1< (3a) 

 

Then, a rotation of angle - is performed around the 
�′ axis, 

where 
�> $ '�?
�, and is described by the rotation tensor '�. 

This is followed by a rotation of . around 
�′′, where 
�>> $@'�'�A?
�. These two rotations may be written in the space-

fixed frame as: 

'� $ 4 cos - 0 sin -0 1 0− sin - 0 cos -< (3b) 

 

'� $ 41 0 00 cos . − sin .0 sin . cos . < (3c) 

 

and yields the following expression for the overall rotation ': 

 ' $ '�'�'� (4) 

 

Each of the vertical and diagonal trusses is modeled as a 

linear elastic spring in parallel with a viscous damper. The total 

force exerted at point 	�  by the two connecting trusses is hence: 

 B C $ −DE FG� C/#CG − 
�H �I C/#C  −  DJKL� C/#CM�L −��N�I C/#CM�  − OEK�P  C/#C ∙ �I C/#CN�I C#C − OJK�P  C/#CM� ∙�I C/#CM�N�I C/#CM� (5) 

 

where � C/#C and �P  C/#C  are the relative position and velocity of 

node 	�  with respect to node ��, the circumflex symbol (  ̂ ) 

denotes a unit vector, DE and DJ are the spring constants, and OE 

and OJ are the damping coefficients of the vertical and diagonal 

trusses, respectively. The relative position vector is expressed as 

the sum: 

 � C/#C $  � !/#! � � C/ ! − �#C/#!   (6) 

 

where �#C/#! is the position of each node �� on the lower n-sided 

polygonal plate and: 

 �#C/#! $ �� cos FSTU �H 
� �  �� cos FSTU �H 
S (7) 

 ∀� ∈ �1 … �+. Similarly, � C/ ! is the position of each node on 

plate B with respect to its center of mass, and the rotation tensor 

is employed to yield its position in the space-fixed frame. 

 � C/ ! $ �� cos FSTU � � ��H �� �  �� cos FSTU � � ��H �S (8a) 

 $ V' W�� cos FSTU � � ��H�� cos FSTU � � ��H0 XY
/

4
�
�
�< (8b) 

Since the lower plate � is stationary, the relative velocity 

vector �P  C/#C  is 

 �P  C/#C $ �P  !/#! � �P  C/ ! (9a) 

    $ �P%
� � �P&
� � �P�
� � Z × � C/ ! (9b) 

 

where Z  is the angular velocity of plate 	. Since the Euler basis 

vectors are generally not orthogonal, the angular velocity is 

related to Euler angle rates ,P $ \�P , -P , .P ]/
 through an appropriate 

combination of the individual transformations in Equation 3(a-

c). In space-fixed coordinates, this may be written as: 

 

Z $ 'Z ,P $ 40 − sin � cos - cos �0 cos � cos - sin �1 0 sin - < ,P  (10) 

 

The torque exerted by the force B C  about 	� is 

 ? C $ � C/ ! × B C  (11) 

 

Hence, the translational and rotational accelerations, �̂ !/#! 

and ZP   are: 

 �̂ !/#! $ �_` ∑ B CU�b�  (12a) ZP  $ K'/c12'Nd�K∑ ? CU�b� − Z × K'/c12'NZ N (12b) 

 

where �1 is the mass of plate B, and c12  is its inertia tensor about 	�. A thin, circular plate is considered here, with radius �� that 

circumscribes the n-sided polygon. Thus, c12is a diagonal matrix 

in the space-fixed frame. 

 

c12 $ �e �1��S 41 0 00 1 00 0 2< (13) 

 

Dynamic simulations of the Kresling structure are 

performed using ODE45 in MATLAB, with the state vector: 

 

f $ W� !/#!,�P  !/#!Z 
X (14) 

 

and its time derivate computed as 

 

fP $ ⎣⎢⎢
⎢⎡ �P  !/#!'Z d� Z �̂ !/#!ZP  ⎦⎥⎥

⎥⎤
 (15) 

 

The last two components of Equation (15) are computed 

from Equation 12. While the above equations are developed for 

a single Kresling module, they may be extended to the structures 
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composed of multiple layers, as in Figure 1, by including the 

influence of trusses connecting both adjacent modules when 

computing forces in Equation 5. For the multi-module case, the 

state vector f has 12�_ entries, where �_ is the number of 

modules. 

 

QUASI-STATIC ANALYSIS 
Structures based on Kresling geometry exhibit a wide range 

of interesting mechanical properties, including bistability and 

near-zero stiffness [7,20]. In the context of deployable structures 

applications, it is critical to consider the energy landscapes of 

such structures to understand the stability characteristics and 

determine the activation energy required to transform or 

reconfigure the system from one shape to another. Kresling 

structures have a large design space, and different mechanical 

behaviors can be achieved by varying geometric parameters such 

as the number of vertices �, the natural height ℎ�, and radius ��. 

In order to focus the present study on the key characteristics of 

multistability and tunable energy barriers, the design space 

considered here is limited to variations in the initial rotation ��. 

The other nominal parameters are listed in Table 1. 

 

TABLE 1. KRESLING MODULE PARAMETERS EMPLOYED IN 

ANALYSES 

 

Deployment paths 

Quasi-static simulations are conducted with prescribed 

vertical displacements ��, which is in the 
� direction as 

indicated in Figure 4. All other coordinates are unconstrained. 

For the geometric parameters considered in this research, these 

quasi-static simulations only cause variation in �. This indicates 

that under uniaxial transformation from the collapsed to fully 

deployed states, there is no loss of stability in off-axis directions. 

For example, Figure 5(a) shows the local minimum energy path 

on the @�� , �A plane for a module with a natural rotation angle �� $ 32° starting in its nominal configuration. As the module is 

compressed, the rotation angle increases and reaches a maximum 

of 41° at a full compression of �� $ 0. While this path tracks a 

local energy minimum, the trusses do deform, as shown in Figure 

5(b). Both trusses are undeformed and have zero strain energy at 

the module �� $ ℎ�. As the module is compressed from its 

natural height, the vertical truss 
 contracts while the diagonal 

truss � extends. On the other hand, expansions of the module 

from its natural state along the minimum energy path results in 

an extension of truss 
 and a contraction of truss �. 

 

Strain energy landscapes 

The strain energy along the minimum energy path shown in 

Figure 5(a) is presented in Figure 6(a). The global energy 

minimum at �� $ ℎ� is clearly visible, yet the system also 

appears to have a second local minimum, and hence a second 

stable configuration, at �� $ 0. This is an example of asymmetric 

bistability – the stable state to �� $ 0 is at a much higher energy 

level than stable state at �� $ ℎ�. A transition from one state to 

another necessitates overcoming the local energy maximum 

between the two states. Due to the asymmetry, much less energy 

is required to activate a deployment from the collapsed to the 

expanded state than to compress the module from the expanded 

state. Several qualitatively distinct energy landscapes arise as the 

parameter �� is varied. Figures 6(b)-(d) present three other 

examples. Figure 6(b) presents the energy landscape for �� $49.5°, which, like Figure 6(a), has energy minima at �� $ 0 and �� $ ℎ�. However, both states have zero energy, denoting 

symmetric bistability. As �� is further increased to 53°, 

symmetric bistability is again observed, although the first energy 

minimum moves to �� $ r2S $ 0.03m. Hence, this partially 

deployed state may be sustained without the need for external 

constraining force. Lastly, Figure 6(d) presents a case in which 

there are two closely spaced energy minima, one at �� $ ℎ� and 

t u! [m] '! [m] vw, vx [N/m] y [kg] zw, zx [N.s/m] 8 0.06 0.055 1000 0.1 20 

FIGURE 5. (a) ROTATION � UNDER QUASI-STATIC 

VARIATION OF HEIGHT �� FOR A KRESLING MODULE WITH 

AN INITIAL NATURAL ROTATION �� $ 32°. ALL OTHER 

GEOMETRIC PARAMETERS ARE AS DEFINED IN TABLE 1. (b) 

DEFLECTION OF THE VERTICAL AND DIAGONAL TRUSS 

ALONG THE MINIMUM ENERGY PATH SHOWN IN (a). 
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the other at �� } ℎ�. This is in contrast to the other cases shown, 

since the second stable state is now observed at a height that is 

greater than the nominal natural height of the module. 

In order to provide further insight into the influence of initial 

rotation �� on the stability characteristics, Figure 7 presents a 

contour plot showing the strain energy stored in the truss 

elements of modules with different �� as their height �� is varied. 

Darker colors denote lower strain energy while lighter colors 

denote higher energy. Thick curves trace local minima of the 

contour, denoting stable states. There are several regions with 

qualitatively distinct behavior for the range of �� studied. These 

regions are labeled and separated by dark vertical lines. When �� ~ 24°, the structure exhibits only one stable state at its natural 

height ℎ�. Thus, this region is denoted the monostable range. For 24° ~ �� ~ 49°, a local energy minimum at �� $ 0 is observed, 

and the module is asymmetrically bistable. The specific case 

presented in Figure 6(a) lies in this region. In this region, the 

stable configuration at �� $ 0 has some quantity of strain energy 

stored in the truss elements. Hence transition from the collapsed 

state to the zero-energy expanded state of the module requires 

overcoming a smaller energy barrier than the reverse transition 

back to the collapsed state. At �� $ 49°, �� $ 0 becomes a local 

energy maximum, marking a bifurcation point. At this 

bifurcation point, the fully compressed state has zero energy, as 

presented in Figure 6(b). For 49° ~ �� ~ 67.5°, there are two 

global minima with zero strain energy. One is located at the 

natural height �� $ ℎ� and another at some intermediate height 0 ~ �� ~ ℎ�. At �� $ 67.5°, the two local energy minima 

coalesce at �� $ ℎ�. This merging of the two roots is the origin 

for the zero stiffness mode reported in [20]. At initial rotations �� } 67.5°, the second stable state is observed at heights that 

exceed the nominal height of the module, and this region is hence 

deemed to have a stable hyperextended state. 

The rich diversity of mechanical properties expressed by 

Kresling modules offers great potential for the development of 

deployable structures. For example, varying the parameter �� 

within the stable intermediate range would allow a designer to 

tune the heights of the module’s stable configurations. On the 

other hand, variations within the asymmetric region result in 

different energy barriers between the collapsed and extended 

state, allowing for a deployable structure that balances the need 

to minimize the energy required to activate such a transition 

while ensuring that the barrier is sufficiently high to avoid 

inadvertently triggering the configuration change [24]. 

DYNAMIC ANALYSIS 
Origami-inspired structures are often designed to 

reconfigure quickly [6,19], hence the quasi-static investigations 

in the prior section are insufficient to properly understand their 

full features without complementary dynamic analyses [25,26]. 

In particular, quasi-static analyses of such structures implicitly 

assume that transformations will follow a minimum energy path, 

FIGURE 7. (a) STRAIN ENERGY LANDSCAPE ALONG THE UNIAXIAL DEPLOYMENT PATH FOR A MODULE WITH �� $ 32°. THERE 

IS ONE GLOBAL ENERGY MINIMUM AT �� $ ℎ� $ 0.06m, AND A LOCAL MINIMUM AT �� $ 0. b) FOR �� $ 49°, THE CONFIGURATION 

AT �� $ 0 IS ALSO A GLOBAL ENERGY MINIMUM. (c) FOR �� $ 53°, THIS SECOND MINIMUM IS AT AN INTERMEDIATE HEIGHT �� $ℎ�/2. (d) FOR �� $ 75°, THE SECOND ENERGY MINIMUM IS OBSERVED FOR �� } ℎ�, INDICATED A STABLE HYPEREXTENDED STATE. 

FIGURE 6. STRAIN ENERGY STORED IN THE TRUSS 

ELEMENTS OF KRESLING MODULES WITH DIFFERENT ��, AS 

THEIR HEIGHT �� IS VARIED ALONG THE MINIMUM ENERGY 

DEPLOYMENT PATH. STABLE CONFIGURATIONS, AT LOCAL 

ENERGY MINIMA, ARE INDICATED BY THE THICK CURVES, 

WHILE REGIONS OF QUALITATIVELY DISTINCT BEHAVIORS 

ARE SEPARATED BY VERTICAL LINES. 



 7 © 2019 by ASME 

as in Figures 5 and 6. However, dynamic loads may give rise to 

other motions [25]. For the Kresling structure considered in this 

research, quasi-static analyses of deployment were limited to the 

axial degrees of freedom �� and �, while the other coordinates 

were unperturbed. In this section, deployment dynamics are first 

explored with only the axial motions excited. Then, off-axis 

perturbations are deliberately introduced in order to study the 

robustness of the deployment process to such disturbances. 

 

Axial Deployment 

The parameter range of the Kresling structure considered in 

Figure 7 gives rise to several regions with qualitatively distinct 

mechanical behaviors, and each region may require a different 

strategy for system deployment. For example, structures in the 

monostable region have only one stable topology – at the natural 

deployed length of �� $ ℎ�. In this parameter region, the 

Kresling structure may be constrained and transported in a 

compressed configuration. When the constraint is released, the 

system will naturally expand and release the stored elastic 

energy, settling in the final deployed state. This scenario is 

depicted in Figure 8 for (a) a single module and (b) four serially 

connected modules with �� $ 22°. Snapshots of intermediate 

times during the deployment process are also shown. A small 

amount of overshoot is observed in both cases and the system 

quickly settles to its final state. This behavior is reasonable, since 

the damping coefficients are chosen such that critical damping is 

achieved when a module is supported solely by vertical trusses. 

If �� is selected such that the structure is in the 

asymmetrically bistable region, deployment from its compressed 

state requires some energy to be provided to the system to 

overcome the energy barrier. Figure 9 shows deployment of (a) 

a single module and (b) a four-module structure with �� $ 32°, 

and where the last element is provided an initial velocity ��P $0.5 _� . This small impulse is sufficient to cause full deployment 

of the structure due to the small energy difference between �� $0 and the local maximum between the two stable states seen in 

Figure 6(a). For the four-module case, the deployment appears 

to occur sequentially. The top layer expands first, while the first 

layer expands last. A small overshoot is noted in the transient 

response for both the single module and four-module cases. One 

advantage to employing asymmetric bistability for deployment 

applications is that the structure can remain stable in its folded, 

compressed state without the need for additional constraining 

forces. However, this feature must be considered against the 

practicality of providing the structure with the sufficient 

activation energy necessary to ensure full deployment. 

 

Robustness to off-axis motions 

Although the dynamic analyses presented in the prior 

section have included all six degrees of freedom for each 

module, only axial motions are activated. In practice, out-of-axis 

motions may be perturbed for a variety of reasons, including 

imperfections in fabrication, the influence of gravitational and 

other inertial forces, or disturbances from the environment. In 

order to provide some initial insight into the performance of 

Kresling structures to off-axis perturbations, Figure 10 presents 

the transient response of a module with �� $ 52°, which is in the 

stable intermediate range depicted in Figure 7. The structure is 

initially in its compressed configuration and provided an initial 

axial velocity ��P $ 0.5 _� . In addition, there is a large off-axis 

initial angular velocity of �1� $ 10� ���� . Images above the plot 

show snapshots at selected times. The influence of the initial off-

FIGURE 8. (a) HEIGHT AND ROTATION ANGLE DURING 

DYNAMIC DEPLOYMENT OF A KRESLING MODULE WITH �� $ 22°. THE MODULE IS DEPLOYED USING THE ENERGY 

STORED IN ITS COMPRESSED STATE, AND SETTLES TO ITS 

STABLE EQUILIBRIUM AT �� $ ℎ� $ 0.06m. (b) DYNAMIC 

DEPLOYMENT OF A FOUR-MODULE STRUCTURE WITH �� $22° FOR ALL MODULES. SNAPSHOTS SHOW THE STATES 

BEFORE, DURING, AND AFTER DEPLOYMENT.  
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axis angular velocity results in a perturbation of ., -, �%, and �& . 

The snapshot at time � $ 0.02s clearly shows that non-axial 

degrees of freedom are excited. However, this off-axis motion 

dies out much more quickly than the axial extension and rotation 

�� and �, suggesting some degree of robustness to such 

perturbations. 

To gain further insight, an analysis of the structure’s modes 

is conducted. The system is linearized around the deployed 

configuration at �� $ ℎ� by assuming small motions. Under this 

assumption, the Euler angle rates ,P  are approximately equal to 

the components of angular velocity Z. A mass matrix � is 

constructed, and the partial derivatives of the force and torque in 

Equations (5) and (11) are computed to obtain a 12x12 local 

stiffness matrix �. 

 � $ ��c� !! c !� (16a) 

� $ W �B�� !/#!
�B�,�?�� !/#!
�?�,X (16b) 

 

where c� is the 3x3 identity matrix. 

  

Consequently, the eigenvalue problem can be solved to yield 

the natural frequencies and mode shapes. The first three modes 

are shown in Figure 11. The fundamental mode, at �� $3.94 Hz, only has components of axial displacement �� and axial 

rotation �. The second and third modes, at �S $ �� $ 9.45 Hz, 

FIGURE 9. (a) HEIGHT AND ROTATION ANGLE DURING 

DYNAMIC DEPLOYMENT OF A KRESLING MODULE WITH �� $ 32°. THE MODULE IS DEPLOYED BY PROVIDING AN 

INITIAL VELOCITY ��P $ 0.5 m/s TO THE LAST ELEMENT, 

AND SETTLES TO ITS STABLE EQUILIBRIUM AT �� $ ℎ� $0.06m. (b) DYNAMIC DEPLOYMENT OF A FOUR-MODULE 

STRUCTURE WITH �� $ 22°. 

FIGURE 10. TRANSIENT RESPONSE OF A MODULE WITH �� $ 52° FROM AN INITIALLY COMPRESSED STABLE STATE 

WITH AN INITIAL AXIAL VELOCITY ��P $ 0.5 m/s AND A 

LARGE OFF-AXIS ANGULAR VELOCITY COMPONENT �1� $10� rad/s. THE OFF-AXIS PERTURBATION IS CLEARLY NOTED 

IN THE SNAPSHOT FOR � $ 0.02s, BUT ITS INFLUENCE 

QUICKLY DIMINISHES, SUGGESTING A ROBUSTNESS TO 

SUCH OFF-AXIS PERTURBATIONS DURING DEPLOYMENT. 
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denote off-axis motions in the �% , �& , ., and - directions, and are 

thus uncoupled from axial motions. Since the off-axis modes 

have a much higher natural frequency, they tend to be dissipated 

much more quickly, resulting in the behavior observed in Figure 

10. This result suggests that Kresling structure are capable of 

reliable deployment in the desired axial direction while being 

resistant to disturbances in other directions. 

 
 
CONCLUSIONS 

This research explores the rich mechanics and dynamic 

response of Kresling origami-inspired structures, with specific 

focus on their behavior during deployment. A truss model is 

developed that captures the full six-degree-of freedom motion of 

a Kresling module, including off-axis motions that have often 

been ignored in previous study. Then, a quasi-static analysis is 

conducted of Kresling structures with varying geometry, 

revealing several qualitatively distinct behaviors that can be 

achieved by tuning the initial rotation angle of the module. The 

structure is monostable for small initial rotation angles, and its 

only stable configuration is at its fully deployed length. As the 

initial rotation angle is increased, the structure exhibits 

asymmetric and symmetric bistability, while extremely large 

rotation angles give rise to a stable hyperextended state beyond 

the structure’s natural length. For each case, a different 

deployment strategy may be preferred. For example, a 

monostable structure can be deployed by releasing a constraining 

force that keeps the system in its collapsed configuration, 

allowing it to naturally expand and settle in its deployed state. 

On the other hand, bistable designs require an initial activation 

energy to overcome a local energy maximum between stable 

states but do not need a constraining force to remain in the 

compressed configuration. 

The dynamic response of a Kresling structure during 

deployment shows robustness to out-of-axis motions, even when 

deployment occurs quickly. In order to gain further insight into 

this behavior, a linearized analysis is conducted, revealing that 

the axial and non-axial motions are decoupled. Furthermore, the 

lowest natural frequencies corresponding to off-axis motions are 

significantly higher than those for axial motions. Hence, off-axis 

disturbances are dissipated much more quickly, as demonstrated 

by transient analyses. The findings illustrate that Kresling 

origami-inspired systems demonstrate great potential for a range 

of deployable structure applications. Rich mechanical properties 

can be achieved by tuning relatively simple geometric 

parameters, while their dynamic response shows robustness to 

perturbations and disturbances in directions orthogonal to the 

desired deployment stroke. Ongoing work is on exploring the use 

of different models to accurately reflect the stretching and 

bending behavior of folded Kresling structures, as well as 

experimental validation of the findings in this research. 
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