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Abstract—Early detection of incipient faults is of vital im-
portance to reducing maintenance costs, saving energy, and
enhancing occupant comfort in buildings. Popular supervised
learning models such as deep neural networks are considered
promising due to their ability to directly learn from labeled fault
data; however, it is known that the performance of supervised
learning approaches highly relies on the availability and quality
of labeled training data. In Fault Detection and Diagnosis (FDD)
applications, the lack of labeled incipient fault data has posed a
major challenge to applying these supervised learning techniques
to commercial buildings. To overcome this challenge, this paper
proposes using Monte Carlo dropout (MC-dropout) to enhance
the supervised learning pipeline, so that the resulting neural
network is able to detect and diagnose unseen incipient fault
examples. We also examine the proposed MC-dropout method on
the RP-1043 dataset to demonstrate its effectiveness in indicating
the most likely incipient fault types.

I. INTRODUCTION

Building faults whose impact are less perceivable and/or

hinder regular operations are called soft faults [23], [36]. These

soft faults, especially in their incipient phase, are hard to

detect as their signatures are not generally obvious (due to

their magnitudes) and are lurking under measurement/system

noise or feedback control actions [10], [31]. Nevertheless, they

will impact energy consumption, system performance, and

maintenance costs adversely in the long-run if left undetected

and unattended [14]. In addition, they can lead to costly

maintenance and undesirable replacement operations. Therefore,

it is an important and challenging task to design methods to

detect and diagnose incipient soft faults during their incipient

stage for various building systems, such as chillers and Air

Handling Units (AHUs).

Fault Detection and Diagnosis (FDD) methods in the

literature can be broadly classified into three categories: (i)

model-based, (ii) signal-based, and (iii) data-driven [34], [40].

Model-based methods depend on explicit physical models at

the device levels and use correlation tests on the input-ouput

data to detect faults [15], [13], [16]. While fault-diagnosis

can also be performed with the model used for detection,

developing detailed models is a time-consuming and daunting

process, especially for complex Cyber-Physical Systems (CPSs)

like buildings. Authors in [32] point out that model-based

methods are not as practical as data-driven methods in terms

of applying the FDD techniques to real buildings. Signal-based

FDD methods find sensor measurement signatures to indicate

faults. Signal-based FDD combining wavelet transformation

and principal component analysis was presented in [20].

Although the methods achieved good performance, extracting

relevant signatures and signals that indicate faulty condition is

a daunting task for complex systems such as buildings. In data-

driven FDD approaches, when labeled fault data are available,

a FDD task are usually modeled as a multiclass classification

problem. Then a supervised learning method can be employed

to learn a classifier to recogize the faults. Many supervised

methods such as multivariate regression models [26], Bayes

classifiers [11], [38], [33], neural networks (NN) [6], [41], [4],

Fisher Discriminant Analysis (FDA) [5], Gaussion Mixture

Models [12], Support Vector Data Description (SVDD) [37],

[39], and Support Vector Machines (SVM) [22], [9], [1],

[35], [25] have been proposed to classify the faults. Recently,

Li et al. proposed a tree-structured learning method [19]

that not only recognizes faults but also their severity levels;

however, it is hard in practice to obtain such a well-labeled

dataset that include incipient faults. Researchers have also

proposed unsupervised approaches using Principal Component

Analysis (PCA) [21], Statistical Process Control (SPC) [29],

and autoencoders [27] for FDD. Depending only on positive

(healthy) class data, such unsupervised methods have found

their use in detecting anomalies; however, they still lack the

ability to diagnose these anomalies.

A review of the literature reveals that data-driven approaches

relying on supervised learning are promising methods due to

their ability to classify and differentiate data with multiple

labels. However, in order to train a well-performing model,

large amount of labeled data is typically needed, which is

not always easy to obtain. Furthermore, although supervised

learning tends to perform well on known (in-distribution) data

patterns, the unseen (out-of-distribution) data may lead to

unexpected prediction behaviors. In the context of FDD, an

incipient fault example not seen in the training phase may

fool the classifier into wrong belief, which is certainly not

desirable for FDD applications. Although this problem can be

conceptually alleviated by using a larger, more comprehensive

training dataset, in practice it is technically infeasible to obtain
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levels, especially for complex building systems such as chillers.

The aforementioned reasons motivate us to devise a method

that can make full use of the available training data. The

resulting classifier should not only be good that classifying

in-distribution data points, but is also able to give reasonable

diagnostic suggestions as well as its prediction uncertainty

for out-of-distribution fault examples. The contribution of this

paper is two-fold:

• We propose using the uncertainty information given by

machine learning models to detect and diagnose unknown

incipient faults in building systems.

• To effectively estimate the uncertainty information for

this purpose, we propose using MC-dropout networks.

The approach requires few modifications to the standard

deep learning pipeline, making it attractive for real-

world FDD applications. A case study is conducted on

the ASHRAE RP-1043 dataset, which demonstrates the

effectiveness of our approach.

The rest of the paper is organized as follows. In Sec. II,

we give the necessary background about the MC-d.ropout

approach and discuss how it can help us identify faults under

development. Next, we describe and analyze the RP-1043

dataset in Sec. III, and then present a case study in Sec. IV

with extensive experiment results to show the effectiveness our

proposed approach behaves on the RP-1043 dataset. We later

conclude the paper in Sec. V and also discuss potential future

steps.

II. MONTE CARLO DROPOUT APPROACH

A. Neural Network Classifiers

The MC-dropout network to be introduced later is based

on the classic feed-forward neural network model [18],

a.k.a. multilevel perceptron. A network usually consists of

two or more layers, and can be described as a series of

functional transformations on the input vector. We take a simple

feedforward neural network with one hidden layer, shown in

Fig. 1, as an example. The value of the hidden layer h is

computed from the input vector x in the following way.

h = g(W1x+ b1), (1)

where W1 defines an affine transformation to x, and g is

an activation function that is typically nonlinear and applied

element-wise to W1x+ b1. In modern neural networks, the

rectified linear unit or ReLU defined by g(t) = max{0, t} is

usually used as the activation function [8].

For a multiclass classification problem with C classes,

we need the neural network classifier to output a vector

ŷ = (ŷ1, ŷ2, . . . , ŷC) representing a discrete probability

distribution. We require that each ŷi = P (y = i |x) ∈ (0, 1),
and

∑C

i=1 ŷi = 1, i.e. these probabilities sum up to 1. A

softmax activation function is usually used at the last layer to

obtain the desired ŷ. Let z = W2h be the activation of the

last layer1. Under the softmax transformation, for each class

1The bias coefficient is not needed for this layer because adding a bias to
every element of z will not change the softmax output.

Input Layer

Hidden Layer

Output Layer

… …

…

Fig. 1: An example of a simple feedforward neural network with one
hidden layer. The intercept parameter b1 associated with the hidden
layer is omitted for brevity.

i = 1, 2, . . . , C, zi = logP (y = i |x). And then the softmax

probability for class i is given by

P (y = i |x) =
exp(zi)

∑C

j=0 exp(zj)
. (2)

To train such models for multiclass classification tasks, we

usually minimize the cross-entropy loss as below

L = −
1

N

N
∑

j=1

C
∑

i=1

y
(k)
i log y

(k)
i , (3)

in order to maximize the log-likelihood of the softmax

distribution, over the training samples. We refer the interested

readers to the review paper by LeCun et al. [18] and references

therein for a more thorough introduction to deep neural network

models and techniques.

Here, we illustrate the overconfidence problem of neural

networks by using a toy example in two dimensions shown in

Fig. 2a. As displayed in the plot, the decisions boundary forms

a narrow band running across the intermediate states, separating

the healthy and severe fault examples; most of the gray points

that are not on the decision boundary are either classified as

healthy or faulty with high confidence (with network output

very close to 0 or 1). By using this decision boundary, the

gray points that are closer to the origin will be classified as

healthy, while most others will be reckoned faulty; see Fig. 2b

Only the few that reside on the boundary will be considered

ambiguous because the fault probabilities are close to 0.5.

Although this classification model can recognize some faulty

conditions, it is not enough for detecting incipient faults. In

addition, the trained model also shows high confidence on the

bottom right region where no data are available. It seems that

the network has extrapolated its learned pattern to the unseen

region. Such extrapolation could be sometimes dangerous—the

data distribution might be totally different in that region. It is

more desirable for the model to be cautious about what the

available data cannot offer.

B. Estimating Predictive Uncertainty

Incipient faults are often characterized by small deviations

from fault-free conditions. As a result, their behaviors often
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(a) Distribution of data points (b) Decision boundary

Fig. 2: A toy example in 2 dimensions. (a) The healthy state data
(in blue) are confined in a circle with radius r = 0.3 centered at
the origin. The severe fault data (in red) reside outside r = 0.7. In
between the blue and the red points are the intermediate states (gray)
that are not observed in the training distribution. (b) The decision
boundary (orange) given by a trained non-dropout neural network
classifier. Intermediate-level fault data points classified as healthy are
shown in light blue, and those classified as faulty by the decision
boundary are shown in light red.

resemble both fault-free and fault patterns, which could confuse

a classifier. To detect incipient faults, it would be desirable

to have a neural network model that can tell its uncertainty

in the predictions; however, as previously mentioned, neural

networks are usually poor at telling the predictive uncertainties,

and often tend to be overly confident in its predictions. The

standard and state-of-the-art approach for estimating predictive

uncertainty is to use Bayesian neural networks, whose goal is

to learn a distribution over weights; however such approaches

are typically computationally expensive compared to standard

(non-Bayesian) neural neural networks, and do not naturally

fit into the standard training pipeline of today’s deep learning

frameworks, which could limit their use. Details of Bayesian

neural networks are beyond the scope of this paper, and we

refer interested readers to the paper [17] and references therein

for more in-depth discussions.

Besides Bayesian neural networks, there are also approaches

that use ensembles of models for estimating predictive un-

certainty [17]. The MC-dropout approach to be described

next also belongs to these ensemble methods. Such ensemble

approaches typically involves some randomization, either in

the base learners themselves or in the data used to train

each base learner. The idea behind is simple and intuitive:

use an ensemble of individual models to obtain multiple

predictions, and use the empirical variance of predictions as an

approximate measure of uncertainty [17]. For these ensemble

methods to work, the individual classifiers must exhibit diversity

among themselves; the diversity allows individual classifiers to

generate different decision boundaries. Due to the randomness

of decision boundaries learned by each individual classifier,

the ensemble can hopefully give a high predictive uncertainty

on out-of-distribution data points, which provides us with a

way to detect them. Ensemble learning requires a combination

of many diverse base learners in order to build an ensemble

classifier. As a result, the idea of ensemble learning is typically

adopted in learning schemes where the base learners can be

Fig. 3: A simple feedforward neural network with dropout.

fitted quickly, e.g., random forests, which seems to limit the

use of neural networks in an ensemble model because they are

time-consuming to train.

C. The MC-dropout Approach

Dropout [28] is a popular and powerful regularization

technique to prevent over-fitting neural network parameters. The

key idea is to randomly drop units along with their connections

from the network during training; see Fig. 3 for an illustration.

Each individual hidden node is dropped at a probability of p,

i.e. the dropout rate. The training and inference procedure is

then run as usual. In effect, the dropout technique provides

an inexpensive approximation to training and evaluating an

ensemble of exponentially many neural networks.

The dropout mechanism offers a way to incorporate intrinsic

randomization into neural network models; recently, Gal and

Ghahramani proposed using MC-dropout [7] to estimate a

network’s predictive uncertainty by using dropout at test time.

During testing, we treat a model M trained using dropout

as if we were using it during the training phase. Each time

we forward pass a given input x through the network, each

hidden node in the network will be dropped at a probablity of

p and we will obtain a random output ŷ. By repeating the same

process for T times, we will obtain T i.i.d. sampled output

vectors ŷ(1), ŷ(2), . . . , ŷ(T ). Their predictive mean E[ŷ] =
1
T

∑T

k=1 ŷ
(k) can be understood as the expected output given

input x, and the predictive variance 1
T

∑T

k=1

(

ŷ(k) − E[ŷ]
)

can be used to measure the confidence of M in its prediction.

The larger the predictive variance is, the more uncertain is the

network about its prediction.

To illustrate the approach, we trained a simple feed-forward

neural network with MC-dropout on the previously introduced

2D toy example; the results are shown in Fig. 4. It can be

observed that the decision boundary in orange (given by points

with their predictive mean close to 0.5) looks similar to the

boundary given by the non-dropout network (see Fig. 2). Here

the predictive uncertainty information will play a crucial role

in suggesting potential faults. We can see from the right panel

of Fig. 4 that the regions where intermediate states reside,

especially in the vicinity of the healthy region, are associated

with elevated predictive variance, shown as green shades. In

addition, high predictive variance is present in the bottom

right region, where no data points have been observed. These



TABLE I: Descriptions of the variables used as features

Sensor Description Unit
TEI Temperature of entering evaporator water ◦F

TEO
Temperature of leaving evaporator
water

◦F

TCI
Temperature of entering condenser
water

◦F

TCO
Temperature of leaving condenser
water

◦F

Cond Tons
Calculated Condenser Heat
Rejection Rate

Tons

Cooling Tons Calculated City Water Cooling Rate Tons
kW Compressor motor power consumption kW
FWC Flow Rate of Condenser Water gpm
FWE Flow Rate of Evaporator Water gpm

PRE
Pressure of refrigerant in
evaporator

psig

PRC
Pressure of refrigerant in
condenser

psig

TRC sub Subcooling temperature ◦F
T_suc Refrigerant suction temperature ◦F

Tsh_suc
Refrigerant suction superheat
temperature

◦F

TR_dis Refrigerant discharge temperature ◦F

Tsh_dis
Refrigerant discharge superheat
temperature

◦F

behaviors indicate that the trained MC-dropout network is

suspicious about, while still being cautious, potential faults in

such regions, although not much prior information is provided

by the data distribution for training the network model. Such

suspicion is important and can serve as alarms for potential

faults, and further inspection and maintenance measures shall

be taken if necessary.

The example above demonstrates that MC-dropout technique

can provide hints about incipient faults, which is regular

neural networks fall short of. But just detecting faults or

anomalies is not our sole purpose, nor does it make the MC-

dropout approach distinctive from other approaches. Classic

anomaly detection methods, such as PCA and autoencoders,

can also suggest out-of-distribution inputs; however, these

approaches do not possess discriminative ability between fault

conditions. Next, we will demonstrate through a case study on

the ASHRAE RP-1043 Dataset that the MC-dropout approach

can not only detect, but also provide preliminary diagnosis

about, underlying health problems of an industrial chiller

system.

III. CHILLER SYSTEM AND DATASET

We used the ASHRAE RP-1043 Dataset [3] to test out the

proposed MC-dropout approach for incipient fault detection. In

RP-1043, sensor measurements of a typical cooling system—a

90-ton centrifugal water-cooled chiller—were recorded under

both fault-free and various fault conditions. The 90-ton chiller

is representative of chillers used in larger installations [24],

and consists of the following parts: evaporator, compressor,

condenser, economizer, motor, pumps, fans, and distribution

pipes etc. with multiple sensor mounted in the system. Fig. 5

depicts the cooling system with sensors mounted in both

evaporation and condensing circuits.

In RP-1043 experimental data, eight different types of

process faults were injected into the chiller, and each fault was

Fig. 4: The spatial distribution of the predictive mean (in orange
shades) and the predictive variance (in green shades) of an MC-
dropout model trained on the aforementioned toy example data. For
the predictive mean plot, the color intensity signifies the proximity
between the predictive mean at a point and 0.5. In the predictive
variance plot, the more intense the color, the higher predictive variance
at a given point.

Fig. 5: Schematic of the cooling system test facility and sensors
mounted in the related water circuits.

introduced at four levels of severity (SL1 - SL4, from slightest

to severest). In this study, we only included the six faults

shown in Table II, because an earlier study by Reddy [30]

found certain limitations with the excess oil and faulty TXV

operation data.

The condenser fouling (CF) fault was emulated by plugging

tubes into condenser. The reduced condenser water flow rate

(FWC) fault and reduced evaporator water flow rate (FWE)

fault were emulated directly by reducing water flow rate in

the condenser and evaporator. The refrigerant overcharge (RO)

fault and refrigerant leakage (RL) fault were emulated by

reducing or increasing the refrigerant charge respectively. The

excess oil (EO) fault was emulated by charging more oil than

nominal. And the non-condensable in refrigerant (NC) fault

was emulated by adding Nitrogen to the refrigerant.

All faults were tested at 27 different operating conditions

with varying chiller thermal load, chilled water outlet and inlet

temperature settings. The data were collected at ten-second

intervals, not only when the system has reached steady state,

but also at transient states in between. We focused on only

the steady-state data in this study. A more detailed review and

discussion on the dataset can be found in [30]. The sixteen



Fig. 6: A visualization of the RP-1043 dataset, including the six faults being studied as well as the fault-free data. To visualize these
high-dimensional data points, we employed LDA for dimensionality reduction. The color intensity of a data point signifies the severity of the
corresponding fault. In (a), the SL1-SL4 data form clusters that are easily distinguishable. In (b) and (c) faults of different severity levels are
harder to separate.

TABLE II: The six chiller faults in our study

Fault Normal Operation

1 Reduced Condenser Water Flow (FWC) 270 gpm
2 Reduced Evaporator Water Flow (FWE) 216 gpm
3 Refrigerant Leak (RL) 300 lb
4 Refrigerant Overcharge (RO) 300 lb
5 Condenser Fouling (CF) 164 tubes
6 Non-condensables in System (NC) No nitrogen

key features identified by RP-1043, as listed in Table I, were

selected to train our neural network models.

To give the readers an intuition about the distribution of

RP-1043 data, we employed LDA to reduce the data into

2 dimensions, and visualized the dimension-reduced data in

Fig. 6. As can be seen in the plots, FWE, FWC and NC faults

are further away from normal than RL, RO and CL faults are.

We can also see a general trend for a data point to deviate

further away from the normal when the corresponding fault

develops into a more severe level. It can also be seen from the

plots that, SL1 data points are often closer to the fault-free

region than to their corresponding SL4 regions. In other words,

these incipient fault data may look more like the fault-free

data than their high-severity versions, which cast a challenge

in using supervised learning algorithms (e.g., neural networks)

to detect and diagnose these slight incipient faults.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

We conducted a case study to evaluate the performance

of our MC-dropout approach on the RP-1043 dataset. We

implemented the neural networks in Python using Keras [2].

The MC-dropout network M has four fully-connected hidden

layers, each containing 20 nodes and with dropout layers

interleaved. The output layer is a softmax layer with 7 output

nodes, each representing an output class label (fault-free and

the six faults in our study). Subscript p indicates the dropout

rate being used. By setting p = 0, we will obtain a non-dropout

network M0, which is used as a baseline to show the effect

of MC-dropout on FDD performance.

B. Dropout Rate Selection

As with many other machine learning models, the selection

of hyperparameters of a MC-dropout network can have a

significant impact on its prediction performance. In our case,

we need to find a suitable dropout rate p, such that the

resulting MC-dropout network can 1) accurately classify in-

distribution examples with high confidence, and 2) identify

ambiguous out-of-distribution examples by indicating high

predictive uncertainty. The first requirement can be checked

by using the usual cross-validation process; however, cross-

validation will not help with the second requirement since we

do not have access to the out-of-distribution data at training

time.

In the experiment, we tested a number of dropout rates

ranging from 0 to 0.5. Due to space limit, we only display

in Fig. 7 the prediction results under five typical dropout

rate settings (p = 0, 0.03, 0.1, 0.2, 0.5). Each network was

trained for 30 epochs, with categorical crossentropy used as

the loss function. For each network with a non-zero dropout

rate, N = 100 Monte Carlo samples were drawn for estimating

the predictive mean and variance.

With p set to zero, our MC-dropout network will degenerate

to a regular non-dropout neural network—no output variance

will exist given the same input because the network does not

have any inherent randomness. The network is thus not able to

provide predictive uncertainty information. When the dropout

rate is high (p = 0.5), the excessive dropout randomness

as can be expected will undermine the model’s predictive

capability even on in-distribution examples as shown in Fig. 7.

In order to achieve a balance between the two aforementioned

requirements, we used the following method to select a p value

empirically. We gradually increase p until the predictive means

(variances) start to drop (increase) fast. In this way, the trained

model will still have good performance on in-distribution data,

and can likely indicate out-of-distribution data via its predictive

uncertainty. We chose p = 0.1 for our subsequent experiments.

Next, we are going to analyze the model’s performance on

out-of-distribution data, and explain how the model’s outputs

can be used to indicate potential faults.
C. Comparison between Dropout and Non-dropout Methods

We show in Fig. 8 a comparison between the non-dropout

network M0 and the MC-dropout network M0.1 with the

chosen dropout rate p = 0.1. Their prediction results on

examples of all four severity levels are displayed. Again, for in-

distribution (SL0 & SL4) examples, both networks demonstrate



(a) Predictive mean of MC-dropout network under different dropout rate settings

(b) Predictive variance of MC-dropout network under different dropout rate settings

Fig. 7: The prediction results on in-distribution data, under five different dropout rate settings p = 0, 0.03, 0.1, 0.2, 0.5. In the displayed
heatmaps, each row corresponds to a chiller state (NM or a SL4 fault condition), and the values in each row are the respective predictive
mean/variance at each output node.

good classification ability; in addition, the results given by

M0.1 shows little variance on in-distribution examples (SL0 &

SL4), which indicates its high confidence on these decisions.

SL3 faults do not appear in the training distribution, and are

less severe than the SL4 faults used for training the models.

As can be seen from Fig. 8, both networks can still correctly

recognize FWE-SL3, FWC-SL3 and RO-SL3 faults with high

confidence; however, they also demonstrate some uncertainty

about RL-SL3, CF-SL3 and NC-SL3 cases as can be seen

from their predictive means. When the underlying fault is

RL-SL3 or CF-SL3, the classifier is uncertain whether the

chiller is in NM state, or the respective fault state. When the

underlying fault is NC-SL3, the classifier is unsure about the

underlying state being RO or NC. This phenomenon can be

roughly explained using the LDA analysis in Fig. 6. From the

plots we can see that RL, RO, CF faults all reside very closely

to the NM data points, which is one cause of the confusion.

We can also see the presence of elevated predictive variance

in blocks under suspicion; the predictive variance given by the

MC-dropout network serves as another metric for indicating

predictive uncertainty in such scenarios.

Our MC-dropout approach further demonstrates its useful-

ness in detecting and diagnosing slighter faults (SL1 & SL2).

It can be seen from the SL1 panel of Fig. 8a and Fig. 8b

that both classifiers make wrong predictions under all fault

conditions, often with high confidence. SL1 fault conditions are

classified as fault-free (as in RL-SL1, RO-SL1 and CF-SL1),

or as other fault types (as in FWE-SL1, FWC-SL1 and NC-

SL1). Similar problems are seen in SL2 cases as well. These

phenomena can be partially understood using the visualization

in Fig. 6. These low-severity fault data points often reside in

the proximity of the data points of NM or other fault types,

which results in the misclassification. Despite the ambiguity,

the MC-dropout network M0.1 casts its skepticism through

the predictive uncertainty information given by Monte Carlo

sampling. For example, when the chiller is under RO-SL1 fault,

the predictive mean given by M0.1 shows high confidence in

believing the underlying state is NM, whereas the predictive

variance shows high uncertainty in both NM and RO. The high

predictive uncertainties indicate the possibility of a potential

RO fault.

We show the diagnostic results for all SL1 and SL2 fault

conditions in Table III. For the non-dropout network M0,

we select class labels with softmax probability above 20% as

possible diagnoses. For the MC-dropout network M0.1, we also

include class labels with high predictive variance as possible

diagnoses, in addition to those with softmax probability above

0.2. A class label is considered to be with high predictive

variance, if the ratio between the standard deviation of this

particular class label and that of all class labels is above 10%.

It can be seen from the table that M0 cannot correctly diagnose

any of the SL1 faults, and is only able to correctly identify

FWE-SL2 and FWC-SL2 among all SL2 faults. In comparison,

the diagnoses given by the MC-dropout network M0.1 contain

the correct labels in all 12 cases listed in Table III. It can also

be observed that M0.1 is more certain about prediction results

on SL2 cases than on SL1 cases. In FWE-SL1, RL-SL1, CF-

SL1 and NC-SL1 cases, M0.1 suggests three or more possible

states, while in all SL2 cases the network only suggests two.

This is understandable, because the fault signatures presented in

SL1 cases are presumably less obvious than those in SL2 cases,

thus creating less confusion for the neural network. Although

the MC-dropout network is unable to give a definite diagnosis

due to lack of information in such cases, it indicates some



TABLE III: Diagnosis Results

Actual Chiller State
Diagnosis from
Non-dropout Network

Diagnosis from
MC-dropout Network

FWE-SL1 NM NM, FWE, RL
FWC-SL1 CF NM, FWC, CF
RL-SL1 NM NM, RL, RO, CF
RO-SL1 NM NM, RO
CF-SL1 NM NM, RL, RO, CF
NC-SL1 RO NM, RO, CF, NC

FWE-SL2 NM, FWE FWE, RL
FWC-SL2 FWC, CF FWC, CF
RL-SL2 NM NM, RL

RO-SL2 NM NM, RO
CF-SL2 NM NM, CF
NC-SL2 RO RO, NC

potential fault and narrows down the possible causes, which is

valuable for further maintenance decisions to uncover the true

status of the chiller system.

From the above analyses, we can see that the uncertainty

information given by MC-dropout networks is useful in cases

where there is a lack of information about the characteristics

of incipient faults. Under such situations, it is better and more

reasonable for a classifier to show the uncertainty about its

decisions, rather than just giving definite but often incorrect

predictions. We can also see that the softmax probabilities alone

have limited capability in telling the predictive uncertainty of

a neural network, which limits its use in detecting unseen,

incipient fault conditions. With MC-dropout, the network has

gained another way to indicate its uncertainty through the

predictive variance. Our experimental results on RP-1043

have demonstrated its usefulness in detecting and diagnosing

incipient faults.

V. CONCLUSIONS

In this paper, we proposed using MC-dropout, a method for

estimating a deep learning model’s uncertainty in its decisions,

to detect incipient or unknown faults in modern CPSs with a

neural network trained with limited fault data. By presenting

a case study on ASHRAE RP-1043 dataset, we have shown

the effectiveness of MC-dropout in detecting and diagnosing

chiller faults. As part of our future work, we plan to conduct

a more theoretical analysis on the proposed approach to gain

a better understanding of it.
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(a) Softmax probability output of a non-dropout network (p = 0)

(b) Predictive means of MC-dropout network (p = 0.10)

(c) Predictive variances of MC-dropout network (p = 0.10)

Fig. 8: Output comparison of the non-dropout network M0 and the MC-dropout network network M0.1, on faults of all four severity levels.
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