
 

EXPLORING THE DYNAMIC CHARACTERISTICS OF  
DEGREE-4 VERTEX ORIGAMI METAMATERIALS 

 
 

Yutong Xia,  Hongbin Fang*,  K.W. Wang 
 

Department of Mechanical Engineering 
University of Michigan 

Ann Arbor, MI 48105, USA 
 
 

                                                           
* Address all correspondence to this author: hongbinf@umich.edu  

ABSTRACT 
Origami-inspired mechanical metamaterials could exhibit 

extraordinary properties that originate almost exclusively from 
the intrinsic geometry of the constituent folds. While most of 
current state of the art efforts have focused on the origami’s 
static and quasi-static scenarios, this research explores the 
dynamic characteristics of degree-4 vertex (4-vertex) origami 
folding. Here we characterize the mechanics and dynamics of 
two 4-vertex origami structures, one is a stacked Miura-ori 
(SMO) structure with structural bistability, and the other is a 
stacked single-collinear origami (SSCO) structure with locking-
induced stiffness jump; they are the constituent units of the 
corresponding origami metamaterials. In this research, we 
theoretically model and numerically analyze their dynamic 
responses under harmonic base excitations. For the SMO 
structure, we use a third-order polynomial to approximate the 
bistable stiffness profile, and numerical simulations reveal rich 
phenomena including small-amplitude intrawell, large-
amplitude interwell, and chaotic oscillations. Spectrum analyses 
reveal that the quadratic and cubic nonlinearities dominate the 
intrawell oscillations and interwell oscillations, respectively. 
For the SSCO structure, we use a piecewise constant function to 
describe the stiffness jump, which gives rise to a frequency-
amplitude response with hardening nonlinearity characteristics. 
Mainly two types of oscillations are observed, one with small 
amplitude that coincides with the linear scenario because 
locking is not triggered, and the other with large amplitude and 
significant nonlinear characteristics. The method of averaging is 
adopted to analytically predict the piecewise stiffness dynamics. 
Overall, this research bridges the gap between the origami 
quasi-static mechanics and origami folding dynamics, and paves 
the way for further dynamic applications of origami-based 
structures and metamaterials. 

1. INTRODUCTION 
Origami, an ancient art of paper folding, has gained new 

leaf of life recently, as its principles have not only been 
explored in mathematics and aesthetics, but also shed light on 
design and manufacturing of complex three-dimensional (3D) 
structures with profuse functionalities out of two-dimensional 
(2D) materials. Since origami folding possesses the property of 
scale-independence, various applications in a diverse range of 
scales can be expected, such as nano-scaled DNA origami [1], 
micro-scaled biomedical devices [2,3], macro-scaled printable 
robots [4–7], sandwich panels [8], actuators [9], as well as 
large-scaled aerospace [10] and architecture elements [11]. 
Recently origami also demonstrated its value in the 
development of mechanical metamaterials with extraordinary 
properties originated from folding, such as auxetic effect [12–
14], reprogrammable stiffness [15], locking and stiffness jump 
[14,16], multi-stability [17,18], as well as high stiffness yet high 
reconfigurability [19] and recoverable collapse [20]. 

Despite the significant research progress on the static and 
quasi-static characteristics of origami structures, their dynamics 
features have not been systematically explored.  On one hand, 
a dynamic folding process may be necessary or unavoidable 
when employing origami structures in various applications. On 
the other hand, origami structures could exhibit beneficial 
dynamic characteristics that hold promising potential in 
engineering. For example, previous researches [21–23] have 
demonstrated that the geometry-induced nonlinear and quasi-
zero stiffness of origami structures can be utilized for vibration 
and impact mitigation. Nevertheless, a rigorous and 
comprehensive framework to investigate the origami dynamics 
is still lacking. Therefore, the goal of this paper is to advance 
the state of art through exploring the dynamic characteristics of 
two 4-vertex origami structures, one is a stacked Miura-ori 
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(SMO) structure with structural bistability, and the other is a 
stacked single-collinear origami (SSCO) structure with locking-
induced stiffness jump. 

The SMO structure is composed of two Miura-ori cells 
[12]. Miura-ori cell is the simplest degree-4 vertex pattern with 
flat-foldability and a pair of single-collinear creases. By stack-
ing two Miura-ori cells (Figure 1(a)) with certain geometry con-
straints, a stacked flat-foldable Miura-ori unit can be construct-
ed (Figure 1(b)). The thick lines represent the creases connect-
ing cell A and cell B. When applying appropriate bending stiff-
ness at certain creases, the unit could exhibit bistability, i.e., the 
structure could stay at two different configurations without ex-
ternal aid [24]. Bistability is a kind of strong nonlinearity with 
rich dynamics, some of which could be implemented for per-
formance enhancement in various applications [25], such as 
energy harvesting [26], motion amplification [27,28], and vibra-
tion isolation [29]. However, despite its potential, the explora-
tion of bistable dynamics in origami structures has never been 
pursued. 

The SSCO structure is constructed by connecting two sin-
gle-collinear cells, as shown in Figure 2. Single-collinear cell is 
also a degree-4 vertex pattern, which possesses fewer geometry 
constraints than Miura-ori [14,30]. The single-collinear cell 
loses the flat-foldability, i.e., folding of the cell will stop at a 
specific configuration without additional locker elements (e.g., 
active locking hinges [2,31] and shape-memory materials [32]) 
but due to origami facet-binding [14,16]. Such self-locking 
could be programmed by harnessing intrinsic geometry of sin-
gle-collinear cells in a wide design space [16]. If assigning 
stiffness at certain creases, self-locking will give rise to a sud-
den jump of the structural stiffness and generate a piecewise 
stiffness profile. Piecewise stiffness has been demonstrated to 
be useful in vibration isolation and absorption [33,34]. Howev-
er, in the origami field, the dynamic effects of self-locking and 
locking-induced piecewise stiffness have never been studied. 

In this paper, instead of simplifying the origami structures 
into linkage systems, we fabricate “real” rigid-foldable origami 
prototypes. We perform compression tests on the prototypes to 
obtain the corresponding force-displacement profiles. In the 
experiments, the SMO structure shows clear bistability, and the 
stiffness of the SSCO structure exhibits significant jump phe-
nomenon. Based on the measured profiles, analytical force-
displacement curves of the SMO and SSCO structures can be 
approximated, which are used to establish equivalent dynamic 
model and serve the basis of dynamical investigation.  

Numerical simulations on the two structures reveal rich 
dynamics that has never been reported. For the SMO structure, 
under harmonic base excitation, two distinct types of responses 
are observed: small-amplitude intrawell oscillations and large-
amplitude interwell oscillations. Transmissibility analyses fur-
ther indicate that the quadratic nonlinearity dominates the in-
trawell responses, while the cubic nonlinearity dominates the 
interwell responses. These nonlinearities are the origins of 
complex dynamics including subharmonic oscillations and cha-
otic oscillations.  

For the SSCO structure, method of averaging [33] is ap-
plied to analyze the responses under harmonic base excitation. 
Two types of oscillations are inferred from the analytical results, 
one with small amplitude and close to the corresponding linear 
system’s response, and the other with large amplitude. Numeri-
cal simulation is also performed to verify the analytical predic-
tions. 

This paper is organized as follows. Section 2 introduces 
the geometric design, folding kinematics, and mechanical prop-
erties of the SMO and SSCO structures. Section 3 presents the 
numerical analysis on the SMO structure’s dynamics. In Section 
4, we use the method of averaging to analyze the SSCO struc-
ture’s dynamics, and verify the analytical results via numerical 
simulations. A brief summary is presented in Section 5. 

2. GEOMETRY, KINEMATICS AND MECHANICS OF 
ORIGAMI STRUCTURES 

2.1. Geometry and kinematics of the SMO structure 
The SMO structure consists of two Miura-ori cells. Miura-

ori is a special kind of degree-4 vertex pattern with a pair of  
collinear creases and reflectional symmetry about these creases. 
A Miura-ori cell can be described by three parameters: the 
length of adjacent creases ( , )a b  and the angle between them 
  (Figure 1(a)). In what follows, subscripts ‘A’ and ‘B’ are 
used to identity the bottom cell A and the top cell B, 
respectively. With the rigid-foldability assumption, Miura-ori 
cell possesses a single degree-of-freedom (DOF) for folding. 
Folding of the Miura-ori cells could be described by the 
dihedral angles A  and B  between the facets and the x y  
plane (Figure 1(b)). To ensure kinematic compatibility, the 
following geometry constraints have to be satisfied [12] when 
connecting the two cells together 
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In Eq. (2), for each B  two roots of A  with the same value 
but opposite signs can be obtained (with the only exception at 

0A  ). For clarity, the configurations corresponding to 
(0,  / 2)A   and ( / 2,  0)A    are defined as nested-in 

and bulged-out, respectively (Figure 1(c) and (d)). This non-
unique relationship between A  and B , i.e., the non-unique 
configurations with respect to a given state of the top cell, is the 
geometry origin of the bistability in the SMO structure. With 

A  and B , the dihedral angles between adjacent facets 
 ( , ;ki k A B    1,2,3,4)i   can be determined [12,14]. 

2.2. Geometry and kinematics of the SSCO structure 
The SSCO structure consists of two single-collinear cells. 

Each single-collinear cell has a pair of collinear creases (Figure 
2(a)), i.e., the four sector angles satisfy the following relation: 
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FIGURE 1. (a) The constituent top and bottowm Miura-ori cells. 
(b) The SMO structure, where the dihedral angles are denoted. 
(c) Three configurations of the SMO structure. (d) SMO-based 
mechanical metamaterial, shown in the bulged-out, an 
intermediate, and the nested-in configurations. 

1 2 3 4 ,   ,i i i i i A B          (3) 
 
Hence an SC cell can be determined by two sector angles 

1 4( , ) ( , )i i i i     together with the lengths of a pair of 
adjacent creases ( , )i ia b . Similarly, the subscript ‘i’ could take 
‘A’ or ‘B’ , indicating the bottom cell A or the top cell B, 
respectively. 

Folding of the single-collinear cell is also a single DOF 
motion. It can be described by dihedral angles  ( 1,2,3,4)i i   
between adjacent facets (Figure 2(b)) [14]. To connect two 
single-collinear cells together, the following geometric 
constraints have to be satisfied [14] 
 

cos( ) cos( ) cos( ), , ,
cos( ) cos( ) cos( )

B A A A
B A

A B B B

ab b
a

  

  
    

 2 2 2 2
1

2 2

cos cos sin sin 1
arcsin .

sin cos
A B A A

B
B A

   


 

 
  

(4) 

(b)(a)

(c)

Cell A

Cell B
Ba

Bb

B

B

A

A

12

3 4

Locked

Aa
AbGeneric degree-4 

vertex cell

Pre-locking

1A
2A

4A3A

1B

2B

3B

4B

Binding 
facets

 
Figure 2. (a) A generic 4-vertex origami cell, and the 
consitutent top and bottom single-collinear origami cells. (b) 
The SSCO structure, where the diherdal angles are denoted. (c) 
The pre-locking and locked cnfigurations of the SSCO structure, 
where the binded facets are in dack color. 

The SSCO structure remains a single DOF for folding. 
However, The SSCO structure cannot be folded flat but will 
stop at a specific configuration because two facets of cell A and 
two facets of cell B will bind simultaneously (Figure 2(c)). 

2.3. Prototype and static tests of the SMO structure 
An SMO structure prototype is fabricated in this research, 

(Figure 3(a)). The origami facets are made of water-jet-cut 
stainless steel sheet of thickness 0.25mm. By pasting the facets 
with plastic films of thickness 0.13mm, a Miura-ori cell 
prototype can be obtained. We attach 0.01mm-thick pre-bent 
spring-steel strips at certain creases to generate folding 
stiffness. We then further connect two Miura-ori cells into an 
SMO structure prototype with plastic film. In order to connect 
the prototype on the universal testing machine and shaker, 3D-
printed connectors are screwed on the rectangular steel plates 
(Figure 3(b)). Such installation ensures the free folding the 
SMO structure, and meanwhile, external forces or 
displacements can be effectively transmitted to the SMO 
structure. 

We perform five compression tests on the prototype, and 
the averaged force-displacement curve (solid curve) as well as 
the standard deviation (shaded band) is plotted in Figure 4. The 
SMO prototype shows obvious bistability during the tests, 
manifesting as two stable configurations 1u  and 2u  (i.e., the 
intersection points between the force-displacement curve and 
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FIGURE 3. (a) Fabrication of the SMO structure. (b)Photo of the 
SMO prototype. The SMO structure is connected with 3D-
printed connectors. 

 
FIGURE 4. Measured and fitted force-displacement curves of 
the SMO structure prototype. Photos of the pototype at the 
nested-in, an intermediate, and the bulged-out configurations 
are given. 

the horizontal axis with positive slope), an unstable 
configuration 0u  (i.e., the intersection point between the 
force-displacement curve and the horizontal axis with negative 
slope), and negative slopes between two stable configurations. 
For convenience, the unstable equilibrium 0u  is set as the 
origin of u  in the following studies. 

 
FIGURE 5. (a) Measured force-displacement curve of the SSCO 
structure prototype. Insets display the photos of the prototype 
before and after self-locking. (b) Approximated stiffness of the 
structure obtained through linear regression, the stiffness 
values and the coefficient of determination (R

2
) are given. 

2.4. Prototype and static tests of the SSCO structure 
Through similar approaches as stated in Section 2.3 we 

fabricate an SSCO structure prototype. Here we also attach 
0.01mm-thick pre-bent spring-steel stripes at the creases to 
generate folding stiffness. Five compression tests are performed 
on the SSCO structure to get the force-displacement curve 
(solid curve) and the standard deviation (shaded band), shown 
in Figure 5(a). It reveals that the curve is composed of two 
segments with significantly different slopes. Linear regression 
on each curve segment gives rise to the corresponding stiffness 
of the SSCO structure (Figure 5(b)). At the beginning stage of 
compression, the structural stiffness is low, which originates 
from the bending of the spring-steel stripes. When the structure 
self-locks, the stiffness experiences a more than 10 time 
increase (from 0.341 N/mm to 38.7N/mm), which comes from 
the bending of the facets. Such self-locking induced stiffness 
jump generates a piecewise stiffness profile of the SSCO 
structure. 

3. DYNAMIC ANALYSIS OF THE SMO STRUCTURE 

3.1. Fitted force-displacement profile and equivalent 
dynamic model 

Based on the force-displacement curve obtained in the 
static test, a third-order polynomial is applied to approximate 
this curve. Note that the stable equilibria, which correspond to 

1u  and 2u , and the unstable equilibrium, which corresponds to 
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0u , are of great significance to the structure. Hence we use the 
following polynomial for curve fitting, 
 

0 1 2( ) ( )( )( ),F u u u u u u u      
 
where 0 0u  , 1 14.43u mm  , 2 27.75u mm  according to 
the static tests (Figure 4). Another point, 3u , corresponding to 
the maximum negative force, is also used to determine the 
coefficient 3 20.0001578 [10 / ( ) ]kg mm s   . Hence the 
force-displacement profile gives 
 

( ) 0.0001578 ( 14.43)( 27.75).F u u u u    (5) 
 
The fitted force-displacement profile is also plotted in Figure 4 
in dash. Between the two stable configurations, the fitted profile 
agrees well with the measured curve, while there are some 
discrepancies when the displacement is far away from the stable 
configurations. Such discrepancies can be fixed by adopting 
higher order terms for fitting, while this will add complexity for 
analysis. 

With the fitted force-displacement profile, we are able to 
study the dynamics of the SMO structure by simplifying it into a 
nonlinear spring mass system, see Figure 6. Its equation of 
motion yields 
 

( ) ,
.

mu F u cu my
u x y

   

 
 (6) 

 
Here x  and y  denote the absolute displacement of the 
lumped mass m and the base, respectively; u denotes the 
relative displacement between the mass and the base, with 

0u   being the unstable equilibrium; c is the viscous damping 
coefficient. The damping mainly comes from the crease made of 
plastic films. Note that since the force-displacement profile is 
obtained by fitting the measured curve, it largely preserves the 
folding properties of the origami prototype.  

c

m

x y

Excitation

( )F u

u

 
FIGURE 6. Equivalent nonlinear spring mass model of the SMO 
structure. 

 

3.2. Numerical simulations 
To understand the bistable SMO structure’s dynamics, 

numerical simulation is carried out on Eq. (6) with the 
following parameters: 0.12kgm  , 0.6kg/sc  . The base is 
subjected to a harmonic excitation siny b t  with amplitude 

6mmb   and frequency  . With a step of 0.1 Hz, a discrete 
frequency sweep is performed between 2 and 20 Hz. In order to 
capture different dynamics, three initial conditions are applied 
to the system at each frequency: (-14.43, 0), (0,0), and (27.75, 
0). Simulations show that the system is able to produce four 
types of responses. The intrawell (in) response oscillates around 
the (-14.43, 0) equilibrium, e.g., at 9.6Hz, see the solid curve in 
Figure 7(b); the intrawell (out) response oscillates around the 
(27.75, 0) equilibrium, e.g., at 13 Hz, see the solid curve in 
Figure 7(c); the periodic interwell response that oscillates 
around the three equilibria, e.g., at 13 Hz, see the dotted curve 
in Figure 7(c); and the chaotic interwell response that randomly 
oscillate around the three equilibria, e.g., at 9.6Hz, see the 
dotted curve in Figure 7(b). 

Considering the possible nonlinear responses, we use root 
mean squared (RMS) value of the displacement data to 
characterize the average vibration energy. In addition, we divide 
the RMS of the lumped mass’s steady-state displacement by the 
RMS of the shaker’s excitation displacement to get the 
displacement transmissibility of the SMO structure in terms of 
the RMS value, i.e.,  
 

2 2 2
1 2RMS

d_RMS 2 2 2
RMS 1 2

( ... ) /

( ... ) /
N

N

x x x NX
T

Y y y y N

  
 

  
 (7) 

 
The subscript of x  and y  represents the data points in the 
simulated displacement time-histories. Figure 7(a) plots the 
relationship between d_RMST  and the excitation frequency. It 
reveals that in the intrawell responses, the base excitations 
could be significantly attenuated at relatively high frequency, 
while the interwell responses have obvious amplification 
effects.  

3.3 Spectrum analyses 
While RMS transmissibility provides an insight of the 

system’s performance from an energy point of view, we perform 
spectrum analyses on the dynamic responses to get more details 
on the effects of nonlinearity. By applying fast Fourier 
transform (FFT) on system’s responses, we derive the 
displacement transmissibility of the main frequency 
components, shown in Figure 7(d). Here the transmissibility is 
defined as the ratio between the amplitude of main frequency 
component and that of the base excitation, i.e.,  
 

0

,
k

k
d

XT
Y

  (8) 
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FIGURE 7. Simulation results of the simplified SMO structure. (a) Displacement transimissibility in terms of the RMS value with 
respect to the excitation frequency. (b) The intrawell (in) (solid) and chaotic interwell (dotted) responses at 9.6 Hz. (c) The intrawell 
(in) (dash-dotted), intrawell (out) (solid), and periodic interwell (dotted) responses at 13Hz. The different responses are shown in 
displacement time-histories and phase diagram, and for reference, the excitation signal is also ploteed. (d) From top to bottom, 
showing the displacement transmissibility of the main frequency components for the intrawell (in), intrawell (out), and interwell 
responses, respectively. 

where kX  denote the main frequency component at frequency 
k , and 0Y  denote the base excitation amplitude. The results 

indicate that for the periodic intrawell oscillations, the    and 
2  components play a leading role; for 2T subharmonic 
intrawell oscillations, the / 2 ,  , and 3 / 2  components 
dominate; and for 3T subharmonic interwell responses, the 

/ 3 , 2 / 3 , and   components govern the oscillations. 
Such findings indicate that for small-amplitude intra-well 
oscillations, the quadratic nonlinearity play the main role, while 

for large-amplitude interwell oscillation, the cubic nonlinearity 
is more dominant [35]. 

4. DYNAMIC ANALYSIS OF THE SSCO STRUCTURE 

4.1. Fitted force-displacement profile and equivalent 
dynamic model 

Static tests and linear regression show that the SSCO 
structure possesses a piecewise stiffness profile with two 
constant stiffness segments. However, only compression tests 
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are carried out during the experiment, although the SSCO 
prototype can also be stretched from the stress-free 
configuration under tensile force. At the initial tension stage, the 
SSCO prototype remains foldable under tensile force, and 
shows relatively low stiffness that originates from the bending 
stiffness of the spring-steel stripes. When the prototype is 
extended to the configuration that the bottom cell is flat (i.e., 

1 0A  ), the prototype cannot be further folded to achieve any 
extension; if keep applying tensile force, the plastic film at the 
creases will be stretched, generating another stiffness  jump. 
Therefore, the SSCO prototype’s overall piecewise stiffness 
profile consists of three segments, one low stiffness segment 
during folding, one locking-induced high stiffness segment, and 
one stretching-induced high stiffness segment. 

Figure 8(a) shows the deformation of the SSCO structure. 
The structure will experience a 2  deformation between the 
fully-stretched configuration and the stress-free configuration, 
and a 3  deformation between the stress-free configuration 
and the locked configuration. With the stiffness profile, we can 
simplify the SSCO structure into a single DOF lumped-mass 
system with piecewise stiffness springs (Figure 8(b)). Here the 
equivalent stiffness and equivalent viscous damping coefficients 
are given (Figure 8(c)).  
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Here , x  and y indicate the absolute displacements of the 
lumped mass and the base, respectively, and z  denotes the 
relative displacement between them, i.e., z x y  . Hence, the 
equation of motion of the SSCO structure under harmonic base 
excitation can be expressed as 
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   (10) 

where sin( )y Y t  is the harmonic base excitation with 
amplitude Y  and frequency  . 

Introducing the following new parameters 
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FIGURE 8. (a) Three configurations of SSCO structure: fully 
stratched, stress-free, and locked configurations. (b) Simplified 
lumped-mass model of SSCO structure. (c) Equivalent 
piecewise stiffness and equivalent piecewise viscos damping 
profilies. 

Eq. (10) can be rewritten as  
 

 

2
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(12) 

 
By utilizing the following relations 
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where Y  and 1  are the characteristic length and frequency 
for non-dimensionalization, Eq. (14) can be written in dimen-
sionless from 
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4.2. Dynamical analysis 

Considering that piecewise stiffness is a kind of strong 
nonlinearity, in this subsection we use the method of averaging 
to solve Eq. (14) to analyze the dynamics. We assume that the 
solution of w  has the following form 

 
( )sin( ( )),
( ) cos( ( )),
( ) ( ).

w a r
w a r r
r

   

   

    

 

  

 

 (15) 
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Differentiating the first equation of (15) with respect to  , one 
can eliminate the second equation of (15) and obtain 
 

sin( ) cos( ) 0.a a      (16) 
 
Differentiating the second equation of (15) and substituting it 
into Eq. (14) yields 
 

2

2
1
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Solving Eq. (16) and (17), we have 
 

2
1

2
1
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                      2 cos( ) sin( )],
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                         2 cos( ) sin( )].
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 (18) 

 
In the steady state, the relative displacement w  is constant “on 
the average” with periodic oscillation imposed on. In other 
words, the variables a  and   vary slowly with time in 
steady state. We integrate and average the right-hand side of Eq. 
(18) with respect to the fast variable   from 0  to 2 , 
which yields two transcendental equations, from which the 
amplitude-frequency relationship can be obtained.  

Table 1 lists the parameters we extract from the static tests, 
as well as the excitation amplitude and frequency. Based on 
these parameters, we obtain the displacement transmissibility in 
terms of the RMS value and plot it in Figure 9. It shows that the 
system is able to generate two branches of responses. When the 
excitation frequency is relatively low, the system’s response 
coincides exactly with the corresponding linear system (i.e., 
with only 1k  and 1c ). This is reasonable because under low 
excitation frequency and amplitude, the relative displacement of 
the SSCO structure is smaller than  2  or 3  such that 
locking or over-stretching does not happen, and the system 

Table 1. Parameters of SSCO structure. 

Parameters Values 
m  0.13g 

1k  0.341×103(N/m) 

1 2k k  38.7×103 (N/m) 

1 3k k  80×103 (N/m) 

1c  0.1(Ns/m) 

2 3,  c c   0(Ns/m) 

2 3,      7.5×10-3 (m) 
Y  15×10-3 (m) 
  2:0.01:30(Hz) 

T R
M

S[
-]

Frequency [Hz]

Linear SystemAnalytical Unstable 

Analytical Stable Numerical

Linear SystemAnalytical Unstable 

Analytical Stable Numerical

Upper branch

Lower branch

 
FIGURE 9. Analytical and numerical responses of the simplified 
SSCO structures. 

behaves as the corresponding linear system. However, with the 
increase of the excitation frequency, the responses no longer 
coincide with the linear system but bifurcate into two branches. 
The lower branch, again, behave exactly the same as the 
corresponding linear system because locking or over-stretching 
is not triggered. While the upper branch exhibits a hardening 
nonlinearity characteristics; the displacement transmissibility is 
much higher than the linear system, because the relative 
oscillation’s amplitude is larger than 2  and 3  such that 
locking and over-stretching happen during the process. 

To verify the correctness of the analytical results, 
numerical simulations are also carried out on Eq. (14). The 
obtained displacement transmissibility is plotted in Figure 9 
with empty diamond. It shows that the numerical and analytical 
results agree well with each other, manifesting the correctness 
of the analytical approach. 

5. CONCLUSIONS 
Considering that origami-based mechanical metamaterials 

can be used in a dynamic environment, this research focuses on 
the dynamic characteristics of origami structures. Two origami 
structures, namely, the SMO and SSCO are explored in this 
study. By assigning folding stiffness through pre-bent spring-
steel stripes, the SMO structure exhibits obvious structural 
bistability, and the SSCO structure shows a locking-induced 
piecewise stiffness profile. Static tests on the SMO and SSCO 
prototypes give rise to the force-displacement curves, from 
which, analytical force-displacement or stiffness profiles can be 
approximated. Based on these profiles, equivalent lumped-mass 
models can be established. Such models largely capture the 
folding characteristics of the origami structures.  

We then use numerical and analytical approaches to 
analyze their dynamic responses. In the SMO structure, multiple 
types of responses are observed, including periodic intrawell 
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oscillation, subharmonic intrawell oscillations, periodic 
interwell oscillations, and chaotic interwell oscillations. 
Spectrum analyses reveal that it is the quadratic and cubic 
nonlinearities that give rise to these rich dynamics. In the SSCO 
structure, two branches of responses are observed. One branch 
corresponds to small amplitude and coincides with the 
corresponding linear system, because locking or over-stretching 
does not happen. The other branch of responses exhibits large 
amplitude and hard nonlinearity characteristics, due to locking 
and over-stretching during the excitation. 

The results of this research offer a wealth of fundamental 
insights into the dynamics of origami folding, and provide a 
solid foundation for developing foldable and deployable 
structures and mechanical metamaterials with embedded 
dynamic functionalities. 
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