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ABSTRACT

Origami-inspired mechanical metamaterials could exhibit
extraordinary properties that originate almost exclusively from
the intrinsic geometry of the constituent folds. While most of
current state of the art efforts have focused on the origami’s
static and quasi-static scenarios, this research explores the
dynamic characteristics of degree-4 vertex (4-vertex) origami
folding. Here we characterize the mechanics and dynamics of
two 4-vertex origami structures, one is a stacked Miura-ori
(SMO) structure with structural bistability, and the other is a
stacked single-collinear origami (SSCO) structure with locking-
induced stiffness jump; they are the constituent units of the
corresponding origami metamaterials. In this research, we
theoretically model and numerically analyze their dynamic
responses under harmonic base excitations. For the SMO
structure, we use a third-order polynomial to approximate the
bistable stiffness profile, and numerical simulations reveal rich
phenomena including small-amplitude intrawell, large-
amplitude interwell, and chaotic oscillations. Spectrum analyses
reveal that the quadratic and cubic nonlinearities dominate the
intrawell oscillations and interwell oscillations, respectively.
For the SSCO structure, we use a piecewise constant function to
describe the stiffness jump, which gives rise to a frequency-
amplitude response with hardening nonlinearity characteristics.
Mainly two types of oscillations are observed, one with small
amplitude that coincides with the linear scenario because
locking is not triggered, and the other with large amplitude and
significant nonlinear characteristics. The method of averaging is
adopted to analytically predict the piecewise stiffness dynamics.
Overall, this research bridges the gap between the origami
quasi-static mechanics and origami folding dynamics, and paves
the way for further dynamic applications of origami-based
structures and metamaterials.

* Address all correspondence to this author: hongbinf@umich.edu

1. INTRODUCTION

Origami, an ancient art of paper folding, has gained new
leaf of life recently, as its principles have not only been
explored in mathematics and aesthetics, but also shed light on
design and manufacturing of complex three-dimensional (3D)
structures with profuse functionalities out of two-dimensional
(2D) materials. Since origami folding possesses the property of
scale-independence, various applications in a diverse range of
scales can be expected, such as nano-scaled DNA origami [1],
micro-scaled biomedical devices [2,3], macro-scaled printable
robots [4-7], sandwich panels [8], actuators [9], as well as
large-scaled aerospace [10] and architecture elements [11].
Recently origami also demonstrated its value in the
development of mechanical metamaterials with extraordinary
properties originated from folding, such as auxetic effect [12—
14], reprogrammable stiffness [15], locking and stiffness jump
[14,16], multi-stability [17,18], as well as high stiffness yet high
reconfigurability [19] and recoverable collapse [20].

Despite the significant research progress on the static and
quasi-static characteristics of origami structures, their dynamics
features have not been systematically explored. On one hand,
a dynamic folding process may be necessary or unavoidable
when employing origami structures in various applications. On
the other hand, origami structures could exhibit beneficial
dynamic characteristics that hold promising potential in
engineering. For example, previous researches [21-23] have
demonstrated that the geometry-induced nonlinear and quasi-
zero stiffness of origami structures can be utilized for vibration
and impact mitigation. Nevertheless, a rigorous and
comprehensive framework to investigate the origami dynamics
is still lacking. Therefore, the goal of this paper is to advance
the state of art through exploring the dynamic characteristics of
two 4-vertex origami structures, one is a stacked Miura-ori
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(SMO) structure with structural bistability, and the other is a
stacked single-collinear origami (SSCO) structure with locking-
induced stiffness jump.

The SMO structure is composed of two Miura-ori cells
[12]. Miura-ori cell is the simplest degree-4 vertex pattern with
flat-foldability and a pair of single-collinear creases. By stack-
ing two Miura-ori cells (Figure 1(a)) with certain geometry con-
straints, a stacked flat-foldable Miura-ori unit can be construct-
ed (Figure 1(b)). The thick lines represent the creases connect-
ing cell A and cell B. When applying appropriate bending stiff-
ness at certain creases, the unit could exhibit bistability, i.e., the
structure could stay at two different configurations without ex-
ternal aid [24]. Bistability is a kind of strong nonlinearity with
rich dynamics, some of which could be implemented for per-
formance enhancement in various applications [25], such as
energy harvesting [26], motion amplification [27,28], and vibra-
tion isolation [29]. However, despite its potential, the explora-
tion of bistable dynamics in origami structures has never been
pursued.

The SSCO structure is constructed by connecting two sin-
gle-collinear cells, as shown in Figure 2. Single-collinear cell is
also a degree-4 vertex pattern, which possesses fewer geometry
constraints than Miura-ori [14,30]. The single-collinear cell
loses the flat-foldability, i.e., folding of the cell will stop at a
specific configuration without additional locker elements (e.g.,
active locking hinges [2,31] and shape-memory materials [32])
but due to origami facet-binding [14,16]. Such self-locking
could be programmed by harnessing intrinsic geometry of sin-
gle-collinear cells in a wide design space [16]. If assigning
stiffness at certain creases, self-locking will give rise to a sud-
den jump of the structural stiffness and generate a piecewise
stiffness profile. Piecewise stiffness has been demonstrated to
be useful in vibration isolation and absorption [33,34]. Howev-
er, in the origami field, the dynamic effects of self-locking and
locking-induced piecewise stiffness have never been studied.

In this paper, instead of simplifying the origami structures
into linkage systems, we fabricate “real” rigid-foldable origami
prototypes. We perform compression tests on the prototypes to
obtain the corresponding force-displacement profiles. In the
experiments, the SMO structure shows clear bistability, and the
stiffness of the SSCO structure exhibits significant jump phe-
nomenon. Based on the measured profiles, analytical force-
displacement curves of the SMO and SSCO structures can be
approximated, which are used to establish equivalent dynamic
model and serve the basis of dynamical investigation.

Numerical simulations on the two structures reveal rich
dynamics that has never been reported. For the SMO structure,
under harmonic base excitation, two distinct types of responses
are observed: small-amplitude intrawell oscillations and large-
amplitude interwell oscillations. Transmissibility analyses fur-
ther indicate that the quadratic nonlinearity dominates the in-
trawell responses, while the cubic nonlinearity dominates the
interwell responses. These nonlinearities are the origins of
complex dynamics including subharmonic oscillations and cha-
otic oscillations.

For the SSCO structure, method of averaging [33] is ap-
plied to analyze the responses under harmonic base excitation.
Two types of oscillations are inferred from the analytical results,
one with small amplitude and close to the corresponding linear
system’s response, and the other with large amplitude. Numeri-
cal simulation is also performed to verify the analytical predic-
tions.

This paper is organized as follows. Section 2 introduces
the geometric design, folding kinematics, and mechanical prop-
erties of the SMO and SSCO structures. Section 3 presents the
numerical analysis on the SMO structure’s dynamics. In Section
4, we use the method of averaging to analyze the SSCO struc-
ture’s dynamics, and verify the analytical results via numerical
simulations. A brief summary is presented in Section 5.

2. GEOMETRY, KINEMATICS AND MECHANICS OF
ORIGAMI STRUCTURES

2.1. Geometry and kinematics of the SMO structure

The SMO structure consists of two Miura-ori cells. Miura-
ori is a special kind of degree-4 vertex pattern with a pair of
collinear creases and reflectional symmetry about these creases.
A Miura-ori cell can be described by three parameters: the
length of adjacent creases (a,b) and the angle between them
y (Figure 1(a)). In what follows, subscripts ‘A’ and ‘B’ are
used to identity the bottom cell A and the top cell B,
respectively. With the rigid-foldability assumption, Miura-ori
cell possesses a single degree-of-freedom (DOF) for folding.
Folding of the Miura-ori cells could be described by the
dihedral angles 8, and 6, between the facets and the x—y
plane (Figure 1(b)). To ensure kinematic compatibility, the
following geometry constraints have to be satisfied [12] when
connecting the two cells together

_p —p SO0 _as
oy S M
6, = cos ™' (cos(& )—tan(yA )) 2
- Vtan(y,) @

In Eq. (2), for each 8, two roots of @, with the same value
but opposite signs can be obtained (with the only exception at
60,=0). For clarity, the configurations corresponding to
0,€(, #/2) and 6, e(-x/2, 0) are defined as nested-in
and bulged-out, respectively (Figure 1(c) and (d)). This non-
unique relationship between 6, and 6,, i.e., the non-unique
configurations with respect to a given state of the top cell, is the
geometry origin of the bistability in the SMO structure. With
0, and 6, , the dihedral angles between adjacent facets
p; (k=A4,B; i=1,2,3,4) canbe determined [12,14].

2.2. Geometry and kinematics of the SSCO structure
The SSCO structure consists of two single-collinear cells.

Each single-collinear cell has a pair of collinear creases (Figure

2(a)), i.e., the four sector angles satisfy the following relation:
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FIGURE 1. (a) The constituent top and bottowm Miura-ori cells.
(b) The SMO structure, where the dihedral angles are denoted.
(c) Three configurations of the SMO structure. (d) SMO-based
mechanical metamaterial, shown in the bulged-out, an
intermediate, and the nested-in configurations.

a, ‘o, =a,+a,=r, i=A4,B 3)

Hence an SC cell can be determined by two sector angles
(a,0,,) = (e, 5,) together with the lengths of a pair of
adjacent creases (a;,b,). Similarly, the subscript ‘i’ could take
‘A’ or ‘B’ , indicating the bottom cell A or the top cell B,
respectively.

Folding of the single-collinear cell is also a single DOF
motion. It can be described by dihedral angles p, (i =1,2,3,4)
between adjacent facets (Figure 2(b)) [14]. To connect two
single-collinear cells together, the following geometric
constraints have to be satisfied [14]

a, cos(a,) cos(a,) cos(f,)
b,=b,, == =

a, cos(aB)’ cos(axy,) cos(,ﬁ'B)’

2 2 a2 s 2
~ Jeos” a, +cos” o (sm o, sin HAI—I)
6, = arcsin .

s a2 2
sin” o, cos” a,,

“

%
Jﬁﬁ
bH
a, q |
LO. Cell B
B8
Generic degree-4 b B,
vertex cell 4
aA
(a) Cell A (b)
—>
Binding
facets
(©) Pre-locking Locked

Figure 2. (a) A generic 4-vertex origami cell, and the
consitutent top and bottom single-collinear origami cells. (b)
The SSCO structure, where the diherdal angles are denoted. (c)
The pre-locking and locked cnfigurations of the SSCO structure,
where the binded facets are in dack color.

The SSCO structure remains a single DOF for folding.
However, The SSCO structure cannot be folded flat but will
stop at a specific configuration because two facets of cell A and
two facets of cell B will bind simultaneously (Figure 2(c)).

2.3. Prototype and static tests of the SMO structure

An SMO structure prototype is fabricated in this research,
(Figure 3(a)). The origami facets are made of water-jet-cut
stainless steel sheet of thickness 0.25mm. By pasting the facets
with plastic films of thickness 0.13mm, a Miura-ori cell
prototype can be obtained. We attach 0.01mm-thick pre-bent
spring-steel strips at certain creases to generate folding
stiffness. We then further connect two Miura-ori cells into an
SMO structure prototype with plastic film. In order to connect
the prototype on the universal testing machine and shaker, 3D-
printed connectors are screwed on the rectangular steel plates
(Figure 3(b)). Such installation ensures the free folding the
SMO structure, and meanwhile, external forces or
displacements can be effectively transmitted to the SMO
structure.

We perform five compression tests on the prototype, and
the averaged force-displacement curve (solid curve) as well as
the standard deviation (shaded band) is plotted in Figure 4. The
SMO prototype shows obvious bistability during the tests,
manifesting as two stable configurations u, and u, (i.e., the
intersection points between the force-displacement curve and
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FIGURE 3. (a) Fabrication of the SMO structure. (b)Photo of the
SMO prototype. The SMO structure is connected with 3D-
printed connectors.
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FIGURE 4. Measured and fitted force-displacement curves of
the SMO structure prototype. Photos of the pototype at the
nested-in, an intermediate, and the bulged-out configurations
are given.

the horizontal axis with positive slope), an unstable
configuration u, (i.e., the intersection point between the
force-displacement curve and the horizontal axis with negative
slope), and negative slopes between two stable configurations.
For convenience, the unstable equilibrium u, is set as the
origin of u in the following studies.
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FIGURE 5. (a) Measured force-displacement curve of the SSCO
structure prototype. Insets display the photos of the prototype
before and after self-locking. (b) Approximated stiffness of the
structure obtained through linear regression, the stiffness
values and the coefficient of determination (RZ) are given.

2.4. Prototype and static tests of the SSCO structure

Through similar approaches as stated in Section 2.3 we
fabricate an SSCO structure prototype. Here we also attach
0.01mm-thick pre-bent spring-steel stripes at the creases to
generate folding stiffness. Five compression tests are performed
on the SSCO structure to get the force-displacement curve
(solid curve) and the standard deviation (shaded band), shown
in Figure 5(a). It reveals that the curve is composed of two
segments with significantly different slopes. Linear regression
on each curve segment gives rise to the corresponding stiffness
of the SSCO structure (Figure 5(b)). At the beginning stage of
compression, the structural stiffness is low, which originates
from the bending of the spring-steel stripes. When the structure
self-locks, the stiffness experiences a more than 10 time
increase (from 0.341 N/mm to 38.7N/mm), which comes from
the bending of the facets. Such self-locking induced stiffness
jump generates a piecewise stiffness profile of the SSCO
structure.

3. DYNAMIC ANALYSIS OF THE SMO STRUCTURE

3.1. Fitted force-displacement profile and equivalent
dynamic model

Based on the force-displacement curve obtained in the
static test, a third-order polynomial is applied to approximate
this curve. Note that the stable equilibria, which correspond to
u, and u,, and the unstable equilibrium, which corresponds to
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u, , are of great significance to the structure. Hence we use the
following polynomial for curve fitting,

F(u) = a(u—uy )(u—u, Yu—u,),

where u, =0, w, =-14.43mm , u, =27.75mm according to
the static tests (Figure 4). Another point, u,, corresponding to
the maximum negative force, is also used to determine the
coefficient & =0.0001578 [10°kg / (mm-s)’] . Hence the
force-displacement profile gives

F(u) = 0.0001578u(u +14.43)(u —27.75). (5)

The fitted force-displacement profile is also plotted in Figure 4
in dash. Between the two stable configurations, the fitted profile
agrees well with the measured curve, while there are some
discrepancies when the displacement is far away from the stable
configurations. Such discrepancies can be fixed by adopting
higher order terms for fitting, while this will add complexity for
analysis.

With the fitted force-displacement profile, we are able to
study the dynamics of the SMO structure by simplifying it into a
nonlinear spring mass system, see Figure 6. Its equation of
motion yields

mii + F(u)+ cii = —my,

(6)

U=x-y.

Here x and y denote the absolute displacement of the
lumped mass m and the base, respectively; u denotes the
relative displacement between the mass and the base, with
u =0 being the unstable equilibrium; c is the viscous damping
coefficient. The damping mainly comes from the crease made of
plastic films. Note that since the force-displacement profile is
obtained by fitting the measured curve, it largely preserves the
folding properties of the origami prototype.

FIGURE 6. Equivalent nonlinear spring mass model of the SMO
structure.

3.2. Numerical simulations

To understand the bistable SMO structure’s dynamics,
numerical simulation is carried out on Eq. (6) with the
following parameters: m =0.12kg, ¢=0.6kg/s. The base is
subjected to a harmonic excitation y=bsinw¢ with amplitude
b=6mm and frequency @ . With a step of 0.1 Hz, a discrete
frequency sweep is performed between 2 and 20 Hz. In order to
capture different dynamics, three initial conditions are applied
to the system at each frequency: (-14.43, 0), (0,0), and (27.75,
0). Simulations show that the system is able to produce four
types of responses. The intrawell (in) response oscillates around
the (-14.43, 0) equilibrium, e.g., at 9.6Hz, see the solid curve in
Figure 7(b); the intrawell (out) response oscillates around the
(27.75, 0) equilibrium, e.g., at 13 Hz, see the solid curve in
Figure 7(c); the periodic interwell response that oscillates
around the three equilibria, e.g., at 13 Hz, see the dotted curve
in Figure 7(c); and the chaotic interwell response that randomly
oscillate around the three equilibria, e.g., at 9.6Hz, see the
dotted curve in Figure 7(b).

Considering the possible nonlinear responses, we use root
mean squared (RMS) value of the displacement data to
characterize the average vibration energy. In addition, we divide
the RMS of the lumped mass’s steady-state displacement by the
RMS of the shaker’s excitation displacement to get the
displacement transmissibility of the SMO structure in terms of
the RMS value, i.e.,

Xows \/(xlz +x22 +...+x§,)/N

Yems \/(y12+y§+...+y2N)/N

Ty rvs = @)

The subscript of x and y represents the data points in the
simulated displacement time-histories. Figure 7(a) plots the
relationship between T ., and the excitation frequency. It
reveals that in the intrawell responses, the base excitations
could be significantly attenuated at relatively high frequency,
while the interwell responses have obvious amplification
effects.

3.3 Spectrum analyses

While RMS transmissibility provides an insight of the
system’s performance from an energy point of view, we perform
spectrum analyses on the dynamic responses to get more details
on the effects of nonlinearity. By applying fast Fourier
transform (FFT) on system’s responses, we derive the
displacement  transmissibility of the main frequency
components, shown in Figure 7(d). Here the transmissibility is
defined as the ratio between the amplitude of main frequency
component and that of the base excitation, i.c.,

X
T, =7k, ®)
0
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FIGURE 7. Simulation results of the simplified SMO structure. (a) Displacement transimissibility in terms of the RMS value with
respect to the excitation frequency. (b) The intrawell (in) (solid) and chaotic interwell (dotted) responses at 9.6 Hz. (c) The intrawell
(in) (dash-dotted), intrawell (out) (solid), and periodic interwell (dotted) responses at 13Hz. The different responses are shown in
displacement time-histories and phase diagram, and for reference, the excitation signal is also ploteed. (d) From top to bottom,
showing the displacement transmissibility of the main frequency components for the intrawell (in), intrawell (out), and interwell

responses, respectively.

where X, denote the main frequency component at frequency
®,, and Y, denote the base excitation amplitude. The results
indicate that for the periodic intrawell oscillations, the @ and
2@ components play a leading role; for 2T subharmonic
intrawell oscillations, the @/2, @, and 3@w/2 components
dominate; and for 3T subharmonic interwell responses, the
w/3, 20/3, and ® components govern the oscillations.
Such findings indicate that for small-amplitude intra-well

oscillations, the quadratic nonlinearity play the main role, while

for large-amplitude interwell oscillation, the cubic nonlinearity
is more dominant [35].

4. DYNAMIC ANALYSIS OF THE SSCO STRUCTURE

4.1. Fitted force-displacement profile and equivalent
dynamic model

Static tests and linear regression show that the SSCO
structure possesses a piecewise stiffness profile with two
constant stiffness segments. However, only compression tests
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are carried out during the experiment, although the SSCO
prototype can also be stretched from the stress-free
configuration under tensile force. At the initial tension stage, the
SSCO prototype remains foldable under tensile force, and
shows relatively low stiffness that originates from the bending
stiffness of the spring-steel stripes. When the prototype is
extended to the configuration that the bottom cell is flat (i.e.,
6, =0), the prototype cannot be further folded to achieve any
extension; if keep applying tensile force, the plastic film at the
creases will be stretched, generating another stiffness jump.
Therefore, the SSCO prototype’s overall piecewise stiffness
profile consists of three segments, one low stiffness segment
during folding, one locking-induced high stiffness segment, and
one stretching-induced high stiffness segment.

Figure 8(a) shows the deformation of the SSCO structure.
The structure will experience a A, deformation between the
fully-stretched configuration and the stress-free configuration,
and a A, deformation between the stress-free configuration
and the locked configuration. With the stiffness profile, we can
simplify the SSCO structure into a single DOF lumped-mass
system with piecewise stiffness springs (Figure 8(b)). Here the
equivalent stiffness and equivalent viscous damping coefficients
are given (Figure 8(c)).

k + Ak, A<z,
F(z2)=1k, —A, <z <A,
ki + Ak, z<-A,.
©
¢ +Ac;, A<z,
C(z)=1¢, -A, <z<A,,
¢ +Ac,, z<=A,.

Here , x and y indicate the absolute displacements of the
lumped mass and the base, respectively, and z denotes the
relative displacement between them, i.e., z=x—y . Hence, the
equation of motion of the SSCO structure under harmonic base
excitation can be expressed as
i+ (K + A, )(r = )+ €, + Aey (= )
=(k, + Aky)A,,
mi+k(x=y)+c¢(x-y)=0, —A,<z<A;, (10
i+ (K + M) (X = ) + (6, + Ay )= 7)
= _(kl + Akz)Aza

where y=7Ysin(wt) is the harmonic base excitation with
amplitude Y and frequency @.
Introducing the following new parameters

A, <z,

z<-A,,

Ak
@] =—=,

m m

(11)
Ac Ac
280 = m 28,0, = mz , 280, = m3 >

Stiffness

e
ko

I Mt B |

A, z

Fully stretched Stress-free Locked
(a)

Damping

LGt

(b) A z

FIGURE 8. (a) Three configurations of SSCO structure: fully
stratched, stress-free, and locked configurations. (b) Simplified
lumped-mass model of SSCO structure. (c) Equivalent
piecewise stiffness and equivalent piecewise viscos damping
profilies.

Eq. (10) can be rewritten as

Ptalz+28mz =, —A, <z<A,,

2+(a)12 +a)32)z+(2§1a)1 +28m,) = w§A3 -3, A, <z,

(12)

Z +(a)12 +a)22)z+(2§1a)1 +240,)= —a)zzA2 -y, z<-A,.

By utilizing the following relations

u=x/Y, v=y/Y, w=u-v,
0,=A,1Y, 6,=A,/7Y,
ydo_1do (13)
dr o dt’
r=olo, p,=0,l0, p,=0,/ 0,
where ¥ and @, are the characteristic length and frequency
for non-dimensionalization, Eq. (14) can be written in dimen-

sionless from

w'tw+2Ew' ==V +g(w,w'),

2p,Ew'= piwt p;d,, o <w, (14)
g(W’W’): 07 _52 <W<53,
2p,5 W= piw=p)5,, W< =5,

4.2. Dynamical analysis

Considering that piecewise stiffness is a kind of strong
nonlinearity, in this subsection we use the method of averaging
to solve Eq. (14) to analyze the dynamics. We assume that the
solution of w has the following form

w=a(r)sin(rz + (1)),
w' = a(r)rcos(rr + B(1)), (15)
rt+ p(7) = (7).

Copyright © 2017 ASME



Differentiating the first equation of (15) with respect to 7, one
can eliminate the second equation of (15) and obtain

a'sin(p)+af cos(p) =0. (16)

Differentiating the second equation of (15) and substituting it
into Eq. (14) yields

(a'r cos(@) —aB'rsin(p) — ar’ sin(p))
+2& (ar cos(p)) + asin(p) = r” sin(rt) + g(a, f), (17)
g(a, B) = g(w, ') = g(asin(p), ar cos(p)).

Solving Eq. (16) and (17), we have

a'r =cos(@)[-v"+ g(a, f)—asin(p)
—2& arcos(@) + ar’ sin(g)],
L'ar =—sin(@)[—v"+ g(a, ) —asin(p)
—2¢& arcos(g) +ar’ sin(p)].

(18)

In the steady state, the relative displacement w is constant “on
the average” with periodic oscillation imposed on. In other
words, the variables @ and [ vary slowly with time in
steady state. We integrate and average the right-hand side of Eq.
(18) with respect to the fast variable 7 from 0 to 27,
which yields two transcendental equations, from which the
amplitude-frequency relationship can be obtained.

Table 1 lists the parameters we extract from the static tests,
as well as the excitation amplitude and frequency. Based on
these parameters, we obtain the displacement transmissibility in
terms of the RMS value and plot it in Figure 9. It shows that the
system is able to generate two branches of responses. When the
excitation frequency is relatively low, the system’s response
coincides exactly with the corresponding linear system (i.e.,
with only k& and ¢ ). This is reasonable because under low
excitation frequency and amplitude, the relative displacement of
the SSCO structure is smaller than A, or A, such that
locking or over-stretching does not happen, and the system

Table 1. Parameters of SSCO structure.

Parameters Values
m 0.13g
k, 0.341x10°(N/m)
k, + Ak, 38.7x10° (N/m)
k, + Ak, 80x10° (N/m)
¢ 0.1(N*s/m)
Ac,, Ac, O(N*s/m)
A,, A, 7.5%107 (m)
Y 15x107 (m)
10} 2:0.01:30(Hz)
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FIGURE 9. Analytical and numerical responses of the simplified
SSCO structures.

behaves as the corresponding linear system. However, with the
increase of the excitation frequency, the responses no longer
coincide with the linear system but bifurcate into two branches.
The lower branch, again, behave exactly the same as the
corresponding linear system because locking or over-stretching
is not triggered. While the upper branch exhibits a hardening
nonlinearity characteristics; the displacement transmissibility is
much higher than the linear system, because the relative
oscillation’s amplitude is larger than A, and A, such that
locking and over-stretching happen during the process.

To wverify the correctness of the analytical results,
numerical simulations are also carried out on Eq. (14). The
obtained displacement transmissibility is plotted in Figure 9
with empty diamond. It shows that the numerical and analytical
results agree well with each other, manifesting the correctness
of the analytical approach.

5. CONCLUSIONS

Considering that origami-based mechanical metamaterials
can be used in a dynamic environment, this research focuses on
the dynamic characteristics of origami structures. Two origami
structures, namely, the SMO and SSCO are explored in this
study. By assigning folding stiffness through pre-bent spring-
steel stripes, the SMO structure exhibits obvious structural
bistability, and the SSCO structure shows a locking-induced
piecewise stiffness profile. Static tests on the SMO and SSCO
prototypes give rise to the force-displacement curves, from
which, analytical force-displacement or stiffness profiles can be
approximated. Based on these profiles, equivalent lumped-mass
models can be established. Such models largely capture the
folding characteristics of the origami structures.

We then use numerical and analytical approaches to
analyze their dynamic responses. In the SMO structure, multiple
types of responses are observed, including periodic intrawell
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oscillation, subharmonic intrawell oscillations, periodic
interwell oscillations, and chaotic interwell oscillations.
Spectrum analyses reveal that it is the quadratic and cubic
nonlinearities that give rise to these rich dynamics. In the SSCO
structure, two branches of responses are observed. One branch
corresponds to small amplitude and coincides with the
corresponding linear system, because locking or over-stretching
does not happen. The other branch of responses exhibits large
amplitude and hard nonlinearity characteristics, due to locking
and over-stretching during the excitation.

The results of this research offer a wealth of fundamental
insights into the dynamics of origami folding, and provide a
solid foundation for developing foldable and deployable
structures and mechanical metamaterials with embedded
dynamic functionalities.
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