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Soft robots have garnered interest for real-world applications because of their intrinsic safety embedded at
the material level. These robots use deformable materials capable of shape and behavioral changes and allow
conformable physical contact for manipulation. Yet, with the introduction of soft and stretchable materials to
robotic systems comes a myriad of challenges for sensor integration, including multimodal sensing capable of
stretching, embedment of high-resolution but large-area sensor arrays, and sensor fusion with an increasing
volume of data. This Review explores the emerging confluence of e-skins and machine learning, with a focus
on how roboticists can combine recent developments from the two fields to build autonomous, deployable soft
robots, integrated with capabilities for informative touch and proprioception to stand up to the challenges of

real-world environments.

INTRODUCTION

Skin plays an essential role for biological systems as a barrier between
an organism’s external environment and its internal components.
Embedded within its layers is a dense network of mechanical, chemical,
vibrational, temperature, and pain receptors, which work in coordi-
nation to enable somatosensation in skin. These capabilities would
also be incredibly useful for robots. Electronic skin (e-skin) research
was originally motivated, in part, by a desire to understand biological
sensing, but the lessons learned can help improve the design of
robotic systems. To sense, plan, and act, robots require a variety of
sensors embedded throughout their bodies so that they can obtain
information about their environment.

The field of soft robotics (1) studies the use of flexible and
compliant materials as components for building robots, instead
of traditionally rigid components such as metals. Soft robots often
draw inspiration from nature, which has evolved organisms that can
operate in unstructured environments. In contrast, current robotic
systems are usually confined to structured laboratories or warehouse
environments. In addition, natural environments typically contain
several objects of varying material properties that further complicate
tasks such as object interaction and locomotion.

The overlap between e-skins, soft robotics, and machine learning
is continually growing, and recent advances are summarized in
Fig. 1. Soft actuation has improved tremendously in capabilities
(Fig. 1 bottom), and soft sensors and e-skins exhibit a wide range
of complexities (Fig. 1 left).

Several recent advances have combined principles from each field,
often physically manifesting in the form of sensorized fingers and
grippers (Fig. 1 top). Future breakthroughs in the field may come
from further integration of sensors and actuators as roboticists move
toward designing systems that rival the abilities of biological
organisms.
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Several reviews have covered related topics on e-skins and per-
ception in soft robots, including design and fabrication of e-skins
(2, 3), wearable sensors (4), e-skins for interactive robots (5, 6), and
future directions in sensing and perception for soft robots (7, 8).
This Review examines recent developments in skin-based sensing
for soft robots, covering hardware and fabrication techniques and
machine learning techniques that translate robot perception into
action planning. To limit the scope of this Review, we consider a
soft robot skin to be skin sensors directly mounted on the surface
[e.g., (9)] or embedded in a thin layer beneath the surface of the body
of a soft robot [e.g., (10)]. To highlight the opportunities at the
intersection of e-skin and soft robotics research, we cover a variety of
interdisciplinary topics including fabrication, learning, and control.

INTERDISCIPLINARY TOOLS

Design and fabrication of integrated e-skins

Compared with rigid robots, the high mechanical compliance of soft
robots enables safer and more efficient human-robot interaction
(HRI) because they can seamlessly interact with the human body
(11). Further advancement of soft robots requires high-performance
electronics and sensors that can stretch continuously with their
bodies. Recent research in artificial skin has mainly focused on making
individual sensor devices with better performance, such as sensitivity,
stretchability, and reliability over many use cycles (Fig. 2). To realize
fully biomimetic skin for soft robotics, artificial skin should contain
sensor arrays that are stretchable, cover large areas with a high
spatiotemporal resolution, and have multiple functions that mimic
diverse receptors of the human skin (Fig. 2A). These features should
enable robots to use data-driven methods to extract rich information
about their environment.

Increasing sensor density and quantity normally requires a larger
number of interconnecting wires. To reduce this burden, sensor
arrays are normally designed in matrix form. For example, a recently
developed tactile glove comprising 548 force sensors was constructed
using readily available materials and simple fabrication tools (Fig. 2B)
(12). This sensor array recorded a large-scale dataset of tactile maps
(about 135,000 frames), which was used to identify objects using
convolutional neural networks. This work highlights the ability of
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Fig. 1. Trends in the intersections between e-skins, soft robotics, and machine learning. (Left) A range of e-skins and soft sensors that increase in complexity, from
bottom to top, by metrics including density, resolution, and fabrication (79, 21, 26-30). (Middle) Soft robots and e-skins that merge actuation and sensing (10, 37-45, 47),
from left to right and top to bottom. (Bottom) Soft robots that focused primarily on actuation (37-35), from left to right. Red boxes indicate work that has leveraged

machine learning in the processing of their sensor information.

large-scale datasets collected by a high-density sensor array to enable
not only a sense of touch but also the intelligent extraction of inform-
ation from touch. Increasing the sensor density simply by scaling down
a passive matrix architecture will reduce the amplitude of analog sig-
nals while increasing cross-talk between interconnects. If multiple
sensors are sampled simultaneously, each line will produce electro-
magnetic noise, which will corrupt the signals being carried on neigh-
boring conductive traces. Furthermore, the large number of addressing
lines will be difficult to manage as the number of sensors increases
substantially. These problems can be addressed with an active matrix
that pairs each sensor with a transistor to provide local signal amplifi-
cation and allows sensors to take turns transmitting information (13-16).

Active matrices with multiplexed signal transduction typically con-
sume less power than passive matrices because they require fewer
sampling lines and do not need external circuitry (17). However,
stretchable e-skins could allow better coverage of curved robot
surfaces while allowing sensing of complex texture information
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through detection of deformation and vibration, mimicking biological
skin. Recent advancements in organic electronics by Wang et al. (18)
led to the creation of an intrinsically stretchable transistor array with
347 transistors per square centimeter. Their proof-of-concept demon-
stration illustrated that such a conformable active matrix could ac-
curately map the force applied on each sensor. These capabilities
indicate that stretchable active matrices containing soft sensors and
transistors are a promising step toward soft robotic skin with high
resolution and high data fidelity.

Making multilayered sensor arrays in a three-dimensional (3D)
lattice can further increase the sensor areal density and allow greater
integration of different sensor modalities. Just as receptors in bio-
logical skin are embedded at various depths, engineers can embed
sensors that are sensitive to different stimuli in different spatial
locations. For example, pressure, shear, and strain sensors can be
distributed in different layers of the e-skin to achieve optimized
sensitivity. Huang et al. (19) demonstrated that stretchable electronics
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Fig. 2. Sensor arrays enable e-skins to extract information about their environment. (A) Human skin with various receptors used to sense stimuli. (B) A scalable
tactile glove containing a passive matrix of 548 force sensors for the collection of large datasets (72). (C) 2D sensor array used to generate a profile of pressure intensity
from experimental mapping of the pixel signals using an active matrix (726). The icons at the bottom represent biological analogies: Merkel disks, Meissner corpuscle,
and free nerves. (D) A 3D array of electronic sensors assembled from 2D electronics (727). (E) Multimodal sensor array that can capture both pressure and temperature

information (24).

integrated in 3D can be built with a layer-by-layer method using
transfer printing of predesigned stretchable circuits on elastomers
with vertical interconnects. This stretchable human-machine inter-
face had a four-layer design that offered multimodal sensing and
had integrated circuits for wireless data transfer. Using strain engi-
neering methods, 2D structures can also be assembled into 3D elec-
tronic systems with sensing capabilities. Semiconductor materials can
play critical roles in this context, through demonstrations of com-
plex, mechanically assembled 3D systems for light-imaging ca-
pabilities that can encompass measurements of the direction,
intensity, and angular divergence properties of incident light.

3D printing has also been used to directly print sensors in soft
robots to improve both exteroceptive and interoceptive capabilities
(20). This work highlights how a 3D integration framework enables a
higher integration density on stretchable substrates than single-layer
approaches and allows new functionalities that would be difficult to
implement with conventional layer-by-layer designs.

Processing complex tactile information from a sensor array
requires efficient signaling and sampling methods. In human skin,
stimulation of the receptors is converted into a series of voltage
pulses sent to the nerves. This inspired researchers to develop arti-
ficial receptors and afferent nerves to convert tactile information to
digital pulses at the site of sensation (21, 22). The signal could
potentially be perceived by a user’s nerves and brain, thus directly
linking the human brain with soft robotic prosthetics. For example,
Kim et al. (23) recently developed a flexible artificial afferent nerve
that can effectively collect pressure information from arrays of pressure
sensors and convert them to action potentials to activate muscles.

Biological skin contains receptor networks that can detect various
stimuli, such as vibration, humidity, and temperature. Several studies
on e-skin sensor arrays focused on the classification of a single type
of information, such as force, shape, or direction of motion. The next
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generation of e-skins should integrate multimodal sensor arrays to
capture richer sensory information than their predecessors. Recently,
Lee et al. (24) reported a neuromimetic architecture that enabled
simultaneous transmission of both tactile and thermotactile inform-
ation (Fig. 2E). The pressure- and temperature-sensitive transducers
can both be communicated through the pulse signatures by a single
electrical conductor. As a biomimetic signaling method, this approach
is promising for reducing wiring and computational requirements
when a robot is covered with thousands of sensors. Multimodal sens-
ing could also be achieved through integration of multiple stretchable
optical fibers, which has been shown to be effective at localizing and
estimating force in soft actuators (25).

Overall, many innovations are required for realizing high-density
and multifunctional sensor arrays for soft robots. A close collaboration
between roboticists and materials scientists is needed to develop
high-performance stretchable conductors for electrodes and inter-
connections and stretchable semiconductors for building active
matrices and signal amplifiers. Different sensing modalities and
integration architectures should also be explored. Lastly, hardware
and algorithms for data processing should be considered during the
design of sensory systems, and their performance should be evaluated
on a holistic range of practical robotic tasks.

Skin-based sensing for soft robots

As sensors are increasingly integrated into soft robots, we can imagine
a conceptual plane that categorizes research based on the sophistication
of actuation and sensing independently (Fig. 1). Stand-alone sensors
lie on the y axis; some consist of simpler strain sensors [the bottom
three images in Fig. 1 left (26-28)], whereas others have more sophis-
ticated sensing schemes, including distributed or multimodal sensing
[the top four images in Fig. 1 left (19, 21, 29, 30)]. The x axis, repre-
senting actuation-focused soft robots, shows examples of increasingly
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complex soft systems that can walk (31, 32), grow (33), swim (34), and
operate autonomously on chemical fuel (35) (Fig. 1 bottom). Last, many
recent works have begun exploring the intersection of the actuation
and sensing (Fig. 1 middle). Several of them embedded strain sensors for
state estimation or tactile sensing in a finger-like structure (10, 36-44),
whereas the others mounted their skins externally (45-47). As both
areas progress, we envision further integration of increasingly sophis-
ticated actuation and sensing, extending into the top-right quadrant
of the conceptual plane.

Access to higher-resolution data about touch will increase the
ability of soft robots to perceive the complex deformations that they
experience during tasks, including locomotion and manipulation.
Today’s discrete sensors, which are built with high sensitivity and
selectivity, can be tailored to sense deformation modes in a localized
region or known environment with high confidence (46, 48). However,
this sensing paradigm is insufficient in dynamic or unknown environ-
ments where robots will experience substantial deformation because
robots do not yet have the level of sophistication of human skin
receptors or the human brain to collect a broad range of information.
In addition, many robots are unable to process the volume of inform-
ation to accurately determine the environment or the object being
sensed. The transition from discrete to continuous sensing and the
shift from structured to unconstrained environments both require
e-skins that can rapidly collect and process large amounts of inform-
ation. The added complexity from both transitions compounds the
processing required to interpret the signals.

Several designs of skin-like sensors have been used in soft robotics.
Many of these sensors contain conductive and stretchable materials
to produce resistive or capacitive strain sensors (10, 26, 49, 50).
Other groups have used optical devices such as cameras and optical
fibers to sense deformations within an actuator (51-53). Several of
these existing sensors are well suited for measuring characteristics
such as strain, pressure, and bending but do not enable the high
sensor densities or resolutions that have been demonstrated in e-skins.
Soft robots would benefit from integration with e-skins, such as the
skin-like sensor arrays that have been deployed in medical applica-
tions or directly on skin (22, 29, 54-56).

Currently, soft skin-like sensors have been deployed in several
ways. Some groups used their sensors as wearables; Mengiic et al.
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(57) used liquid metal sensors to measure human gaits using a
sensor fabrication process first presented by Park et al. (27). The
resistance of these sensors increases as the embedded microchannels
inside the elastomer matrix are stretched because of the increased
length and decreased area of their bulk liquid-metal channels. Others
incorporated their sensors with robots: Boutry et al. (58) paired a
shear force sensor with a robot arm to allow robotic hand control.
Booth et al. (47) demonstrated reconfigurable, actuatable e-skins that
could control the motion of deformable inanimate objects from
their surface. Zhao et al. (43) embedded optical sensors within soft
pneumatic fingers, which they then integrated with a Baxter robot.
As skin-based sensing capabilities continue to improve, the goal is
to develop capabilities that match or outperform biological systems
(top right corner of Fig. 1).

Machine learning for soft e-skins
As e-skins increase in resolution, their signals could be processed to
detect higher-order deformation modes and higher-level notions about
the environment, such as material type. However, obtaining this
information requires algorithms that can extract useful information
from large quantities of data. To handle the vast amount of data that
e-skins can provide, machine learning is emerging as a versatile tool
for making sense of large quantities of data (Fig. 3). For example,
Piacenza et al. (59) obtained high-resolution data from a robotic
fingertip and used ridge regression to process this data to estimate
the locations of indentations. Similarly, Larson et al. (60) used
convolutional neural networks to learn deformations on a sensor
array that can interpret human touch in soft interfaces. At the level
of abstraction of the entire robotic system, Van Meerbeek et al. (53)
tested various learning algorithms to estimate the twist and bend
angles in sensorized foam, finding that k-nearest neighbors (kNN)
outperformed other common algorithms, including support vector
machines (SVM) and multilayer perceptrons. In addition, researchers
have also focused on recurrent neural networks, which have been
shown to be advantageous for learning patterns in time series data
(36, 39,61, 62).

Because of the complexity of the mapping between raw sensory
information and relevant functional abstractions, information theory
and machine learning will play a large role in bringing tactile sensing
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Fig. 3. Machine learning techniques for processing raw sensory information, different levels of abstraction to aid in robot perception, and action planning. The
level of abstraction depends on the task, and the most effective type of learning architecture depends on the quality and structure of the sensor signals. The level of abstraction
depends on the task, and the most effective type of learning architecture depends on the quality and structure of the sensor signals. Higher-level processes can include
parallel execution of lower-level processes. End-to-end architectures [e.g., (67)] without mid-level and low-level pipelines would likely be faster and more effective but are

computationally expensive to develop.
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to human-like performance levels. In particular, the subfield of rein-
forcement learning (RL) will be important for developing closed-loop
control for tactile feedback. Suitable algorithms and architectures for
analogous tasks in soft robotics can be developed by learning from biolog-
ical processes. For example, in computer vision and machine learning, the
hierarchical nature of visual processing (corresponding to compositional
functions) (63) has recently enabled deep neural networks to achieve
human-like performance across a variety of visual processing tasks (64).
Processing signals from arrays of tactile sensors may benefit from
similar techniques, as sets of sensor readings have information encoded
in spatial relationships that can be naturally represented using matrices.

Tactile exploration can benefit from recent developments in
learning-based simultaneous localization and mapping algorithms.
Notably, Mirowski et al. (65) used an asynchronous advantage
actor-critic algorithm for navigating in a complex environment and
additionally solved auxiliary prediction tasks that made the RL prob-
lem faster and more data efficient. Chen et al. (66) showed a direct
policy learning algorithm with spatial memory and bootstrapped with
human-mediated imitation learning without explicit task rewards.
In the absence of continuous reward functions, actor-critic algorithms
are preferred because they require fewer samples.

Similarly, tactile manipulation tasks can use insights from learning-
based manipulation controllers. A general trend observed in such
works is the success of model-based RL (67) or learning by demon-
stration (68), approaches that leverage techniques from control theory
or human knowledge, respectively. There has been a successful solu-
tion for the direct learning of control policies for dexterous manip-
ulation, but it relied on the availability of an accurate simulation
environment (69). Until robot simulators can model soft-body
dynamics that reliably transfer to real robot hardware, such ap-
proaches are difficult to apply to soft robots and deformable objects.
For specific simple tasks, it might be easier to find a direct policy
than to fit a general-purpose model of the system dynamics (70).

APPLICATIONS OF E-SKINS

Shape sensing

Whereas environmental sensing helps a robot understand its sur-
roundings, having a self-model of the robot’s body is important for
planning trajectories and actions within that environment. For
robots primarily composed of rigid components, the geometry of
each segment remains the same throughout the robot’s lifetime, and
relative rotations or translations of links provide enough additional
information to fully specify the overall changes in shape. However,
for soft robots, individual segments can continuously change their
shapes, via both intentional and unintentional deformation modes,
which complicates modeling and sensing schemes. Complementing
recent work on soft sensing (7), the direct sensing of surface de-
formations would enhance the functionality of soft robots.

One approach to sensing the shape of soft robots involves pair-
ing a model with a relatively low number of sensors, typically on the
same order of magnitude as the number of controllable degrees of
freedom in the system. A great deal of progress has been made in
modeling manipulators that can be parameterized by a curve in
3D space (71). These models have even been coupled with sensing
mechanisms to enable closed-loop control of continuum manipulators
(72). Some approaches embedded sensors into other soft robotic
components, such as bending actuators, to achieve closed-loop
control in a low-dimensional task space (73).
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The primary drawback of this type of approach is that when other
unplanned deformation modes are introduced, such as buckling or
a change of material properties through damage or natural material
aging, the models accumulate error. In addition, it is unclear how to
generalize these advances to reconfigurable soft robots (74) or
robots that have more complex morphologies. For example, recent
simulations suggest that there is a wide range of soft robot morphol-
ogies that could produce useful locomotion, including quadrupedal
shapes and various oddly shaped exteriors (75). All these classes of
robots would benefit from sensing mechanisms with fewer assump-
tions about the robot’s mechanical properties.

The ideal shape-sensing system could stretch with the robot’s sur-
face without affecting its kinematics or dynamics, sense shape with-
out external components, and be thin. E-skins designed for wearable
applications should accommodate the strains of about 55 to 75%
experienced by biological skin (22), and a similar range should be
suitable for most soft robotic applications, although different robots
experience different surface strains. Although a perfect solution for
shape sensing of soft robots does not currently exist, recent advances
in the field of flexible shape-sensing e-skins (Fig. 4) have the poten-
tial to greatly improve the capabilities of soft robots.

In contrast to that of soft skins, most work on shape-sensing
e-skins treats the skin as an inextensible sheet of rigid elements joined
by known axes of rotation (Fig. 4, A and B). The primary challenge
is thus estimating the relative orientation between sections with known
geometries to determine the spatial locations of discrete points within
the sheet. In one early study, Hoshi and Shinoda (76) arranged 24
printed circuit board (PCB) “nodes” into a mesh and estimated
internode rotations using accelerometers and magnetometers (Fig. 4A).
Building upon this work, Mittendorfer and Cheng (48) developed
rigid sensorized hexagonal PCBs that could be integrated into semi-
flexible sheets and wrapped around robots (Fig. 4B). The nodes
contained accelerometers similar to the work by Hoshi and Shinoda
(76) and had similar assumptions (PCBs are free to rotate but cannot
be stretched), but rotations between neighboring PCBs were calcu-
lated by obtaining at least two orientations of the skin-per-skin
shape and solving a constrained Procrustes problem for aligning
matrices of data points in real time. Hermanis ef al. (77) then used
a grid-like arrangement of accelerometers and gravitometers on a
flexible fabric sheet. The sheets were demonstrated in a dynamic state
estimation task where a user wore a shirt equipped with the shape-
sensing sheets while bending and crouching.

In contrast to the discrete sampling methods mentioned above,
other approaches leveraged techniques from machine learning and
statistics to process various sensing signals and extract a continuous
estimate of the shape of the skins (Fig. 4, C and D). This kind of
data-driven technique will be increasingly useful as the sensory
spatial density increases, as discussed throughout this Review. For
instance, Rendl et al. (78) used regularized least squares to process
data from 16 piezoelectric bend sensors on a plastic sheet [polyethylene
terephthalate (PET)] to approximate the shape of the sheet as a com-
bination of several shape primitives. This created a flexible system that
could sense the bent state of the sheet with a roughly centimeter-level
accuracy over an approximately A4-sized sheet. Another study
used relatively inextensible optical fiber Bragg gratings arranged in
a circle on the top and bottom of a silicone e-skin (Fig. 4C) (79). The
relation between the strains on the fiber and the shape of the sheet
was extracted from training data using a feed-forward artificial
neural network containing one hidden layer for computation between
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Fig. 4. E-skins that can sense their shape in 3D. Recent advances in shape-sensing
e-skins use several sensing modalities. (A and B) Accelerometers and/or magnetom-
eters on rigid PCBs can rotate relative to each other and reconstruct their shape
at discrete points. (A) “3D capture sheet” (76). (B) Hexagonal PCBs with integrated
accelerometers (48). (C and D) Continuously flexible devices can sense deformation
throughout their surface and estimate their resulting shape. Data-driven methods
were then used in these examples to estimate the continuous shape of the e-skin.
(C) Fiber Bragg gratings in silicone (79). (D) Plastic optical fibers in silicone foam (53).

the input and output layers. In a similar spirit, an array of optical
fibers were twisted through an elastomeric foam, and their outputs
were sent to several machine learning algorithms (including kNN, SVM,
neural networks, and decision trees) to predict the mode of deformation
and angle of deformation of their structure (Fig. 4D) (53). These
approaches all dealt well with a limited set of deformations and, in
principle, should work for a wider range of deformations when paired
with a more expressive (deeper) network. However, none of these ex-
isting works can mechanically accommodate large in-plane strains,
primarily because of the inextensibility of the optical fibers used.

Toward feedback control of soft robots
The intrinsic material compliance of soft robots can protect both
the robot and the environment from damage when interacting with
unstructured environments. This property makes soft robots ap-
pealing in contexts such as HRI and robotic manipulation, where
safety around fragile objects can be important (11, 80). E-skins have
great potential to enable soft robots to interact intelligently with
their environment.

In addition, tactile information obtained through skin is vital for
a variety of general robotic control tasks. The type of sensor modality
to be used, the processing algorithm, and the response from the body
all depend on the task at hand (81). These tasks can be divided into
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three broad categories depending on the flow of information or
energy and the primary system of concern (Fig. 5).

Manipulation

Robotic manipulation involves altering the state of an external
object to a desired set point using internal actuators. The role of
tactile sensors is mainly to obtain state information of the external
object. As energy flows to the environment, stability of the object is
of high concern. Grasp force optimization and stabilization is one
of the most basic manipulation tasks involving tactile sensors (82).
Early works were built on the estimation of normal and tangential
forces on the hand to detect slip and react accordingly (83). Recent
works used learning-based methods for slip onset prediction with
adjustment and grasp failure detection with adjustment because of
the ability of these methods to handle complex multimodal sensory
information (84) and their generalizability (85).

Other manipulation studies used low-dimensional sensor space
representations to improve performance in certain situations.
Van Hoof et al. (86) used autoencoders to generate a low-dimensional
representation of their complex and continuous tactile data. Con-
trol policies learned using this latent space representation required
fewer rollouts and were more robust to noise. Another study was on
calibration and self-modeling of a fully sensorized body for whole-
body manipulation (87). Recent work has shown that this process
can be fully automated using control signal information and other
sensor modalities, including inertial measurement units (88).

Perhaps the most complex manipulation task is in-hand manip-
ulation, which imposes strict requirements on the body, brain, and
sensors (89). Current progress in in-hand manipulation using
tactile sensors is primarily limited to rolling circular objects (90). On
the other hand, notable developments toward in-hand manipulation
have been achieved with external visual tracking systems (69). How-
ever, control policies trained using vision alone are scene dependent
and require large quantities of training data, motivating further
research into using tactile sensing during in-hand manipulation.
Exploration
Tactile exploration is the process of voluntary motion of the body
based on the somatosensory feedback for identifying environmental
properties (91). The environmental property of interest could be low-
level features, such as surface texture (92, 93) or temperature (94), or
midlevel tasks, such as object classification (95, 96). However, to be fully
autonomous, the higher-level process of selecting the best actions for
obtaining better sensory information, also known as active exploration,
must be considered. This is not trivial because the concept of an ob-
jective function and a reward function becomes difficult to define.

It is currently conjectured that human exploration is driven by a
combination of extrinsic and intrinsic reward variables (97). Extrinsic
rewards are task specific, such as classification of objects, whereas
intrinsic rewards are task independent and hence more general, such as
curiosity-driven exploration. Experiments suggest that humans primarily
use six types of exploratory movements when exploring objects to
determine their properties (98). Hence, there have been studies on
acquiring these specialized closed-loop policies based on intrinsic
rewards such as curiosity (99) or extrinsic rewards such as texture
discrimination ability (100). To achieve efficient exploration with soft
robots, a combination of tactile and proprioceptive feedback will
likely be useful for effectively implementing such reward functions.

A first step toward an autonomous tactile exploration control
architecture, referred to as tactile servoing by the authors, was
proposed by Li et al. (101). By framing the control objective as
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Reaction
Information processing

Exploration C
Information processing

A Manipulation B
Information processing

Sensors

Environment —I

Body Sensors Body

Environment —J

Sensors Body

L Environment —I

Flow of energy

@ Flow of information

Fig. 5. Closed-loop tasks where tactile sensing is essential. These tasks primarily
_differ depending on the system that determines the objective (denoted by the
shaded boxes). The middle row consists of biological demonstrations of the tasks.
The bottom row contains examples (69, 128, 129) of these capabilities in current
rigid robots, which we expect to further improve in parallel with the integration of
e-skins, soft robotics, and machine learning. Note that the presented division is not
strict, and real-world tasks often involve a combination of all three elementary
tasks. Yellow arrows indicate energy flow; blue arrows indicate information flow.
(A) Manipulation involves altering the state of an external object to a desired set
point using internal actuators. (B) Exploration involves motion of the body to
account for uncertainties in the environment based on somatosensory feedback.
(C) Reaction involves estimating and responding to environmental cues such that
the body remains in a desired state.

the problem of following a trajectory in the sensor feature space,
various autonomous sensory exploration strategies emerged. The
emergent exploration strategies included maintaining contact with
an object, edge tracking, and shape exploration of an unknown
object. Exploration has also been framed as a force and pose control
problem on an unknown object using tactile sensors for feedback
£ (102). Additional tactile information obtained during the process
as then used to estimate the compliance of the object. Recent works
integrated active exploration with object discrimination (103). How-
ever, the midlevel processes were independent from the high-level
exploration strategy, and the proposed algorithm was therefore
relatively inefficient and slow. The next challenge in this area is
to develop exploration strategies that run simultaneously and are
regulated by the tactile feature extraction process. Such an algorithm
would allow robots equipped with e-skins to efficiently process their
sensory information to make informed decisions on how to move
within the world to gather information and achieve at least locally
optimal exploration strategies.
Reaction
Whole-body tactile skins are required for reacting to active envi-
ronmental forces applied by external agents (104). Here, the control
objective is to estimate and react to external forces such that the
body remains stable while executing a behavior. Often, the safety
of the external agent, typically a human, becomes a higher priority
than robot stability (105). Because reaction typically involves HRI,
additional challenges arise from safety, context prediction, and

SAGE [ROBOT HAND (69)], IEEE [DIVER (128)], AND SCIENCE ROBOTICS (DRONE) (129)

OSADA/SEGUIN/DRAASM/STANFORD UNIVERSITY (DIVER)

CREDIT: ADAPTED BY A. KITTERMAN/SCIENCE ROBOTICS FROM MATERIALS PUBLISHED BY JOHAN63/ISTOCK (ELEPHANT), MIKE VEITCH/ ALAMYSTOCK PHOTO (OCTOPUS), BENJAMIN

TORODE/GETTY IMAGES (CAT),
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adaptation (106, 107). Otherwise, closed-loop reaction using tactile
sensing is similar to the closed-loop manipulation problem and is
often implemented in parallel with manipulation tasks as in the case
of slip detection (108).

The main challenges in whole-body sensing are the organization
and calibration of many spatially distributed multimodal tactile sensing
elements (109). Spatial calibration can be manually performed or
automated using robot kinematics and action inference techniques
(110). Data-driven methods are also promising for end-to-end models
without an explicit kinematic/dynamic calibration (111). The most
recent and comprehensive whole-body tactile sensing research was
able to self-organize and self-calibrate 1260 multimodal sensing units
and implement a hierarchical task manager composed of the fusion
of a balance controller, a self-collision avoidance system, and a skin
compliance controller (112).

OPPORTUNITIES AND OUTLOOK

The fields of e-skins and soft robotics have both experienced rapid
progress in recent years. However, incorporating advances from both
fields to produce intelligent, autonomous soft robots is a challenging
task that will require progress in several key areas (Fig. 6). Here, we
outline major open questions in this area and identify areas of
research that could provide solutions.

Design and fabrication

The primary future challenges of developing sensor arrays for soft
robots will be to design stretchable sensory arrays with wide band-
width and high dynamic range, resolution, and sensitivity. In addition,
multimodal sensing would increase the robots’ knowledge of their
environment, leading to richer HRI (Fig. 6, A and B). Sensing of
pressure, shear, and vibration and even detecting the presence of
chemical and biological markers in the environment would be useful
for a wide range of applications, including manipulation, disaster
response, and manufacturing. Recent efforts on integrating bacteria
cells into soft robots have made it possible to directly detect and
display chemical information on soft robots (44). Other major de-
sign challenges include choosing how many sensors to integrate
into a skin and deciding how to place them intelligently. Resources
are limited and require careful allocation.

Machine learning and information processing
Advancing the intelligence of soft robots will also require computa-
tional models that can extract useful information from sensor arrays.
However, the details of how to develop and implement such algo-
rithms are unclear. For example, deciding which algorithms can most
efficiently accomplish tasks in classification, regression, and fault
detection; whether neural networks should be used; which architec-
tures are easiest to train; and whether there are trade-offs between
efficiency and reliability are all open questions that need to be
addressed. Answering these questions will necessitate collaboration
among computer and data scientists, materials engineers, and
neuroscientists. The result will be robots that are more aware of
themselves, their environment, and their interactions with humans,
yielding richer and more productive experiences for human end users.
Affective touch is a crucial form of nonverbal communication
that humans use daily and is one application that would benefit from
the combination of e-skins, soft robotics, and machine learning. In
contrast, most robots currently are unable to understand gestures
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A Multimodal sensing B Wearable robots

D Dexterous manipulation

C Closed-loop morphing

Fig. 6. Potential capabilities and technologies that could be achieved with e-skins and soft robotics. (A) Multimodal sensing would be useful during manipulation
for detecting gripper states, object properties, and events such as contact and slip. (B) E-skins with an integrated human-robot interface could enable seamless assistive
wearable robots and intuitive teleoperation of anthropomorphic robots. (C) When paired with the appropriate actuators, shape sensing would enable closed-loop changes
of shape. (D) Closed-loop control algorithms would enable soft robots equipped with e-skins to succeed when performing complex tasks, including in-arm manipulation.

such as a pat on the back because either they do not have the sensors
necessary to measure the interaction or they are not able to make
sense of the affective contact.

Shape sensing

Despite the recent progress in shape-sensing e-skins, it is unclear how
to extend these advances to the wide range of soft robots presented
in literature. Soft robots experience large strains and complex de-
formations; key challenges include increasing the stretchability of
shape-sensing skins and improving the resolution of sensors to
detect small curvatures.

Once the field has reliable solutions for soft robot proprioception,
it is conceivable that shape feedback would enable controlled shape
change in robots. Current soft robots are not able to morph into
specific configurations, yet even simple shape change has led to
innovative solutions for a wide range of tasks, such as obstacle avoid-
ance (9), rolling locomotion (113), underwater locomotion (114),
and camouflage (115). Larger shape changes could result in robots
that switch between morphologies and corresponding locomotion
gaits on demand (Fig. 6C).

Feedback control
Using sensorized skins to close the loop has the potential to improve
the ability of soft robots to react to their environment, to locomote,
to explore, and to manipulate objects using their deformable bodies
(Fig. 6D). The use of soft tactile sensors for closed-loop control is
still in its nascency. The few relevant studies in this area used low-
dimensional soft strain sensors for closed-loop kinematic or force
control (73, 116, 117). This is surprising given the wealth of litera-
ture on soft sensing technologies and considering the intended
application of these sensors (7). One reason for this discrepancy
could be that soft sensors were originally developed for wearable
devices and therefore used only for state estimation. Another reason
could be the demanding performance expectations placed on soft sensors.
Although it would be useful to develop drift-free, linear sensors with
high gauge factors, biology suggests that workarounds are possible.
For example, the human tactile sensing system is hysteretic, nonlin-
ear, time varying, and slow. Nature adapted to these drawbacks by
developing hyper-redundant sensing networks and intelligent data
processing techniques (118).

Along the same lines, various sensor design strategies can be
found by observing nature. Tactile exploration likely requires the

Shih et al., Sci. Robot. 5, eaaz9239 (2020) 22 April 2020

highest spatial resolution (around 2 mm), as evident from the dense
mechanoreceptor distribution at the human fingertip (119, 120).
On the other end of the spectrum, tactile reaction likely requires the
lowest spatial resolution, as suggested by the poor spatial resolution
across other parts of the body. Tactile manipulation lies in between,
with an expected spatial resolution of 5 mm (121).

The type and the distribution of mechanoreceptors across the body
also suggest the type of sensor technologies that would be useful for
a particular task. Humans use distinct sensors for static and dynamic
cues. Low-bandwidth mechanoreceptors (10 to 50 Hz) can be found
mainly in the fingertip and would be essential for tactile exploration
(122). Higher-bandwidth mechanoreceptors (50 to 400 Hz), which
respond to the vibrations induced during object slippage, are
distributed primarily at the palm of the hand (123). The response
and the sensing areas of the mechanoreceptors are strongly depen-
dent on the skin morphology. Hence, it is vital to consider the design
of the body and the motion capabilities for mimicking the dynamic
receptors in our body.

Other insights can be gained by extending such an analysis to
invertebrate biological organisms, such as octopuses. An octopus
has several receptors, primarily chemoreceptors, located on each
sucker. In addition, the octopus has strain receptors associated with
its muscles and a relatively large brain for processing its receptor
information. Despite these capabilities, it has a poor proprioceptive
sense and cannot estimate the overall shape and location of external
objects that it is handling. There is local proprioceptive feedback in
each arm for low-level control, but the only feedback to the central
nervous system comes through vision (124). Wells (125) conjectured
that in flexible animals, motor control is hierarchical and pro-
prioceptive information must be used locally. Contrary to popular
belief, the performance of an octopus in manipulation tasks is poor.
Therefore, it might be necessary to incorporate rigid components in
fully soft robots, if they are to be used for tactile-based closed-loop
control tasks.

Outlook

Researchers have developed many interesting forms of actuation
that more closely mimic the functionality and capabilities found in
nature. The next step for the field is to develop biologically inspired
tactile sensing for soft-bodied robots that can safely interact with,
and explore, their environments. Current work tends to concentrate
on the design and fabrication of soft robots and explores how
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machine learning can enhance soft robot perception. In the short
term, the field can focus on deployable, high-resolution sensor skins,
algorithms for processing the dense sensor information, and reli-
able feedback control for soft robots. The longer-term goal is robots
that can touch and feel with the sensitivity and perception of natural
systems.

We believe that future societies will include robots tightly inte-

grated with humanity. This includes in-home, assistive robots that
can sense and understand gestures such as a pat on the back, collabora-
tive robots that work alongside humans, and exploratory robots
that can navigate the unpredictable real world.
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