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Abstract—Catastrophic forgetting continues to severely restrict
the learnability of controllers suitable for multiple task envi-
ronments. Efforts to combat catastrophic forgetting reported
in the literature to date have focused on how control systems
can be updated more rapidly, hastening their adjustment from
good initial settings to new environments, or more circumspectly,
suppressing their ability to overfit to any one environment. When
using robots, the environment includes the robot’s own body, its
shape and material properties, and how its actuators and sensors
are distributed along its mechanical structure. Here we demon-
strate for the first time how one such design decision (sensor
placement) can alter the landscape of the loss function itself,
either expanding or shrinking the weight manifolds containing
suitable controllers for each individual task, thus increasing or
decreasing their probability of overlap across tasks, and thus
reducing or inducing the potential for catastrophic forgetting.

I. INTRODUCTION

It has been shown in various single-task settings how an
appropriate robot design can simplify the control problem [18,
27, 4, 2, 17, 22], but because these robots were restricted to
a single training environment, they did not suffer catastrophic
forgetting.

Catastrophic forgetting is a major and unsolved challenge
in the machine learning literature [9, 11, 15, 20]. Regardless
of learning algorithm or task domain, a neural network trained
to perform task A and then challenged with learning task B
as well usually forgets A at the same rate as it learns B. Such
interference can also occur when an agent attempts to learn
tasks A and B simultaneously if gradients of improvement in
A lead away from those of B.

In a multitask setting, Powers et al. [23] recently demon-
strated that certain body plans suffer catastrophic forgetting,
while others do not. It was hypothesized that a robot with the
right morphology could in some cases alias separate tasks:
certain designs are able to move in such a way that a seemingly
different training instance converges sensorially to a familiar
instance. However, this conjecture was not isolated and tested.
Likewise, the relationship between the body and the loss
landscape was not investigated.

In this paper, we provide a more thorough investigation on
the role of embodiment in catastrophic forgetting based on
the assumption that in order to avoid catastrophic forgetting,
there must exist a set of control parameters that are adequately
performant across multiple task environments simultaneously.
Since a robot’s mechanical design can influence the set of
controller parameters suitable for each individual task envi-
ronment, we here test the hypothesis that a specific physical
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property of the robot’s design—namely, the location of its
sensors along its body—can help or hinder continual learning
by allowing for more or less overlap in suitable parameter
settings across multiple task environments.

Using a simple yet embodied agent as our model, we
analytically and empirically investigate how sensor location
affects the weight manifolds of the neural controller over mul-
tiple tasks. We show how morphological optimization often
results in asymmetrical and unintuitive sensor arrangements
with much more potential to allow learning algorithms to
avoid catastrophic forgetting than more intuitive, symmetrical
designs. Thus, human designer bias, while often useful, can
sometimes inadvertently increase the likelihood of catastrophic
forgetting during learning. This suggests that we should scru-
tinize our prior assumptions about the body plan of robots
challenged with continual learning, and where possible replace
them with end-to-end data-driven design automation.

II. METHODS
A. The robot.

The robot has a square frame, two separately-driven wheels,
and two infrared sensors (Fig. 1). The sensors detect light
according to the inverse square law, i.e., 1/ d?, where d is the
distance from the light source; occlusion was not modeled.
The motors driving the wheels are contralaterally connected
to the sensors by weighted synapses yielding two trainable
parameters wy,we € [—1.0,1.0].

We here consider change to a single, isolated morphological
attribute: the physical location of the two sensors, which can
be placed anywhere on the dorsal surface of the robot’s square
body. The location of the i-th sensor ¢; can be described by
its Cartesian coordinates ¢; = (z,y), where z,y € [—0.5,0.5],
and (0, 0) denotes the center of the body (Fig. 1B).

The effect of sensor location ¢; can be measured with
respect to the space, denoted 6, of possible synapse weight
pairs (wy, we). Since we cannot perform an exhaustive sweep
over the infinitude of possible sensor positions, we discretized
each dimension of ¢; into nine uniformly-spaced bins. Because
sensors are varied in two dimensions (x and y) there are
92 =81 possible locations for each sensor; and because there
are two such sensors, the space 6 is discretized into a 81-by-
81 uniformly-spaced grid, thus yielding a searchable space of
6561 possible robot designs.

For each of the 6561 designs, we conducted another sweep
over the synapse weights (wy,ws), likewise discretizing each
weight into 121 evenly-space values, yielding 1212 = 14641
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Fig. 1: Modeling the robot. A: The effect of lateral and contralateral synaptic connections (adopted from [3]). B: The
theoretical model with sensor positions determined by ¢; and ¢». C: The simulated robot with two light sensors (red), two
motorized wheels (black), and a passive, anterior castor wheel for balance (gray). The robot is drawn (A-C) with symmetrical,
anteriormost sensor placement, which we refer to in this paper as the “canonical design”.

different weight configurations. Finally, for each of the 6561 x
14641 = 96059601 evaluated combinations of sensor locations
and weight values, we analyzed the robot analytically using
differential equations and empirically using a physics engine.
These discretizations were chosen to be as small as possible
within the limit of our computational resources and time.

B. The task environments.

The task is phototaxis in four environments, which differ in
their position of the light source in relation to the robot. The
light source is placed at polar coordinates (r,p) where ¢ €
{45°,135°,225° 315°} and r is a fixed distance. A controller
was considered successful for a given environment if the robot
comes within 0.2 cm of the light source at any time during its
evaluation period.

While there is of course a general strategy that solves the
task for all environments (follow the light), the easiest gradi-
ents to follow in the loss landscape are initially those which
produce forward locomotion in a single direction and cause
the robot to ignore the light. This is because, from the robot’s
perspective, due to the inverse square law of light decay,
improving its ability to move in the one environment with least
loss earns quadratically more reward than improvements to
locomotion in any of the other three environments in which the
robot is less proficient. This causes the catastrophic forgetting
experienced by neural learning algorithms.

C. The metrics.

We here define two metrics: M; and Mcp, that are
measured over k = 4 environments. These metrics measure
how a robot design impacts the weight space of the controller
and consequently measure how amenable to learning a robot
would have been if the controller were to be learned with a
standard learning algorithm rather than found by grid search.
M;, measures controller learnability: how easy it would be
to learn a generalist controller. Mcr measures resistance to
catastrophic forgetting: the probability that a environment-
specific controller will generalize to other environment.

For each mechanical design ({1, ¢2), we expect some opti-
mal manifolds 6} in the space of control parameters (w1, w2)
to succeed for a specific environment k. For a controller to
be successful in multiple environments, it must reside within
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the intersection of environment-specific manifolds, theta*, on
the loss surface. Thus, the likelihood of finding a generalist
controller—its learnability—will be proportional to the size
of the intersection (My). Likewise, a controller’s potential to
resist catastrophic forgetting (M¢p) will be proportional to
the ratio of generalist controllers (those successful in all four
environments) to specialists (those successful in at least one
environment).

Given a design (¢1,¢3) and environment k, a binary suc-
cess matrix S¥(¢1,f3) is constructed such that each element
Sf’j(ﬁl,ﬁg) is either 1 (success) or 0 (failure). By over-
lapping the success matrices for a fixed design across the
four environments, we can visualize the manifolds ¢; where
k € {1,2,3,4} for the robot (Fig. 2).

We define the overlap O as a element-wise sum of the
success matrices over each environment k:

4
0= S, 0,). (1)
k=1

The learnability metric is simply the proportion of 4s (where
a 4 represents success in all 4 environments) in the overlapped
success matrices to the entire matrix space:
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where gj is a function that counts the total elements of a

matrix with value equal to k and n is the square dimension

of the matrix defined by the discrete parameter sweep.
Resistance to catastrophic forgetting is measured by:

0 if O is a null matrix,

3
94(0) [Zizl gk((’))} otherwise. ®

Mcr =

which is the number of control parameters that solved all four
environments divided by the number of control parameters that
solved at least one.

D. The theoretical model.

The location and orientation of the robot can be defined
by a system of differential equations, where the change in
position and orientation is determined by the change in light



captured by two sensors. Ignoring deviations from the ideal-
ized environment, such as sensor noise and friction, the rate
of angular and linear velocities will be proportional to a linear
combination of the sensor values.

Let «(t) be the angle of the robot at time ¢, where oo = 0
denotes the positive z direction, and ¢(t) = (x(¢),y(t)) be the
position of the robot in the world, then if the robot is located
at the origin and facing east (o = 0), its two light sensors are
located exactly at ¢; and /5, and they each capture a some
amount of light s1(¢) and s2(t), respectively.

Hence the absolute position of the i-th sensor is ¢(t) +
R.¢,T, where

is the two-dimensional counterclockwise rotation matrix (in
the amount «).

If we formulate the problem such that it is the robot’s initial
position and heading that is adjusted in each environment,
instead of the position of the light source, we can assume that
the source is always at the origin. Then, the distance of ¢;
from the light source is given by: ||¢(t) + Ro¢;7||. And since
the intensity of light is inversely proportional to the square of
the distance, the sensor values are given by:

si(t) =c-[|¢(t)" + Rati" || 72,

—sin o
COS &

Ra _ |:COS « (4)

sin o

(&)

where c is a constant that we set equal to one.

Assuming the robot turns based on the difference between
the sensor values (with weights applied), the velocity of the
robot is the average of the two sensor values. Thus, the
following system of equations determines the location and
orientation of the robot:

& = v(t) cos a
(6)

y=v(t)sina

o= wlsl(t) — U}QSQ(t),

where v is the velocity of the robot given by 2v(t) = wys1(t)+
u}282(t).

E. The empirical model.

Because our theoretical model is highly abstracted from the
real world and built on a number of assumptions (no friction,
motor limits, collisions, etc.) which may potentially affect
the robot’s behavior, we also empirically test our claims by
simulating the robots inside a physics engine.

The robot is simulated using Open Dynamics Engine
(Fig. 1C). Just like the theoretical model, the simulated robot
contains two light sensors, which innervate two motorized,
spherical wheels (each with a single axis of rotation), which
are attached midway along the sides of a 1 x 1 x0.13 cm box.
Additionally, an anterior passive castor wheel was added for
balance. Finally, a light source is simulated on the floor of the
environment at polar coordinates (r, ) as a fixed sphere with
radius 0.2 cm. In simulation, the behavior of a robot in a given
environment is taken to be successful if it collides with the
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Fig. 2: A general example of overlapped binary success
matrices for some tasks A and B. Each element represents
a different controller. Generalist controllers sit inside the
intersection #* of successful environment-specific controllers
5.

light source at anytime during an evaluation period of 2500
time steps (dt = 0.05) or 125 seconds.

In order to replicate the baseline behavior of the canonical
robot design it was necessary to pre-optimize various physical
attributes of the robot’s body, including the mass of each
component, the radii of the wheels, and the maximum torque,
speed, and target actuation rate. A multiobjective optimization
algorithm [12] was used to find a base morphology, with
the sensors fixed in the canonical position, that was both
performant and stable. The first objective was to maximize
the performance of the robot (distance from the light source),
summed across all the four environments. The second objec-
tive was to minimize the sum of the maximum torque, speed
and target actuation rate. This second objective is used to
avoid both simulator instability and behavior that is unlikely
to transfer to reality.

After discovering a good base morphology, we performed
the nested grid search described in §II-A, for sensor locations
(41, £3) and weights (w1, ws).

III. RESULTS

A. Theoretical results.

We employed SciPy (scipy.integrate.odeint) for numerical
integration of the robot’s location and orientation (Eq. 6), for
10° timesteps.

For each evaluated mechanical design and controller (sen-
sor locations and synapse weights), the robot’s trajectory is
computed in each of the four environments defined in §II-B.
As in the empirical model, if robot’s trajectory comes within
0.2 units of the light source, the robot is determined to have
succeeded in that environment. Otherwise, it is determined to
have failed.
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Fig. 3: The best designs under the theoretical model according to controller learnability (A; Metric M) and resistance to
catastrophic forgetting (B; Metric Mc ). Under the empirical model, the design with the highest controller learnability was
also the most resistant to catastrophic forgetting (C). Although the design space we swept over contains many symmetrical
sensor arrangements, and most real robots utilize symmetrical sensor distributions, the best designs are notably asymmetrical.

The mechanical design sketched in Fig. 3A (and its mirror
image when reflected about the sagittal plane) had the highest
controller learnability score, with My = 0.286. However
it did score the best in resistant to catastrophic forgetting:
the proportion of resistant to nonresistant controllers for that
design was Mcp 0.636, whereas several other found
designs had full resistance M¢op 1. But those with a
perfect ratio Mcr = 1 had much smaller optimal weight
manifold: the highest learnability score achieved by this group
was My = 0.206. In other words, while all the successful
environment-specific controllers for these designs generalize
across all four environments, the manifold containing them
is much smaller and thus would be more difficult to find if
controller parameters were to be optimized by learning.

The canonical design had a much lower controller learn-
ability (M, = 0.049) and resistance to catastrophic forgetting
(Mcr = 0.24), than many found asymmetrical designs.

For both the canonical, symmetrical design (Fig. 4) and the
design with the highest controller learnability score (Fig. 5)
there are initial conditions that generate persistent phototaxis:
the robot moves toward the light source and remains near it.
However, whereas 35 of the 35 found phototaxing controllers
for the found design remain in the neighborhood of the source,
only 2 of the 6 found controllers for the canonical design do
so. Some initial conditions of the canonical design initially
produce phototaxis, but the design passes through the source
and then continues to move away from it (Fig. 4A). This was
not observed to occur with the “optimized” designs.

B. Empirical results.

As with the theoretical model the empirical model showed
that non-intuitive asymmetrical designs scored higher in learn-
ability and in resistance to catastrophic forgetting. However
unlike the theoretical model one design performed the best on
both metrics.

The found asymmetrical design shown in Fig. 3C had both
the highest generalist controller learnability (M; = 0.0039)
and resistance to catastrophic forgetting (Mcrp = 0.038).
Overall, there were 57 generalist phototaxing controllers found
(out of 14641 evaluated; 0.389%) for this design, compared to
only one generalist phototaxing controller found (0.0068%) for
the canonical, symmetrical design. The controller learnability
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of the canonical design was thus M; = 0.000068; and its
resistance to catastrophic forgetting was Mqcr = 0.00052.
Thus, the found asymmetrical design has both higher controller
learnability and resistance to catastrophic forgetting.

C. Overview.

In Fig. 6 the successes of weight manifolds for all of these
design in both the theoretical and empirical model can be
seen in detail, where cyan represents weight assignments that
succeed in all for environments for a given design. These
weight manifolds show clearly that in this case the weight
assignments for the asymmetrical would be much easier to
find by a learning algorithm while the canonical design is
akin to looking for a needle in a haystack.

Fig. 7 plots the frequency of metrics M, and Mcr (Egs. 2
and 3, respectively) within each bin of the grid search. This
again shows how there are many designs (including intuitive
symmetric ones) that score poorly on My and Mcpr while
there are relatively few designs that perform well. Thus a given
design has a drastic effect on the theoretical learnability of a
robots controller parameters.

IV. DiScUSSION

In this paper, we considered a simple robot and task in order
to sample the entire loss landscape of the weight manifold at a
relatively high resolution. While we haven’t tested these robot
with any specific learning algorithm, our results suggest that
changes in one element of a robot’s design (sensor location)
can fundamentally alter the loss surface, thus influencing
the controller’s learnability, and resistance to catastrophic
forgetting. More specifically, by changing sensor location,
we observed changes in the number and placement along
the loss surface of control parameters suitable for individual
environments, as well in how these optimal yet environment-
specific parameters overlapped across different environments
to produce generalist controllers which resist catastrophic
forgetting. However, we acknowledge that this work mainly
builds a theoretical foundation and that our metrics need to be
tested against existing methods for learning.

Previous efforts to avoid catastrophic forgetting have relied
almost exclusively on increased control complexity. Most were
focused on making changes to small subsets of neural network
weights [15, 20, 8, 24, 14, 1, 25, 26]. Others have attempted to
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Fig. 4: Successful trajectories with canonical (symmetrical)
sensor location under the theoretical model. With canon-
ical sensor placement {¢; = (0.5,0.5), ¢ = (0.5,—0.5)}
(Fig. 1B), only 57 of the 1212 evaluated controllers (0.4%)
were successful all four environments. A: The trajectories
generated by one of the successful controllers (wi,ws) =
(0.6,0.98). This controller initially generated phototaxis, but
passed through the light source and continued to move away
from it. B: The trajectories generated by another successful
controller (wy,w2) = (0.77,0.77). This controller continu-
ously spirals about the light source. The light source is drawn
once at the origin, and the initial positions/orientations of
the robot relative to the it are superimposed for the four
environments.

sidestep the problem by learning good initial weights such that
they can be quickly updated when switching between tasks
[7, 10]. We have shown here that, in theory, regardless of
the algorithm used it is also possible to alleviate catastrophic
forgetting by changing aspects of the robot’s design, without
increasing control complexity, but doing so can be non-
intuitive.

We found that even the seemingly trivial case of phototaxis
with contralateral connections described by Braitenberg [3]
can require morphological tuning to work as expected in
a single simulated environment, and that, when challenged
to perform in additional environments, other adjustments in
morphology, specifically to sensor location, could either sup-
press or multiply the potential for catastrophic forgetting by
expanding or shrinking the overlap of performant controller
settings for that body plan across different task environments.

The physical location of sensors is thus a relevant property
of robots that is nevertheless abstracted away in the (mostly
disembodied) systems that address catastrophic forgetting re-
ported in the literature to date. While sensor location could
in principle be dynamically controlled via a lattice of sensors
[16] or adjustable antenna [6], change in (and rational control
over) other morphological attributes—such as geometry [17],
material properties [21], or the number and placement of
actuators [19]—is much more difficult in practice, and such
design elements are almost always presupposed and fixed prior
to training [5].
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Fig. 5: Trajectories of the design with maximal controller
learnability, as measured by metric M; (Eq. 2) under the
theoretical model. With sensor locations ¢; = (—0.5, —0.25)
and f = (0.5,0.25) (Fig. 3A), 2255 of the 1212 evaluated
controllers (15.4%) were successful all four environments. A:
The trajectories generated by one of the successful controllers,
parameterized by weights (w;,ws2) = (—0.85,0.82). B: The
trajectories with weights (—0.8,0.6). C: The trajectories with
weights (—0.28,0.37). The axes are equivalent to those in
Fig. 4.

However, unless experimental proof is obtained in the
real world, this theory will remain speculation. In fact it
is possible that the proposed empirical model using rigid
body physics was more disconnected from reality than our
theoretical model. The simulated wheels, for instance, have
just a single point of contact with the ground. A more realistic
surface contact geometry might completely change the optimal
sensor locations, but there’s also reason to believe that the
loss surface manifolds containing adequate controllers for a
compliant body could be larger than those of a rigid body
[17, 13], further increasing the probability of overlap across
tasks.

In the limit, machines with the right morphology may use
a single controller to accomplish a set of tasks that appear
disparate to a robot with a different body plan. For example,
a granular jamming gripper [4] need not precisely control the
placement of each joint around differently shaped objects: a
single policy (vacuum air, hold, relax) works regardless of
object shape. However, this control policy is exceedingly sim-
ple. The degree to which morphology influences learnability
in more complex robots, task environments and behaviors has
yet to be investigated, but will be the focus of future work.

In this work, two control- and two morphology parameters
were optimized. In future work we will investigate whether
co-optimizing the morphology and control parameters confers
greater overall learnability on the robot compared to a robot
with a fixed morphology and four control parameters. This will
help determine whether a poorly chosen mechanical design can
be compensated for by increased control complexity.



Fig. 6: Measuring learnability and forgetting. For both the theoretical (A-C) and empirical models (D-F), we performed
a 121-by-121 grid search of controller weights (14641 unique controllers) nested within a 81-by-81 grid search for sensor
locations (6561 unique designs). The controller space its mapped for the canonical, symmetrical design (A, D), the design
with highest controller learnability (M ; Eq. 2) (B, E), and the design most resistant to catastrophic forgetting (Mc¢r; Eq. 3)
(C, F). Under the controller sweep on (D-F), the design with the highest controller learnability also had the greatest resistance
to forgetting, so E and are identical. Each pixel represents a different controller (wy, ws) for the given design, and is colored
by the number of environments that the combination successfully exhibited phototaxis (i.e., the overlapped binary success
matrices, defined by Eq. 1). Under both the theoretical and empirical models, the unintuitive asymmetrical designs (B, E)
were found to have higher controller learnability and greater resistance to forgetting in their landscape than their respective
canonical design (A, D) as measured by the number pixels in the heatmap that are successful in all four environments (cyan).

Likewise, the asymmetrical designs (C, F) had higher resistance to catastrophic forgetting as measured by the number of cyan
pixels to non-blue pixels.

Number of Successful Enivronments

A B C D

102 4

Frequency

0.0 0} 00 0.5 0000 5002 00400 0.02 0.04
M, Mcr M, Mcr

Fig. 7: Measuring successful multitask learning. The distribution of metrics My, and M¢F, for all evaluated designs, in the
theoretical (A, B), empirical (C, D). Metric M, (Eq. 2) indicates controller learnability: the proportion of controllers deemed
successful in all four environments, for a given design. Metric Moy (Eq. 3) indicates resistance to catastrophic forgetting: the
ratio of the number of controllers successful in all environments, over the number successful in at least one. If no controllers
are successful for a given design, Mcopr = 0.
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