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Abstract

The design of multiscale metamaterial systems often suffers from high computational cost and incompatible boundaries between
unit cells. As a result, unit cells are either assumed to be repeated (periodic) everywhere or limited to a small number of shapes. To
address these limitations, this work proposes a data-driven design framework consisting of a metamaterial genome with a
reduced-order geometrical representation as well as methods for the efficient design and analysis of 2D aperiodic metamaterials
with compatible boundaries. To collect a large amount of designs, a set of unit cells generated by topology optimization is taken
as initial seeds for the genome, and then expanded iteratively through random shape perturbations to form a rich database that
covers a wide range of properties. For a reduced-order representation, the Laplace-Beltrami (LB) spectrum is adopted to describe
complex unit cell shapes using a low number of descriptors, therefore significantly reducing the design dimensionality.
Moreover, the physical and geometrical information contained in the LB spectrum is revealed through both quantitative and
theoretical analysis. This information as well as the lower dimensionality allows the genome to be effectively leveraged to build a
neural network model of structure-property relations for the rapid design of new unit cells. Finally, the combination of the
metamaterial genome with an efficient optimization method based on the Markov random field (MRF) model is proposed to
ensure connected boundaries between unit cells in multiscale aperiodic microstructure designs.

Keywords Data-driven design - Metamaterials - Boundary connectivity - Microstructure - Multiscale design - Laplace-Beltrami
spectrum

1 Introduction superior and even counter-intuitive properties, enabling higher

tunability of properties in structural design (Yu et al. 2017).

Metamaterials are man-made materials that achieve unusual
properties through the design of the geometry of microstruc-
tures rather than material compositions (Zheludev 2010).
They have gained much attention in recent years for their
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Although metamaterials ignite the possibility of obtaining spa-
tially varying properties for multiple functions, designing the
full structure becomes a rather complex two-scale problem. At
the macro-scale, the spatial distribution of materials and prop-
erties is optimized to meet multiple design performance tar-
gets, while at the micro-scale, each unit cell, or microstructure,
needs to be designed for specific properties at different
locations.

For design at the micro-scale, various topology optimiza-
tion (TO) methods have been developed to achieve desired
properties, including the density-based solid isotropic material
with penalization (SIMP) method (Sigmund 1994; Xia and
Breitkopf 2015), the level set-based method (LSM) (Wang
et al. 2014)", and the evolutionary structural optimization
method (ESO) (Huang et al. 2011). However, these computa-
tional design methods mainly focus on extreme properties
rather than tunable properties over a wide range. When de-
signing for high-dimensional target properties, different initial
designs tend to drive the optimization process to different
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local optima and may even fail to generate a practical struc-
ture. Furthermore, there is no strict bound for the competing
effective properties of free-form unit cells (Cadman et al.
2012), leaving insufficient information on the attainable ma-
terial properties for the metamaterials design. The key chal-
lenge here is that metamaterial design is an inverse problem
without much a priori knowledge of the structures for target
properties while the geometrical design space is infinite-
dimensional.

For the design of full multiscale structures, most physics-
driven methods adopt a “top-down” framework, tiling the
shapes of microstructures according to their macroscopic
loads (Kato et al. 2017; Rodrigues et al. 2002; Yan et al.
2014). These methods typically use homogenization theory
to decouple the macro-scale design from a set of individual
micro-scale designs. While this decoupling can accelerate the
design process, the number of design variables is still large for
a multiscale structure and computationally infeasible for prac-
tical designs. Moreover, since each cell is optimized separate-
ly, adjacent unit cells may not connect to each other, resulting
in large deviations from target properties or manufacturing
infeasible designs.

Several modifications have been made to address the con-
nectivity issue, including adding fixed connectors (Deng and
Chen 2017; Deng et al. 2019), pseudo loads, a nonlinear dif-
fusion term (Zhou and Li 2008), and extra constraints (Du and
Kim 2018) to the macro-scale optimization. While these mod-
ifications can relieve the connectivity issue to some extent,
they either sacrifice the generality or do not scale well.

Recently, the data-driven approach is emerging as a prom-
ising answer to these challenges. Similar concepts reported in
literature include digital materials (Hiller and Lipson 2009),
building blocks (Mironov et al. 2009), unit cell library (Chu
et al. 2008), clastic textures (Panetta et al. 2015), material
library (Bickel et al. 2010), interpolating microstructures
(Cramer et al. 2015), size-gradient unit cells (Han and Wen
2018), graded lattice materials/microstructures (Wang et al.
2017), and substructuring (Wu et al. 2019), to name a few.
These methods use a similar “bottom-up” framework: gener-
ating a parameterized database of unit cells with similar
shapes to assemble the full structure for spatially varying
properties. While these methods can address the problem of
connectivity and computation cost, they force configurations
to be alike and require an elaborate process for data generation
that often produces a limited set of properties, curbing the
applicability of the database. To remedy the loss of generality,
Schumacher et al. proposed to assemble a database with sev-
eral families of metamaterials, enabling smoothly varying
properties over a wide range by interpolation (Schumacher
et al. 2015). They noted that different families would overlap
in the multi-property space, providing various candidates for
target properties. The best match can then be selected from
those candidates for compatible boundaries. Since the design

@ Springer

of material families is complex and may limit the variety of
unit cells, Bo et al. established a larger and richer database by
randomly adding and deleting elements in the voxelized unit
cell (Bo et al. 2017; Chen et al. 2018). The unit cells can then
be screened and mapped to specific mechanical properties of
the full structure with a heuristic algorithm. However, without
a proper mechanism for organization and management, the
complex and diverse forms of shapes derived from the sto-
chastic method make it infeasible to generate new unit cells by
interpolation and impose extra difficulty to form well-
connected boundaries.

To overcome these limitations, we propose in this work
a new framework for the data-driven design of 2D free-
form metamaterials. Unlike existing frameworks, two ad-
ditions, i.e., extraction of shape descriptors and machine
learning, are introduced for a higher level of management
in data-driven design. Within this framework, we present
an autonomous and efficient method to generate a large
metamaterial database with versatile forms of unit cells
and a wide range of properties. The highly diversified 2D
unit cells are then encapsulated with a powerful shape de-
scriptor, the Laplace-Beltrami (LB) spectrum. Since this
descriptor is also known as “Shape-DNA” (Reuter et al.
20006), we correspondingly name our database indexed by
the LB spectrum the “metamaterial genome.” This work is
the first attempt in the literature to relate the LB spectrum
to mechanical properties through theoretical and statistical
analyses. We reveal in this paper that the additional math-
ematical structure induced by the LB spectrum enables
understanding of structure-property relations, rapid data-
driven metamaterial design, and tiling of boundary com-
patible unit cells. With the similarity metrics provided by
the LB spectrum, a rigorous and highly parallelizable as-
sembling process for the full structure is realized, taking
both geometrical and mechanics-based matching qualities
into account. Altogether, our framework allows the effi-
cient design of a full structure with both aperiodic unit
cells and matching boundaries, while imposing no extra
requirement in the unit cell data generation process.

A graphical overview of the data-driven metamaterial
design framework is shown in Fig. 1. The proposed pipe-
line to generate a rich database is illustrated in Section 2,
and in Section 3 we give a brief introduction to the LB
spectrum that indexes the complex unit cells in the data-
base with just a few descriptors. To justify that the LB
spectrum can serve as a good geometrical representation,
in Section 4 we show that it contains rich information on
mechanical properties and serves as a metric for the simi-
larity of shapes. With LB spectra as indices of the database,
methods to efficiently generate new unit cells and assemble
the full multiscale structure with optimized boundary con-
nectivity are presented in Section 5. Finally, we draw the
conclusion in Section 6.
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Fig. 1 Overview of the data-driven metamaterial design framework. The
database is generated by perturbating the initial unit cell seeds
sequentially. Unit cells in the database are mapped to a reduced-order
spectrum space with their LB spectrum as coordinates. Through
analysis, it is found that the characteristics of the spectrum provide a

2 Metamaterial genome generation

In data-driven design, a large database of precomputed unit
cells whose data points are dense and cover a broad range of
properties is desired. The former characteristic can provide
numerous different candidates for a specific property, which
can help to form compatible boundaries, while the latter en-
ables greater freedom in the multiscale design. Given the
shape of a unit cell, it is relatively easy to obtain its effective
properties though homogenization (Andreassen and
Andreasen 2014; Hassani and Hinton 1998). However, when
generating a database from scratch, the geometry is not known
and leads to the less straightforward inverse design problem of
finding a unit cell with prescribed mechanical properties. To
our best knowledge, no tight bound has been found for the
achievable properties of unit cells (Cadman et al. 2012), which
means that the target properties could fall in an infeasible and
unattainable region. Moreover, a specific property can corre-
spond to different unit cells, thereby making TO-based design
sensitive to the initial guess.

To address these challenges, we propose a two-stage pipe-
line to efficiently construct a large unit cell database. We first
generate an initial dataset by TO techniques such as SIMP and
then proceed to populate the dataset iteratively through sto-
chastic shape perturbation. The resulting database discloses a
bound for achievable properties and enables efficient selection
of well-connected unit cells.

2.1 Initial sampling in the property space

This study mainly focuses on three components of the stiff-
ness tensor, £y, £y, and Ej,, as the desired mechanical prop-
erties. As the bounds of the achievable property space are
unknown a priori, a rectangular grid of 1000 target properties
is obtained by sampling a unit hypercube[0, 1]° at 10 levels
along each dimension of the property space. The SIMP meth-
od is then utilized to search for the corresponding unit cells of
each sampled target (Xia and Breitkopf 2015). Specifically,
the unit cell is discretized into a 50 % 50 grid of finite elements.

higher level of management for the database, mimicking the function of
DNA sequences. It enables rapid shape clustering, understanding of
structure-property relations, data-driven metamaterial design of a full
structure by an MRF model-based method through interpolation, and
tiling with boundary compatible unit cells

Each element is assigned a density value p, [0, 1], with
Young’s modulus E, defined as

Ee(pe) = Emin + pIZ(EO_Emin)a (1)

where E,,,;, is a small value (107 is adopted here) to prevent
singularity of the stiffness matrix, £y is Young’s modulus of
the matrix material, and p is a factor used to penalize interme-
diate densities for an approximate 0—1 solution. Following
asymptotic homogenization, the corresponding effective stiff-
ness tensor E;gd can be expressed in the discretized form as

Ejy =11 2 (ul) Kot (2)

where |7] is the area of the design domain, N is the number of
elements (2500 in this case), K, is the element stiffness matrix,
and u/ is the element displacement under the unit test strain
fields sg with a periodic boundary constraint. Therefore, the
design problem is formulated as

mi;l : HEg(p)—Ef"

(3)

2
st KUM=F"k 1=1,..,3

Yo vepe/|Y ISV
0<p.<l,e=1,...,N,

where EIIZ and Ef{ are the vectorized forms of, respectively, the
predicted and target properties, K is the global stiffness ma-
trix, U and F¥ are the global displacement vector and the
nodal force vectors under the corresponding unit strain tests,
Vv, 18 the element volume, and V'is the volume limit of the unit
cell. It should be noted that, for each target, different V values
(0.3, 0.5, 0.9) are tried to obtain the most optimal unit cell.
Using the method of moving asymptotes (MMA) as the opti-
mization algorithm (Svanberg 1987), an initial database S;,isa
with 358 valid structures is generated. The remaining 642
target points do not result in feasible unit cells, which is large-
ly due to the sampling grid overlapping with theoretically
infeasible regions, and SIMP failing to meet the targets
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because of its sensitivity to the initial guess as well as the
volume constraint. These demonstrate the limitation of the
TO-based methods when little prior knowledge is available.
The property space of this initial database is shown in Fig. 2,
where Poisson’s ratio £,/E;; is shown instead of E, for a
better illustration.

2.2 Stochastic shape perturbation

As discovered in the sampling process, TO may require trial
and error to find a unit cell that meets the target properties;
using the approach to generate a dense database is often not
affordable. Therefore, we propose to expand the initial data-
base via an iterative stochastic shape perturbation algorithm.
The notion behind this is that a small perturbation of the shape
tends to induce a relatively small change in its properties. In
the shape perturbation algorithm, we use a radial distortion
model (Kroon 2009):
{ Xe + Tnew (xold_xc) lf‘ Told < RO
Xnew = Vold ) (4)
if roa > Ro

Xold

where xp,ew and x4 are the coordinates of the new and original
pixel locations in the unit cell, x. is the coordinate vector of the
distortion center, 7, and r4q are the new and original dis-
tances to the distortion center, and R, is the radius of the
distortion area. 7., is given as:

! Ro(l—cot<1>—ﬁ) ifvy>0

and v€(—Z,%) is the angle that controls the magnitude and

direction of the distortion. A negative vy induces distortions
towards the center, while a positive value enables distortions
away from the center. As the absolute value of 3 becomes
larger, the distortion will become greater. To preserve the or-
thogonal symmetry, we only feed a quarter of the original unit
cell into the distortion model and then reassemble the full unit
cell by duplication.

The distortion model in (4) has two attractive features: (i)
Its parameters (R, 7, and x.) have clear interpretations, thus
allowing easy implementation and tuning. To generate versa-
tile forms of microstructures, these parameters are set as ran-
dom variables with uniform distributions. (ii) It tends to pre-
serve the structural integrity of unit cells and introduces neg-
ligible artifacts (e.g., disconnections and checkerboard pat-
terns). Compared with the randomly assigned material distri-
bution proposed by Bo et al., this perturbation method has a
higher chance to generate feasible unit cells and is more
efficient.

Several new unit cells generated by stochastic distortion are
presented in Fig. 3.

It should be noted that disconnections may still appear in
some extreme situations. Thus, to guarantee the feasibility of
newly generated unit cells, morphological operations are used
to fix small defects (i.e., isolated and spur pixels), and then to
check the connectivity of the unit cells again. Unit cells with
any unconnected features remaining are discarded. These tac-
tics can be easily implemented using built-in morphological
functions in MATLAB.

2.3 Iterative database expansion

With the stochastic shape perturbation algorithm, the initial
database is then populated iteratively to achieve a denser and
broader property space. During each iteration, the boundary of
the current property space is approximated by a hull as

Fnew = 5 rel1- 72 . ) (3)
3 0(1 cot(z) +ﬂ) ifvy<0
Told otherwise
where
2 N 2o\’
ﬂ\/mz(w—<l+cot(2)— Ry ) , (6)
Fig. 2 The property space of the 2

initial database with 358
structures, with shaded regions
indicating the boundary of the

property space
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Fig. 3 The original unit cell (left) and unit cells generated by stochastic
distortion

illustrated by the edge of the shaded regions in Fig. 2, enabling
fast queries on whether a point is contained in the current
property space. To do this, a 3D Cartesian grid is defined to
enclose the current property space and each cell of this gird is
assigned a binary value to indicate the outer/inner regions of
the hull, forming a binary matrix. The L2 distance from the
hull to each node of the Cartesian grid can then be calculated
efficiently through the Euclidean distance transform of the
binary matrix, and the L2 distance field can be estimated by
linear interpolation within the grid.

With the approximated L2 distance field, the following
score can be calculated for all existing unit cells:

Score = 1/[(d + €)2°], (7)

where d is the L2 distance of each unit cell to the boundaries of
the current property space, p is the number of data points
inside a given radius in the property space (we recommend
the radius to be 0.05 for more uniform sampling), and € < 1 is
used to avoid singularity. In each iteration, the 100 points with
the highest scores are stochastically perturbed 20 times. Note
that this selection method prefers points near the boundaries or
in sparse regions. As the process goes on, the exponential term
will dominate the numerator of score functions, thus enabling
the algorithm to switch from exploration to exploitation.
When the boundary of the property space no longer expands
(i.e., Ad<0.1) and the points inside the boundaries are rela-
tively dense (average p>500), the iterative process termi-
nates. After removing duplicate microstructures, a dense

database, Spoputareas 0f diverse shapes is obtained, expanding
from 358 to 88,000 unit cells that cover a broader property
space than the initial set from TO (see Fig. 2 vs. Fig. 4). The
pseudo code of the algorithm is included in Table 6 in the
appendix.

3 Unit cell characterization via spectral shape
descriptors

In the metamaterials database, Spopurarea> the structure of each
unit cell is stored in a 50 x 50 binary matrix. However, this
pixel-based representation is high-dimensional, lacks physical
interpretations, and does not have a simple metric to quantify
the similarity in shapes. These drawbacks impose extra diffi-
culty and complexity in data analysis and data-driven design.
Therefore, it is advantageous to have a unified and reduced-
order shape descriptor to represent all complex unit cells. In
this section, the LB spectrum, also known as “Shape-DNA,”
is utilized to characterize the unit cells in Spopurarea- We intro-
duce the LB descriptors and their calculation method in
Sections 3.1 and 3.2, respectively, and then demonstrate their
desirable characteristics using the descriptors of all unit cells
in Spoputatea> thereby justifying the spectrum as an effective
representation of the metamaterial genome.

3.1 An introduction to Laplace-Beltrami spectrum

For a real-valued function f defined on a Riemannian manifold
(Reuter et al. 2006), the Helmholtz equation is stated as:

Af ==X, (8)
where Af'is defined as:
Af= div(grad f). )

Fig. 4 The property space of the
expanded database with 88,000
structures, with shaded regions
indicating the boundary of the
property space
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The eigenvalues of the Helmholtz equation are named the =~ where ¢ is the trial function and

LB spectrum and denoted:

0\ A< < oo (10)

A 2D planar domain can be considered as a trivial case of
Riemannian manifolds. In this case, the Helmholtz equation
reduces to a Laplacian eigenvalue problem in a 2D Euclidean
space. Under the Dirichlet boundary condition, this Laplacian
eigenvalue problem can be formulated as

B &f .
T T M ms (11)
f=00n00

where ) and 0f) are the interior domain and corresponding
boundaries, respectively.

LB spectrum has been widely used in the field of computer
graphics for shape matching and classification, showing a
powerful discrimination ability (Lian et al. 2013; Reuter
et al. 2005). This fact provides confidence that the complex
unit cells in the metamaterial genome can be well character-
ized by LB spectrum. Besides its powerful discrimination
ability, LB descriptors also have some other attractive features
(Lévy 2006; Reuter et al. 2006; Reuter et al. 2009): (i) The LB
spectrum varies continuously with the shape of the planar
domain, indicating that similar shapes have similar LB spec-
tra. This feature provides a metric for similarity, which is
desirable for data-driven analysis and design. (ii) Some useful
geometrical information of the shape can be extracted from
the spectrum, including perimeter, area, and Euler number.
Because the physical properties of a unit cell are closely
related to its shape, there are intrinsic but implicit rela-
tions between the LB spectrum and effective properties.
Consequently, less training data and a much simpler
model are needed to obtain an accurate model compared
with voxel- or point-based representations. More details
are provided in the following sections.

3.2 Numerical calculation method for LB spectrum

The eigenvalue problem in (11) can be written in its variation-
al form by

a(f,p) =Ab(f,p)inQ
fyp=00nao2

(12)

Fig. 5 Different stages in
calculating the Laplace-Beltrami
spectrum of a unit cell

(a) original unit cell (b) boundary identification
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b(f,¢) = I a0

The domain 2 is then divided into a triangular mesh with a
linear shape function for each element. Thereby, f'is approxi-
mated by

f(x,y) = .

s

Fiq)i(x7y)awith F; :f(Pl)a (14)

where F; is the real value of fin nodal P;, M is the total amount
of triangular elements, and ®; is the linear nodal basis function
(Su2010). After substituting]7 and ®; into ¢ and £, (14) can be
transformed into its discretized form as

M M
Z Fia((I)i,(I)j) =A z Fib(q)i,q)j),for j: 1,...,M7 (15)
i=1 i=1

which can be transformed into the matrix form to make it more
compact:

AF = \BF, (16)
where
Ay = [IVe,(x,) - Vi (x, y)d02 -

Bij = H(I)J(x7y) : (bl(xvy)dQ

It is straightforward to solve for the eigenvector F and the
corresponding LB spectrum A with direct solvers.

In our implementation, a L2 distance field is obtained for
each unit cell, whose zero-level contour is extracted as the
boundary. A triangular mesh is then constructed in the domain
enclosed by the extracted boundary. After defining the
Dirichlet boundary condition, the finite element model can
be solved for the corresponding LB spectrum. An illustration
for different stages in this process is given in Fig. 5.

3.3 The spectrum space of the database

The LB spectrum of each unit cell in the populated database,
Spopulatea» 15 calculated by the finite element method above.
The space spanned by the LB spectrum is defined to be the
spectrum space of Sp,puratea» and by indexing each unit cell
with its LB spectrum, unit cells in Sp,purarea can be mapped

(c) mesh for FEA

(d) 1% LB eigenvector
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into a set of data points in the spectrum space. To select a
proper dimension for the spectrum space, the minimal
pairwise distance of each point is computed in the spectrum
space spanned by 4, 8, 12, and 16 orders of LB spectrum,
separately. Several representative quantiles of the minimal
pairwise distance are computed to characterize the distribu-
tion, as shown in Table 1.

The minimal pairwise distance increases as the dimension
of the spectrum space grows, which indicates that higher or-
ders of LB spectrum can provide a greater discrimination abil-
ity. However, a high-dimensional spectrum space can also
bring extra difficulties for data-driven methods. Therefore,
the dimension should be kept as low as possible without
sacrificing much discrimination power. As shown in Table 2,
most points in a 16D spectrum space are located at least sev-
eral units apart from each other. Meanwhile, a relatively small
portion of point pairs have their mutual distance less than 0.1.
These special pairs would not bring much trouble in practice
since their shapes only differ by a few pixels and cause little
change to the mechanical properties. Based on this observa-
tion, a 16D spectrum space is a proper compromise between
discrimination power and complexity in our case.

For a better visualization of the pairwise distances, we map
the 16D spectrum space to a 2D space using multidimensional
scaling (MDS) (Borg and Groenen 1997). To demonstrate
some important characteristics of the LB spectrum, some rep-
resentative shapes are selected from Sp,qpumaea together with
some artificial test shapes. These shapes are mapped into the
2D MDS plot shown in Fig. 6.

The MDS plot illustrates that the LB spectrum changes
continuously if a shape transforms continuously (e.g., see
the transformation of the unit cell with a single circular hole).
In addition, similar shapes have similar LB spectra and may
therefore be clustered in the spectrum space. This also means
that the LB spectrum extracts some regular patterns from the
shapes and embodies a metric for geometric similarity.

4 Quantitative analysis on spectrum-property
relations

In this section, we delve more deeply into the physical infor-
mation contained in the LB spectrum through both theoretical

and statistical analyses, providing the first connection between
LB descriptors and mechanical properties in literature. Given
the inherent information encoded by the LB spectrum, accu-
rate neural network models can then be created as surrogates
of the spectrum-property relation based on the metamaterial
database, Spoputatea» Which will tie into the later design step.

4.1 Physical information contained in the spectrum
4.1.1 Theoretical analysis

The LB spectrum and the homogenized properties are each
derived from separate partial differential equations and bound-
ary conditions, which renders the construction of an analytical
relationship between spectrum and effective properties unlike-
ly. However, since both LB spectrum and properties are cal-
culated for the same shape, certain geometric quantities can be
used as a bridge to link them. In fact, obtaining geometrical
quantities in terms of the LB spectrum through asymptotic
heat trace expansion has rigorous theoretical support from
the area of shape analysis (Kac 1966; McKean and Singer
1967; Protter 1987). The key to this relation is that both the
heat diffusion equation and the LB eigenvalue equation share
the same differential operator, i.e., the LB operator, and are
solved over the same shape, which in our study is the unit cell
design.

Specifically, as shown by Reuter (Reuter et al. 20006),
the heat trace technique can be used to approximate the
area of a 2D shape with respect to the LB spectrum. In
our case, the volume fraction of the unit cell is equal to
the area of the unit cell normalized by the fixed design
area (a square domain). Applying the heat trace expan-
sion, we can estimate the volume fraction of the unit
cell in terms of the LB spectrum as:

vzi—:r {2 (\/E + 2) é e’i\*i—<3\/§ + 4) ii 26 ¢ (\/5 + 1) é 4e’ﬂ _
(18)

In addition, a rough range for the effective properties
can be obtained by substituting the approximate volume
fraction above into some estimated bounds, e.g., the
Hashin-Shtrikman bounds shown below (Kachanov and
Sevostianov 2018).

Table 1 Quantiles of the minimal pairwise distance in different dimensions from the dataset

Orders of LB Lower sixteenths Lower eighths Lower fourths Median Upper fourths Upper eighths Upper sixteenths
7.52E—05 2.20E-03 0.02 0.18 0.57 1.52 3.30

8 3.69E—04 1.10E—02 0.12 0.90 2.83 7.92 17.25

12 1.07E-03 0.03 0.38 2.17 6.34 16.84 36.01

16 2.65E-03 0.07 0.84 397 10.79 27.37 57.01
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Table 2 Correlation coefficients between LB spectrum and mechanical properties
Order Ell-LBcorrelation E12-LB correlation E22-LB correlation Order  E11-LB correlation E12-LB correlation  E22-LB correlation
of LB coefficients coefficients coefficients of LB coefficients coefficients coefficients
1 —0.59641 —0.30449 -0.41818 9 —0.69098 —0.41556 —0.49406
2 —0.64972 —0.36202 —0.45551 10 —0.68053 —0.41020 —0.48539
3 —0.67951 —0.39392 —0.49126 11 —0.68952 —0.41531 —0.49224
4 —0.67064 —0.39820 —0.47687 12 —0.68408 —0.41493 —0.48970
5 —0.68259 —0.40132 —0.48710 13 —0.68539 —0.41477 —0.48985
6 —0.66853 —0.39965 —0.47515 14 —0.67753 —0.40925 —0.48175
7 —0.68208 —0.40350 —0.48412 15 —0.68448 —0.41458 —0.48865
8 —0.68153 —0.40952 —0.48681 16 —0.68359 —0.41623 —0.48901
4.1.2 Statistical analysis
K;S:0,K;S:K+¢ (19)
-1/K + 1) The previous theoretical analysis suggests a rough rela-
K+ FH tion between the LB spectrum and effective mechanical
vO) properties. In this section, we carry out a statistical
Pps = 0, s = o+ v (')\_ K+ 20 (20)  analysis on the populated database S,,pusarea to Obtain
-1/p+ : 7 further insight on the physical information contained in
Sp <K + §“) the spectrum.

where K and p are bulk and shear moduli of the matrix
material, Kjjs(Kpg) and pis (pys) are Hashin-Shirikman
bounds for the unit cells. This suggests that the LB spec-
trum impacts the effective properties. Equations (18-20)
also indicate that unit cells with larger LB spectrum
values tend to have smaller volume fractions, and that
the upper bounds of the effective elastic constants are
expected to be lower as the spectrum increases. In turn,
these relationships show that the LB spectrum encodes
some physical information of the unit cell and is more
than an abstract shape descriptor.

To demonstrate the spectrum-property correlation, several
representative scatter plots are drawn for selected orders of the
LB spectrum and components of the stiffness tensor (£71, E»»,
and E,) in Fig. 7.

Interestingly, these scatter plots exhibit similar L
shapes, revealing a regular pattern on the relationship
between the LB spectrum and different properties. The
L-shaped pattern indicates that higher values in the LB
spectrum correspond to a lower level and a narrower
range of achievable mechanical properties. This is in
good agreement with the analytical conclusion from
the previous subsection.

Fig. 6 A 2d multidimensional 400 T T T —// T T
scaling plot of the 16D spectrum
space of representative unit cells
from the populated database and 200 7
some artificial test shapes N g
£ ’ ; %
= 1
w g o _l_
S
-200 1
-400 : - - —j— -
-600 -400 -200 0 200 1069 1269 1469
MDS dim 1
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Fig. 7 Scatter plots for 3 selected
orders of LB spectrum and 3

Order=1

Order=8 Order=16

components of the effective
stiffness tensor

E11
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E12
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0 . 0
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| 1
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| 0 2000 4000 | 0 2000 4000 ‘ 0 2000 4000
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Correlation coefficients between LB spectrum values and me-
chanical properties can be further computed and shown in
Table 2.

These coefficients lie within the range (— 0.3, —0.7), indi-
cating a clear negative correlation between LB spectrum and
mechanical properties. This also confirms our previous theo-
retical prediction of the inverse relationship.

4.2 Surrogate modeling of structure-property
relations with neural networks

After revealing the correlation between spectrum values
and properties, their relation is further approximated by

Hidden Layer 1

Fig. 8 Structure of the two-layer
feedforward-backprop neural
network

surrogate modeling, which reduces the complexity and
computational cost in optimization. A two-layer
feedforward-backpropagation neural network is adopted
here because it provides great regression results for prob-
lems with nonlinear characteristics. The detailed structure
of the network is given in Fig. 8.

The hyperparameters of this neural network are found
through preliminary experiments. The neural network is fitted
with the first 16 LB descriptors as inputs and the properties
(E11, E2n, and E)) as outputs. The dataset is randomly divided
into a training set (60%), test set (20%), and validation set
(20%) to prevent overfitting and underfitting. The result is
shown in Table 3.

Hidden Layer 2

Tansig }

—_———————

Output Layer

output

| 3d-tensor

™ L
Tansig )

——————

@ Springer



2622

L. Wang et al.

Table 3 MSE and R? values for

the neural network Target feature Training set (60%) Test set (20%) Validation set (20%)
R MSE R MSE R MSE
Ell 0.96605 0.00429 0.96279 0.00448 0.96056 0.00467
El12 0.91900 0.00060 091716 0.00063 091316 0.00063
E22 0.91744 0.00666 0.90969 0.00732 0.91257 0.00694

The neural network model has relatively high R? values
and small mean squared errors (MSE), which is satisfactory
considering the amount of data and the high nonlinearity of
this problem. This accuracy can be partially attributed to the
geometrical and physical information contained in the LB
spectrum, distinguishing this spectrum descriptor from other
high-ordered and abstract representations.

5 Design synthesis

Integrating all of the above methods into the proposed data-
driven metamaterial design framework, we now demonstrate
its benefits through two design scenarios. For the first, the
collected genome and the created neural network model are
used to design new unit cells with target stiffness tensor com-
ponents. In the second, the genome is leveraged to design full

A target [0.45,0.20,0.35]
A new cell [0.44,0.20,0.33]
@ nodes [0.73,0.19,0.40]
[0.69,0.19,0.31]
[0.49,0.16,0.33]
[0.40,0.20,0.33]
0.4

E22

(a) example 1 for the interpolation process

0.3 A target  [0.60,0.15,0.30]
A new cell [0.61,0.15,0.30]
Yo.15 v ® nodes  [0.62,0.13,0.23]
w [0.59,0.15,0.26]
& [0.64,0.15,0.33]
g [0.58,0.15,0.39]
0
0.4 0.7
0.2 05
E22 E11

(b) example 2 for the interpolation process

Fig. 9 New unit cells generated by interpolations. The results are
visualized in the property space and the triplets in the legend
correspond to [E1y, Eo, Ex]

@ Springer

multiscale aperiodic structures. To tackle the issue of bound-
ary compatibility, we present an optimization method based
on MRF graphs to select unit cells from groups of candidates
with the same properties. Its efficacy is illustrated first using a
hypothetical example with target properties assigned at differ-
ent spatial locations, and finally through the design of canti-
lever beams with target displacement curves.

5.1 Data-driven unit cell design

Given a specific target property, one approach is to first try to
retrieve the corresponding unit cells from the database,
Spoputatea- However, there is a chance that Sp,,/areq does not
contain unit cells for all specified target properties. In this
case, we propose to generate desirable unit cells by a two-
step optimization scheme. In the first step, a heuristic optimi-
zation algorithm is applied to search for the optimal LB spec-
trum with the neural network. In the second step, new unit
cells are generated from the optimal LB spectrum.

In Schumacher’s work, a new unit cell with prescribed
properties is generated by interpolating among points of a
family with similar shapes and topology (Schumacher et al.
2015). However, for interpolation to work well, a database
must be constructed by generating several families of unit
cells with similar shapes, which limits the diversity of unit
cells and complicates the micro-scale design process.

Instead, since the distance in the LB spectrum space can
serve as a metric of the shape similarity, we divide existing
data points in S, .zaes N€ar the target into several families by
k-means clustering in the spectrum space. In this way, inter-
polation and data-driven unit cell design can be realized with-
out imposing any extra constraints on the forms of unit cells
when generating the database. In a selected cluster, we per-
form Delaunay triangulation in the property space, and take
the vertices of the simplex containing our target as base unit
cells for interpolation. We can then use the spectrum distance
to instruct the interpolation weights by solving the following
optimization problem:

min [ EE" (Nl s.t. Ay <A, N = 35wk, S5 wy =1 (21)

where E’ and E” are the vector forms of the target and predict-
ed stiffness tensors, respectively. A=[\y, ..., A\j¢] is the LB
spectra of candidate unit cells for the target stiffness tensor,
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Fig. 10 Illustration for

. I . G
geometrical pairwise energies 0!7

and mechanical pairwise energies

i

(a) Illustration on geometrical pairwise energies ij . The red bounding box defines the shared

boundary area. 95 is the ratio of yellow elements over the sum of red and yellow elements.

unit strain
—) 4= g

sl

U

e

(b) Illustration of the mechanical pairwise energies 9{;’ . Red vectors are stresses on the shared

while Xij is the ith order LB spectrum value of the jth base unit
cell. w=[wy, ..., w,] is the vector of weights of the & base unit
cells. Genetic algorithm (GA) is adopted to search for the
optimal weight distribution since it has advantages in multi-
variate and constrained problems, and the neural network of
structure-property relations is used to expediently predict E.
After obtaining the optimal weights, the new structure is gen-
erated through linear interpolation of the distance fields of the
base unit cells (Schumacher et al. 2015).Taking £, E,,, and
E/; as design targets, two design examples for this method are
shown in Fig. 9.

As shown in Fig. 9, the properties of newly designed unit
cells are close to their respective design targets. Moreover, the
base unit cells share similar shapes owing to the clustering on
the spectrum space. This can help to reduce artifacts in the
interpolated structure to guarantee the feasibility of the new
design.

Although the interpolation method is efficient and easy to
implement, there is a possibility that the interpolation might
fail when the target falls outside every Delaunay simplex. In
this situation, the optimal unit cell in each cluster can be taken

Table 4 Different sets of mechanical properties

Set 1 Set 2 Set 3 Set 4 Set 5
Ep 0.30 0.40 0.50 0.60 0.70
Ep» 0.10 0.10 0.15 0.20 0.20
E>y 0.30 0.40 0.50 0.60 0.70

boundary.

as initial guesses for TO and then evolved to attain the target
properties. Rather than using a random initial guess, this may
provide faster convergence in TO as well as more diverse
shapes for new designs.

5.2 Assembling the full multiscale structure
with compatible boundaries

The incompatibility between adjacent unit cells in multiscale
designs may deteriorate the mechanical properties and even
make it infeasible to fabricate the full structure. Thus, to con-
front this critical challenge, we propose to form candidate
groups via k-means clustering in the LB spectrum space, and
then select from each group the unit cells that guarantee
boundary compatibility while satisfying a spatially varying
distribution of target properties.

Before detailing the proposed design method, we first in-
troduce the metrics with which we describe the suitability of
candidate unit cells. To measure the match with respect to
properties, the unitary energy is defined for each candidate as:

0:(l) = |[E-E"||,, li=1,2,....k (22)
where 6, is the unitary energy for the ith cell, /; is the label of
the candidate building block assigned to the ith cell, £ is the
number of candidates assigned to each cell, and E' is the
elastic stiffness of the it/ cell. If the properties of the selected
building block are close to the target, the corresponding uni-
tary energy should be small.
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Fig. 11 The spatially varying

o dstinenots TSR] 5[5
corresponding MRF graph. The 3|2|1)1)2)4)3|1]5]3
number in each cell refers to the 2|15(5(3(5(2|3|5(4]|5
set of target properties in Table 5 al2lalil2lal2l5/1]5
215124212124
(4521 |5|3|5]|1]5
415|254 |5]2|1|1]4
413|441 (4|5|4|1]2
414|431 |5|5|4(4]|4
415121421352

properties distribution

As a second measure that quantifies the pairwise compati-
bility regarding boundaries, the pairwise energy between two
neighboring structures is defined as:

04 (1, 1) = 05 (11, 1) +%9§;4(zi,lj), (23)
where 95 is the percentage of incompatible pixels on the shared
boundary of the material matrix (Du and Kim 2018), as shown
in Fig. 10 a; 9;4 is the integration of the stress difference on the
shared boundary divided by the sum of the stress under a unit
strain field in the normal direction (Schumacher et al. 2015), as
shown in Fig. 10 b. Note that 92” is set to be zero when the ith
and jth cells are not adjacent or i=j.

If two neighboring structures are compatible both geometri-
cally and mechanically, the corresponding pairwise energy val-
ue will be small. Therefore, finding the optimal combination of
unit cells is equivalent to solving the following problem:

min Qi(li) + > Qij (ll, ZJ), (24)
[ i=1 j>i
where I=11}, ...,1,] is the label assignment for # cells of the full

structure. This discrete energy minimization problem is NP hard
to solve. However, it can be interpreted as an inference problem
on a grid-like MRF by taking each cell as a node (Wang et al.
2013), and then solved approximately but efficiently by the dual
decomposition (DD-MRF) method (Komodakis et al. 2011).
Subsequently, our method is divided into the following
three steps. Firstly, for each cell in the full structure, we select

Fig. 12 The optimized
combinations of unit cells for 4
different candidate groups

(a) candidate group 1

@ Springer

(b) candidate group 2

graph of MRF

k different candidate designs either from the database,
Spoputatea> O generated through our data-driven method
(Section 5.1). To choose the most promising candidate groups
from Sp,oputateas W€ propose to perform k-means clustering in
the LB spectrum space first and then select the most optimal
unit cell in each cluster. This guarantees the diversity of the
shapes, thus increasing the possibility of compatible bound-
aries between adjacent cells. Secondly, we assign the unitary
and pairwise energies to the nodes and edges of the MREF,
respectively. Finally, we optimize the combination of unit
cells through DD-MREF, forming the full structure.

As an initial demonstration of the effectiveness of our
method, we use a hypothetical example with 5 sets of proper-
ties randomly assigned to a 10 % 10 square macrostructure as
shown in Table 4 and Fig. 11.

For each set of properties, four candidate groups are select-
ed using different strategies: (i) 5 unit cells that best meet the
target properties from S,,pusarea Overall, (ii) 5 unit cells, one
that best meets the target from each of 5 clusters in the LB
spectrum space, (iii) 10 unit cells that best meet the target
overall, and (iv) 10 unit cells, one that best meets the target
from each of 10 clusters. DD-MRF is then used to find the
optimized combination with different candidate groups. The
optimized results are shown in Fig. 12 and Table 5.

For all groups regardless of selection strategy, the opti-
mized adjacent unit cells connect to each other on the bound-
ary while the deviation from the target properties at every
location is small. Groups containing 10 candidates result in
much lower energy values than those containing 5 candidates,
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Table 5 Energies of the optimized combinations for 4 different
candidate groups

Group 1 Group 2 Group 3 Group 4
Unitary energy 1.41 1.90 1.56 232
Pairwise energy 54.61 50.68 45.96 38.45
Total energy 56.02 52.58 47.52 41.77

indicating a better-tiled boundary and properties distribution
(Table 6). By selecting unit cells from different clusters, the
optimized structure has better boundary compatibility and
reaches a small deviation from the target properties. In fact,
a larger candidate group together with more versatile forms of
shapes provides a much larger design space, thus enabling a
more optimal tiling combination.

We note that the DD-MRF optimization process converges
quickly and takes only a few minutes to finish on a single CPU
(Intel(R) Xeon(R) Gold 6144 CPU @3.50 GHz). Furthermore,
DD-MRF decomposes the original problem into numerous sim-
ple sub-problems, making it amenable to parallel computation.

5.3 Cantilever beam examples

The procedure of structural synthesis is further applied to two
cantilever beam examples for validation. As shown in Fig. 13,
the design domain is a 40 mm x 200 mm cantilever beam with
the left end fixed and a vertical point force F'= 1 N at the center
of the right end. The aim is to design a beam with aperiodic
metamaterials unit cells that can achieve prescribed Y-
displacement for the centerline of the beam. The target curves
of Y-displacement versus the normalized length from different
locations on the centerline to the left end of the beam are
shown on the right plot of Fig. 13 for both examples. Note
that the first example has a smoothly varying target displace-
ment curve while the second has a sharp turning point in the

722222222222
S
o
=
3

middle of the curve. In both cases, Young’s modulus for the
solid material is 1 MPa and Poisson’s ratio is 0.3.

To study the influence of the size of the unit cell, the beam
is discretized by 4 x 20, 8 x40, and 16 x 80 grids for each
example. A variable sheet thickness method (Sigmund et al.
2016) is adopted to decide the distribution of target properties
in each cell of the grids first. The optimization objective for
the sheet thickness method is defined as

_ 2
(Viivi) ;

where N, qnier 18 the number of nodes located on the centerline
while v; and v; are the real Y-displacement and target Y-
displacement for the ith node on the centerline respectively.
Since the focus is the shape of the distorted beam, no volume
restriction is applied here.

With the identified distribution of target properties, the pro-
posed methods for the retrieval, generation, and assembling of
unit cells can be used to map corresponding microstructures to
each cell of the grids. In these two examples, 10 candidate unit
cells are selected from different clusters in the LB spectrum
space for each target property. Final designs are shown in Figs.
14 and 15.

These designs are performed on the aforementioned single
CPU, with the execution time ranging from a few minutes to
an hour, depending on the discretization. All designs have
well-connected boundaries between unit cells despite different
forms of topology. In the first example, the porosity is distrib-
uted evenly along the length of the beams to achieve a smooth
displacement curve. Meanwhile, the beams in the second ex-
ample have much higher porosity in the middle and at the
location near the free end. This is because the target displace-
ment consisting of two curves with different slopes will re-
quire different amount of stiffness. The left part with a smaller
slope requires a stiffer material whilst the right part requires a
less stiff one. From the resulting displacement curves, it can be

1 N center

fobj:— Z

N, center i=1

(25)

0 T
- g
E -50 Turning point
- for Ex2
€ -100
]
5
150
5
Q
27 —Target curve for Ex 1
. g 200
250 —Target curve for Ex 2

0 0.5 1
normalized distance

Fig. 13 The design domain and boundary conditions for the numerical example (left) and the target displacements (right)
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Fig. 14 Beam designs (left) and 0
displacements curves in the first
example (right) E -50
E
e
c.
s 100
£
8 150
< —Target
o e
£ 8 x 40
—16 x 80
-250
0 0.5 1

16 x 80

observed that designs with finer discretization can better
match the target. The design with a 4 x 20 mesh in the second
example exhibits a large deviation from the target, which is
due to the failure of the size-separation hypothesis in the ho-
mogenization theory. All other curves achieve the displace-
ment objectives with relatively small deviations.

Overall, a finer mesh together with a larger candidate group
results in a better design, and our proposed framework performed
well in designing a two-scale metamaterial system. Moreover,
the appropriate shape changes induced by the abrupt turn in the
second target displacement curve demonstrate the potential of
this method to control deformation, nonlinear behavior, and per-
formance such as mobility and induced buckling.

6 Conclusions

This study establishes a metamaterial genome with the LB
spectrum as a shape descriptor that encapsulates and organizes
highly diverse unit cells, enabling efficient generation of unit
cell families, understanding of structure-property relation-
ships, and data-driven metamaterial design and boundary
compatible tiling.

Fig. 15 Beam designs (left) and
displacements curves in the
second example (right)

@ Springer

normalized distance

To provide greater freedom for design, a stochastic shape
perturbation method is developed to obtain a metamaterials
database covering a wide range of properties in an autono-
mous and efficient manner. Since this database, or genome,
is large and contains very diverse unit cells, the commonly
used pixel representation fails to provide effective data man-
agement. Therefore, a powerful spectral descriptor, the LB
spectrum, is employed for the first time to represent unit cells
in the genome with much-reduced dimension, allowing us to
characterize unit cells with complex shapes using only 16
descriptors in the demonstrated cases. In addition, it is evident
from our analysis that the LB spectrum contains rich physical
information and provides an effective metric to differentiate
between shape, benefitting the later design synthesis steps.

In the unit cell design, our neural networks, which act
as surrogate models linking the spectrum to mechanical
properties, provide satisfying prediction results as a direct
result of the reduced dimension and the valuable physical
information contained in the spectrum. By exploiting the
LB spectrum as a metric for shape similarity, unit cell
families can be easily discovered by clustering in the spec-
trum space and then used to interpolate new micro-scale
designs.

-500

-100

-150

-200

displacement(mm)

-250
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To design a full macro-scale structure, we demonstrate that
the boundary tiling challenge can be transformed into a grid-
like MRF graph and then efficiently solved by the DD-MRF
method. The results reveal that candidate groups with a greater
number and variety of unit cells can enhance boundary com-
patibility, both of which can be easily achieved through clus-
tering the dense and diverse genome in the spectrum space.
Two examples of designing beams to achieve the desired spa-
tially varying displacements further illustrate the potential of
our methods. Compared with existing full structure assembly
methods using a unit cell database, our method can provide
better compatibility on the boundary without constricting the
genome to pre-defined families of similar shapes.

The effectiveness of our data-driven approach utilizing a
low dimensional LB spectrum representation is not limited to
the relatively simple 2D problems shown in this work. In the
computer graphics field, for example, the LB spectrum has
been successfully employed for 3D geometries with a moder-
ate increase of the dimension of the descriptors (Lévy 2006;
Reuter et al. 2006). Research into extending our design frame-
work to 3D, nonlinear, and multi-physics cases is underway.
Another promising direction is to combine more advanced
machine learning methods with the genome to design

Appendix

Table 6 Pseudo code for populating the database

structural systems with complex functionalities, such as pat-
tern buckling, nonlinear deformation, and dynamic properties.
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Replication of results There are mainly 5 algorithms proposed in this
paper: microstructure design, database extension, LB spectrum calcula-
tion, unit cell design, and DD-MRF for boundary optimization.
Microstructure design is realized using the MATLAB code in (Xia and
Breitkopf 2015) with minor modifications. Detailed pseudo code for da-
tabase extension is given in Table 6 in the appendix. LB spectrum is
calculated through the PDE toolbox in MATLAB. Detailed
implementations of DD-MRF can be found in (Komodakis et al. 2011).

Algorithm 1 Procedure for populating the database iteratively

Procedure POPDATABASE (input:

microstructures labeled with

properties in initial database S;,iriqr, Output: microstructures labeled
with properties in a populated database Syqputatea)

1 Spupulated < Sinitiula Ad <1

2 calculate p of each point in the property space of Syopuiated

3 while Ad > 0.1 or mean(p) < 500 do

4 compute the convex hull of the property space of Syopuiated

5 calculate the L2 distance d and p for the score function of each
point

6 select N = 100 unit cells with the highest score function values,
assign them to the set Ssq0q as the seeds for perturbation

7 for microstructure M; in Sgeeq

8 i<0

9 while i <20 do

10 M; « perturbate M; and fix small defects

11 if M; doesn’t have unconnected components then

12 calculate the effective properties of M,

13 add Mi to Spopulated

14 end if

15 i=it+

16 end while

17 end for

18 calculate

19 end while

20 remove duplicate microstructures from Syopuiated

end procedure

@ Springer
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