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Abstract

Metamaterials are emerging as a new paradigmatic material system to render unprecedented and tailorable properties for a
wide variety of engineering applications. However, the inverse design of metamaterial and its multiscale system is challenging
due to high-dimensional topological design space, multiple local optima, and high computational cost. To address these
hurdles, we propose a novel data-driven metamaterial design framework based on deep generative modeling. A variational
autoencoder (VAE) and a regressor for property prediction are simultaneously trained on a large metamaterial database to
map complex microstructures into a low-dimensional, continuous, and organized latent space. We show in this study that the
latent space of VAE provides a distance metric to measure shape similarity, enable interpolation between microstructures and
encode meaningful patterns of variation in geometries and properties. Based on these insights, systematic data-driven methods
are proposed for the design of microstructure, graded family, and multiscale system. For microstructure design, the tuning
of mechanical properties and complex manipulations of microstructures are easily achieved by simple vector operations in
the latent space. The vector operation is further extended to generate metamaterial families with a controlled gradation of
mechanical properties by searching on a constructed graph model. For multiscale metamaterial systems design, a diverse set of
microstructures can be rapidly generated using VAE for target properties at different locations and then assembled by an efficient
graph-based optimization method to ensure compatibility between adjacent microstructures. We demonstrate our framework by
designing both functionally graded and heterogeneous metamaterial systems that achieve desired distortion behaviors.
c⃝ 2020 Published by Elsevier B.V.
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1. Introduction

Metamaterials are artificial materials that derive their unusual properties from the geometry of microstructures
rather than constituent materials [1]. A mechanical metamaterial is a subset of metamaterials designed to render a
wide range of mechanical properties unreachable by its material composition [2]. As a result, there is a growing
interest in designing multiscale mechanical metamaterial systems [3], assembled by numerous heterogeneous
microstructures to achieve spatially varying macro-properties for intricate structural behaviors. However, the design
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f a multiscale metamaterial system is a challenging problem involving complex inverse design at the microscale,
ostly nested optimization at the macroscale, and boundary matching between neighboring microstructures.

Topology optimization (TO) methods consider the design of metamaterial microstructures as an optimization of
he distribution of constituent materials within a periodically tiled unit cell. By using homogenization to compute
he effective properties, the material distribution is updated iteratively to achieve target properties. However, current
O methods mainly focus on the design of extreme mechanical properties with volume fraction or mass constraints,
uch as negative Poisson’s ratio design [4,5] and the maximization of the bulk and shear modulus [6,7], rather than
he exploration of different microstructures to achieve wide-range material properties. This is because metamaterial
esign is an ill-defined inverse problem with an infinite-dimensional geometrical design space and a one-to-many
apping from properties to microstructures. These characteristics create an irregular landscape for the objective

unction with many local optima [8] and make microstructure design sensitive to the initial guess. When the
ull structure is assembled by heterogeneous rather than periodic microstructures, the design becomes even more
hallenging. State-of-the-art multiscale designs of systems with periodic microstructures [9–13] rely on nested
ptimization frameworks that are computationally demanding and do not scale to heterogeneous designs. Since
he optimization of different microstructures is decoupled by the homogenization method, adjacent microstructures
n a multiscale metamaterial system may not be well-connected. Even though some techniques have been proposed
o address the connectivity issue [14–16], such as specifying fixed connectors and adding pair-wise constraints, they
ither sacrifice the generality of the design or do not scale well.

With the growth of data resources [17], a promising direction is to generate a database of the metamaterial
icrostructures and then utilize it to enable the efficient data-driven design of a heterogeneous system [18–27].
he spatial distribution of properties in the macrostructure can be first optimized using conventional topology
ptimization techniques and the corresponding microstructures can then be fetched from the database to fill each
lement in the full structure without the need to do nested optimization. To ensure connectivity, most data-driven
ethods only include a small number of microstructure designs with a narrow property space. For a wider range

f properties, Schumacher et al. [28] proposed to construct a database with different metamaterial families, each
ontaining similar microstructures and covering a respective region in the property space. However, this method
elies on the elaborate construction of metamaterial families with limited variations, which can only provide
uboptimal designs when one aims to explore the entire space of physical properties. To improve this method,
hu et al. [8] established a larger and richer database by stochastically sampling the material distribution in the
icrostructure. However, due to the large amount and diverse shapes of microstructures, an immense combinatorial

pace needs to be explored to form compatible boundaries between neighboring unit cells. Overall, previous
ork has only focused on the construction of an elaborate database while few researchers have addressed how

o incorporate a large database with the design of the multiscale system in a scalable way. The need for an effective
epresentation and retrieval method for the metamaterials has been constantly overlooked.

The aim of this study is thus to provide an integrated framework for the representation, management, and
tilization of a large microstructure database to facilitate metamaterial microstructures and multiscale systems
esign. Specifically, we will leverage the power of deep neural networks to discover the underlying data structure
f a large database. Recent years have seen substantial advances in applying deep neural networks for structure
nd material designs, which can be largely divided into applications with predictive models and generative
odels. Predictive models aim to predict the response for a given design to lower the computational cost for

he nested optimization, such as material properties prediction in multiscale structural design [29–32] and stress
eld prediction in topology optimization [33]. In contrast, deep generative models, such as generative adversarial
etworks (GAN) [34] and variational autoencoder (VAE) [35], aim to learn the underlying structure of a large dataset
o enable the generation of new designs from a low-dimensional latent space. In the area of material design, deep
enerative models had been applied to the microstructure characterization and reconstruction of nanomaterials and
lloys [36,37], design of material microstructure morphologies [38], heat conduction materials [39], and design of
hotonic/phononic metamaterials [40–43]. Despite using different neural network architectures, these applications
ollow a similar design framework by using the latent vectors of the generative model as reduced-dimensional
esign variables for metamaterials. Combined with a trained predictive model, optimization on the latent space is
erformed to efficiently explore the high-dimensional or intractable geometric design spaces. However, the focus of
hese applications is on the microstructure design to achieve superior properties. How to incorporate the generative

odel into the data-driven design of multiscale metamaterial systems has not yet been explored.
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Fig. 1. Overview of the proposed framework.

In this study, we propose to train a deep generative model to organize complex microstructures into a continuous
nd highly structured latent space. Differentiating from existing deep-learning-based metamaterial design methods,
ur research highlights the neglected characteristics of the deep generative model: the regular mathematical structure
nd rich mechanical properties information encoded in the latent space. We show that complex manipulations on
he geometry and tuning of the mechanical properties can be achieved by performing simple vector arithmetic in the
atent space. By taking advantage of the discovered mathematical structure and mechanical properties information,
he proposed generative model enables easy generation of metamaterial families with a controlled gradation of
roperties for multiscale functionally graded structure design and offers a scalable method to achieve heterogeneous
ultiscale system designs with optimal property distribution and compatible boundaries. We demonstrate our

ramework by designing both functionally graded and heterogeneous metamaterial systems that achieve desired
istortion behaviors.

. Overview of the proposed framework

We propose an integrated framework based on generative deep learning for the design of metamaterial microstruc-
ures, families, and multiscale metamaterial systems. As shown in Fig. 1, we first construct a generative neural
etwork model and identify some important characteristics and mathematical structures. Based on the extracted
haracteristics, we propose to enable the tuning of properties, generation of diverse candidate microstructures for
arget properties, and metamaterial families with a prescribed gradation of properties by simple operations in the
atent space. These design methods are integrated into the design of the aperiodic multiscale system as well as the
unctionally graded structure.

As shown in the first column of Fig. 1, variational autoencoder (VAE) combined with a regressor of the
echanical properties of interest, i.e., the independent components of the stiffness matrix, are simultaneously

rained on a large metamaterials database. This database contains various complex microstructures with wide-
anged properties precomputed by physics-based structure–property simulations. The encoder component of the
AE compresses complex microstructures into a low dimensional latent space by a series of convolutional operations
hile the decoder reconstructs the full microstructure from the compressed latent vectors through deconvolutions.
he low-dimensional latent space forms a bottleneck in the middle of the autoencoder, which will force the encoder

o extract the most critical features of microstructures and organize complex geometries into a continuous and

eaningful embedding. Since the compression and reconstruction processes only focus on the geometrical aspect,
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e incorporate a regressor into the architecture and train it simultaneously with the VAE model, organizing the
istribution of microstructures in the latent space by their mechanical properties.

Due to the low dimensionality, the continuous embedding, and the relation with mechanical properties, the latent
pace is forced to encode meaningful variations in geometries or properties for certain directions in the latent space.
he “meaningfulness” used in this study refers to the regular mathematical structure and rich mechanical properties

nformation encoded in the latent space. Specifically, we observe that the latent space actually forms a conceptual
pace [44] where different abstract concepts of the microstructures, e.g., “high stiffness” and “low Poisson’s ratios”,
ccupy different regions in the space and can be represented by the latent vectors at the centers of those regions. The
atent space also induces a distance metric to measure shape similarity and enable interpolation between a pair of
icrostructures by passing the weighted sum of their latent vectors to the decoder. Based on these characteristics,
e can establish an integrated framework to facilitate the design of microstructures, metamaterial families, and
ultiscale structural systems.
For the unit-cell microstructure and microstructure family designs shown in the middle column of Fig. 1, we

iew the change from one concept to the other in the conceptual latent space to be like a semantic operation. For
xample, the process to make a microstructure change from “low stiffness” to “high stiffness” can be viewed as a
emantic operation. The realization of a semantic operation generally involves complex shape transformations or
terative optimizations. However, we observe that complex semantic operations are achieved simply by moving in
ertain directions in the latent space, which are named as semantic arrows in this study [45]. We identify several such

sematic arrows to enable the direct tuning of stiffness, anisotropic characteristics, and Poisson’s ratio with simple
vector arithmetic in the latent space. These semantic arrows provide high-level control of the microstructures, not
only beneficial for unit cell design but also for generating a diverse candidate set to ensure connected neighboring
microstructures and manufacturing feasibility in multiscale systems.

The advantageous characteristics of the latent space are further applied to the design of metamaterial families.
Specifically, we define a metamaterial family to be a set of microstructures with similar configurations but a gradual
change in geometry that also achieves a given continuous variation of material properties. In other words, it is a
sequence of microstructures with morphing geometries sorted to render a certain gradation of material properties.
Each metamaterial family can thus be represented as a bounded, continuous, and directed curve in the latent space,
along which the corresponding microstructure will have a gradual change in geometry to achieve continuously
graded properties. The metamaterial families in this study can be leveraged to design functionally graded materials
(FGM) [46]. When we have prior knowledge on a specific design problem or would like to alleviate the stress
concentrations, a metamaterial family instead of a large database is more desirable for the efficient design of the
multiscale system. To create such families, we first view microstructures in the database as nodes on a graph with
their mutual distance in the VAE latent space as edge weights. Different paths on this weighted graph connect
different subsets of microstructures. The similarities of microstructures within each subset can be measured by
the length of the corresponding path. Therefore, the shortest path on the graph connecting microstructures with
the target gradation of properties can be considered as a piecewise linear approximation of the continuous curve
representing a metamaterial family in the latent space. As a result, diverse sets of metamaterial families with the
target property gradient can be efficiently obtained by searching for the shortest paths on this directed, weighted
graph and then generating new microstructures through sampling on these paths.

Finally, as shown in the last column of Fig. 1, we integrate the microstructure and metamaterial family design
methods into the design of aperiodic and functionally graded multiscale metamaterial systems, respectively. Both
types of multiscale designs rely on a two-stage design process to achieve the prescribed system behavior. The
first stage optimizes the properties distribution based on the property space provided by the large database or
the given graded properties of a metamaterial family. The second stage selects corresponding microstructures for
each designed property to assemble the full structure. In this stage for the aperiodic design, we propose to use a
graph-based combinatorial optimization method to efficiently select the best microstructure from each candidate
set to ensure good compatibility between adjacent unit cells. We provide detailed descriptions of the three main
components of the proposed framework in Sections 3–5, respectively.

3. Knowledge extraction from variational autoencoder for metamaterials

3.1. Introduction of variational autoencoders

Current data-driven methods lack an efficient representation and data retrieval method that effectively enables

the use of large metamaterial databases for multiscale system design. The recent development of deep generative
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Fig. 2. Neural network architecture of the VAE model for metamaterials.

models provides a new direction to address this issue. Deep generative models are neural networks that approximate
high-dimensional observed data with simple sampling on the latent space [35]. The two popular deep generative
models are the generative adversarial network (GAN) and the variational autoencoder (VAE). GAN is constructed
based on a game theoretic scenario in which a generator network is competing against a discriminator network
to generate new samples statistically indistinguishable from the observed data. In contrast, VAE simultaneously
trains a parametric encoder in combination with a generator, providing an explicit likelihood for training. With the
trained encoder, VAE allows an easy mapping from the observed dataset to the latent space with a continuous and
meaningful coordinate system, which is generally intractable for GAN model. Although GAN is expected to have a
greater generative ability and quality, it has a less explicit guarantee of a continuous latent space with a meaningful
structure [47]. Since our aim is to provide a useful representation and management of microstructures for multiscale
design, VAE is a more appropriate choice for this study.

For the metamaterial database, the pixelated matrix x of microstructures can be viewed as a realization of an
underlying random process with its true distribution p∗ (x) unknown. As shown in Fig. 2, VAE model aims to learn

stochastic mapping between the observed data space x and a latent space z, which can be interpreted as a directed
model with a joint distribution pθ (x, z) over both the observed variables x and the latent variables z:

pθ (x, z) = pθ (x|z) pθ (z) , (1)

where θ is the vector of model parameters, pθ (z) is the prior distribution of latent variables and pθ (x|z) is the
approximated distribution of x conditioned on z. The conditioned distribution pθ (x|z) is parameterized by a deep
neural network (decoder), which can provide almost arbitrary flexibility for the marginal distribution pθ (x) with a
relatively simple predefined prior distribution pθ (z). However, the marginal distribution used to obtain the likelihood
function for the training is generally intractable. To tackle this intractability issue, VAE introduces another deep
neural network qϕ (z|x) (encoder or inference model) to map x back to the latent vector z by approximating the
posterior distribution pθ (z|x). With the encoder and decoder networks, the likelihood function for the training has
an explicit representation and is approximated by its the evidence lower bound (ELBO):

L (θ , ϕ; x) = Eqϕ (z|x)

[
log

(
pθ (x, z)
qϕ (z|x)

)]
= Eqϕ (z|x) [log (pθ (x|z))] − Eqϕ (z|x)

[
log

(
qϕ (z|x)

pθ (z|x)

)]
. (2)

Note that the second term is the Kullback–Leibler (KL) divergence DK L
[
qϕ (z|x) ∥ pθ (z|x)

]
. This approximated

lower bound enables the use of the efficient stochastic gradient descent method (SGD) for the simultaneous training
of the encoder and decoder. Specifically, VAE assumes pθ (z) ∼ N (0, I) and adopts a Gaussian distribution for
approximated posterior distribution:
qϕ (z|x) = N (µ, σ ) , (3)
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here µ, σ is predicted by the decoder network. By assigning z = µ + σ ⊙ ε and ε ∼ N (0, I), the usual Monte
Carlo estimator for ELBO used in SGD is reduced to

L (θ , ϕ; x) = Eqϕ (z|x) [log (pθ (x|z))] − DK L
[
qϕ (z|x) ∥ pθ (z)

]
=

1
L

L∑
l

log (pθ (x|z)) −
1
2

J∑
j

(
1 + log

(
σ 2

j

)
− σ 2

j − µ2
j

)
(4)

here J is the dimension of the latent space and L is the number of samples. Therefore, we can optimize the
arameters of the encoder and decoder by performing SGD to solve

min
θ ,ϕ

[−L (θ , ϕ; x)] (5)

Besides the rigorous variational inference theory, we describe the VAE more intuitively as follows. Since the
atent space generally has a much lower dimensionality compared to the original observed data, the VAE model
orms an ‘information bottleneck’ in the middle, greatly compressing the information of the original data into a
ow-dimensional latent space. The first term in Eq. (2) can be viewed as a reconstruction error that measures the
oss of information due to the ‘bottleneck’. By minimizing this term, the encoder is forced to distill salient features
f the observed data to enable the high reconstruction performance of the decoder. However, if trained only with
he reconstruction loss, the model will tend to simply memorize all the training data and be reduced to a classical
utoencoder, leaving many ‘dead zones’ in the latent space that cannot be reconstructed into realistic samples by the
ecoder. Therefore, the sampling process during the training can be viewed as a way to improve the generalization
bility by adding random noise to the latent variables, with the KL divergence added to the loss function for
ormalization. To ensure low reconstruction error under the random noise, the neighboring area in the latent space
s mapped to similar microstructures by the decoder. Therefore, the encoder is forced to construct a continuous
nd meaningful latent space. In fact, a key insight of this paper is that the latent space of the VAE provides a
atural distance metric and meaningful semantic structure, which enables easy control of complex geometries and
n efficient data-driven design framework for metamaterial microstructures and multiscale system.

.2. The proposed neural network architecture and model training

As illustrated in the last section, a stand-alone VAE learns a continuous latent space by only focusing on
he geometries of microstructures. Since the interest of metamaterial design is to achieve prescribed mechanical
roperties, a latent space linked to the mechanical properties is more desirable. Therefore, as shown in Figs. 2 and
, we augment the VAE architecture with an additional regressor, fτ (z), whose inputs are the latent variables and
utputs are the independent components C ind of the stiffness matrix C. The parameter optimization problem for
he VAE is modified to include the regression error so that the model is trained simultaneously on geometries and
roperties:

min
θ ,ϕ,τ

[
−L (θ , ϕ; x) + ∥ fτ (z) − C ind∥2

]
. (6)

The details of the neural network architecture are given in Fig. 3. We compile convolutional layers to form the
ncoder and decoder. Note that the decoder is designed to have a shallower neural network structure than the encoder
o reduce the possible overfitting. The dimension of the latent space is set to be 16 for this study, balancing between
ow-dimensionality and generation quality. Based on our empirical study, a higher dimensionality (>16) does not
rovide much improvement in reconstruction loss for our program. The regressor for the independent components
f the stiffness matrix consists of layers of fully connected neural networks. During the training, the decoder will
ake the latent variables sampled from the approximated posterior distribution as input while the regressor will only
ake the mean value µ given by the encoder as input. In other words, the random noise is only added to the decoder
ut not the regressor.

Before training, we construct a large database of microstructures as training data for the generative model,
ollowing our previously proposed method with a combination of topology optimization and an iterative stochastic
hape perturbation [19]. Herein, we give a brief description of the database generation process. The Young’s modulus
nd Poisson’s ratio for the constituent material are set to be 1 and 0.49, respectively. In this study, to better

emonstrate the benefit brought by the versatile properties of a large database, we aim to realize structural designs



L. Wang, Y.-C. Chan, F. Ahmed et al. / Computer Methods in Applied Mechanics and Engineering 372 (2020) 113377 7

C

Fig. 3. The detailed architecture of the proposed neural network model.

with spatially varying structural requirements, i.e. the target displacement profile design. Therefore, we focus on
generating a large variation of geometries that cover a wide range of properties represented by the elements in the
stiffness matrix. Since we only focus on the orthotropic microstructures in this study, four independent elements,
i.e., C11, C12, C22 and C33 are used to describe the stiffness matrix. To cover a wide range of properties, we first
performed SIMP-based TO [48] to find a corresponding pixelated microstructure design for each uniformly sampled
target stiffness matrix. This TO design process is only performed once to form an initial database. After a threshold
filtering, each microstructure design is represented by a 50×50 binary matrix. With 1400 microstructures generated
by TO as initial seeds, an iterative stochastic shape perturbation algorithm is employed to perturb microstructure
geometries that correspond to extreme and sparse properties. The extremeness and sparsity are measured by the
distance to the boundary and the number of neighboring microstructures in the property space, respectively. Possible
defects, such as isolated pixels and checkerboard patterns, are detected and fixed to ensure the feasibility of generated
microstructures. By performing the selection and perturbation process for 200 iterations using parallel computing,
we create a large database, close to 250,000 microstructures in our study, to systematically populate sparse areas and
advance the boundary of the property space as shown in Fig. 4. This database is available on our website.1 Based on
our empirical study, this sample size not only provides an accurate deep learning model but also ensure compatibility
between neighboring microstructures in the latter case studies of metamaterial systems design. Note that we only
focus on the orthotropic microstructures in this study, which only requires four independent components, i.e., C11,

12, C22 and C33 to describe the stiffness matrix.
For the training of the proposed neural network model, we randomly divide the database into a training set

(228,396 microstructures) and a validation set (20,000 microstructures). The training is performed through mini-
batch gradient descent for 500 epochs with the batch size set to be 32. We tried two commonly used optimizers,
RMSprop and Adam, to train the model. The loss function converged to a lower value with RMSprop as the
optimizer, taking 44,496 s on a workstation with a GeForce GTX Titan XP GPU and 12 GB memory. The training
history of the loss function values is shown in Fig. 5.

Fig. 6(a) and (b) show some representative microstructure designs from the training data and their reconstructed
configurations generated with the proposed model, respectively. Overall, the trained VAE model provides good
reconstruction quality and can even preserve some fine features. However, it can also be noted that some
reconstructed microstructures have blurred regions on the boundary, which is a common phenomenon for generative
models with a log-likelihood loss function [47]. We randomly sample 100 points in the latent space and feed them
into the decoder to obtain the generated designs shown in Fig. 6(c). Despite a small portion of blurry designs,
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Fig. 4. Property space of the established metamaterial database, with shaded regions indicating the boundary of the property space.

Fig. 5. The training history of the proposed neural network model.

Fig. 6. Representative, reconstructed, and randomly generated microstructures, where black pixels are solid material and white pixels are
void. (a) Representative ground truth microstructures selected from the database, (b) corresponding reconstructed microstructures generated
by the proposed VAE model, (c) microstructures randomly generated with the proposed VAE model.

about one out of ten, most of the generated microstructures can have a clear and feasible configuration. Some
newly generated microstructures do not exist within the training dataset and are observed to have diverse variations
in geometries. This indicates that, as a generative model, VAE does not simply memorize the dataset but learns some
underlying patterns that can be used to generate new and varied designs. To address the possible blurry designs, we

interpret elements with the pixel values higher than 0.9 to be solid (mapped to 1) and others to be void (mapped
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Fig. 7. (a) Generated microstructures by traversing along different axes in the latent space, and (b) shape clustering in the latent space using
PCA.

to 0) in the remaining study. After filtering, morphological operations are used to detect and delete isolated pixels.
Inevitably, this modification will cause discrepancies of latent vector and predicted properties between the original
and modified microstructures. However, these discrepancies can be considered as insignificant in most cases if the
samples are not in very sparse areas in the latent space, which is the case for the remaining parts in this paper.
This is because blurred pixels generally occur on the boundary and the encoder is driven to map similar shapes into
neighboring points in the latent space.

3.3. A deeper understanding of the latent space

In this section, we identify the important characteristics and underlying structures of the latent space. While
these characteristics have been neglected in current metamaterial design methods, we leverage them for efficient
representation and management of a large metamaterial database, which are the basic components of our proposed
design framework.

When the continuity is combined with the low dimensionality of the latent space, different vectorized directions
in the latent space encode physically meaningful patterns of microstructure shape morphing. To demonstrate this,
we randomly choose a microstructure, map it to the latent space and then move each of the latent variables (16
in our study) independently along their negative and positive directions with a fixed step size. The corresponding
microstructures along the path are then reconstructed with the decoder network. In Fig. 7(a), we show the results
or traversals along the first three axes in the latent space (z1, z2, z3).

It can be observed that each axis encodes a unique local feature transformation pattern for the selected
icrostructure. For example, by moving in the first axial direction, the central hole will be stretched in the horizontal

irection. In contrast, the hole will be compressed in the vertical direction when moving along the second latent
xis.

This meaningful structure of the latent space encompasses two characteristics that are critical to our later
ntegrated design method. The first is that shape interpolation or morphing can be easily achieved by moving on

curve or line connecting the latent vectors of any two microstructures in the latent space and then mapping
ack to real microstructures using the decoder. This is illustrated in Fig. 7(a), where each traversal represents a
atural morphing from the left-most microstructure to the rightmost one. The second characteristic rendered by
his organized latent space is a natural distance metric between different shapes. A short transformation path in the
atent space means that one microstructure can be changed into another shape with relatively simple transformation,
roviding a measure of the similarity between two shapes. To demonstrate this distance metric, we randomly select
icrostructures from three different locations in the latent space with a relatively large mutual distance. The two-

imensional principal component analysis (PCA) of these three clusters in the latent space and their corresponding

icrostructures are shown in Fig. 6(b). From the figure, each cluster contains microstructures with similar shapes
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Fig. 8. Two-dimensional PCA analysis of the latent space colored by different properties. The color bar represents the value of a corresponding
roperty. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

hile different clusters will have significantly different microstructure configurations, which is consistent with their
utual distance in the latent space.
The above characteristics of the latent space are all related to the geometrical aspect of microstructures. With

he simultaneously trained regressor added to the VAE model, we further include mechanical property information
nto the latent space. For visualization, we reduce the 16-dimensional latent space of the whole database to a two-
imensional plane by PCA analysis and indicate the value of the mechanical property of each microstructure by
olor in Fig. 8.

From the figure, we note that microstructures with similar properties will cluster in the same areas in the
atent space. This is because the regression loss will drive the model to adopt a latent embedding that can
rovide a relatively simple mapping between latent variables and the mechanical properties for a better regression
erformance. The latent space can be viewed as a geometrical representation of different design concepts for
echanical properties, e.g., “high stiffness” and “low stiffness”, forming a conceptual space for metamaterials. This

s the third characteristic that we found to be useful in our integrated design framework.
To summarize, the continuity and low dimensionality of the latent space leads to a meaningful and structured

atent space. We identify three important characteristics of this latent space: (a) interpolation can be achieved by
oving in the latent space, (2) the distance in the latent space provides a measure for shape similarity, and (3)

ifferent property concepts cluster in the latent space to form a conceptual space. In the following sections, we will
emonstrate how to take advantage of these characteristics to enable higher-level management of the microstructures
nd efficient design of its combinatorial multiscale systems.

. VAE-assisted metamaterial microstructure and family design

.1. Achieving mechanical properties using the concept of semantic arrows

We will demonstrate in this section how the deep generative models are used for inverse design of unit cell
icrostructures and a family of microstructures covering a range of properties, by performing simple vector

rithmetic in the latent space.
As illustrated in Section 3.3, the latent space of VAE forms a conceptual space for different design concepts

elated to mechanical properties. As a result, certain directions in this conceptual space represent a series of shape
ransformation to enable the change from one property to another, which are named semantic arrows in this study.
nce we identify these semantic arrows, the tuning of the mechanical properties can be achieved by simple latent
ector arithmetic without the need for direct and complex manipulations on high-dimensional shapes.

The first semantic arrow we obtain is related to the tuning of stiffness. It can be noted from Fig. 8 that
microstructures with high and low C11 values have different clusters in the latent space, indicating a semantic arrow
for the transformation from low to high stiffness. To obtain this arrow, we first identify 30% of microstructures with
the highest C11 values and the other 30% with the lowest C11 values to obtain their respective cluster center in the
latent space. As shown in Fig. 9(a), the normalized vector pointing from the cluster center for low C11 value to the
one for high C11 value can be obtained as a semantic arrow, which we name the C11 Arrow.

To illustrate the effect of traveling along this semantic arrow, we randomly select two microstructures and give
them a set of negative and positive displacements along the C arrow with a fixed step size. As shown in Fig. 9(b),
11
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Fig. 9. The construction of the C11 arrow and examples for the traversal along the C11 arrow.

Fig. 10. The construction of the anisotropic arrow and examples for the traversal along the anisotropic arrow.

we use the decoder to reconstruct the corresponding microstructures after taking each step and calculate their
effective C11 values. By going in the positive direction of the modulus arrow, the microstructures will change
in a way that increases the C11 values and vice versa.

Note that the C22 values will have the same increasing trend when moving along the C11 arrow. However,
we can also notice that there are some clusters with distinct C11 and C22 values from Fig. 8, indicating that a
corresponding semantic arrow exists. Therefore, we first identify two sets of microstructures with C11/C22 > 2
and C22/C11 > 2, respectively, to represent two different anisotropic characteristics, i.e., stiffer in the first or the
second axial directions. As shown in Fig. 10(a), the normalized vector between the centers of these two sets of
microstructures in the latent space is obtained as an Anisotropic Arrow by simple vector arithmetic. Using the same
representative microstructures, we reconstructed the corresponding microstructures by stepping along the negative
and positive direction of the Anisotropic Arrow, which is shown in Fig. 10(b).

From the figure, it can be noted that the microstructures will expand in the vertical axis and shrink in the
horizontal axis when moving along the Anisotropic Arrow. As a result, C values gradually increase and surpass
22
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Fig. 11. Candidate sets obtained with/without clustering and PCA analysis of their latent spaces.

the C11 values, changing the principal load-resisting direction from the first axis to the second one. Besides the
examples above, there are other semantic arrows in the conceptual space, e.g. semantic arrows for Poisson’s ratio
and C33, which can be indicated from different clusters in Fig. 8.

These semantic arrows demonstrate that the latent space of VAE forms a conceptual map with different directions
representing different semantic operations. The complex operations on the configurations or the mechanical
properties can be easily achieved by performing simple vector arithmetic in the latent space. This provides a
high-level control and exploration method of abstract or complex attributes without the need to directly process
high-dimensional shape representations.

4.2. Diverse microstructure selection and generation

One major advantage of data-driven design with a large microstructure database is that it can provide multiple
candidates to achieve the same mechanical properties. From the candidate sets, the best-matched neighboring
microstructures can be selected for the multiscale system design to achieve compatible connections. To avoid an
immense combinatorial design space, the candidate set for a target property should be relatively small. However, a
smaller candidate set will have a higher chance to be dominated by similar microstructures, which provide fewer
connecting choices for the adjacent microstructures and thus decrease compatibility. Therefore, obtaining a small
but diverse candidate set for a given property is critical for efficient multiscale system design.

Since the latent space of the VAE provides a natural distance metric between microstructures, we propose to first
cluster microstructures with target properties in the latent space and then select one optimal candidate from each
cluster to obtain a small but diverse candidate set. Specifically, k-means clustering is performed on the first two
principal components of the latent variables to obtained different clusters. To demonstrate the effect of clustering,
we set two target properties as examples and select a candidate set with 10 microstructures for each target by the
proposed method, as shown in Fig. 11. As a comparison, we also include a candidate set constructed by greedily
selecting ten most optimal microstructures in the database.

Due to the dense database, the properties of these candidate sets are close to the objective with MSE values less
than 0.01. However, candidate sets without clustering tend to include microstructures with similar configurations. In
contrast, candidate sets selected from different clusters in the latent space will include relatively diversified shapes.
This can also be indicated from their distributions in the latent space, where the diversified candidate sets cover a
larger latent space and distribute more uniformly. Suppose two horizontally neighboring microstructures in the full
structure are assigned with these two objective properties shown above. Without the clustering, only by selecting
the fourth microstructure for the first objective property can we have the chance to obtain a connecting pair from the



L. Wang, Y.-C. Chan, F. Ahmed et al. / Computer Methods in Applied Mechanics and Engineering 372 (2020) 113377 13

t
t
s

m
o
p
i
h
s
t

4

t
m
a
w
m
c

p
c
o
f
m

wo candidate sets shown in Fig. 11. In contrast, by using clustering in the latent space, more choices are provided
o achieve better compatibility. This further illustrates why a diverse candidate set is more desirable in the multiscale
ystem design.

Besides passively selecting existing microstructures from the database, the proposed candidate set selection
ethod can also provide a diversified initial guess for the TO method to achieve properties that are relatively extreme

r uncommon in the database. The rationale behind this is that finding a corresponding microstructure for a given
roperty is an inverse problem with infinitely many solutions, making gradient-based TO methods sensitive to the
nitial guess [8]. By selecting a diverse candidate dataset with properties close to the target as initial guesses, TO
as a higher chance of converging to a local optimum with better performance and can efficiently explore different
olutions. The proposed methods to obtain a diverse candidate set for a given target property will be integrated into
he later multiscale systems design.

.3. Metamaterial family design

The previous subsections focus on applying the generative model to assist the design at the unit-cell microstruc-
ure level. In this subsection, we turn to the design at the family level and propose an efficient method to generate
etamaterial families by taking advantage of the large database and its highly structured latent space. On one hand,
metamaterial family can be used to construct a reduced database for a more efficient data-driven optimization
hen we have prior knowledge on a specific design problem. On the other hand, a controlled gradation of the
echanical properties can alleviate incompatibility between neighboring microstructures and thus decrease stress

oncentrations while achieving spatially varying properties for a specific function.
A controlled gradation of the mechanical properties can be considered as a hyper curve in the microstructures’

roperty space. For a given gradation, we collect all microstructures in the database with their distance to the
orresponding hyper curve smaller than a threshold δ. These selected microstructures are sorted in ascending
rder by one of the mechanical properties to be controlled, forming a sorted sequence H. To obtain metamaterial
amilies with a gradual change of shapes, we first construct a directed weighted graph G by taking each selected
icrostructure as a node, connecting to its k-nearest microstructures with higher ranks in the sorted sequence H.

Each edge points from low-rank to high-rank microstructures in the sorted sequence H, taking the mutual distance
in the latent space as the edge weight to measure the shape similarity between the two nodes. We further add two
artificial nodes, i.e., the source node s and the destination node d, into the weighted directed graph G, connecting
the first and last N nodes in the sorted sequence, respectively. With this, to find a metamaterial family with a
controlled gradation in properties can be transformed into the searching for the shortest path connecting s and d
on G. This can be achieved efficiently by mature graph search algorithms. Herein, we use one of the most used
algorithms, the Dijkstra algorithm [49], to obtain the shortest path. Different metamaterial families with the same
controlled gradation can be obtained by sequentially performing several runs of shortest path search. The nodes
existing in all previously obtained paths will be deleted for each search.

To validate our method, we define the following property gradation as the design target:

C22 = C11,

C12 =

[(
1 − vM)

·

(
1 −

C11

C M
11

)4

+ vM

]
C11, (7)

C33 = 0.25 · (C11)
3
− 0.65 · (C11)

2
+ 0.6775 · C11

where C11 ∈ [0, C M
11], C M

11 and vM are the C11 and Poisson’s ratio of the constituent material. In the constructed
graph, k for the k-nearest search is set to be five while the number of nodes N connecting to the source s and
destination node d is 50. The search process is performed five times to generate five different metamaterial families.
The shortest paths obtained on the graph and corresponding microstructures are shown in Fig. 12.

From the graph shown in Fig. 12(a), we can note that the shortest paths found contain different numbers of
nodes, which correspond to metamaterial families with a different number of microstructures shown in Fig. 12(b).
While different metamaterial families have relatively different patterns for microstructures, the transition of shapes
within each family is smooth. The properties of these generated metamaterial families are shown in Fig. 13(a).

As shown in the property space, all these metamaterial families follow the target gradation precisely. The

generative model also enables the interpolation between microstructures within each family to generate a continuous
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Fig. 12. Generated metamaterial families with the controlled gradation of properties. (a) The weighted directed graph constructed on the latent
space, with different shortest paths marked with different colors. (b) Generated metamaterial families. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 13. Properties of the generated metamaterial families (a) Properties of the generated metamaterial families without interpolation (b)
Properties of the generated metamaterial families with interpolation.

metamaterial family. To demonstrate this, we perform uniform interpolation and extrapolation in the latent space for
each metamaterial family and then pass these new latent vectors to the decoder for the generation of microstructures.
The properties of these newly generated microstructures are evaluated and shown in Fig. 13(b). These new
microstructures still accurately satisfy the target gradation of properties. Therefore, a set of continuously changing
metamaterials can be generated by an efficient graph search on the latent space without the need to perform any
direct manipulations or gradient-based optimization on high-dimensional representations of microstructures. This
provides greater freedom and efficiency for the metamaterial family design.
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. VAE-assisted multiscale metamaterial system design

.1. Proposed framework for multiscale system design

By integrating the design methods in the previous sections, we propose a two-stage framework for the data-driven
esign of a multiscale system with spatially varying properties to achieve a target structural behavior. Specifically,
he first stage is to optimize the macro-property distribution while the second stage utilizes the optimized property
istribution to select corresponding microstructure designs and assemble a full structure with compatible boundaries
or neighboring microstructures. While this framework has a broader impact on multiscale metamaterial systems
esign, we demonstrate its benefit by designing structures with prescribed distortion behavior in this study.

In the macro-property optimization stage, the spatial properties distribution is optimized based on the properties
pace of the large metamaterial dataset or a given metamaterial family. We discretize the design area into four-node
uadrilateral finite elements with the same size and define the optimization problem to be:

minCe ∥γ ⊙ u − ut∥
2
2

s.t.K (Ce) u = f
ϕe (Ce) ≥ 0
τe (Ce) = 0,

(8)

here Ce is the stiffness matrix for the microstructure assembled in the element e, γ is a vector with the value
at the degrees of freedom corresponding to the displacements of interest and with zeros at all other entries, ⊙

epresent the element-wise product, u and f are the displacement and load vectors respectively, ut is the target
isplacement vector with the specified values at the degree of freedom corresponding to the displacement of interest
nd with zeros at all other entries, ϕ is the inequality constraint to force feasible, positive-valued properties, τ is
he equality constraint on the properties and K is the global stiffness matrix depending on Ce of element e :

K =

Ne∑
e=1

K̃ e (Ce) (9)

K e = BT Ce B, (10)

here Ne is the number of elements, K̃ e and K e are the element stiffness matrix in the global and elementary level
espectively, and B is the constant gradient matrix for the four-node element. For the multiscale system design
ith a given metamaterial family, we only have the equality constraint τ on the properties to ensure the given
roperty gradients. For the design with the whole database, the inequality constraint ϕ will replace τ to ensure
he feasibility of the optimized properties. Although there is no strict theoretical bound on the feasible properties,
he rich and dense database we constructed provides a clear boundary on the achievable properties of the existing
icrostructures. Specifically, the value of signed L2 distance field to the boundary is calculated for each node on a
artesian grid enclosing the current properties space composed by C11, C12, C22 and C33. The signed L2 distance
eld within the grid can then be estimated by interpolation. The feasibility of a given property can be indicated
rom this signed L2 distance field, with positive and negative values to indicate feasible and infeasible properties,
espectively. To enable the use of a gradient-based optimization method, we calculate the partial derivatives of the
igned L2 distance field with respect to property for each node by the finite difference method. This calculation is
nly performed once right after the construction of the database, which will not add extra computational cost to
he optimization process. During the optimization, the partial derivatives of the property constraint can be directly
btained by simple interpolation without the need to do partial derivatives on-the-fly. It should be noted that an
lternative to handle the property constraint is to use a surrogate model to explicitly approximate the signed L2
istance field and then obtain its gradient by direct differentiation. This method can be directly incorporated into
he current framework without any modification. However, it is not trivial to obtain a smooth surrogate model that
an precisely describe the highly irregular signed L2 distance field of the property space, which is beyond the scope
f this study.

Since the constraint on properties is defined for each element, the overall number of constraints will be immense,

esulting in an extremely time-consuming sensitivity analysis process. Therefore, we aggregate the elemental
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onstraints into a single global constraint through Heaviside projection-based integral (HPI) [50,51], transforming
he original optimization problem into:

minCe F = ∥γ ⊙ u − ut∥
2
2

s.t.K (Ce) u = f
Ci j,min ≤ Ce,i j ≤ Ci j,max

1
Ne

Ne∑
e=1

S (−ϕe (Ce)) ≤
1
Ne

(11)

here Ci j,max and Ci j,min are the maximal and minimal values for Ci j in the database, respectively, S is a function
eified to be

S (x) =
1
2

(tanh (βx) + 1) , (12)

which is an approximated but continuous version of the Heaviside step function with β to be a given positive
constant. With this problem definition, the sensitivity needed for optimization can be derived by the adjoint method:

∂F
∂Ce,i j

= −2 [γ ⊙ (u − ut )]T K−1 ∂ K̃ e

∂Ce,i j
u, (13)

where ∂ K̃ e
∂Ce,i j

can be transformed from the element level expressions:

∂ K e

∂Ce,i j
= BT ∂C e

∂Ce,i j
B. (14)

The detail derivation is given in Appendix. In the real implementation, we only take the independent non-zero
components of the stiffness matrix as design variables, i.e., C11, C12, C22 and C33. Therefore, the sensitivity value
should be modified to be

∂F
∂Ce,i j

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−2 [γ ⊙ (u − ut )]T K−1 ∂ K̃ e

∂Ce,i j
u, i = j = 1, 2, 3

−4 [γ ⊙ (u − ut )]T K−1 ∂ K̃ e

∂Ce,i j
u, i = 1, j = 2

(15)

These sensitivity values can then be passed to the MMA algorithm [52] to obtain the optimized properties
distribution by solving (11).

In the microstructure assembly stage, we need to select or generate corresponding metamaterial microstructures
to achieve the optimized properties assigned for each element in the macro-property optimization stage to assemble
a full structure. For the design with a given metamaterial family, we can directly generate the corresponding
microstructure by interpolating in the latent space as illustrated in Section 4.3. However, to design with the full
database, we need to ensure that neighboring elements in the full structure are compatible on the shared boundary. As
demonstrated in Section 4.2, a diverse candidate set can be obtained efficiently either by selection or optimization.
The best-match pair is then selectively chosen from the candidate sets to achieve the designed properties while
ensuring compatibility. Herein, we follow the method proposed in our previous paper [19], transforming the
combinatorial problem into an inference process on a grid-like Markov random field (MRF). Specifically, unit cells
in the full structure are mapped to the nodes of a grid-like undirected graph, with edges connecting adjacent unit
cells. For each node, a diverse candidate set with Nc microstructures can be obtained to meet the designed property
by selecting from the database or via optimization with diverse initial guesses. A nodal weight θi (li ) is defined for
the li th microstructure candidate in the ith node to measure the deviation from the target property:

θi (li ) =
C i − C i,target


∞

, li = 1, 2, . . . , Nc, (16)

here C i and C i,target are the real and target elastic stiffness of the ith node, respectively. For different combinations
of microstructures

(
li , l j

)
of the neighboring unit cell pair (i, j), an edge weight is assigned to the corresponding

raph edge to measure incompatibility:

θ
(
l , l

)
= θG (

l , l
)
+ θ M (

l , l
)
. (17)
i j i j i j i j i j i j
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Fig. 14. Different pairs of horizontally connected microstructures and corresponding two measures of incompatibility (lower values preferred).

The first term is to measure the geometrical difference on the shared boundary, which is defined to be the ratio
of incompatible binary elements to all solid elements on the shared boundary. The second term is to measure the
mechanical incompatibility, which is defined to be the relative sum of stress difference on the shared boundary
under the unit strain field. As illustrated in [28], by minimizing the second term, the overall performance predicted
by the effective properties can remain relatively precise for aperiodic design.

To provide a more intuitive illustration, we select several representative microstructures and report the geometric
and mechanical incompatibility values below in the horizontal direction for all pairs, as shown in Fig. 14. Pairs
ocated on the diagonal are composed of identical microstructures, which have the ideal compatibility with
eometrical and mechanical measures θG

i j and θ M
i j equal to 0. However, to achieve spatially varying properties,

t is more common to have a neighboring pair with different microstructures, as shown in the off-diagonal regions.
rom the pairs in the third column, it can be noted that fully disconnected pairs will have the worst geometric
nd mechanical incompatibility measures. Meanwhile, as shown in the last column, for pairs with the same
eometrical incompatibility measures (2nd and 3rd rows), their mechanical incompatibilities θ M

i j can be quite
ifferent. Neighboring microstructures with a more consistent force transition path will have a lower (better)
echanical incompatibility measure. Therefore, the combination of geometrical and mechanical measures provides

n effective quantification of the incompatibility between neighboring microstructures.
With these measures for the incompatibility, the original optimal full assembling problem is transformed into the

abel selection problem for the constructed weighted graph to minimize the sum of all the nodal and edge weights.
o solve this graph optimization problem is equivalent to solve the inference problem on a grid-like Markov random
eld (MRF), whose optimal solution can then be found approximately but efficiently with the dual decomposition
DD-MRF) method [53].

.2. Multiscale system design examples

In this section, the proposed two-stage design framework for the multiscale system is applied to both functionally

raded and aperiodic structures.
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Fig. 15. The target displacements and design results for the first design case.

The first example is to design a graded structure with the metamaterial families generated in Section 4. The setting
of the design problem is given in Fig. 15(a). Specifically, the outer surfaces of the final design should form the target
displacement curve in red, after squeezing the structure on the right end with a prescribed displacement. The design
region for the beam is discretized into a 15×40 design mesh with each element to be filled by a microstructure from
the given metamaterial families. In the macro-property optimization stage, we set the gradation of properties as an
equality constraint in the optimization problem. The iterative optimization of the macroscale-property distribution is
performed until the maximal change of the variables is less than 0.001, or until the number of iterations reaches 500.
The optimized distribution for the C11 values is shown in Fig. 15(b) while other components of the stiffness matrix
can be obtained by Eq. (8). In the microstructure assembly stage, corresponding microstructures are generated by
the decoder to assemble the full structure as shown in Fig. 15(c). After loading, the displacement profile precisely
matches the design target with its relative root mean square error (RRMSE) to be 0.1900, as shown in Fig. 15(d).

When we need to achieve more intricate structural behavior, a larger property space is needed to enable a
more versatile spatial property distribution. Therefore, in the following two examples, we turn to the design with
the full metamaterial database. As shown in Fig. 16(a), the first example is to design a beam filled by spatially
varying metamaterials, achieving a bridge-like displacement profile under horizontal compression with prescribed
displacement. The design region for the beam is discretized into a 4 × 30 design mesh with each element filled
by a 50 × 50 microstructure. Therefore, the total number of finite elements is 300,000 with 206 shared boundaries
for adjacent microstructures. In the macro-property optimization stage, we use the signed L2 field as the inequality
constraint of the properties. The macro property distribution is optimized with the same termination criteria for
the graded structure design. With the optimized properties distribution, a diverse candidate set containing 10
microstructures is obtained for each element by using the microstructure selection and design methods proposed in
Section 4. In the microstructure-assembly stage, the DD-MRF method is performed on the constructed weighted
graph until convergence, i.e., the gap between primal and dual objective functions is closed, or the number of
iterations exceeds 5000.

The two-stage optimization is completed in 20 min with two CPUs (Intel i7-9750H 2.6 GHz). The optimized
distribution for different components of the stiffness matrix is shown in Fig. 16(d). We observe that different
components of the stiffness matrix have similar spatial distributions, with stiffer materials distributed toward the
upper part. It can be expected that the lower half of the beam will have a larger compression than the upper
half, resulting in upward bending. By taking advantage of the dense dataset and the highly structured latent space,
compatible microstructures can be obtained from the diverse candidate set for each unit cell. This is indicated

by the full structure design shown in Fig. 16(b), where each pair of adjacent unit cells is well connected on the
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Fig. 16. The target displacements and design results for the second case.

Fig. 17. The target displacements and design results for the third design case.

shared boundary. Due to the optimized properties distribution and the compatible boundaries, the assembled structure
achieves a bridge-like shape that is well-matched with the design target (RRMSE = 0.0600), as shown in Fig. 16(c).

To further demonstrate the ability of the proposed method, a more complicated design problem is given in
ig. 17(a). Here we aim to activate a smiley face by squeezing the left and right ends of the structure. Compared
ith the previous examples, this design includes finer discretization (50 × 50 design mesh with 6.25 million
nite elements) with more shared boundaries and a relatively distinct but coupled displacement profiles in different
egions. The whole optimization process is completed in 11 h and 12 min on 6 processors (Intel i7-9750H 2.6 GHz).
his computation time is satisfying for a full structure with 6.25 million elements and nearly 4900 shared boundaries.
ince the DD-MRF method is highly amenable to parallel computation with the dual decomposition, the computation
ost can be further reduced by using more processors.

The optimized distributions of macro-properties are shown in Fig. 17(b), where different components of the
tiffness matrix have relatively different distribution patterns. This requires numerous microstructures with different
nisotropic characteristics, which benefits from our large metamaterial database. Despite the complexity of the
esign problem, Fig. 17(c) and (d) demonstrate that our method still obtains a full structure with compatible
oundaries. The heterogeneous property distribution is achieved by aperiodically assembling different metamaterial
icrostructure designs, causing a smiley face to form upon loading (RRMSE = 0.1623). For the conventional single

cale TO method or other aperiodic multiscale design methods, the design process would be more computationally
emanding due to a large number of design variables and numerous constraints on the shared boundaries. We also
bserved that a single-scale SIMP method will tend to render unrealistic designs with numerous intermediate density
alues for this design problem. A possible explanation for this is that, under the prescribed displacement boundary
ondition, the objective function only depends on the relative distribution rather than the absolute property values,
hich is different from the design with force boundary condition. This will paralyze the SIMP scheme and result in

he infeasible design. In contrast, our design process directly uses the properties as design variables in the first stage,
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hich is independent of the geometric representation of the solid structure. This is another advantage provided by
he proposed data-driven method.

In this study, we only focus on the design for target displacement profile in this study instead of simpler
ompliance minimization, which can be viewed as a special case of target displacement design with extra volume
onstraint. This is because structures with porous materials are reported [54,55] to be sub-optimal and offer little
enefit for compliance minimization design that only pursues the overall stiffness of the structure. As a result, the
otential of a large database with versatile properties cannot be fully exploited. In contrast, multiscale structures
ave shown to have the edge over single scale structure for the design involving multi-physics or spatially varying
tructural requirements, such as displacement design [23,28], thermal–elastic problem [56,57], dynamic response
ptimization [58,59] and energy absorption design [60]. The results of displacement designs shown in this study
epresent an encouraging initial step toward the further application of metamaterials in these promising areas.

. Conclusions

A scalable integrated framework is proposed for the data-driven design of metamaterials in multiple scales
y taking advantage of the continuous and highly structured latent space of the VAE model. We highlight that
well-trained VAE model that is integrated with a structure–property regressor can distill salient geometrical

eatures from metamaterial microstructures to form a continuous and meaningful latent space. Complex shape
ransformation is encoded in different moving directions in the latent space, rendering a natural interpolation method
nd a distance metric to measure shape similarity. Semantic structures of the latent space are identified to enable
igher-level control of the mechanical properties. These mechanistic insights provide an efficient representation
nd management structure for the microstructure design, metamaterial family generation, and the assembling of
ultiscale metamaterial systems.
Through microstructure design, we demonstrated that complex mappings on the topology and mechanical

roperties of the microstructures can be easily achieved by simple vector arithmetic in the latent space. The distance
etric induced by the latent space can be used to select or generate a diverse candidate set for a given property

y clustering in the latent space. For the design of metamaterial families, we proposed to generate a diverse set of
etamaterial families with target graded properties by searching on a directed graph constructed in the latent space.
he design methods at the microstructure and family levels are integrated into a two-stage framework for multiscale
ystem design to achieve the prescribed distortion of the full structure, ensuring the compatibility between adjacent
nit cells. Greater computational efficiency is obtained by replacing the nested optimization with a precomputed
atabase. The same database and design algorithm can be directly applied to efficiently design multiscale systems
ith different loading conditions or objective functions.
Since the meaningful latent space is a result of its continuity and low dimensionality, we believe that mechanistic

nsights obtained in this study have the potential to be extended to general microstructural materials. To apply
he proposed framework to 3D cases, future work needs to be carried out to enable the VAE construction of 3D
icrostructures with advanced machine learning techniques, e.g., using 3D voxels or point cloud representations.
lso, since the homogenized property calculation becomes rather costly for 3D metamaterials, a more sophisticated
atabase construction method is necessary. We have ongoing research in this direction [61], including avoiding bias
oward particular properties or shapes that contribute little to the quality of property and shape exploration. Currently,
ur work relies on the homogenization theory and only focuses on the design in linear elasticity. For future works,
e will explore methods to address the aperiodic boundary condition and the scale-related issue. Applying the
roposed data-driven design framework to thermal–elastic design, dynamic response optimization, and some other
ulti-physics problems is underway. Also, imposing manufacturing constraints on the current framework is another

romising and important future direction to explore. Complex manufacturability constraints can be incorporated into
ur learning and optimization approaches by either implicitly modifying the loss function for the training process
r using an explicit penalty in the later design stage.
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ppendix

This part presents the detailed sensitivity analysis of the full structure optimization problem proposed in Section 5.
We rewrite the objective function to add the equilibrium constraint:

F (Ce) = ∥γ ⊙ u − ut∥
2
2 − λT (K (Ce) u − f ) , (A.1)

here λ is an arbitrary real vector serving as the multiplier. Taking the derivative with respect to Ce,i j on both sides
f the equation, we can obtain

∂F
∂Ce,i j

= 2 (γ ⊙ u − ut )
T γ ⊙

∂u
∂Ce,i j

− λT
(

∂ K
∂Ce,i j

u + K
∂u

∂Ce,i j

)
= 2 [γ ⊙ (u − ut )]T ∂u

∂Ce,i j
− λT K

∂u
∂Ce,i j

− λT ∂ K
∂Ce,i j

u

=
{
2 [γ ⊙ (u − ut )]T

− λT K
} ∂u

∂Ce,i j
− λT ∂ K

∂Ce,i j
u.

(A.2)

This can be transformed to be
∂F

∂Ce,i j
= −λT ∂ K

∂Ce,i j
u, (A.3)

when λ satisfies the following adjoint equation:

2 [γ ⊙ (u − ut )]T
− λT K = 0. (A.4)

The solution for this adjoint equation can be obtained as

λT
= 2 [γ ⊙ (u − ut )]T K−1. (A.5)

Therefore, the derivative of the objective function with respect to the component of the stiffness matrix can be
found as

∂F
∂Ce,i j

= −2 [γ ⊙ (u − ut )]T K−1 ∂ K
∂Ce,i j

u. (A.6)

From Eq. (9), we can further obtain:

∂F
∂Ce,i j

= −2 [γ ⊙ (u − ut )]T K−1 ∂ K̃ e

∂Ce,i j
u. (A.7)

At the element level, ∂ K e
∂Ce,i j

can be expressed as

∂ K e

∂Ce,i j
= BT ∂C e

∂Ce,i j
B. (A.8)

This expression can be transformed into the global form and then put into (A.7) to obtain the sensitivity value.
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