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ABSTRACT

Binary data with one-class missing values are ubiquitous in real-
world applications. They can be represented by irregular tensors
with varying sizes in one dimension, where value one means pres-
ence of a feature while zero means unknown (i.e., either presence or
absence of a feature). Learning accurate low-rank approximations
from such binary irregular tensors is a challenging task. However,
none of the existing models developed for factorizing irregular ten-
sors take the missing values into account, and they assume Gaussian
distributions, resulting in a distribution mismatch when applied to
binary data. In this paper, we propose Logistic PARAFAC2 (LogPar)
by modeling the binary irregular tensor with Bernoulli distribution
parameterized by an underlying real-valued tensor. Then we ap-
proximate the underlying tensor with a positive-unlabeled learning
loss function to account for the missing values. We also incorporate
uniqueness and temporal smoothness regularization to enhance the
interpretability. Extensive experiments using large-scale real-world
datasets show that LogPar outperforms all baselines in both irreg-
ular tensor completion and downstream predictive tasks. For the
irregular tensor completion, LogPar achieves up to 26% relative im-
provement compared to the best baseline. Besides, LogPar obtains
relative improvement of 13.2% for heart failure prediction and 14%
for mortality prediction on average compared to the state-of-the-art
PARAFAC2 models.
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1 INTRODUCTION

Partially observed binary (a.k.a. one-class) data naturally arises in
many real-world machine learning and data mining applications in-
cluding event logs, transaction histories and patient records [13, 27],
and they can often be represented by a temporal binary irregular
tensor [2, 3, 28], i.e., a set of binary matrices with one of their dimen-
sions having the same size, while the other one varying between
subjects. Such data usually comprises positive and unobserved en-
tries with values of one and zero, respectively. However, the explicit
negative entries are not recorded, meaning that the entries with
value of zero could be either missing positives or real zeros. A typ-
ical example is the temporal electronic health records (EHR) [2]:
the data of a particular patient can be represented by a binary ma-
trix, where the entries of each row with value of one indicates the
presence of the clinical features, e.g., a confirmed disease diagnosis,
recorded during a clinical visit. However, the zero entries do not
always indicate absence of the diseases: but it just indicates that a
specific disease diagnosis is not performed so the disease diagno-
sis is unknown. Other examples emerge in a variety of real-world
applications, including collaborative filtering [27], spatio-temporal
data modeling [1], recommender systems [15, 30], to name a few.

The temporal irregularity and the absence of explicit neg-
ative observations pose fundamental challenges in learning accu-
rate low-rank approximations from such data. The positive unla-
beled (PU) learning [7] was developed for binary classification tasks
where the labels, instead of input features, follow the above miss-
ingness pattern. The PU learning framework was later extended to
the matrix completion problem to handle the data of one single ma-
trix [13], yet suffering severe overfitting problem [19]. In parallel,
the PARAFAC?2 factorization was developed as a practical solution
to modeling the irregular tensors but does not handle one-class
missing problem. Fig. 1 illustrates an application of PARAFAC?2 for
phenotype discovery from EHR [2, 29]. The extension of PARAFAC2
for binary input with one-class missing is difficult due to several
challenges:
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Distribution Mismatch. Existing PARAFAC2 models mostly
minimize a reconstruction error defined by the square loss between
the input and its reconstructions [29], which implies a Gaussian
distribution of the reconstruction error. This is not ideal for binary
input due to the mismatch of distribution [12] which could lead to
suboptimal performance.

One-class missing data. Although missing data is in general
inevitable, none of the existing PARAFAC2 models take the miss-
ing data into account. They implicitly assume that the data are
fully observed in that their loss function is minimized over all en-
tries, regardless of whether the entry is missing or not, leading to
heavy inaccuracy in the factorization results. In our case, the miss-
ing values are concentrated in one-class which lead to additional
challenges for the algorithms.

Temporal Irregularity. It is often desirable to learn factors that
evolve smoothly over time to improve the interpretability. Existing
method of decomposing the temporal factors as linear combinations
of smooth basis functions [2] to impose such temporal smoothness
relies on the square loss objective function, and is very sensitive to
the number of basis functions.

To tackle these challenges, we propose the Logistic PARAFAC2
(LogPar) model, where the binary irregular tensor is assumed to
be generated by Bernoulli distributions parameterized by a latent
non-negative real-valued tensor, which is approximated with a non-
negative PARAFAC2 factorization. Since the input tensor is either
positive or unknown, we extend the positive-unlabeled (PU) learn-
ing method originally developed for classification problems [7] to
the factorization model. We also introduce an effective uniqueness
regularization and propose a time-aware temporal variation reg-
ularization for smoothing the temporal factor. We evaluated the
proposed framework using three EHR datasets. Extensive experi-
ments demonstrate that our proposed LogPar is superior in terms of
both irregular tensor completion and downstream predictive tasks
by outperforming all baselines consistently with a large margin.
LogPar is also more robust against heavy missingness, and the ab-
lation study also confirms the effectiveness of the regularization
we incorporated.

2 BACKGROUND

In this section, we provide necessary background for developing
our proposed model, including irregular tensor and its PARAFAC2
factorization. We also review some related work on binary ma-
trix completion. We summarize the notations used in the paper in
Table 1.

2.1 Irregular Tensor and PARAFAC2

Irregular Tensor. As shown in Fig. 1, an irregular tensor X

comprises a set of K matrices {Xk e Rk X]}Iljzl, where each subject
is indexed with k [20]. A typical application of the irregular tensor
is to describe the temporal data, where the matrices are composed
of the same set of J features, but each subject may have distinct
temporal length, denoted by I.. We define the {; norm and the
inner product of irregular tensors as follows.

DEFINITION 1 ({1 Norm). The {1 norm of an irregular tensors is

the sum of the {1 norm of its composing slices: ||X||; = 2115:1 [ Xgll1-
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Table 1: Notations used throughout the paper.

Symbol Definition
X, X, x, x Tensor, matrix, vector, scalar
X The observed binary tensor with missing values
Yy The unobserved ground-truth tensor
M The underlying real-valued tensor
Q The index set of positive entries in X
M, /? The reconstruction of M and X
Uy € RI*R  The temporal factor matrix for the k% subject
si €RR The weighting vector for the k‘/ subject
V e RIXR The latent factor matrix for the features
I The temporal length of the k" subject
K,J] Number of subjects and features
R Number of target rank
(-, +) The inner product
o) The quantization probability function
L(x) The log likelihood of the observation
4 The non-negative PU loss function

Clinical Features « Temporal Factors

Static

Phenotypes

Figure 1: PARAFAC2 model for computational phenotyping:
The input is a collection of binary matrices, with each of
them corresponding to a patient. They have the same num-
ber of columns representing diseases, but different numbers
of rows representing clinical visits. Value 1s in those matri-
ces indicate confirmation of disease while value 0 means ei-
ther the absence of the disease or missing diagnosis.

DEFINITION 2 (INNER PrODUCT). The inner product between two
irregular tensors with the same size is given by:

K I ]
(X, Y) = Z Z Zxk,i,j * Yk, i, j»
k=1i=1 j=1
where xi. ; ; is the (i, j)-th entry of the kth slice Xk
PARAFAC? Factorization. PARAFAC? is a variant of tensor
CP factorization [20] that applies to an irregular tensor by allowing
the temporal factor to vary between subjects, namely each slice
of the irregular tensor are mapped to a distinct temporal factor
matrix. Fig. 1 illustrates the PARAFAC2 model [9]. Formally, the
PARAFAC2 model solves the following optimization problem:

K

. 1 )
arg min —IXk - UkSkVT
{Uc} {Sk .V kz; 2 ” HF

st. Up=0QrH, Q[Q) =1 k=1,....K,

1)

where V € R/*R s the latent factor matrix for the features, Uy €

RIXR js the temporal factor matrix for the k*# subject, S} € RE*R
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is a time-independent diagonal matrix capturing the overall weight-
ing of each latent factor for the k’ h subject, and R is the target
rank. The constraint is imposed to ensure the uniqueness of the
solutions, where Q; € R*R is column-wisely orthogonal and
H € RR*R js a constant [16]. To enable this model to be applied to
large-scale datasets, efficient algorithms have been developed for
sparse input [29], and extended with more constraints to further
enhance the interpretability, e.g., the smoothness on U and the
sparsity on V [2]. However, neither its application to binary input
data, nor any extension to handling missing data has ever been
studied for PARAFAC2 model.

2.2 Low-Rank Completion of Binary Matrix

Low-rank approximation is a principled framework to solve matrix
and tensor completion problems for non-binary data [8, 23, 32, 37].
Specifically, a low-rank model can be fitted with only the observed
entries, and then the unobserved ones can be estimated with the
learned low-rank model. “1-bit matrix completion”[6] is an appli-
cation of this framework, where the input 1-bit matrix contains
both explicit positive and negative entries (with values of +1 and -1
respectively), and the zero entries are known to be missing. Thus a
low-rank model can be fitted using only the observed entries.

Despite the promising results, it is in fact impossible to apply
such a framework to our setting where the observations only con-
tain a subset of the positive entries. In other words, no explicit
negative entries (with value of -1) are observable. In such a setting,
fitting a low-rank model over observed entries is infeasible, as ob-
viously a rank-one solution with all entries being one is a trivial
optimum.

The setting most relevant to ours is the one adopted by Sind-
hwani et al. [33], Yu et al. [36] and Hsieh et al. [13], where the
observed entries contain only those with value 1s. The first one [33]
developed a weighted non-negative matrix factorization by impos-
ing different weights for the reconstruction error over the observed
and the unobserved entries, and the second one [36] focused on sam-
pling the zero entries as negative observations. The third one [13]
adopted the PU learning strategy originally used for classification
tasks and derived the unbiased PU learning loss function for the
binary matrix factorization problem with superior performance
demonstrated. With that being said, it is non-trivial to be extended
to the PARAFAC?2 framework. For instance, it relies on constraining
the nuclear norm of the input matrix to enforce low-rankness. How-
ever, the nuclear norm for an irregular tensor is not well-defined.
Besides, as pointed in [19], the formulation used by Hsieh et al.
[13] could suffer from heavy overfitting, which is also empirically
confirmed via our extensive experiments.

To the best of our knowledge, none of the prior works have
investigated the tensor completion problem for the irregular tensors,
and none of them have studied the PARAFAC2 factorization for
binary data.

3 PROPOSED METHOD

3.1 Logistic PARAFAC2 Factorization

3.1.1
model for the binary irregular tensors that accounts for the genera-
tion process underlying the binary data with missing values. Given

Observation model. We first introduce an observation
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a real-valued underlying irregular tensor M, and a differentiable
function o : R — [0, 1], we assume that the entries of the hidden
ground-truth tensor Y are given as follows:

with probability o(my ; ;),

1
Yk,i,j {0 with probability 1 — o(my ; ), @

where o(-) is called the quantization probability function (QPF) [6]
that maps each entry of M to a probability score between zero and
one.

Due to the absence of explicit negative observations and the
presence of missing values, we only partially observe the positive
entries of Y. In particular, we define the index set of the entries
with value of one as Q = {(k, L )|xk,i,; = l}. The entries of the
finally observed tensor X is thus given by:

1
Xk,ij = 0

The observation model defined above appears to be similar to,
yet is essentially different from that defined by Davenport et al. [6],
in that they assume explicit negative observations and the obser-
vations are sampled from both the positive and negative entries,
whereas we consider the absence of only negative observations.

(k,i,j) € Q,

otherwise.

©)

3.1.2 Formulation. Given the partial observation X, we aim to
learn its PARAFAC?2 factorization. Different from the existing works
[2, 29], we compute a low-rank factorization of the underlying
tensor M instead of the X itself. Specifically, the k" slice of the
underlying tensor is approximated by:

My = K’ik = UkSkVT, (4)

where Uj, € RIR jg the temporal factor matrix for the subject,
S; € RRXR s a diagonal matrix, and V € R/*R is the factor matrix
for the features which is shared across all the subjects.

To ensure the interpretability of the model, we impose non-
negativity constraint on all the factor matrices, namely Uy Vk, Sy Vk,
and V, leading to an additive model which is widely recognized as
highly interpretable [21]. The reconstruction of the underlying ten-

kth

sor M is also non-negative; thus, we use a specific logistic function
defined on the non-negative real numbers as the QPF, as shown
below: )

Trerm ©)
where y is a hyper-parameter controlling the steepness of the lo-
gistic curve.

Without considering the missingness, i.e., assuming that we di-
rectly observe Y, we can estimate the factor matrices by maximizing
the log likelihood of the observation by treating all the unobserved
entries as true zeros, leading to the following optimization problem:

o(m) = (m >0),

K I
arg min L(X) = f(xk i,j> Yk, z,]) (6)
{Ur}. {8}V 2112;121
st. X =0 (UpSkVT),
UjU; =+ =UgUg = &, (7)
Up,>0,8>0 k=1,...,K,
V >0,
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where £(xj ; j» Yk,;,;) denotes the element-wise loss function, i.e.,
the negative log likelihood of the observed entry yy ; ; parameter-
ized by the reconstruction X ; ;, given by:

f(fk,i,js xk,i,j) = (xk,i,j logfk,i,j + (1 - xk,i,j)log(l - fk,i,j)) N (8)

where we assume that 0log(y) = 0 for all 4 > 0 to ease the nota-
tions [4].

3.2 Non-negative Positive-Unlabeled Loss

In practice, missing data is ubiquitous and estimating the factors by
directly fitting the logistic PARAFAC2 (6) with partially observed
input X could cause inevitable errors in that it does not account
for the missing values in the unobserved data. Hsieh et al. [13]
proposed the “unbiased PU learning” (uPU) for matrix completion
by analogizing the missingness to the “noisy label” in classification
problems [25], leading to the following objective function:

. Uiy, V)=pl(%;,0) .o _
£ (817.xi) = = faj =1 ()
f/(fcij,O) ifxij =0,

where £’(t,y) = (t — y)?, X is the input matrix and X is the comple-
tion matrix, the variables to be solved for. p is a hyperparameter.
Direct application of the above uPU loss to our setting is challeng-
ing, because (a) the uPU loss is coupled with the mean square loss
and its extension to the loss function Eq. (8) was never approached;
(b) Eq. (9) is minimized subject to a nuclear norm constraint over X
to enforce low-rankness, yet the nuclear norm of an irregular tensor
is not well-defined; and (c) the unbiased PU learning is recently
found to be less robust to overfitting [19] in classification tasks.
Inspired by the non-negative PU learning (nnPU) developed
for classification tasks [19], we propose the following objective

function:
£(%) ==,
+ max {0, },
(10)

where (X, log(z’\’\ )) computes the sum of the loss function Eq. (8)
over the observed positive entries. The term inside the max operator
stems from the unbiased PU learning with Eq. (8) as the point-
wise loss function. However, it has been shown that when this
term is negative, the estimation error bound of the unbiased PU
learning is no longer tight [19]; thereby serious overfitting can
occur. Therefore, the max operator is applied to ensure the non-
negativity of Eq. (10). 7 is a hyperparameter, and ||-||; denotes the
{1 norm of the irregular tensor.

(X, log(X))

(1-X, log(1-X)) (X, log(1- X))
11— Xl X111

3.3 Regularization

3.3.1 Uniqueness Regularization. Existing PARAFAC2 models
tackle the uniqueness constraint, i.e., U;Uk = & (Vk), by trans-
forming them into a set of orthogonal Procrustes problems [2, 5, 16,
29, 31]. This approach implicitly requires that the temporal length
of the data of each subject is larger than or equal to the rank, i.e.,
R < I Vk. Otherwise, the uniqueness of the solutions cannot be
strictly guaranteed. However, in reality this requirement can be
easily violated as a larger number of latent factors is in general

1628

KDD '20, August 23-27, 2020, Virtual Event, USA

desirable to accurately approximate large-scale real-world datasets.
Moreover, the transformation into orthogonal Procrustes problems
can only be carried out when the objective function is defined by
the squared error; therefore, it cannot be applied to our objective
function as defined in Eq. (10). In this paper, we regard ® as a
variable and introduce a soft uniqueness constraint as follows:
S 2
Ry = ) LU - o7
k=1
where @ is also a parameter to be learned.

(11)

3.3.2 Time-Aware Temporal Smoothing. Learning temporal
factors that change smoothly over time is often desirable to improve
the interpretability and alleviate the over-fitting to the missing data
and the noise. Afshar et al. [2] incorporates the smoothness con-
straint by forcing the temporal factor Uy to be the linear combina-
tion of a set of temporal basis functions generated by M-spline. This
method requires pre-computation of the spline functions; moreover,
an efficient algorithm by projecting the input tensor can only be
applied when the loss function is the mean square error (MSE),
but not the logistic loss function as we developed in either Eq. (6)
or Eq. (10). Instead, we propose a time-aware temporal variation
smoothness regularization, formulated as follows:

K Ix
— 5
Rz = Z Ze Poilug = ug s
k=1i=2

where §; = t; — tj—1 is the time gap between the ith and its pre-
vious visit. We use an exponential term to adaptively weight the
regularization based on the time gap between two visits with the
intuition that steps closer in time generally should be closer in
the latent space. f§ is a hyperparameter controlling the decay rate
of the regularization strength over the time gap. Similar forms of
regularization were also found promising in other applications, e.g.,
image inpainting [22]. Yet few of them were ever extended to the
temporal domain with the irregular time stamps being explicitly
modeled.

, (12)

3.4 Learning Algorithms

3.4.1 Optimization Problem. Given the observation X, we aim
at estimating the parameters of the PARAFAC2 factorization of its
latent distribution by solving the following optimization problem:

arg min L+ mRy + 2Ry (13)
{Uk {8k }.V, @

st UpLSp>0 Vi, (14)

Vo, (15)

IUklleo < Vo, IISgllee < Ve Vk,  (16)

Vil < Ve, 17)

where 1 and pip are the weightings of the two regularization terms.
The infinity-norm constraints in Eq. (16-17) are imposed to enforce
the underlying matrix M not being too “spiky” and thus makes the
recovery of the latent distributions well-posed [26].

3.4.2 Alternating Updates. We first alternate between the tem-
poral matrix Uy, the static vector s, and the factor matrix V, and
update each parameter with others fixed using the gradient descent
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based algorithm. Then, we update the uniqueness regularization
parameter ® by minimizing Eq. (11), leading to the closed-form
solution ® = 3. UZUk/K.

3.4.3 Mini-Batch Projected Stochastic Gradient Descent. To
solve the optimization problem efficiently, we propose to use the
optimization technique based on mini-batch stochastic gradient
descent. However, the second term of the loss function in Eq. (10)
cannot be decomposed point-wisely due to the max operator. Sim-
ilar to the strategy used in Kiryo et al. [19], we observe that this
term is in fact upper bounded by:

(18)

where A is the second term of the right-hand-side in Eq. (10). There-
fore, we minimize this upper bound in each mini-batch instead.

We implemented the proposed method using PyTorch, and it can
be efficiently trained end-to-end with GPU. Our implementation is
publicly available at: https://github.com/jakeykj/LogPar.

K —_ —_
1-Xy, log(1 -X X, log(1 —X
ASZmax 0,< k> log( ), _ﬁ( &> log( )
= 11— Xt IXk Il

3.5 Theoretical Analysis

We theoretically analyze the proposed model in terms of its capa-
bility of handling the missing values and recovering the underlying
distribution generating the data. To ease the analysis, we focus on
the loss function developed in Eq. (10), omitting the non-negative
constraint and other regularization imposed for interpretation pur-
poses, and use a standard sigmoid function as the QPF. We define
the hypothesis class of LogPar as follows:

6= {M | My = UpS, VT Vk; U, e RIFR s, ¢ SR v e R]XR},
(19)
where SR = {S | S = diag(s), s € RF}.

It is difficult to directly bound the error of recovering M by
solving (13). Therefore, we use the hidden ground-truth tensor
Y as a bridge. Let M* € G be the reconstruction of the mini-
mizer of (6), and Me G be that of (13). Let £ denote the objec-
tive function defined as in Eq. (6), and let L} (Z) be defined as:
L) = Z(i,j,k):yi,j,k=0 (2 j k> 0), where  is defined in Eq. (8).

We first show that the difference between the two solutions
are bounded. Specifically, based on prior works on PU learning
for classification tasks [19] and the generalization bound analy-
sis technique for matrix completions [24], we have the following
results.

THEOREM 1. Assume that inf picg L3;(c(M)) > n > 0. For any
& > 0, with probability at least 1 — J,

L(c(M)) - L(c(M*)) <16L;7R0(G) + 8L R (G)

+2Cs

en + ! ) +2C ¥
S Y,
viel i
where QC denotes the complementary of the index set Q, Cy is the
upper-bound of €, L¢ is the Lipschitz constant of €, and C is given by

Cs = Cp/In(1/6)/2. Ra(G) is the empirical Rademacher complexity
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of G with respect to the index set Q, defined by:

Ro(G) = ~ B,

su Z € i ro(m; ; s
|Q| p i,j,k ( l,],k)

MEG (i j,k)e

where €; j 1.’s are independent random variables taking value 1 or -1
with probability 1/2. ¥ is given by ¥ = exp(=2(n/C¢)?/(r% [/|Q] +

1/V1Q€)).

Theorem 1 implies that given sufficiently large tensor, or suf-
ficiently large number of subjects, L(G(M)) — L(c(M*)). Fur-
thermore, with the pointwise loss function ¢ defined as Eq. (8), we
have M — M* [19].

Then we show that under mild conditions M* recovers the
underlying distribution generating the data by establishing the
upper bound of the Hellinger distance d%_I(U(M*), o(M)). This
step can be done by applying Theorem 6 from Davenport et al. [6].
The results are presented in Corollary 1 in the Appendix A.

4 EXPERIMENTS AND RESULTS
4.1 Datasets

We evaluate the proposed model using the following three large-
scale datasets, two of which are publicly available.

(1) Sutter: This is a dataset collected from a large real-world
health provider network, covering patients aged between 50 to
85 chosen for a heart failure (HF) study. We use the diagnoses
and medications of each visit as the clinical features. We map the
diagnosis codes to their third level of clinical classifications software
(CCS)!, and the medications to their fourth level of the Anatomical
Therapeutic Chemical (ATC) classification system?.

(2) CMS3: This is the publicly available CMS Linkable 2008-
2010 Medicare Data Entrepreneurs’ Synthetic Public Use File (DE-
SynPUF), provided by the Centers for Medicare & Medicaid Services.
We use the diagnoses of each clinical visit as the clinical features.

(3) MIMIC-III [14]: This is a large-scale, and de-identified ICU
dataset which is publicly available, containing records related to
more than forty thousand patients who stayed in the ICU at Beth
Israel Deaconess Medical Center between 2001 and 2012. We use
the medications and the abnormal laboratory tests as the clinical
features.

The first two (Sutter and CMS) are longitudinal datasets, so we
construct the irregular tensor based on the clinical visits, where the
timestamp of each clinical visit is used to compute the temporal
gaps between two visits. The latter one, MIMIC-III, contains data
collected during the ICU stays of the patients. For MIMIC-III, we
construct the irregular tensor on an eight-hour basis by accumu-
lating the clinical features of every consecutive eight-hour time
window; thus the temporal gaps between two steps are constant,
whereas the number of time steps of each patients can be different.
For all datasets, we extract patients with the number of temporal
steps (I) between 20 and 100. We summarize the basic statistics of
the four datasets in Table 1.

Lhttps://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp
Zhttps://www.whocc.no/ate/structure_and_principles/
3https://www.cms.gov/Research-Statistics- Data-and-Systems/Downloadable-
Public-Use-Files/SynPUFs/DE_Syn_PUF
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Table 2: Basic Statistics of the Datasets.

Sutter CMS  MIMIC-III
#Patients (K) 34,905 74,153 28,485
#Features (J) 328 319 405
Median(I) 26 26 22
Average(Iy) 30.5 29 28.4
#Positive entries 2.3M 4.5M 14.5M
Sparsity 0.80% 0.65% 4.43%
Single-feature visits 29.5% 37.4% 0.67%
Predictive task Heart failure - Mortality
Positive label ratio 8.92% - 8.86%

4.2 Baselines

We compare against the following baselines:

o COPA* [2], which is a state-of-the-art PARAFAC2 factorization
model with a temporal smoothness constraint implemented by
M-spline functions.

o SPARTan’ [29], which is a PARAFAC2 factorization model
developed for sparse input.

e PU-MC? [13], which is a matrix completion method based on
PU learning. We matricize the irregular tensor by concatenating
its slices along the time dimension to apply this model.

o One-class MF (OCMF)’ [36], which is a state-of-the-art binary
matrix completion method based on sampling zero entries as
negative observations. We matricize the irregular tensor to run
this baseline.

4.3 Tensor Completion

We are utmost interested in the quality of learned latent factors,
however, they are difficult to be quantitatively evaluated due to lack
of ground truth. Instead, we perform a tensor completion task. In
general, the more accurate a model completes the unseen missing
values, the better the latent factors explains the underlying patterns
generating the data.

Evaluation Metric. Due to the binary nature of the tensor en-
tries, and the imbalanced ratio between zeros and ones, we measure
the PR-AUC (Area Under the Precision-Recall Curve) over the test
subset to evaluate the completion performance.

4.3.1 Completion with varying target ranks. We first evalu-
ate the completion performance with the target rank of the fac-
torization model varying from 10 to 300. For evaluation purpose,
we split the entries of the irregular tensor to training, validation
and test set. Specifically, we extract 10% of the positive entries for
hyperparameter tuning and hold out 20% of the positive entries for
testing. For each positive entry, we randomly match ten negative
entries to form the validation subset and test subset. Then we use
the remaining 70% positive entries to construct the input irregular
tensor. When sampling the validation and test subsets, we require
that at least one positive entry remains in the training subset.

4available at: https://github.com/aafshar/COPA

Savailable at: https://github.com/kperros/SPARTan

Savailable at: http://www.cs.utexas.edu/~cjhsieh/biasMF_test.zip
7available at: https://www.csie.ntu.edu.tw/~cjlin/papers/one-class-mf/
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Hyperparameter setting. We train LogPar using Adam [18],
and the hyperparameter setting is summarized in Table A1 in the
Appendix.

Results and Discussion. We visualize the performance of Log-
Par and the baselines for the three datasets in Fig. 2. The results
show that LogPar outperforms all baselines consistently for all
datasets. In particular, even with the smallest target rank of 10,
LogPar obtains PR-AUC of 0.49 for Sutter, 0.38 for CMS, and 0.54
for MIMIC-III, achieving 9% and 8.5% relative improvement com-
pared to the best baseline for Sutter and CMS, respectively. The
completion performance of LogPar impressively increases with the
target rank for the Sutter and the MIMIC-III datasets, with relative
improvement of 19% and 51%, respectively, when comparing the
target rank 300 and 10. This demonstrates that the expressive power
of LogPar significantly enhances with increasing target rank. Yet it
is noted that for CMS dataset, the improvement by increasing the
target rank is negligible. This is due to the sparsity and large ratio of
single-feature visits (37.4%), i.e., rows with only one positive entry,
in CMS dataset. Consequently, the latent factors tend not to capture
the interactions between the clinical features. In other words, the
factorization model overfits to the zero entries. Nevertheless, the
completion performance of LogPar improves marginally from rank
of 10 to rank of 100, and decreases only slightly after the target rank
exceeding 100. In contrast, the completion performance obtained
by all baselines for the CMS dataset decreases dramatically even
when the target rank is smaller than 50. This clearly demonstrates
that explicitly handling the missing values is of critical importance.

The completion performance of the PU-MC baseline decreases
dramatically when the target rank increases for all datasets. The
reason is twofold. First, the nuclear norm constraint for imposing
the low-rankness is substituted with the matrix factorization during
its optimization procedure [13]. Therefore, a smaller target rank ac-
tually imposes a more strict low-rankness regularization. Although
a hyperparameter is available to control the Frobenius norm of the
factor matrices to strengthen the low-rank regularization, tuning
it does not improve the performance. Another equally important
reason is that the “unbiased PU learning” technique used by PU-MC
is known to be prone to overfitting [19]. With increasing target
rank, PU-MC rapidly overfits to the missing values, resulting in a
noticeable drop in its completion performance. When the target
rank exceeds 50, the completion performance of SPARTan decreases
marginally for the Sutter dataset, while that of COPA keeps increas-
ing. This suggests that overfitting is incurred by SPARTan, but not
by COPA. The major advance of COPA is its incorporation of a
temporal smoothness by further decomposing the temporal factors
into a set of smooth basis functions. This observation supports
our motivation for incorporating the temporal smoothness regu-
larization, and further analysis of this component is carried out in
Section 4.5.

Moreover, by comparing the performance gap between LogPar
and the best baseline across different datasets, we observe that the
completion performance improvement is much more significant
for the Sutter and the CMS datasets. This implies that LogPar is
significantly more robust to sparse datasets, which is highly appeal-
ing in real-world applications due to the prevalence of such sparse
datasets.


https://github.com/aafshar/COPA
https://github.com/kperros/SPARTan
http://www.cs.utexas.edu/~cjhsieh/biasMF_test.zip
https://www.csie.ntu.edu.tw/~cjlin/papers/one-class-mf/
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Figure 2: Tensor completion performance with different target ranks. PR-AUC is used as the evaluation metric as the tensors
are binary. LogPar consistently outperforms all baselines for all datasets, and is more robust to overfitting when the target

rank is large.
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Figure 3: Tensor completion performance with different missing ratio. PR-AUC is used as the evaluation metric as the tensors
are binary. LogPar consistently outperforms all baselines for all level of missingness and is robust to large missing rate.

4.3.2 Completion with varying missing ratio. We also empir-
ically analyze the completion performance against different levels
of missingness. We first sample 10% entries with value of one as
validation set, and then vary the sampling ratio for the test set
from 10% to 30% (total missing rate is from 20% to 40%), and use
the remaining as the training subset. We fix the target rank of all
models to be 30, and re-tune the hyperparameters for each missing
rate as the statistic properties of the data change.

Fig. 3 shows the completion performance for different missing
ratios. LogPar demonstrates superior robustness against heavy
missingness in that its completion performance decreases by only
4.7%, 0.8% and 2% as the missing ratio increasing from 0.2 to 0.4 for
Sutter, CMS and MIMIC-III datasets, respectively. In contrast, the
best baselines, i.e., COPA for Sutter, SPARTan for CMS and COPA
for MIMIC-IIL, end up with a large decrease of 6.4%, 23.3% and 4.6%,
respectively. The lack of explicit handling of the missing values
is the main reason behind such dramatic performance drops for
COPA and SPARTan. Although PU-MC models the missing values,
its overfit-prone unbiased PU learning formulation makes it less
robust against heavy missingness.
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4.4 Downstream Predictive Tasks

The latent factors discovered by the low-rank factorization models
can often be used as features for downstream predictive tasks. To
evaluate the predictive performance of the latent factors discov-
ered by LogPar, we perform two prediction tasks: the heart failure
prediction for the PrimayCare dataset, and the mortality for the
MIMIC-III dataset. We only compare the two PARAFAC?2 baselines:
COPA and SPARTan for predictive tasks. We first use the same pro-
cedure as described in Section 4.3.1 to hold out 10% positive entries
for validation and another 20% for manually injecting missingness.
We divide the patients into training set and test set and perform a
five-fold cross validation. We train LogPar with the patients in the
training set. Note that during the factorization step, no supervision
information is available; thus we tune the parameters based on the
completion performance over the validation entries. Then we fix
the learned factor matrix (V) and project the patients in the test
data to the learned factor matrix. Similar to the existing works on
PARAFAC2 model [28], we use the overall weighting vector, i.e., the
diagonal of S, as the patient representation of the kth patient, and
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Figure 4: Performance of heart failure prediction using the
Sutter dataset.
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Figure 5: Performance of mortality prediction using the
MIMIC-III dataset.

train a logistic regression model for prediction. We follow similar
procedures for all baselines.

Evaluation Metric. Similar to evaluating the completion, we
use the PR-AUC to evaluate the performance of the binary classi-
fication tasks. The PR-AUC is preferred over ROC-AUC because
the datasets are imbalanced and the ratio of positive labels (case
HF patient/deceased patients) is low, as shown in Table 2.

Results and Discussion. Fig. 4 and Fig. 5 show the predictive
performance with different target ranks for the heart failure and
mortality prediction tasks, respectively. LogPar outperforms the
baselines consistently for all target ranks and both tasks. With the
smallest target rank of 10, LogPar achieves 26.9% and 15.3% rela-
tive improvement over the best baseline for the heart failure and
mortality prediction, respectively. As the target rank increases, the
performance gap decreases marginally, yet LogPar still obtains an
averaged relative improvement of 13.18% and 14% over all target
ranks for the two prediction tasks. On the other hand, the predictive
performance between the two state-of-the-art PARAFAC2 models,
COPA and SPARTan, is marginal for all target ranks. The significant
improvement of the predictive performance of LogPar comes from
two aspects: First, it models the binary input with our developed
logistic PARAFAC2, whereas the mean square objective function
used by COPA and SPARTan does not well align with the binary
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Table 3: The completion performance for the ablation study
of LogPar in Sutter dataset, measured by PR-AUC. “Uni” and
“Smth.” are abbreviations for uniqueness regularization and
temporal smoothness regularization, respectively.

Model Uni. Smth. R=10 R=30 R=50 R=70
1 COPA Vv Vv 0.36 0.43 0.44 0.44
2 LogPar (PN) v X 0.45 0.50 0.51 0.56
3 LogPar (PU) v X 0.48 0.52 0.55 0.57
4 LogPar (PU) X X 0.38 0.46 0.48 0.51
5 LogPar (PU) v v 0.50 0.55 0.57 0.58

data; thus the underlying factors generating the data are not well
captured. Second, COPA and SPARTan do not account for the miss-
ing values in the input tensor, leading to inaccurate estimations of
the latent factors. In contrast, LogPar adopts the non-negative PU
learning technique to account for the missingness.

4.5 Ablation Study

To further understand our model, we conduct an ablation study
using the Sutter dataset to investigate the impact of each component
to tensor completion performance.

Table 3 shows the results of one baseline, COPA, and our LogPar
model with different combinations of loss function and the two
regularization terms, where “PN” denotes the positive-negative loss
function, i.e., regarding all unobserved entries as true zeros, and
applying Eq. (6) as the objective function. “PU” denotes the positive-
unlabeled loss function as defined in Eq. (10). The comparison
between the first two rows in Table 3 shows that the observation
model and the distribution used in LogPar is of critical importance
to accurate low-rank approximations for the binary input data. In
the third row, we replace the loss function to the PU loss function
developed in Eq. (10), and a relative improvement of around 6.7% is
further achieved, demonstrating that our non-negative PU learning
loss function is effective to handle the missing values.

We then examine the effectiveness of the uniqueness the tempo-
ral smoothness regularization. We switch off the both regularization
terms and run LogPar to obtain the fourth row of Table 3, which
surprisingly shows that the performance decrease by a large margin
of more than 10% compared to that in the third row. This suggests
that the uniqueness regularization is important for not only inter-
pretation, but also accuracy. Comparing the third row and the fifth
row, we can see that the temporal smoothness regularization can
further improve the performance by around 5%.

To summarize, the correct distribution and the uniqueness regu-
larization are the key factors to accurate low-rank approximation
of binary irregular tensors. On top of that, the temporal smoothness
regularization further improves the performance.

5 CONCLUSION

We present LogPar, a logistic PARAFAC2 model for learning low-
rank factorization of binary irregular tensors. We assume that the
binary input follow Bernoulli distributions parameterized by an
underlying real-valued irregular tensor, and approximate the un-
derlying tensor by a PARAFAC?2 factorization. We introduced a
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positive-unlabeled learning loss function to handle the one-class
missingness and incorporated the uniqueness and temporal smooth-
ness regularization to enhance the interpretability. We conducted
extensive experiments using three large-scale datasets, and the
results show that LogPar achieves better performance in binary
irregular tensor completion and the downstream predictive tasks
than the state-of-the-art PARAFAC2 and binary matrix completion
models. The ablation study also confirmed the effectiveness of the
regularization incorporated. For future work, we plan to extend Log-
Par to higher dimensions to capture the higher-order interaction
between different modalities.
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APPENDICES
A THEORETICAL ANALYSIS
A.1 Recovery of the latent distribution

Let M be the actual latent tensor generating the observations. We
then seek to bound the difference between the distributions o(M)
and o(M?). To ease the analysis, we first matricize M and M*
to M and M* respectively, by concatenating each of their slices
along the temporal dimension. o(M?¥) then can be regarded as a
maximizer of the likelihood of the hidden ground-truth V. We can
directly apply Theorem 6 from Davenport et al. [6] by defining the
probability of sampling all entries to be constant 1, and obtain the
following corollary.

COROLLARY 1. Assume that rank(M) < R, [M||x < aR X i It J
and |Mlleo < {. Let Ly be defined as:

o 7
x|z ()1 = o(x))’
with probability at least 1 — C1 /(g I + J),
& (a(M*), 6(M))

R
<L 1+
2 ga\/Zklk]\/

where C; and Co are absolute constants.

Ly

Sk + Dlog(Se k) (20)

2kl

l

A.2 Proof of Theorem 1

The remaining is to prove Theorem 1. Kiryo et al. [19] has estab-
lished the consistency of the nnPU loss function for the binary
classification problems. We extend their analysis to the PARAFAC2
model. We use the following lemma to complete the proof:

LEmMMA 1. [19, Lemma 5] Assume that (1) infcpg Ry (h) = 1 > 0;
(2)‘H is closed under negation. Then, for any § > 0, with probability
at least 1 — 6,

sup [Rpu(h) — R(h) <8LympR, , (H) +4LpRn, ,(H)
heH

~2(n/Cy)?
73 [\ + 1/
where Yn,.n, = 275 /AfMp + 1/+/ny, np and ny are the number of
positive and unlabeled data, respectively. mp is the class prior for the
positive data. H is the classifier function class, h € H is a classifier,
R, (g) is the empirical loss of the negative samples evaluated with
the negative label, ‘J'\’np,Pp (H) and Ry, ,(H) are the Rademacher
complexities of H for the sampling of size ny, from the distribution
of positive data py(x) and of size ny, from the data distribution p(x),

+C§ * Xny,n, + Cpmp exp (

respectively. ﬁpu(h) is the empirical loss obtained by the nnPU loss
function for classification and R(h) is that obtained by the positive-
negative loss function f. Ly is the Lipschitz constant of f.

The above lemma is developed in the context of PU learning for
binary classification, and here we show how this lemma can be
mapped to the tensor factorization setting. First, the loss function ¢
defined in Eq. (8) is Lipschitz continuous with Lipschitz constant L.
With the infinity norm constraints imposed on the factor matrices,
{ is upper-bounded. Therefore, for the loss function ¢ and our
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hypothesis class G defined in Eq. (19), we obtain the following
corollary for PARAFAC2 factorization by applying Lemma 1.

COROLLARY 2. Let { be defined as in Eq. (8), and the hypothesis
classG be defined as in Eq. (19). Assume that inf yc g L (0(M)) 2
n > 0. For any § > 0, with probability at least 1 — 8,

Z(eM) - LEM)| <8Lea%o(G) +4LRac(6)

sup
MegG

+C ( an + !
s | —
Vil lQc
where Q€ is the complementary of Q, ¥ = exp(—=2(1/C¢)? /(n? //|Q|+

1/V1Q€)). Ra(G) is the empirical Rademacher complexity of G with
respect to the index set Q, defined by:

+ CinYy,

R(G) = —Ee

su Z € i ro(m; i )],
1Q] p i.j.k ( l,],k)

MEG (i} k)eQ

where €; ; 1. ’s are independent random variables taking value 1 or -1
with probability 1/2.

With this corollary, we can prove Theorem 1 as follows.
Proor oF THEOREM 1.
L(o(M) - L{z(M")
= (Z(e) - Z(em")) + (£L(e(MD) - Z(c(M)
+(LleM) = L(em?))
<0+2 sup [Z(a(M) - LEM)
MegGg

< 16LeRQ(G) + 8L R (G) + 2Cs

an + ! )+2C v
s - Y,
viel  viQc

O

B HYPERPARAMETER SETTING

We summarize the hyperparameter setting of LogPar used in the
experiments in Table Al. y; and py are the weighing parameters for
the uniqueness constraint and the temporal smoothness constraint,
respectively. 7 is the class prior of the positive observations in
Eq. (10),  is the parameter controlling the upper-bound of the
infinity norm of the factor matrices. f is the shape parameter of the
temporal smoothness regularization, and y is the shape parameter
in the QPF. The hyperparameters of baselines are also carefully
tuned by grid search.

C PHENOTYPE CASE STUDY

Extracting computational phenotypes from EHR has been identified
as a fundamental task [10] and an important application of tensor
factorization models [2, 11, 17, 28, 34, 35]. In particular, a compu-
tational phenotype refers to a clinically relevant and interpretable
combination of clinical features, e.g., diagnoses and medications.
With the non-negative tensor factorization model, the latent factor
matrix (i.e., V in our model) can be interpreted as the definition
of the phenotypes. Each column of V represents one phenotype
defined by its elements with positive values.
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Table A1: Hyperparameter setting for different datasets.

Sutter CMS MIMIC-III
Learning Rate  le-4 le-3 le-4
Batch Size 32 128 32
H 0.001  0.001 0.001
H2 0.1 0.5 0.1
T 0.007  0.005 0.015
o 8 8 8
B 1 1 1
% 1 1 1

Table A2: Three examples of the phenotypes extracted from
the Sutter dataset. The weights inside the parentheses after
the phenotype index is the logistic regression coefficient for
predicting case patients for heart failure. “Dx” denotes for
diagnoses and “Rx” denotes for medications.

Phenotype #16 (weight=5.46)

Dx_Cardiac dysrhythmias [106.]

Dx_Congestive heart failure; nonhypertensive [108.]
Dx_Phlebitis; thrombophlebitis and thromboembolism [118.]
Rx_Coumarin Anticoagulants

Rx_Beta Blockers Cardio-Selective

Rx_Direct Factor Xa Inhibitors

Phenotype #25 (weight=4.95)
Dx_Coronary atherosclerosis and other heart disease [101.]
Dx_Peripheral and visceral atherosclerosis [114.]

Dx_Hypopotassemia
Rx_Potassium

Rx_Platelet Aggregation Inhibitors
Rx_Alpha-Beta Blockers

Phenotype #4 (weight=-2.59)

Dx_Other ear and sense organ disorders [94.]
Dx_Other upper respiratory infections [126.]
Dx_Other upper respiratory disease [134.]
Rx_Nasal Steroids

Rx_Azithromycin

Rx_Glucocorticosteroids
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We construct the irregular tensor following the same procedure
as described in Section 4.3.1 using the Sutter dataset and run LogPar
with target rank of 30. This number is selected because it achieves a
good balance between performance and interpretation: the comple-
tion and prediction performance with target rank of 30 is acceptable
and the clinical relevance of 30 phenotypes is feasible to be man-
ually examined. Table A2 lists three examples of the phenotypes,
which are chosen based on the coefficient of the logistic regres-
sion for heart failure prediction, shown inside the parentheses after
the phenotype indices. The listed three examples have the largest
absolute coefficients, where positive values indicate that patients
having this phenotype are more likely to be diagnosed heart failure
in the future.

Phenotypes #16 and #25 are two most important features for
predicting heart failure onset. The first includes three cardiovas-
cular diseases, one of which is in fact the heart failure diagnosis
code, suggesting that a patient with this diagnosis code yet does
not meet the heart failure onset criteria is highly likely to develop
heart failure in the future. The medications are used for treating
the diagnoses in clinical practice. Phenotype #25 describes a condi-
tion of atherosclerosis, which is in fact one of the leading causes
of heart failure.® The diagnoses and medications discovered are
highly relevant in clinical practice.

Phenotype #4 represents a clinical condition of sense organ dis-
order and infections, associated with nasal medications, antibiotics
and anti-inflammatory drugs, which is a commonly appearing con-
dition in primary care. In general, this condition is less relevant to
heart failure, and thus its coefficient for heart failure prediction is
negative.

8https://www.heart.org/en/health- topics/heart-failure/causes-and-risks-for- heart-
failure/causes-of-heart-failure


https://www.heart.org/en/health-topics/heart-failure/causes-and-risks-for-heart-failure/causes-of-heart-failure
https://www.heart.org/en/health-topics/heart-failure/causes-and-risks-for-heart-failure/causes-of-heart-failure

	Abstract
	1 Introduction
	2 Background
	2.1 Irregular Tensor and PARAFAC2
	2.2 Low-Rank Completion of Binary Matrix

	3 Proposed Method
	3.1 Logistic PARAFAC2 Factorization
	3.2 Non-negative Positive-Unlabeled Loss
	3.3 Regularization
	3.4 Learning Algorithms
	3.5 Theoretical Analysis

	4 Experiments and Results
	4.1 Datasets
	4.2 Baselines
	4.3 Tensor Completion
	4.4 Downstream Predictive Tasks
	4.5 Ablation Study

	5 Conclusion
	Acknowledgments
	References
	A Theoretical Analysis
	A.1 Recovery of the latent distribution
	A.2 Proof of Theorem 1

	B Hyperparameter Setting
	C Phenotype Case Study



