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The paper addresses data-driven control based on input–output data in the absence of an underlying dy- 

namic model. It proposes a dissipativity learning control (DLC) framework which involves the data-based 

learning of the dissipativity property of the control system, followed by a dissipativity-based controller 

design procedure. Specifically, independent component analysis and parametric distribution inference are 

adopted to estimate a polyhedral region of input–output trajectory samples, whose dual cone character- 

izes the dissipativity property; subsequently, an optimal controller in the L 2 sense is designed by solving a 

nonlinear semidefinite programming problem. The applicability of the proposed method is demonstrated 

by case studies on regulating control of a polymerization reactor and tracking control of an oscillatory 

chemical reactor. 
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. Introduction 

Big data analytics is playing an increasing role in the operations

nd optimization of chemical process systems ( Qin and Chiang,

019; Venkatasubramanian, 2019 ). Data-driven control, which aims

o design controllers based on historical and/or online operational

ata provides an alternative to model-based control with the po-

ential of circumventing the difficulties of deriving, identifying, up-

ating, and modifying control-oriented dynamic models ( Hou and

ang, 2013 ). Data-driven modeling approaches, ranging from tra-

itional transfer function identification ( Lao et al., 2013 ), tempo-

al linearization ( Chi et al., 2015 ), regression ( Tanaskovic et al.,

017; Narasingam and Kwon, 2018 ), adaptive parameter estimation

 Heirung et al., 2017 ) and Koopman operators or dynamic mode

ecomposition ( Williams et al., 2015; Proctor et al., 2018; Korda

nd Mezi ́c, 2018; Narasingam and Kwon, 2019 ) to artificial neu-

al networks ( Aggelogiannaki and Sarimveis, 2008; Mu et al., 2017 )

nd machine learning algorithms ( Mesbah, 2018 ), can in principle

e incorporated into model-based control methods to resolve the

omplexity involved in first-principles modeling. Although intrinsi-

ally dependent on data, these approaches are not truly model-free

nd their efficacy is strongly affected by the complexity and accu-

acy of the learned surrogate models. 

Model-free data-driven control approaches have also been devel-

ped, mostly based on approximate dynamic programming (ADP).
∗ Corresponding author. 
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n these approaches, one focuses on the optimal control policy

nd/or the optimal control cost (or Q -function) as state-dependent

unctions determined by the Hamilton-Jacobi-Bellman (HJB) opti-

ality principle, and obtains their approximations ( Lee and Lee,

005; Lee and Wong, 2010 ) through either offline regression ( Luo

t al., 2014; Tang and Daoutidis, 2018 ) or online iterative schemes

nder the name of reinforcement learning (RL) ( Lillicrap et al.,

015; Spielberg et al., 2019 ). Instead of obtaining a full dynamic

odel, in these model-free approaches, one seeks only essential

ontrol-relevant information (e.g., Q -function), thus largely reducing

he complexity of designing well-performing controllers. With the

evelopment of machine learning, especially deep learning meth-

ds ( Shin et al., 2019 ), ADP and RL approaches are expected to

nd wider applications. However, the application of ADP in pro-

ess control is still limited to small-scale systems with relatively

imple dynamics. This is due to the dependence of ADP formula-

ions on the state-space information of the system, which can be

imited for chemical processes. For example, for systems with un-

bservable states, one does not have access to full state informa-

ion, and the construction of a model-free state estimator is non-

rivial (see, e.g., Ghavamzadeh et al., 2015 ). Further, in the presence

f high-dimensional nonlinear dynamics of the states, it is difficult

o choose the approximators of the state-dependent optimal con-

rol policy and cost functions. It is clear that so far, a data-driven

odel-free control framework that applies to process systems with

ossibly unobservable, high-dimensional, and nonlinearly-related 

tates, remains an open problem. 

https://doi.org/10.1016/j.compchemeng.2019.106576
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Nomenclature 

Latin Letters 

a, b, c, w Biexponential distribution parameters 

D 
+ , D 

− Scales of biexponential distributions 

d Exogenous disturbances 

E Basis matrix for symmetric matrices 

f, g, h, l Unknown vector fields in the model 

I Unit matrix 

J Dimension of independent components 

K Controller gain matrix 

M Mixing matrix 

N Set of positive integers 

N Normal distribution 

N Positive integer 

P Number of samples 

p Constants 

q Probability density function 

R Set of real numbers 

r Dimension of the dissipativity parameters 

S Set of symmetric matrices 

S + Set of positive semidefinite matrices 

S Dual dissipativity set 

s Supply rate function 

T Time duration 

t Time variable 

U Orstein-Uhlenbeck process 

u Control inputs 

V Storage function 

v Auxiliary variable 

W Wiener process 

x State variables 

y Output variables 

z Performance outputs 

Greek Letters 

α Constants 

β Upper bound of squared L 2 -gain 

� Dual dissipativity parameters 

γ Vectorized dual dissipativity parameters 

� Confidence level 

δ Kronecker delta 

ε Small real number 

ζ Lumped random variable 

η Random vectors with independent compoents 

θ Parameter in biexponential distribution 

κ Control law 

λ Lagrangian dual 

ξ Whitened random vectors 

� Dissipativity parameters 

π Vectorized dissipativity parameters 

ρ Eigenvalue 

� Covariance matrix 

σ Scales of deviations from the contacting endpoint of 

biexponential distributions 

τ Dummy time variable 

υ Magnitude of Orstein-Uhlenbeck process 

ω Inverse time constant of Orstein-Uhlenbeck process 

Subscripts 

+ , − Positive and negative deviations from mean, or pos- 

itive and negative parts of a real number 

i Index of vertices in convex hull 

j Index of independent components 
s  
k Index of bases 

P,I,D Proportional, integral, and differential mode 

Superscripts 

p Index of samples 

Other Notations 
∗ Dual cone of a set 

� Transpose of a matrix 

¯ Setpoint for tracking 

˜ Deviation from the tracking target 

ˆ Controller properties 

ˇ Closed-loop properties 

[ · ] The implicit matrix A or vector a in a quadratic form 

A � BA or a � Ba 
‖ · ‖ Norm 

〈 · , · 〉 Inner product of matrices 

coni Conic hull 

conv Convex hull 

trace Matrix trace 

A promising approach to such a framework is to adopt an

nput–output perspective of process systems towards a data-driven

ontrol strategy depending only on input and output data with-

ut involving any state-space description. To this end, we note

hat the concept of dissipativity ( Willems, 1972; Hill and Moylan,

976; Moylan and Hill, 1978; Hill and Moylan, 1980 ), as a char-

cterization of input–output behavior, has been widely exploited

or output-feedback control ( Polushin et al., 20 0 0; Lozano et al.,

013 ). In the context of model-based control, through a thermo-

ynamic analysis on the dynamic model under certain (rather re-

trictive) assumptions, the dissipative properties of process sys-

ems involving a storage function and a supply rate function can

e determined by choosing inputs and outputs consistent with ir-

eversible thermodynamics ( Alonso and Ydstie, 1996; Ydstie, 2002;

uszkowski et al., 2005; Hioe et al., 2013 ) or adopting a Hamilto-

ian modeling approach ( Hangos et al., 2001; Ramirez et al., 2013;

arcía-Sandoval et al., 2016 ). 

Dissipativity-based control can be naturally extended into an

nput–output data-driven control strategy, which we call dissipativ-

ty learning control (DLC). Key to this data-driven framework is the

se of machine learning techniques to obtain the dissipative prop-

rty from data rather than a first-principles model. The learned

issipativity is then combined with a dissipativity-based controller

ynthesis formulation to obtain a desirable control law. Recently,

ata-based dissipativity learning approaches have been introduced

 Wahlberg et al., 2010; Maupong et al., 2017; Romer et al., 2017 );

owever, these works are restricted to specific simple forms of

issipativity properties or linear dynamics, and are not followed

y controller design. In Tang and Daoutidis (2019) , we first pro-

osed a dissipativity learning control framework, where a one-

lass support vector machine for learning the dissipativity prop-

rty is combined with the controller synthesis. This results in an

ntegrated quadratic and semidefinite programming problem that

an be solved via an iterative algorithm, throughout which the dis-

ipativity property is updated until the optimal estimation is ap-

roached. However, this procedure is computationally expensive

ue to the repeated learning, and its performance is dependent on

he convergence of the iterative algorithm. 

In this work, we propose a more effective approach, where the

issipativity learning and the controller design are carried out suc-

essively, thus avoiding the complexity of the iterative algorithm.

he learning procedure estimates a range of the supply rate, and

nvolves the following three steps: (1) the data samples under the

ystem dynamics are treated with independent component analysis
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Fig. 1. System architecture. 
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or dimensionality reduction, (2) bi-exponential distribution infer-

nce is performed to obtain a polyhedral confidence region of tra-

ectory data, and (3) a dual polyhedral cone is constructed as the

pproximate range of the parametric representation of the supply

ate function. Based on the estimated range of the supply rate, a

ontroller is designed to minimize an upper bound of the L 2 -gain

y solving a semidefinite programming problem. Such a novel ap-

roach can be applied to both regulating and tracking tasks, for

he latter of which deviation variables from the time varying input

nd output trajectories are used instead of deviations from static

etpoints. 

The remainder of this paper is organized as follows. We first in-

roduce preliminaries of dissipativity and dissipativity-based con-

rol in Section 2 . The dissipativity learning control framework is

roposed in Section 3 . We examine the proposed method with

ase studies on regulating control and tracking control of two dif-

erent chemical reactors in Section 4 and 5 , respectively. Conclu-

ions are given in Sections 6 . 

. Preliminaries 

.1. Dissipativity 

Dissipativity is an important characterization of the input–

utput property of dynamic systems that describes how the states

f the system move across the contours of a nonnegative function

nder the effect of the input and output variables. Dissipativity,

s defined by Willems (1972) , states that the change of a state-

ependent storage function V ( x ) can not exceed the accumulation

f an input and output-dependent supply rate s ( u ; y ). 

efinition 1. A dynamic system in the general nonlinear form 

˙  = f (x, u ) , y = h (x, u ) . (1)

s said to be dissipative in the (nonnegative) storage function V ( x )

ith respect to the supply rate s ( u ; y ) if under the system dynamics

1) , the dissipative inequality holds for any input trajectory u ( t ) on

ny time interval [ t 1 , t 2 ]: 

 (x (t 2 )) −V (x (t 1 )) ≤
∫ t 2 
t 1 

s (u (t) ; y (t)) dt. (2)

Generally, the inputs of the plant include not only control in-

uts u but also disturbances d , whose components are assumed to

e equal to 0 in the nominal plant. Here we consider plants gov-

rned by the following (unknown) input-affine dynamics, where x,

 and d are vectors: 

˙  = f (x ) + g(x ) u + l(x ) d. (3)

or reference tracking problems, the setpoint trajectories of inputs,

¯ , and outputs, ȳ , which satisfy the undisturbed dynamics 

˙ ¯ = f ( ̄x ) + g( ̄x ) ̄u , ȳ = h ( ̄x ) , (4)

ay vary with time. For regulating control, the setpoints are fixed

t ū = 0 , ȳ = 0 . The setpoint signals are given a priori by a dynamic

r static simulator of the plant. Define the deviations of the control

nputs and the outputs from the corresponding setpoints as ˜ u :=
 − ū and ˜ y := y − ȳ , respectively. Thus, the plant is viewed as a

apping ( ̃  u , d, ū ) → ˜ y with states ˜ x and x̄ : 

˙ ˜ x = f ( ̄x + ˜ x ) + g( ̄x + ˜ x )( ̄u + ˜ u ) + l( ̄x + ˜ x ) d − f ( ̄x , ū ) − g( ̄x ) ̄u , 

˙ x̄ = f ( ̄x ) + g( ̄x ) ̄u , 

˜  = h ( ̄x + ˜ x ) − h ( ̄x ) . (5) 

e consider the controller as a mapping from the output de-

iations (errors) and the input setpoints to the input deviations
: ( ̃  y , ū ) → ˜ u to be designed ( ̄y is not included since it is deter-

ined by ū ), i.e., we seek 

˜  = κ( ̃  y , ū ) . (6) 

ence the closed-loop system is a map from (d, ū ) to the tracking

rrors in both the inputs and the outputs ( ̃  y , ̃  u ) . The architecture

f such a control system is illustrated in Fig. 1 . Under such an ar-

hitecture, suppose that the dissipative inequality of the open-loop

ystem (5) is written as 

 ( ̃  x (t 2 ) , ̄x (t 2 )) −V ( ̃  x (t 1 ) , ̄x (t 1 )) ≤
∫ t 2 
t 1 

s ( ̃  u (t) , d(t) , ū (t) ; ˜ y (t)) dt. 

(7) 

ubstituting the feedback control law (6) into the above formula,

e see that the closed-loop system, with ( ̃  x , ̄x ) as its states, is dis-

ipative with respect to a new supply rate š : 

 (κ( ̃  y , ū ) , d, ū ; ˜ y ) =: š (d, ū ; ˜ y ) . (8)

The closed-loop dissipative inequality is naturally connected to

yapunov stability. Consider the undisturbed case when d = 0 . If

 ̌(0 , ū ; ˜ y ) ≤ 0 , then according to the Krasovskii-LaSalle’s principle

f invariance ( Khalil, 2002 ), the system states will converge to an

nvariant set in which the supply rate remains 0 and the storage

eaches its minimum. If š (0 , ū ; ˜ y ) ≤ 0 and the equality holds only

hen ˜ y = 0 , then the afore-mentioned invariant set is such that

he tracking errors become zero, i.e., the output tracking control is

ealized. If we further assume that (5) is partially observable in ˜ x ,

hen we realize state tracking. For regulating control, it suffices to

ave the inequality hold only for ū = 0 . When there exist distur-

ances, the control performance is characterized by the effect of

he disturbances on ( ̃  y , ̃  u ) in the sense of an L 2 -gain. To this end,

e have the following assertion. 

heorem 1. If the closed-loop supply rate š (d, ū ; ˜ y ) satisfies the
ounded nonconcavity condition: 

 ̌(d, ū ; ˜ y ) ≤ β‖ d‖ 
2 − ‖ κ( ̃  y , ū ) ‖ 

2 − ‖ ̃  y ‖ 
2 , (9)

or a positive real number β , then the closed-loop system is L 2 -stable,

ith an L 2 -gain (from the disturbances to the input and output track-

ng errors) no larger than β1/2 . 

roof. With (8) as a supply rate function and the definition of the

ontroller (6) , on any time interval [0, T ] we have 

 | t= T −V | t=0 ≤
∫ T 
0 

š d t ≤
∫ T 
0 

(β‖ d ‖ 
2 − ‖ ̃  u ‖ 

2 − ‖ ̃  y ‖ 
2 ) dt. (10)

earrange the above formula and relax the non-positive −V | t= T 
erm on the right-hand side to obtain 

 ̃  u ‖ 
2 
L [0 ,T ] + ‖ ̃  y ‖ 

2 
L [0 ,T ] ≤ β‖ d‖ 

2 
L [0 ,T ] + V | t=0 . (11)
2 2 2 
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This conforms to the definition of L 2 -stability ( Khalil, 2002 ) with

an upper bound on the L 2 -gain of β
1/2 . �

This connection between the dissipativity of the closed-loop

system and L 2 -stability is the theoretical basis of dissipativity-

based control to be discussed in the next subsection. 

2.2. Dissipativity-based control 

The determination of a supply rate function of the plant satisfy-

ing the condition (9) , namely the dissipativity learning procedure,

will be addressed in the next section. Now we assume that such

a function s is known, and consider the problem of synthesizing

a feedback controller in the form of (6) with desired closed-loop

performance. For simplicity, we assume that the supply rate s is

quadratic in ˜ u , d, ̃  y , the feedback law κ is linear in ˜ y , and hence š

is also quadratic in d, ̃  u , ̃  y , namely 

s ( ̃  u , d, ū ; ˜ y ) = [ d � ˜ u � ˜ y � ]�( ̄u )[ ·] , 
κ( ̃  y , ū ) = K( ̄u ) ̃  y , 

š (d, ū , ̃  y ) = [ d � (K( ̄u ) ̃  y ) � ˜ y � ]�( ̄u )[ ·] , (12)

where �( ̄u ) is a symmetric matrix called the dissipativity matrix

and K( ̄u ) is the feedback gain matrix that may depend on ū . The

upper bound of the squared closed-loop L 2 -gain is estimated by

(9) , i.e., the smallest positive β such that 

[ d � (K( ̄u ) ̃  y ) � ˜ y � ]�( ̄u )[ ·] ≤ β‖ d‖ 
2 − ‖ K( ̄u ) ̃  y ‖ 

2 − ‖ ̃  y ‖ 
2 (13)

holds for any d , ˜ y and ū , i.e., such that 

[
I 0 0 
0 K( ̄u ) � I 

]( 

�( ̄u ) + 

[ −βI 0 0 
0 I 0 
0 0 I 

] ) [ 

I 0 
0 K( ̄u ) 
0 I 

] 

	 0 . 

(14)

For simplicity, we need to further assume that � and hence

K are independent of ū , so that the above semidefinite inequality

does not need to be repeated for all possible (or multiple) values

of ū . This is equivalent to choosing an overestimate for the supply

rate function s within the possible range of ū . This conservatism

aims at designing a control law that is dependent only on devia-

tions and invariant to the reference trajectory, and is usually ac-

ceptable as long as such a control law gives satisfactory perfor-

mance. Thus, we consider the L 2 -optimal dissipativity-based con-

troller design as the problem of finding the controller gain K such

that the upper bound of the squared L 2 -gain β is minimized: 

min 
K 

β

s . t . 

[
I 0 0 
0 K � I 

]( 

� + 

[ −βI 0 0 
0 I 0 
0 0 I 

] ) [ 

I 0 
0 K 
0 I 

] 

	 0 . (15)

We note that proportional (P), proportional-integral (PI) and

proportional-integral-differential (PID) control laws are the three

most classical forms in process control. For implementing PID con-

trollers, we need to augment the plant outputs with their integrals

and derivatives, i.e., (y P , y I , y D ) = (y, 
∫ t 
0 y (τ ) d τ, d y/d t) , and the ref-

erence outputs into ( ̄y P , ̄y I , ̄y D ) = ( ̄y , 
∫ t 
0 ȳ (τ ) d τ, d ̄y /d t) , so that the

feedback signals to the controller include the integral and deriva-

tive of ˜ y (assuming that the function h is differentiable, so that the

time derivatives of y and ȳ exist). The augmented outputs can be

regarded as the output variables of the corresponding augmented

plant dynamics (with auxiliary state variables v ): 

[
˙ x 
˙ v 

]
= 

[
f (x, u ) 
h (x ) 

]
, 

[ 

y P 
y I 
y D 

] 

= 

⎡ 

⎣ 

h (x ) 
v 

dh (x ) 
f (x, u ) 

⎤ 

⎦ . (16)
dx 
iven the dissipativity property of the above augmented dynamics,

f we find the optimal controller gain matrix K with augmented

utputs, then the matrix can be partitioned into K = [ K P , K I , K D ] so

hat the feedback control law is expressed as 

˜  (t) = K P ̃  y (t) + K I 

∫ t 
0 

˜ y (τ ) dτ + K D 
d ̃  y (t) 

dt 
. (17)

n this case, the L 2 -optimal PID controller design results from the

ollowing problem modified from (15) : 

min 
 P ,K I ,K D 

β

s . t . [ ·] � 

⎛ 

⎜ ⎜ ⎝ 
� + 

⎡ 

⎢ ⎢ ⎣ 

−βI 0 0 0 0 
0 I 0 0 0 
0 0 I 0 0 
0 0 0 0 0 
0 0 0 0 0 

⎤ 

⎥ ⎥ ⎦ 

⎞ 

⎟ ⎟ ⎠ 

⎡ 

⎢ ⎢ ⎣ 

I 0 0 0 
0 K P K I K D 
0 I 0 0 
0 0 I 0 
0 0 0 I 

⎤ 

⎥ ⎥ ⎦ 
	 0 ,

(18)

here � is now a matrix with 5 ×5 blocks corresponding to d , ˜ u ,

˜  P = ˜ y , ˜ y I = 

∫ t 
0 ˜ y (τ ) dτ and ˜ y D = d ̃  y /dt, respectively. 

emark 1. Although PID is the most widely used type of con-

rollers in practice, its design or tuning usually requires a trans-

er function representation of the process. In passivity-based con-

rol ( Bao and Lee, 2007 ), a PID controller is proved to be strictly

nput-passive (i.e., dissipative with respect to a supply rate of

 
� u − ε‖ u ‖ 2 for some ε > 0) and results in closed-loop stability if

he plant is passive (i.e., dissipative with respect to y � u ). However,

his has not been discussed in a dissipativity-based control setting,

here the plant may have more general forms of supply rate func-

ions. Moreover, an optimal way of designing the PID controller

ain matrices is lacking. These issues are addressed by the pro-

osed formulation (18) for the L 2 -optimal dissipativity-based PID

ontroller design. 

. Dissipativity learning control 

.1. Dissipativity set and dual dissipativity set 

Now we deal with the problem of determining the dissipativ-

ty property of the system. We note that to obtain a dissipative

nequality, a storage function V ( ̃  x , ̄x ) depending on the states of

he system (5) and an input and output dependent supply rate

unction s ( ̃  u (t) , d(t) , ū (t) ; ˜ y (t)) are needed. The involvement of the

tate-dependent storage function is undesirable since only input

nd output data are available. This can be avoided by using a theo-

em similar to the one proved in Hill and Moylan (1976) under the

ollowing assumption. 

ssumption 1. For the system (5) , any state ( ̃  x , ̄x ) is reachable in

nite time from a state with zero state tracking error, i.e., there

xists a finite time T > 0 and a trajectory of inputs ( ̃  u (t) , d(t) , ū (t))

n t ∈ [0, T ], such that the state at t = 0 is (0 , ̄x 0 ) for some x̄ 0 , and

he state at t = T is ( ̃  x , ̄x ) . 

This assumption is not restrictive, since the reachability from

ero state tracking error is naturally satisfied as long as the sys-

em is controllable, which can be usually guaranteed by appropri-

te control variable selection. 

heorem 2. Suppose that Assumption 1 holds. Then the system (5) is

issipative with respect to s ( ̃  u , d, ū ; ˜ y ) in a nonnegative storage func-
ion V ( ̃  x , ̄x ) satisfying V (0 , ̄x ) = 0 for any x̄ , if and only if for any

rajectory starting from any states ( ̃  x , ̄x ) with ˜ x = 0 , the following in-

quality holds 

 t 2 

t 

s ( ̃  u (t) , d(t) , ū (t) ; ˜ y (t)) dt ≥ 0 . (19)

1 
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roof. The necessity is evident by using Definition 1 . We only

rove the sufficiency here. Consider the following function 

 ( ̃  x , ̄x ) = inf 
( ̃ u (t) ,d(t) , ̄u (t)) , t∈ [0 ,T ] 
˜ x (0)=0 , ˜ x (T )= ̃ x , x̄ (T )= ̄x 

∫ T 
0 

s ( ̃  u (t) , d(t) , ū (t) ; ˜ y (t)) dt. 

(20) 

ccording to the reachability assumption 1 , the above function is

ell-defined and finite. If (19) holds, the value of V is always non-

egative. Consider any trajectory ( ̃  u (t) , d(t) , ū (t)) on any time in-

erval [ t 1 , t 2 ] and denote the initial and final states as ( ̃  x 1 , ̄x 1 ) and

( ̃  x 2 , ̄x 2 ) , respectively. We then have 

 ( ̃  x 2 , ̄x 2 ) −V ( ̃  x 1 , ̄x 1 ) = inf 
( ̃ u (t) ,d(t) , ̄u (t)) , t∈ [0 ,T 2 ] 

˜ x (0)=0 , ˜ x (T 2 )= ̃ x 2 , x̄ (T 2 )= ̄x 2 

∫ T 2 
0 

sdt 

− inf 
( ̃ u (t) ,d(t) , ̄u (t)) , t∈ [0 ,T 1 ] 

˜ x (0)=0 , ˜ x (T 1 )= ̃ x 1 , x̄ (T 1 )= ̄x 1 

∫ T 1 
0 

sdt, (21) 

here the first infimum can be relaxed with any trajectory start-

ng from a point with zero tracking error, passing ( ̃  x 1 , ̄x 1 ) , and ex-

ended by the given trajectory from ( ̃  x 1 , ̄x 1 ) to ( ̃  x 2 , ̄x 2 ) . Hence 

 ( ̃  x 2 , ̄x 2 ) −V ( ̃  x 1 , ̄x 1 ) ≤
∫ t 2 
t 1 

s ( ̃  u (t) , d(t) , ū (t) ; ˜ y (t)) dt. (22)

ccording to Definition 1 , the system (5) is then dissipative in the

torage function V with respect to s . �

Under the quadratic form of supply rate 

 ( ̃  u , d, ū ; ˜ y ) = [ d � ˜ u � ˜ y � ]�[ ·] , (23)

he inequality condition (19) becomes 

 t 2 

t 1 

[ d � (t) ˜ u � (t) ˜ y � (t)]�[ ·] d t = 〈 �, 

∫ t 2 
t 1 

[ ·][ d � ˜ u � ˜ y � ] d t〉 ≥ 0 , 

(24) 

here the inner product between any two symmetric matrices 〈 · ,
〉 is specified as the trace of their product. Practically, we limit

24) to trajectories on which d and ˜ u belong to the L 2 e class (i.e.,

re finite-time square integrable), so that the integral term in the

nner product is finite. 

Now we give the key definitions that will be used for dissipa-

ivity learning. 

efinition 2. The dual dissipativity parameter of each trajectory

( ̃  u (t) , d(t) , ū (t) , ̃  y (t)) , t ∈ [ t 1 , t 2 ] is defined as 

= 

∫ t 2 
t 1 

[ ·][ d(t) � ˜ u (t) � ˜ y (t) � ] dt. (25)

he collection of dual dissipativity parameters of all the trajecto-

ies that start from any ( ̃  x , ̄x ) with ˜ x = 0 and are L 2 e (quadratically

ntegrable on any finite time interval) in the inputs (d, ̃  u ) is called

he dual dissipativity set , denoted as S . The dual cone of the dual
issipativity set S, 

 
∗ = { �|〈 �, �〉 ≥ 0 , ∀ � ∈ S} , (26)

s called the dissipativity set . We also define the dissipativity pa-

ameter of the system as the matrix � in the supply rate (23) . 

Then it directly follows from Theorem 2 that the dissipativity

et S ∗ defined above is the range of the dissipativity parameters.

his is stated as the following corollary. 

orollary 1. Suppose that Assumption 1 holds. If � ∈ S ∗, then

he system (5) is dissipative with respect to s ( ̃  u , d, ū ; ˜ y ) =
 d � ˜ u � ˜ y � ]�[ ·] . 
Hence, the problem of dissipativity learning refers to the de-

ermination of the dissipativity set S ∗, which requires only to de-

ermine the dual dissipativity set S – the collection of all possible

ual dissipativity parameters �. 

In a model-free setting, the dual dissipativity set S is con-

tructed by inference from data. Specifically, we collect P indepen-

ent samples of trajectories ( ̃  u p (t) , d p (t) , ū p (t) ; ˜ y p (t)) , t ∈ [ t 
p 
1 
, t 

p 
2 
] ,

p = 1 , 2 , . . . , P by randomly generating L 2 e -class inputs (d, ̃  u , ū ) and

imulating the system dynamics (5) . Then we calculate for each

rajectory sample the corresponding dual dissipativity parameter 

p = 

∫ t p 
2 

t p 
1 

[ ·][ d p (t) � ˜ u (t) � ˜ y p (t) � ] dt ∈ S. (27)

hen �p , p = 1 , . . . , P are samples of a random distribution whose

upport set (the set on which the probability density is nonzero)

s S, as long as the input trajectories are sampled from the L 2 e 
lass, i.e., any L 2 e signal has a chance of being chosen. This can in

rinciple be realized, for example as in the present paper, using

ndependent Wiener processes of random magnitudes or Orstein-

hlenbeck processes, although the optimal or near-optimal sam-

ling methods of input trajectories remain an important open

roblem. Now the dissipativity learning is formally expressed as

he following problem: 

roblem 1. Given samples �p , p = 1 , 2 , . . . , P, infer the support set

of the underlying distribution of the samples, and explicitly char-

cterize its dual cone S ∗. 

.2. Dissipativity learning approach 

To estimate S, one may directly apply a probability density es-

imation scheme (see, e.g., Parzen 1962 ) or kernel ( Schölkopf and

mola, 2002 ) or deep ( Ruff et al., 2018 ) one-class support vector

achine algorithms. However, the shape of such an estimated S
an be too complex to explicitly characterize its dual cone S ∗ and

se it for a subsequent dissipativity-based control mainly due to

ts non-convexity. In fact, it suffices to obtain a convex hull of S: 

onv (S) = 

{ 

N ∑ 

i =1 

αi �i 

∣∣∣ N ∑ 

i =1 

αi = 1 , 
αi ≥ 0 , �i ∈ S 

i = 1 , 2 , . . . , N, N ∈ N 

} 

⊇ S (28) 

ince the dissipativity set that we aim to find, S ∗, is also the dual
one of conv (S) ( S ∗ = conv (S) ∗). Therefore in this work, we will

stimate S as a polyhedron , which can be viewed as the simplest

orm of convex sets, from trajectory samples. 

The key idea underlying the polyhedral estimation is to assume

hat the components of � form a random vector subject to a linear

ixture of independent bi-exponential distributions, so that its confi-

ence regions yield polyhedral approximations of its support set , and

hat such a mixture of bi-exponential distributions can be inferred

hrough independent component analysis (ICA) and parametric sta-

istical inference of the component distributions. Here we first rep-

esent the matrix � and � isomorphically as vectors γ and π , re-

pectively, by choosing an orthonormal basis in the corresponding

atrix space { E k }, so that 〈 �, �〉 = π� γ , i.e., 

� = 

∑ 

k 

γk E k , � = 

∑ 

k 

πk E k ;

k = 〈 �, E k 〉 , πk = 〈 �, E k 〉 . (29) 

y vectorizing all the samples to γ p , p = 1 , . . . , P, Problem 1 is re-

tated as 

roblem 2. Given samples γ p , p = 1 , . . . , P, find the underlying in-

ependent components and infer their bi-exponential distributions,

hus explicitly characterizing any confidence set as a polyhedron

nd its dual cone. 
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ICA aims to determine a linear transformation of the translated

data samples: 

γ p = γ̄ + Mηp , p = 1 , 2 , . . . , P (30)

such that ηp , p = 1 , . . . , P can be viewed as samples of a random

vector η whose components η j , j = 1 , . . . , J are independent with

zero means and unit variances. γ̄ = 
1 
P 

∑ P 
p=1 γ

p is the average of all

samples. The classical algorithm (based on kurtosis maximization

of η) was introduced in Hyvärinen and Oja (20 0 0) , to which the

readers are referred for details. The dimension of the independent

components, denoted by J , is a tunable hyperparameter. 

After the ICA processing, we estimate the bi-exponential distri-

bution of each independent component ηj , whose samples are ηp 
j 
,

p = 1 , . . . , P . Specifically, we suppose that the probability density

function of ηj as a random variable is a linear combination of two

exponential distributions that have a contacting endpoint, opposite

directions, and weights summing up to 1: 

q j (η j ) = 

{
w j a j exp [ −a j (η j − c j )] , η j ≥ c j 
(1 − w j ) b j exp [ −b j (c j − η j )] , η j < c j 

(31)

where a j > 0, b j > 0, c j , 0 < w j < 1 are 4 parameters constrained by

the following 3 equalities: 

lim 

η j → c −
j 

q j 
(
η j 

)
− lim 

η j → c + 
j 

q j 
(
η j 

)
= 0 (continuity) ;∫ + ∞ 

−∞ 

η j q j 
(
η j 

)
dη j = 0 (zero mean) ;∫ + ∞ 

−∞ 

η2 
j q j 
(
η j 

)
dη j = 1 (unit variance) . 

(32)

One can verify that the only one remaining degree of freedom can

be represented by a parameter θ j ∈ [ −π/ 4 , π/ 4] , with the follow-

ing expressions relating a j , b j , c j , w j to θ j : 

a j = 1 / sin (π/ 4 − θ j ) , b j = 1 / sin (π/ 4 + θ j ) , 

c j = 

√ 

2 sin θ j , w j = (1 − tan θ j ) / 2 . (33)

The bi-exponential distribution (31) is hence 

q j (η j ) = 

1 √ 

2 cos θ j 

exp 

[
− (η j −

√ 

2 sin θ j ) + 
sin (π/ 4 − θ j ) 

− (η j −
√ 

2 sin θ j ) −
sin (π/ 4 + θ j ) 

]
, 

(34)

where the subscripts + and - for any real number stand for its

positive and negative parts, respectively, namely p + = max (0 , p) ,

p − = −min (0 , p) , p ∈ R . We use the maximum (logarithmic) like-

lihood estimation to optimize the value of θ in the distribution,

i.e., 

θ j = arg min [ ln ( 
√ 

2 cos θ j ) 

+ 

1 

P 

P ∑ 

p=1 

(ηp 
j 
−

√ 

2 sin θ j ) + 
sin (π/ 4 − θ j ) 

+ 

1 

P 

P ∑ 

p=1 

(ηp 
j 
−

√ 

2 sin θ j ) −
sin (π/ 4 + θ j ) 

] 
. (35)

With the distributions pf the independent components deter-

mined, we clearly see that 

ζ = 

1 

J 

J ∑ 

j=1 

[
(η j −

√ 

2 sin θ j ) + 
sin (π/ 4 − θ j ) 

+ 

(η j −
√ 

2 sin θ j ) −
sin (π/ 4 + θ j ) 

]
(36)

as an average of J independent variables, each subject to an expo-

nential distribution of parameter 1 (see (34) ), is subject to the Er-

lang distribution whose probability density and cumulative density

functions are 

q (ζ ) = 

J J ζ J−1 exp (−Jζ ) 

(J − 1)! 
, Q(ζ ) = 1 −

J−1 ∑ 

k =0 

1 

J! 
(J ζ ) k exp (−J ζ ) (37)

respectively, with a mean of 1 and a variance of 1/ J . When J is

large, the central limit theorem dictates that the distribution Q is
ell approximated by a normal distribution N (1 , J −1 / 2 ) . By letting

(ζ ) ≤ 1 − ε for a small positive number ε, we obtain a confidence

et 

J−1 
 

k =0 

1 

J! 
(Jζ ) k exp (−Jζ ) ≥ ε

denoted as −−−−−−→ ζ ≤ 1 + J −1 / 2 �, (38)

n which 1 − ε or � characterizes the confidence level. In real-

ty, due to the discrepancy between the empirical distribution of

obtained from data samples and the assumed Erlang distribu-

ion, such a confidence level � needs to be chosen according to a

pecific portion (e.g., 90% or 95%) of the samples. 

By combining the ICA transformation (30) and the construction

f the Erlang-distributed random variable (36) , we have a polyhe-

ral approximation of the dual dissipativity set: 

 � = 

{ 
γ | γ = γ̄ + Mη, 

1 

J 

J ∑ 

j=1 

[
(η j −

√ 

2 sin θ j ) + 
sin (π/ 4 − θ j ) 

+ 

(η j −
√ 

2 sin θ j ) −
sin (π/ 4 + θ j ) 

]
≤ 1 + J −1 / 2 �

} 

. (39)

enote by c the J -dimensional vector whose j -th component is
 

2 sin θ j , D 
+ and D 

− the diagonal matrix of bi-exponential scales

hose j -th diagonal entry is sin (π/ 4 − θ j ) and sin (π/ 4 + θ j ) , re-

pectively. Denote by 1 and 0 the vector with all components equal

o 1 and 0, respectively. Then by using the variables σ+ and σ−

epresenting the scales of deviations from the contacting endpoint

 of the bi-exponential distributions, we have 

 � = { γ | γ = γ̄ + M(c + D 
+ σ+ − D 

−σ−) , 

1 � σ+ + 1 � σ− ≤ J + J 1 / 2 �, σ+ ≥ 0 , σ− ≥ 0 } . (40)

inally, the dissipativity set S ∗ is estimated by the dual cone of S �,

alculated using linear duality theory, 

 
∗
� = { π |∃ λ ≥ 0 , s.t. π� ( ̄γ + Mc) ≥ λ(J + J 1 / 2 �) , 

(MD 
+ ) � π ≥ −λ1 , (MD 

−) � π ≤ λ1 } . (41)

Our proposed dissipativity learning method is illustrated in

ig. 2 . The algorithmic steps are represented by the blue arrows,

amely the ICA, the inference of bi-exponential distributions for

ndependent components, and lumping of the independent com-

onents into a one-dimensional random variable ζ . By picking a
onfidence interval of ζ , a polyhedral estimation of S is acquired

y the inverse reasoning steps represented by the green arrows.

he learning procedure depends on only two hyperparameters

the number of independent components J and the confidence

evel �. 

emark 2. As will be shown in later case studies, the number of

ndependent components J is determined through a trial-and-error

pproach to eliminate too large and too small choices that give ei-

her overly conservative or loose estimations of the dissipativity

roperty. We note that under different choices of orthonormal ba-

is { E k } to vectorize � and �, the linear transformation linking the

roups of basis will be compensated in the mixing matrix M in the

CA step. Hence the dual dissipativity set S � and dissipativity set

 
∗
�

, if expressed in terms of the original � and � matrices rather

han vectorized γ and π , will be invariant to the choice of basis. In

ther words, the choice of orthonormal basis { E k } can be arbitrary.

emark 3. Since S ∗ = coni (S) ∗, where coni (S) is the conic hull

f S: 

oni (S) = 

{ 

N ∑ 

i =1 

αi �i 

∣∣∣ αi ≥ 0 , �i ∈ S 
i = 1 , 2 , . . . , N, N ∈ N 

} 

= { p�| p ≥ 0 , � ∈ conv (S) } ⊇ conv (S) ⊇ S, (42)

ne may seek to estimate a conic estimation of the dual dissipa-

ivity set instead of a bounded polyhedral one as we have done in
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Fig. 2. Illustration of the proposed dissipativity learning method. 
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he main text. This can be done by first scaling the samples onto

n affine subspace with a magnitude restriction (e.g., the set of

atrices with trace 1), which specifies a section of the conic es-

imation, and then inferring a polyhedron on this affine subspace.

ompared to a polyhedral estimation that is compact in space, the

onic counterpart better reflects the intrinsic unboundedness of

he dual dissipativity set, as we may have trajectories with suffi-

iently large input and output signals. However, these trajectories

ith too large inputs and outputs may not be of interest to charac-

erize system behavior for control purposes, and we tend to avoid

hem in the data generation procedure due to numerical issues or

imulation validity. 

emark 4. The ICA and distribution inference approach proposed

ere for constructing the polyhedral estimation of the dual dissi-

ativity set is motivated by the approach of Zhang et al. (2016) to

pproximate the feasible region of optimization problems for es-

ablishing surrogate models, where convex hulls of data points

ampled from the region are found and refined, and the work of

ing and You (2018) to construct the polyhedral uncertainty set

or robust optimization, which involves a PCA and a nonparametric

istribution inference by kernel smoothing. 

emark 5. The assumption of bi-exponential distributions of inde-

endent components of η can be replaced by bi-normal distribu-

ions 

 j (η j ) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

w j √ 

2 πa j 
exp 

[
− (η j − c j ) 

2 

2 a 2 
j 

]
, η j ≥ c j 

1 −w j √ 

2 πb j 
exp 

[
− (c j − η j ) 

2 

2 b 2 
j 

]
, η j < c j 

(43) 

hich gives confidence regions that are linearly transformed ellip-

oids following our procedures. 

.3. Dissipativity learning control 

The dissipativity learning controller design problem can be de-

ived by incorporating the dissipativity set estimation (41) into the

 -optimal control formulation (15) . However, the trajectory sam-
2 
les are generated on a finite time interval, and, although start-

ng with zero tracking error, they end up finitely distant from the

arget trajectory. As a result, the dissipativity parameters learned

ased on trajectories away from the target may fail to characterize

he system behavior near the target and guide us to a stabilizing

ontroller. Therefore, in addition to the previously constructed es-

imation of the dissipativity set, we need an additional constraint

hat requires the dissipativity parameters to satisfy the condition

19) for infinitesimal trajectories starting from zero tracking error. 

pparently, it suffices that the submatrix of � corresponding to

nputs (d, ̃  u ) be positive semidefinite. This means that when the

racking error is zero, the storage function has reached its mini-

um and any nonzero control inputs or disturbances will increase

he storage function. Thus we have reached the following formula-

ion of dissipativity learning control: 

min 
,K,β

β

s . t . 

[
I 0 0 
0 K � I 

]( 

� + 

[ −βI 0 0 
0 I 0 
0 0 I 

] ) [ 

I 0 
0 K 
0 I 

] 

	 0 

�d ̃ u ,d ̃ u � 0 , � ∈ S ∗. (44) 

ubstituting the true dissipativity set S with the learned polyhe-

ral conic approximation S ∗
�

(41) , and expanding the descriptive

efinition of S ∗
�

combined with the basis expansion (29) , the for-

ulation becomes 

min 
,π,K,λ,β

β

s . t . 

[
I 0 0 
0 K � I 

]( 

� + 

[ −βI 0 0 
0 I 0 
0 0 I 

] ) [ 

I 0 
0 K 
0 I 

] 

	 0 

�d ̃ u ,d ̃ u � 0 , � = 

∑ 

k 

πk E k 

λ ≥ 0 , π� ( ̄γ + Mc) ≥ λ(J + J 1 / 2 �) 

(MD 
+ ) � π ≥ −λ1 , (MD 

−) � π ≤ λ1 . (45) 

emark 6. It is not hard to see that if the Assumption 1 on the

eachability of any state from a state of zero tracking error does
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not hold, the above-mentioned formulation can still be utilized to

obtain an L 2 -optimal controller that works as long as the initial

state of the plant is reachable from a hypothetical state of zero

tracking error under some input trajectories. 

The above formulation is a non-convex semidefinite program-

ming problem, which can not be simplistically tackled by the

available convex optimization solvers such as cvx ( Grant and

Boyd, 2014 ). The non-convexity arises from the trilinear semidefi-

nite inequality involving the controller gains K twice together with

the dissipativity parameters � and upper bound of squared L 2 -

gain β . However, the problem is multi-convex – once K is fixed,

the rest of the problem on ( �, π , λ, β) is convex; once ( �, π , λ,
β) is fixed, as long as �d ̃ u ,d ̃ u � 0 is satisfied, we have � ˜ u , ̃ u � 0 and

hence the remaining problem on K is a convex (quadratic) feasi-

bility problem. We therefore adopt an iterative algorithm to solve

(45) , where each iteration involves the following two steps: 

(a) fix K to solve ( �, π , λ, β) to the optimum; 

(b) seek a different K satisfying the first constraint of (45) , so

that after changing K the solution obtained in step (a) is still

feasible. 

When we execute step (a) in the next iteration, the β is up-

dated from the previous feasible solution to the optimum un-

der the new K . Therefore, the iterations of steps (a) and (b) lead

to a sequence of feasible solutions with non-increasing values of

β . Specifically, since the left-hand side of the first constraint of

(45) is dependent on K through its bottom right principal minor,

K � (� ˜ u , ̃ u + I) K + K � � ˜ u , ̃ y + � ˜ u , ̃ y K + (� ˜ y , ̃ y + I) , which is a quadratic

form of K , the different K in step (b) can always be chosen as the

one such that the quadratic form is the most negative definite. In

other words, step (b) updates K according to 

K = −(� ˜ u , ̃ u + I) −1 � ˜ u , ̃ y . (46)

If the quantities M , D 
+ , D 

−, c are obtained from the ICA us-

ing the ˜ u and ( ̃  y P , ̃  y I , ̃  y D ) as inputs and outputs, the formulation

(45) can also be extended to an L 2 -optimal dissipativity learning

PID controller: 

min 
�,π,K,λ,β

β

s . t . [ ·] � 

⎛ 

⎜ ⎜ ⎝ 
� + 

⎡ 

⎢ ⎢ ⎣ 

−βI 0 0 0 0 
0 I 0 0 0 
0 0 I 0 0 
0 0 0 0 0 
0 0 0 0 0 

⎤ 

⎥ ⎥ ⎦ 

⎞ 

⎟ ⎟ ⎠ 

⎡ 

⎢ ⎢ ⎣ 

I 0 0 0 
0 K P K I K D 
0 I 0 0 
0 0 I 0 
0 0 0 I 

⎤ 

⎥ ⎥ ⎦ 
	 0 

�d ̃ u ,d ̃ u � 0 , � = 

∑ 

k 

πk E k 

λ ≥ 0 , π� ( ̄γ + Mc) ≥ λ(J + �J 1 / 2 ) 

(MD + ) � π ≥ −λ1 , (MD −) � π ≤ λ1 . (47)

The solution algorithm has no formal difference expect that

the update of K = [ K P , K I , K D ] is expressed as K = −(� ˜ u , ̃ u +
I) −1 � ˜ u , ̃ y P ̃ y I ̃ y D 

. 

Remark 7. Although the properties of multiconvex optimization

algorithms have been discussed in some recent works (see, e.g.,

Shen et al., 2017 ), it appears that the theoretic convergence of the

above algorithm using simple iterations is an open problem. How-

ever, likely due to the exploitation of the quadratic constraint on

K , our algorithm achieves very fast practical convergence (within

20 iterations for the case studies in the following sections), and is

therefore suitable for use. 

We summarize the entire procedure of dissipativity learning

control as follows. 

1. Preliminaries. 

(a) Generate data samples. 
(b) Calculate dissipativity parameter samples �p , p = 1 , 2 , . . . , P 

according to (27) . 

(c) Choose orthonormal matrix bases { E k } and vectorize the �
p 

into γ p according to (29) . 

(d) Set the number of independent components J and confi-

dence level �. 

(e) Initialize controller gains K . 

2. Dissipativity learning. 

(a) Perform ICA and return average γ̄ , mixing matrix M and

transformed samples ηp in (30) . 

(b) For each component j , optimize the maximum likelihood es-

timate of the parameter θ j through (35) . 

(c) Obtain vector c with components c j = [ 
√ 

2 sin θ j ] ,

and matrices D 
+ = diag (1 / sin (π/ 4 − θ j )) , and D 

− =
diag (1 / sin (π/ 4 + θ j )) . 

3. Controller design. 

(a) With fixed K , solve (45) for P control or (47) for PID control

and update ( �, π , λ, β). 

(b) With fixed ( �, π , λ, β), update K by K = −(� ˜ u , ̃ u + I) −1 � ˜ u , ̃ y 

for P control and K = −(� ˜ u , ̃ u + I) −1 � ˜ u , ̃ y P ̃ y I ̃ y D 
for PID control.

(c) If the updated K does not have a sufficiently small devia-

tion from the previous K , return to (a) to iterate. Otherwise

terminate. 

. Case study: Dissipativity learning regulating control of a 

olymerization reactor 

In this section we perform a case study of our proposed dis-

ipativity learning control method on a continuously stirred tank

eactor (CSTR) with exothermic polymerization reactions of methyl

ethacrylate taking place, which was used as a benchmark for

onlinear geometric control ( Daoutidis et al., 1990; Soroush and

ravaris, 1992 ) due to its highly nonlinear dynamics. Here we con-

ider the regulating control of such a reactor ( ̄u = 0 , ȳ = 0 ) since

he polymerization extent needs to be held constant for the poly-

er product. 

.1. System description 

The system model involves 6 states, 2 inputs, 2 outputs and 2

xogenous disturbances. The 6 states represent the monomer and

nitiator concentrations, reactor and jacket temperatures, amount

f substance and mass of the product. The initiator feed and the

old water flow rates are used as control inputs ( u 1 = F i , u 2 = F w ).

he average molecular weight and temperature are outputs ( y 1 =
 1 /D 0 , y 2 = T , where D 0 and D 1 are the molar and mass concen-

ration of the polymer products, respectively). There are two dis-

urbances – monomer concentration and temperature of the feed

tream ( d 1 = C m , in , d 2 = T in ). 

The governing equations are given as follows: 

˙ 
 m = −(k p + k m ) C m φ + 

F 

V 
(C m , in −C m ) 

˙ C i = −k i C i + 

F i C i , in − F C i 
V 

˙ T = k p C m φ
−�H p 

ρc p 
− UA 

ρc p V 
(T − T j ) + 

F 

V 
(T in − T ) 

˙ T j = 

F w 

V w 

(T w − T j ) + 

UA 

ρw c w V w 

(T − T j ) 

˙ D 0 = 

(
1 

2 
k c + k d 

)
φ2 + k m C m φ − F D 0 

V 

˙ D 1 = (k p + k m ) C m φM − F D 1 

V 
(48)

he reaction rate constants k � for termination by coupling (c),

isproportionation (d), initiation (i), propagation (p) and chain
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Table 1 

Parameters and nominal input and state values for the polymerization reactor sys- 

tem. 

Par. Value Par. Value 

A c 3.8223 ×10 10 kmol/(m 
3 ·h) f ∗ 0.58 

A d 3.1457 ×10 11 kmol/(m 
3 ·h) F 1.00 m 

3 /h 

A i 3.7920 × 10 18 h −1 ρ 866 kg/m 
3 

A p 1.7700 ×10 9 kmol/(m 
3 ·h) C i,in 6.0 kmol/m 

3 

A m 1.0067 ×10 15 kmol/(m 
3 ·h) R 8.314 J/(mol ·K) 

E c 2944.2 kJ/kmol �H p −57 . 8 kJ/mol 

E d 2944.2 kJ/kmol V 0.1 m 
3 

E i 128770 kJ/kmol M 100.12 kg/kmol 

E p 18283 kJ/kmol c p 2.0 kJ/(kg ·K) 
E m 74478 kJ/kmol T w 293.2 K 

U 720 kJ/(h ·K ·m 
2 ) A 2.0 m 

2 

c w 4.2 kJ/(kg ·K) ρw 10 3 kg/m 
3 

V w 0.02 m 
3 

Input Nominal value Input Nominal value 

F i 0.01679 m 
3 /h F w 3.26363 m 

3 /h 

State Nominal value State Nominal value 

C m 7.7697 kg/kmol C i 0.1143 kg/kmol 

T 329.98 K T j 296.67 K 

D 0 3 . 5155 × 10 −4 kmol/m 
3 D 1 23.061 kg/m 

3 

Disturbance Nominal value Disturbance Nominal value 

C m,in 8.0 kmol/m 
3 T in 350 K 
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m  
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ransfer to monomer (m) are expressed in the form of Arrhenius

aw: 

 � = A � exp (−E � /RT ) . (49)

he molar fraction of live monomer chains φ is specified by the

uasi-equilibrium assumption: 

= 

√ 

2 f ∗C i k i 
k d + k c 

. (50) 

he parameters and nominal states are given in Table 1 . The in-

uts, outputs, disturbed variables and time are translated with the

orresponding nominal values (so that the origin is the steady state

o be regulated at) and scaled by 0.001 m 
3 /h, 1 m 

3 /h, 10 0 0 kg/kmol,

 K, 1 kmol/m 
3 , 1 K and 0.1 h, respectively. 

.2. Data generation and dissipativity learning 

The trajectory samples are generated using random walks. In-

ependent Wiener processes of random magnitudes uniformly dis-

ributed in [0,1] are assigned to u 1 , u 2 , d 1 and d 2 in the time in-

erval [0,1] to simulate the system starting from the origin. 30 0 0

ndependent trajectories are sampled, from which the dual dissi-

ativity parameters �p are calculated by (27) . With 2 disturbances,

 control inputs and 2 outputs, each �p is a symmetric r -th or-

er matrix ( � ∈ S 
r ) with r = 6 . We choose the orthonormal bases

 r(r + 1) / 2 = 21 in total) for S r according to 

 1 
2 
(2 r−i )(i −1)+ j,kl = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

δkl / 
√ 

r , i = j = 1 

δkl / 
√ 

i (i − 1) , i = j � = 1 , k < i 

−(i − 1) δkl / 
√ 

i (i − 1) , i = j � = 1 , k = i 
0 , i = j � = 1 , k > i 

(δik δ jl + δil δ jk ) / 
√ 

2 , i ≤ j 

(51) 

or 1 ≤ i ≤ j ≤ r and 1 ≤ k, l ≤ r to vectorize the matrices �p into γ p ∈
 
21 , where the Kronecker’s δ symbol δkl for any two subscripts k

nd l equals 1 if k = l and 0 otherwise. 

We first pick the number of independent components J equal

o the dimension of sample vectors, i.e., J = r(r + 1) / 2 = 21 for ICA.

ubplots 2–22 in Fig. 3 show the histograms of the obtained com-

onents for all the samples, with the probability density function
f their inferred bi-exponential distributions shown as red curves,

espectively. The accordingly computed samples of the lumped

andom variable ζ as defined in (36) and its inferred distribution

re shown in the first subplot of Fig. 3 . It is observed that com-

ared to the inferred bi-exponential distribution, the empirical dis-

ribution of the samples has apparently higher densities near the

enters ( c j in (31) ) but lower densities at moderate distances from

he centers. To keep the empirical and the inferred distributions

aving the same variance equal to 1, the empirical distributions

ave longer tails than the inferred distributions. The deviations in

j result in the significant difference between the empirical and in-

erred distributions of ζ . In principle, if our aim is only to capture

he dissipative property of the system based on the data samples,

e may seek to modify the bi-exponential distribution by asym-

etric generalized normal distributions: 

 j (η j ) = 

{
w j μ j exp (−a j | η j − c j | α j ) , η j ≥ c j 
(1 − w j ) ν j exp (−b j | η j − c j | α j ) , η j < c j 

(52) 

ith smaller powers αj < 1 and optimized parameters a j , b j , c j ,

 j and normalizing constants μj , ν j . However, when αj < 1, the

onfidence region obtained by the lumped random variable η =
 J 
j=1 

a j | η j − c j | α j is not a convex set, and will cause computational

ntractability of the dissipativity learning control problem (45) or

47) . Unfortunately, this does not seem to improve by changing the

umber of independent components J . 

After ICA, we construct the polyhedral estimations of the dual

issipativity set and subsequently the dissipativity set as in (41) .

ince the empirical distribution of ζ is different from an Erlang

r normal distribution, the confidence level � needs to be as-

igned according to the empirical distribution of ζ rather than us-

ng the properties of the Erlang or normal distributions such as the

 σ rule of thumb. Instead, due to the long-tail feature, we should

ake � larger than the corresponding value to the desired confi-

ent level under the Erlang or normal distribution. For example, if

e need to cover 95% of the samples, the empirical distribution re-

uires to choose �≥6.5762, which is significantly higher than the

alue of 1.6449 required by the normal distribution N (1 , J −1 / 2 ) . 

For J = 21 and � corresponding to 95% of the samples, we

ound that the origin is an interior point of S � and therefore S ∗
�

s a singleton of � = 0 , which is physically meaningless since the

upply rate and hence the storage function are constantly zero.

his can be avoided only when � is as small as to cover 2% of the

amples, which fails to capture the true input–output response of

he system. Therefore, the independent component number J must

e well-tuned so that a meaningful dissipativity set can be gener-

ted under a sufficiently high confidence level �. For this, we vary

 and always set � at the value to cover 95% of the ζ samples.

or each J , we find the element � ∈ S ∗
�

that minimizes the leading

igenvalue of the output blocks: 

in 
�

ρmax (� ˜ y , ̃ y ) 

s . t . � ∈ S ∗�, trace (�d ̃ u ,d ̃ u ) = 1 (53) 

here the last constraint is imposed for a fair comparison since

 
∗
�

is a cone. The � thus determined can be roughly considered

s the least conservative estimate of the dissipativity matrix. Their

races are compared in Table 2 . 

From Table 2 we observe that both too large and too small

umbers of independent components are undesirable. On one

and, when J is large, the dissipativity learning procedure to con-

truct the dual dissipativity set S � takes into consideration in-

ignificant dimensions of the data samples, and results in an overly

onservative estimation of S � (i.e. the constructed polyhedron is

uch larger than it need be), thus making its dual cone S ∗
�

too

mall (which reduces to a singleton when J = 20 or 21). On the

ther hand, if J is too small, important dimensions of the data are
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Fig. 3. Distribution of the independent component parameters and the lumped random variable ζ when J = 21 for the polymerization reactor. 

Table 2 

Minimized leading eigenvalue of the output blocks of the dissipativity matrix �

under different numbers of independent components. 

J 7 8 9 10 

ρmax (� ˜ y , ̃ y ) −∞ −∞ −0 . 5917 −0 . 4034 

J 11 12 13 14 

ρmax (� ˜ y , ̃ y ) −0 . 4022 −0 . 3923 −0 . 3227 −0 . 1476 

J 15 16 17 18 

ρmax (� ˜ y , ̃ y ) −0 . 0689 −0 . 0684 0.3099 0.3964 

J 19 20 21 

ρmax (� ˜ y , ̃ y ) 0.5324 + ∞ + ∞ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Optimal control performances ( β) under different number of independent compo- 

nents and confidence levels for the polymerization reactor. 

� 85% 90% 95% 98% 99% 

J = 10 0.1919 1.5152 1.5152 1.5152 1.5152 

J = 11 0.4755 0.4844 0.5275 0.5586 0.5783 

J = 12 0.7323 0.7589 0.7904 0.8139 0.8297 

J = 13 5.3541 5.3541 5.3541 5.3541 5.3541 
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K  

a

ignored, and hence the dissipativity learning does not responsibly

capture the system dynamics and gives naively radical estimates,

such as in the case of J = 7 or 8, when S ∗
�

allows a dissipativ-

ity matrix with �d ̃ u ,d ̃ u = 0 and � ˜ y , ̃ y ≺ 0 , meaning that the storage

can not increase anyhow. When J = 10 , 11 and 12, the minimized

ρmax (� ˜ y , ̃ y ) results are similar, which suggest a proper range of J .

This can be further justified by the covariance matrix of the sam-

ples γ p , p = 1 , . . . , P : 

� = 

1 

P − 1 

P ∑ 

p=1 

(γ p − γ̄ )(γ p − γ̄ ) � , (54)

whose 11th eigenvalue in descending order, 0.0059, is an order-of-

magnitude smaller than the 10th eigenvalue 0.0572, and the eigen-

values after the 13th are smaller than 1% of the leading eigenvalue,

0.1944, implying that there are about 10–13 orthogonal dimensions

in which the data variations significantly exist. 

4.3. Controller design and simulation 

Now we use different values of J between 10 and 13 and dif-

ferent values of � to cover different percentages of the data sam-

ples, and solve the L 2 -optimal P control problem (45) to obtain the

guaranteed upper bounds of the squared L -gain, β . The results are
2 
hown in Table 3 . It can be observed that J should be chosen as 11

r 12, so that the confidence level � can be found to have a non-

rivial effect on the control performance. Since J = 11 gives lower

pper bound on the L 2 -gain than the other 3 values of J , in the

equel we set J = 11 . 

When the degree of polymerization (reflecting the rate of re-

ctions) and the temperature deviate from their setpoints, since

he reaction rates increase with temperature and the reactions are

xothermic, the deviations with opposite (same) signs annihilate

exacerbate) each other to approach (escape) the setpoints, result-

ng in a decrease (an increase) of the storage function. To reflect

his dynamic feature of the system, the output block � ˜ y , ̃ y should

ave one negative eigenvalue whose associated eigenvector has

wo components with opposite signs, and one positive eigenvalue

hose associated eigenvector lies in the first quadrature. Also, the

ontroller gain K should have 4 positive elements so that the con-

roller signals are small when the output deviations have the same

igns and large when the output deviations are opposite. We note

hat this is true for the optimized results obtained from the L 2 -

ptimal controller problem (45) , e.g., when the confidence level is

5%, we have 

 = 

[
1 . 5424 2 . 1511 
1 . 0371 0 . 7978 

]
(55)

nd 
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Fig. 4. Process simulation for dissipativity learning controllers under disturbances. 

The blue, red, green, and yellow lines correspond to confidence levels 85%, 90%, 

95% and 99%, respectively, under J = 11 . The black lines correspond to the open- 

loop system ( u = 0 ). (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 

Fig. 5. Desired input and output trajectories the oscillatory reactor operated pe- 

riodically under sinusoidal (upper subplots) and piecewise constant inputs (lower 

subplots). Red and green curves correspond to u 1 and u 2 , respectively. (For inter- 

pretation of the references to colour in this figure legend, the reader is referred to 

the web version of this article.) 
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x
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x

T  

l  

r  

t  

t  

T  
= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

0 . 3970 0 . 1460 0 . 4864 −0 . 2130 −0 . 3465 
0 . 1460 0 . 3642 0 . 6708 −1 . 0100 −0 . 1917 
0 . 4864 0 . 6708 1 . 3754 −1 . 7372 −1 . 8620 
−0 . 2130 −1 . 0100 −1 . 7372 2 . 9100 −1 . 3759 
−0 . 3465 −0 . 1917 −1 . 8620 −1 . 3759 3 . 0431 
−1 . 6909 0 . 2739 −3 . 7239 0 . 6174 6 . 2436 

he same physical explanations can be made for � ˜ u , ̃ u and �d,d .

he eigenvectors associated with the larger eigenvalue of � ˜ u , ̃ u 

nd �d,d should have opposite signs and same signs, respectively,

ince the two control inputs have opposite effects (feeding initiator

ccelerates polymerization while cooling water decelerates reac-

ions) and the two disturbances have the same effects (increasing

onomer feed and increasing feed temperature both accelerate re-
909 
39 
239 
74 
36 
58 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

. (56) 

ctions). These physical requirements are satisfied by the obtained

with � ˜ u 1 , ̃ u 2 
< 0 and �d 1 ,d 2 

> 0 . 

We simulate the dissipativity learning controllers obtained un-

er confidence levels 85%, 90%, 95% and 99%, along with the open-

oop system with feedback gain equal to the zero matrix. The dis-

urbance signals d 1 and d 2 that we use are two independent zero-

ean Orstein-Uhlenbeck processes, defined as 

 U = −ωUd t + υd W, U(0) = 0 , (57)

here dW denotes the Wiener process, and υ = 0 . 1 , ω = 6 (cor-

esponding to a time constant of 1/6 time scales or 1 min).

ig. 4 shows the simulated output trajectories within 100 time

cales (10 hours). Apparently, compared to the open-loop system,

he learned controllers have a better performance of disturbance

ejection, with the outputs (degree of polymerization and reactor

emperature) kept close to the setpoints and free from long-lasting

ignificant deviations. 

Of course, the use of a P controller in this case study is only for

he illustration of how the dissipativity learning control method

an give well-performing controllers with reasonable physical in-

erpretations of the controller gains. P controllers may be not suit-

ble and an offset will be expected if the setpoint of the process

an vary with time. In such cases, one may consider designing a

issipativity-based PID controller, as illustrated in the next case

tudy. 

. Case study: Dissipativity learning tracking control of an 

scillatory reactor 

In this section we apply the proposed dissipativity learning con-

rol method to the tracking control of a CSTR ( Özgül ̧s en et al.,

992 ) in which the catalyzed gas phase oxidization of ethylene

akes place. There exist two side reactions to oxidize the primary

roduct – ethylene oxide – and the reactant ethylene into carbon

ioxide. It is known that appropriate periodic operation of this re-

ctor can be economically more favorable than the optimal steady-

tate operation ( Chen et al., 1994 ). 

.1. System description 

The state-space model involves 4 states and 2 inputs: 

˙  1 = (0 . 35 + u 1 )(1 − x 1 x 4 ) 

˙  2 = (0 . 35 + u 1 )(0 . 1 + u 2 − x 2 x 4 ) − A 1 exp (C 1 /x 4 )(x 2 x 4 ) 
0 . 5 

− A 2 exp (C 2 /x 4 )(x 2 x 4 ) 
0 . 25 

˙  3 = −(0 . 35 + u 1 ) x 3 x 4 + A 1 exp (C 1 /x 4 )(x 2 x 4 ) 
0 . 5 

− A 3 exp (C 3 /x 4 )(x 3 x 4 ) 
0 . 5 

˙  4 = x −1 
1 [(0 . 35 + u 1 )(1 − x 4 ) + B 1 exp (C 1 /x 4 )(x 2 x 4 ) 

0 . 5 

+ B 2 exp (C 2 /x 4 )(x 2 x 4 ) 
0 . 25 + B 3 exp (C 3 /x 4 )(x 3 x 4 ) 

0 . 5 

− B 4 (x 4 − 1 − d)] (58) 

he 4 states ( x 1 , x 2 , x 3 , x 4 ) are the dimensionless density, ethy-

ene concentration, ethylene oxide concentration, and temperature,

espectively. The gas phase flow rate and the ethylene concentra-

ion at the reactor inlet are used as control inputs. We assume

hat there is a disturbance d in the cooling water temperature.

he nominal steady states under zero inputs and disturbances are
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Fig. 6. Trajectory samples of the oscillatory reactor system. 

Table 4 

Parameters and nominal steady state for the oscillatory reactor system. 

Par. Value Par. Value 

A 1 92.80 B 1 7.32 

A 2 12.66 B 2 10.39 

A 3 2412.71 B 3 2170.5 

C 1 −8.13 B 4 7.02 

C 2 −7.12 C 3 −11.07 

State Value State Value 

x ss 1 0.99889 x ss 2 0.06494 

x ss 3 0.00949 x ss 4 1.00111 
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given in Table 4 . The reactor temperature is taken as the output

( y = x 4 − x ss 
4 
). The inputs u 1 and u 2 , disturbance d , and output y

are then scaled by 0.35, 0.10, 0.0 0 01 and 0.0 0 01, respectively. 

Chen et al. (1994) identified for d = 0 the optimal operation

under control inputs in sinusoidal and piecewise constant forms,

whose concrete forms are omitted here for brevity and the result-

ing trajectories are illustrated in Fig. 5 . In this section we assume

that these two sets of trajectories are available without model

knowledge, and examine whether the proposed dissipativity learn-

ing control method can efficiently track them. For tracking control

where the desired inputs and the output oscillate over consider-

able ranges, it may not be sufficient to use P controllers. Hence

we consider dissipativity learning with expanded outputs with in-

tegral and derivative of y , and controller design in the formulation

of (47) . 

5.2. Data generation and dissipativity learning 

Independent trajectories ( P = 2500 ) are sampled in a simi-

lar way as in Section 4 . For each sample, zero-mean stochastic

processes bounded in [ −1 , 1] with a modified Orstein-Uhlenbeck

form: 

d U = − ωU 

1 −U 
4 
d U + σd W (59)
 ω = 1 , σ = 1 ) are used to generate ū (t) and u ( t ), and a standard

iener process is used to generate d ( t ) within a time scale to drive

he plant from the nominal steady state, yielding the trajectory

f ( ̄y P , ̄y I , ̄y D ) , ( y P , y I , y D ) and ( ̃  y P , ̃  y I , ̃  y D ) by subtraction. Since the

utput derivatives are used in dissipativity learning, the output sig-

als need to be smooth enough. For this purpose, Savitzky-Golay

lters ( Savitzky and Golay, 1964 ) of order 3 with a frame length

f 0.5 time scale are applied to the disturbance and inputs. 100

f these trajectories are shown in Fig. 6 . From the trajectories, the

ual dissipativity parameters �p are calculated. 

The distributions of independent components ηj , j = 1 , . . . , J

under J = 21 are shown in Fig. 7 . It can be expected that com-

ared with the polymerization reactor example, the �p data sam-

les from the oscillatory reactor can be better described by the

i-exponential distributions of its independent components. This

s due to the higher extent of dispersion of independent compo-

ents from their distribution centers, which may be explained by

he fact that the data are sampled from a wide range of trajecto-

ies to track rather than a single steady state to regulate at. The

pproach to determine the appropriate range of J is similar to the

revious case study, i.e., we perform the dissipativity learning step

nder a series of different values of J and check whether solving

53) returns a negative feasible solution. We then calculate the co-

ariance matrix (54) to choose the number of eigenvalues greater

han 1% of the leading eigenvalue, which suggests that J = 5 . 

.3. Controller design and simulation 

Finally we solve the L 2 -optimal dissipativity learning PID con-

rol problem (47) under J = 5 and confidence levels � correspond-

ng to 85%, 90%, 95% and 99% of the samples. For example, under

he confidence level of 95% of the samples, the learned PID con-

roller is 

˜  1 = 2 . 4407 ̃  y P + 0 . 2008 ̃  y I + 0 . 1410 ̃  y D , 

˜  2 = −4 . 7141 ̃  y P − 1 . 2145 ̃  y I − 0 . 2655 ̃  y D . (60)
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Fig. 7. Distribution of the independent components and the lumped random vari- 

able ζ when J = 21 for the oscillatory reactor. 

Fig. 8. Simulated signals of the output errors of tracking the periodic trajectories. 

The upper and lower subplots correspond to the trajectories in Fig. 5 with sinu- 

soidal and piecewise constant signals, respectively. The blue, red, green, and yellow 

lines correspond to dissipativity learning controllers obtained under J = 5 and con- 

fidence levels 85%, 90%, 95% and 99%, respectively. The black lines correspond to 

the open-loop system ( u = 0 ). (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 
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he negative gains for the second input reflect the cooling effect on

he reactor temperature of the cooling water. The positive gains for

he second input result from the fact that increasing (decreasing)

he gas phase flow rate decreases (increases) the residence time,

hus decreasing (increasing) the reactor temperature with a lower

higher) extent of exothermic reactions. 

A stochastic Orstein-Uhlenbeck process is generated as the dis-

urbance signal. The simulated trajectories under the obtained 4

ontrollers and the open-loop trajectories are shown in Fig. 8 . It
ecomes apparent that under the learned controllers, the distur-

ance is well attenuated compared to the open-loop system, where

he disturbance results in large fluctuations of the output. 

. Conclusions 

Dissipativity, as an important characterization of the input–

utput response of dynamic systems, can be leveraged in the set-

ing of input–output data-driven control. Specifically, with the tra-

ectories sampled from the dynamics, we can learn the range of

he parameters in the supply rate function (dissipativity set), based

n which a dissipative controller can be synthesized to shape the

losed-loop stability. In this work, we first pointed that such a

issipativity learning method is applicable to both regulating and

racking control, and then proposed a method of learning dissi-

ativity and synthesizing dissipativity-based controllers from tra-

ectory data based on independent component analysis and dis-

ribution estimation. Two chemical reactor systems are used for

etailed case studies that demonstrated the efficacy of our pro-

osed method. The P and PID controllers designed with the pro-

osed method achieve satisfactory performance. In addition, we

ave shown that the learned dissipativity parameters are of good

hysical interpretability, based on which the signs of the optimal

ontroller gains are found to be in accordance with the physical

elations among the process variables. 

Although tested with only a few case studies so far, this frame-

ork is promising for wider application of input–output data-

riven control on process systems, including those governed by

artial differential and differential-algebraic equations, and large-

cale processes. We note that as a machine learning-based ap-

roach, the performance of dissipativity learning control is essen-

ially dependent on the accuracy of the dissipativity learning re-

ult. To better guarantee the learning performance, there are two

pen problems yet to be explored in future research, namely how

o optimally generate or select data samples, and how to perform

earning when data are less satisfactory, e.g., when sufficient open-

oop trajectories are not available. 
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