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The paper addresses data-driven control based on input-output data in the absence of an underlying dy-
namic model. It proposes a dissipativity learning control (DLC) framework which involves the data-based
learning of the dissipativity property of the control system, followed by a dissipativity-based controller
design procedure. Specifically, independent component analysis and parametric distribution inference are
adopted to estimate a polyhedral region of input-output trajectory samples, whose dual cone character-
izes the dissipativity property; subsequently, an optimal controller in the L, sense is designed by solving a
nonlinear semidefinite programming problem. The applicability of the proposed method is demonstrated
by case studies on regulating control of a polymerization reactor and tracking control of an oscillatory
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1. Introduction

Big data analytics is playing an increasing role in the operations
and optimization of chemical process systems (Qin and Chiang,
2019; Venkatasubramanian, 2019). Data-driven control, which aims
to design controllers based on historical and/or online operational
data provides an alternative to model-based control with the po-
tential of circumventing the difficulties of deriving, identifying, up-
dating, and modifying control-oriented dynamic models (Hou and
Wang, 2013). Data-driven modeling approaches, ranging from tra-
ditional transfer function identification (Lao et al., 2013), tempo-
ral linearization (Chi et al., 2015), regression (Tanaskovic et al.,
2017; Narasingam and Kwon, 2018), adaptive parameter estimation
(Heirung et al., 2017) and Koopman operators or dynamic mode
decomposition (Williams et al., 2015; Proctor et al., 2018; Korda
and Mezic, 2018; Narasingam and Kwon, 2019) to artificial neu-
ral networks (Aggelogiannaki and Sarimveis, 2008; Mu et al., 2017)
and machine learning algorithms (Mesbah, 2018), can in principle
be incorporated into model-based control methods to resolve the
complexity involved in first-principles modeling. Although intrinsi-
cally dependent on data, these approaches are not truly model-free
and their efficacy is strongly affected by the complexity and accu-
racy of the learned surrogate models.

Model-free data-driven control approaches have also been devel-
oped, mostly based on approximate dynamic programming (ADP).
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In these approaches, one focuses on the optimal control policy
and/or the optimal control cost (or Q-function) as state-dependent
functions determined by the Hamilton-Jacobi-Bellman (HJB) opti-
mality principle, and obtains their approximations (Lee and Lee,
2005; Lee and Wong, 2010) through either offline regression (Luo
et al,, 2014; Tang and Daoutidis, 2018) or online iterative schemes
under the name of reinforcement learning (RL) (Lillicrap et al.,
2015; Spielberg et al.,, 2019). Instead of obtaining a full dynamic
model, in these model-free approaches, one seeks only essential
control-relevant information (e.g., Q-function), thus largely reducing
the complexity of designing well-performing controllers. With the
development of machine learning, especially deep learning meth-
ods (Shin et al,, 2019), ADP and RL approaches are expected to
find wider applications. However, the application of ADP in pro-
cess control is still limited to small-scale systems with relatively
simple dynamics. This is due to the dependence of ADP formula-
tions on the state-space information of the system, which can be
limited for chemical processes. For example, for systems with un-
observable states, one does not have access to full state informa-
tion, and the construction of a model-free state estimator is non-
trivial (see, e.g., Ghavamzadeh et al., 2015). Further, in the presence
of high-dimensional nonlinear dynamics of the states, it is difficult
to choose the approximators of the state-dependent optimal con-
trol policy and cost functions. It is clear that so far, a data-driven
model-free control framework that applies to process systems with
possibly unobservable, high-dimensional, and nonlinearly-related
states, remains an open problem.
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Nomenclature

Latin Letters

a, b, c, w Biexponential distribution parameters
D*,D~  Scales of biexponential distributions
d Exogenous disturbances

E Basis matrix for symmetric matrices
f, & h, 1 Unknown vector fields in the model
Unit matrix

Dimension of independent components
Controller gain matrix

Mixing matrix

Set of positive integers

Normal distribution

Positive integer

Number of samples

Constants

Probability density function

Set of real numbers

Dimension of the dissipativity parameters
Set of symmetric matrices

Set of positive semidefinite matrices
Dual dissipativity set

Supply rate function

Time duration

Time variable

Orstein-Uhlenbeck process

Control inputs

Storage function

Auxiliary variable

Wiener process

State variables

Output variables

Performance outputs
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Greek Letters

Constants

Upper bound of squared L,-gain

Dual dissipativity parameters

Vectorized dual dissipativity parameters
Confidence level

Kronecker delta

Small real number

Lumped random variable

Random vectors with independent compoents
Parameter in biexponential distribution
Control law

Lagrangian dual

Whitened random vectors

Dissipativity parameters

Vectorized dissipativity parameters
Eigenvalue

Covariance matrix

Scales of deviations from the contacting endpoint of
biexponential distributions

Dummy time variable

Magnitude of Orstein-Uhlenbeck process

w Inverse time constant of Orstein-Uhlenbeck process

A MDY OWMr>x DIVYMN SRR T®™R

C

Subscripts

+,— Positive and negative deviations from mean, or pos-
itive and negative parts of a real number

i Index of vertices in convex hull

j Index of independent components

k Index of bases

PILD Proportional, integral, and differential mode
Superscripts

p Index of samples

Other Notations

* Dual cone of a set

T Transpose of a matrix

Setpoint for tracking

Deviation from the tracking target

Controller properties

Closed-loop properties

[-] The implicit matrix A or vector a in a quadratic form
ATBA or a"Ba

-l Norm

(-, ) Inner product of matrices
coni Conic hull

conv Convex hull

trace Matrix trace

A promising approach to such a framework is to adopt an
input-output perspective of process systems towards a data-driven
control strategy depending only on input and output data with-
out involving any state-space description. To this end, we note
that the concept of dissipativity (Willems, 1972; Hill and Moylan,
1976; Moylan and Hill, 1978; Hill and Moylan, 1980), as a char-
acterization of input-output behavior, has been widely exploited
for output-feedback control (Polushin et al., 2000; Lozano et al.,
2013). In the context of model-based control, through a thermo-
dynamic analysis on the dynamic model under certain (rather re-
strictive) assumptions, the dissipative properties of process sys-
tems involving a storage function and a supply rate function can
be determined by choosing inputs and outputs consistent with ir-
reversible thermodynamics (Alonso and Ydstie, 1996; Ydstie, 2002;
Ruszkowski et al., 2005; Hioe et al., 2013) or adopting a Hamilto-
nian modeling approach (Hangos et al., 2001; Ramirez et al., 2013;
Garcia-Sandoval et al., 2016).

Dissipativity-based control can be naturally extended into an
input-output data-driven control strategy, which we call dissipativ-
ity learning control (DLC). Key to this data-driven framework is the
use of machine learning techniques to obtain the dissipative prop-
erty from data rather than a first-principles model. The learned
dissipativity is then combined with a dissipativity-based controller
synthesis formulation to obtain a desirable control law. Recently,
data-based dissipativity learning approaches have been introduced
(Wahlberg et al., 2010; Maupong et al., 2017; Romer et al., 2017);
however, these works are restricted to specific simple forms of
dissipativity properties or linear dynamics, and are not followed
by controller design. In Tang and Daoutidis (2019), we first pro-
posed a dissipativity learning control framework, where a one-
class support vector machine for learning the dissipativity prop-
erty is combined with the controller synthesis. This results in an
integrated quadratic and semidefinite programming problem that
can be solved via an iterative algorithm, throughout which the dis-
sipativity property is updated until the optimal estimation is ap-
proached. However, this procedure is computationally expensive
due to the repeated learning, and its performance is dependent on
the convergence of the iterative algorithm.

In this work, we propose a more effective approach, where the
dissipativity learning and the controller design are carried out suc-
cessively, thus avoiding the complexity of the iterative algorithm.
The learning procedure estimates a range of the supply rate, and
involves the following three steps: (1) the data samples under the
system dynamics are treated with independent component analysis
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for dimensionality reduction, (2) bi-exponential distribution infer-
ence is performed to obtain a polyhedral confidence region of tra-
jectory data, and (3) a dual polyhedral cone is constructed as the
approximate range of the parametric representation of the supply
rate function. Based on the estimated range of the supply rate, a
controller is designed to minimize an upper bound of the L,-gain
by solving a semidefinite programming problem. Such a novel ap-
proach can be applied to both regulating and tracking tasks, for
the latter of which deviation variables from the time varying input
and output trajectories are used instead of deviations from static
setpoints.

The remainder of this paper is organized as follows. We first in-
troduce preliminaries of dissipativity and dissipativity-based con-
trol in Section 2. The dissipativity learning control framework is
proposed in Section 3. We examine the proposed method with
case studies on regulating control and tracking control of two dif-
ferent chemical reactors in Section 4 and 5, respectively. Conclu-
sions are given in Sections 6.

2. Preliminaries
2.1. Dissipativity

Dissipativity is an important characterization of the input-
output property of dynamic systems that describes how the states
of the system move across the contours of a nonnegative function
under the effect of the input and output variables. Dissipativity,
as defined by Willems (1972), states that the change of a state-
dependent storage function V(x) can not exceed the accumulation
of an input and output-dependent supply rate s(u; y).

Definition 1. A dynamic system in the general nonlinear form

X=fxu), y=hu. (1)

is said to be dissipative in the (nonnegative) storage function V(x)
with respect to the supply rate s(u; y) if under the system dynamics
(1), the dissipative inequality holds for any input trajectory u(t) on
any time interval [ty, t;]:

5]
Vx(t2)) —V(x(t1)) < /t s(u(t); y(t))dt. (2)
1

Generally, the inputs of the plant include not only control in-
puts u but also disturbances d, whose components are assumed to
be equal to O in the nominal plant. Here we consider plants gov-
erned by the following (unknown) input-affine dynamics, where x,
u and d are vectors:

Xx=f(x)+gx)u+l(x)d. (3)

For reference tracking problems, the setpoint trajectories of inputs,
u, and outputs, y, which satisfy the undisturbed dynamics

X=f(R) +g®i, y=h). (4)
may vary with time. For regulating control, the setpoints are fixed
at 4 =0, y = 0. The setpoint signals are given a priori by a dynamic
or static simulator of the plant. Define the deviations of the control
inputs and the outputs from the corresponding setpoints as i :=

u—u and y :=y -y, respectively. Thus, the plant is viewed as a
mapping (i, d, u) — y with states X and x:

R=fER+D+gX+D @+ D) + X +8)d - f(X i) — gX)i,
X = f(X) +g®1,
§=h@E+R) - h). (5)

We consider the controller as a mapping from the output de-
viations (errors) and the input setpoints to the input deviations

Simulated
Plant
d —I y
_ u V4 -
u %o Plant 0
+
i y
Controller

Fig. 1. System architecture.

Kk : (J, 1) — 1 to be designed (y is not included since it is deter-
mined by u), i.e., we seek

i =« (J,10). (6)

Hence the closed-loop system is a map from (d, i) to the tracking
errors in both the inputs and the outputs (¥, ii). The architecture
of such a control system is illustrated in Fig. 1. Under such an ar-
chitecture, suppose that the dissipative inequality of the open-loop
system (5) is written as

V(X(t2). X(t2)) = V(X(t1). X(t1)) < /t CS(@®), d(o)., @(0): 3(0))de.
(7)

Substituting the feedback control law (6) into the above formula,
we see that the closed-loop system, with (%, X) as its states, is dis-
sipative with respect to a new supply rate $:

s(k (. ), d. 0: y) =: $(d, : ). (8)

The closed-loop dissipative inequality is naturally connected to
Lyapunov stability. Consider the undisturbed case when d = 0. If
$(0,u;§) <0, then according to the Krasovskii-LaSalle’s principle
of invariance (Khalil, 2002), the system states will converge to an
invariant set in which the supply rate remains O and the storage
reaches its minimum. If (0, &; ) <0 and the equality holds only
when y =0, then the afore-mentioned invariant set is such that
the tracking errors become zero, i.e., the output tracking control is
realized. If we further assume that (5) is partially observable in %,
then we realize state tracking. For regulating control, it suffices to
have the inequality hold only for @i = 0. When there exist distur-
bances, the control performance is characterized by the effect of
the disturbances on (¥, i) in the sense of an L,-gain. To this end,
we have the following assertion.

Theorem 1. If the closed-loop supply rate s(d,u;y) satisfies the
bounded nonconcavity condition:

$d. i §) < BlldII* = e @ DI = 17117, (9)

for a positive real number B, then the closed-loop system is L,-stable,
with an Ly-gain (from the disturbances to the input and output track-
ing errors) no larger than 112,

Proof. With (8) as a supply rate function and the definition of the
controller (6), on any time interval [0, T] we have

T T
Vlt:T—V|t:OS/O §dt§/0 Bl = Nall* - [I§11*)dt. (10)

Rearrange the above formula and relax the non-positive —V|._t
term on the right-hand side to obtain

112,01, + 1912 0.1y = BIIIZ 101, + V]ico: (11)
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This conforms to the definition of L,-stability (Khalil, 2002) with
an upper bound on the L,-gain of 12, O

This connection between the dissipativity of the closed-loop
system and L,-stability is the theoretical basis of dissipativity-
based control to be discussed in the next subsection.

2.2. Dissipativity-based control

The determination of a supply rate function of the plant satisfy-
ing the condition (9), namely the dissipativity learning procedure,
will be addressed in the next section. Now we assume that such
a function s is known, and consider the problem of synthesizing
a feedback controller in the form of (6) with desired closed-loop
performance. For simplicity, we assume that the supply rate s is
quadratic in i, d, §, the feedback law « is linear in j, and hence §
is also quadratic in d, i, J, namely

s@dn:y) =[d" a’ yrn@ll.
Kk (y.u) =K@y,
$(d.uy) =[d" K@y Frin@ll, (12)

where IT(u) is a symmetric matrix called the dissipativity matrix
and K(11) is the feedback gain matrix that may depend on . The
upper bound of the squared closed-loop L,-gain is estimated by
(9), i.e., the smallest positive 8 such that

[d" (K@y" FIn@] < Blldl* - IK@y|I> - 171> (13)
holds for any d, y and i, i.e., such that

I 0 0 ) -p1 0 O I 0
[0 K@@T 1] (@) + 8 (I] (IJ 8 1<(Iu) <0.

(14)

For simplicity, we need to further assume that IT and hence
K are independent of i, so that the above semidefinite inequality
does not need to be repeated for all possible (or multiple) values
of u. This is equivalent to choosing an overestimate for the supply
rate function s within the possible range of i. This conservatism
aims at designing a control law that is dependent only on devia-
tions and invariant to the reference trajectory, and is usually ac-
ceptable as long as such a control law gives satisfactory perfor-
mance. Thus, we consider the L,-optimal dissipativity-based con-
troller design as the problem of finding the controller gain K such
that the upper bound of the squared L,-gain 8 is minimized:

min
K 'B

B 0 O\[I O

I 0 o

st n+| o 1 o|llo k|=<0 (15
[0 KT ’K {0 0 1])[0 1}

We note that proportional (P), proportional-integral (PI) and
proportional-integral-differential (PID) control laws are the three
most classical forms in process control. For implementing PID con-
trollers, we need to augment the plant outputs with their integrals
and derivatives, i.e., (¥p,y1,¥p) = (¥, féy(t)dr, dy/dt), and the ref-
erence outputs into (yp,y;,¥p) = (¥, joty(t)dr, dy/dt), so that the
feedback signals to the controller include the integral and deriva-
tive of y (assuming that the function h is differentiable, so that the
time derivatives of y and y exist). The augmented outputs can be
regarded as the output variables of the corresponding augmented
plant dynamics (with auxiliary state variables v):

. ) h(x)
9] B ] o
v h(x) Vo %f(x,u)

Given the dissipativity property of the above augmented dynamics,
if we find the optimal controller gain matrix K with augmented
outputs, then the matrix can be partitioned into K = [Kp, K, Kp] so
that the feedback control law is expressed as

(t) =1<py(r)+1<1/0 ¥(r)dr +1<D%. (17)

In this case, the L,-optimal PID controller design results from the
following problem modified from (15):

min

Kp K1, Kp
-BI 0 0 0 O I 0 0 0O
0 I 0 0 0 0 K K Ky
st. [I"|om+«| o o 1 0 o o I 0 0]=<o
0 0 0 0 0 0 0 I o0
0 0 0 0 0 0 0 0 I
(18)

where IT is now a matrix with 5 x 5 blocks corresponding to d, i,
Vo=V, V1= féy(r)dr and yp = dy/dt, respectively.

Remark 1. Although PID is the most widely used type of con-
trollers in practice, its design or tuning usually requires a trans-
fer function representation of the process. In passivity-based con-
trol (Bao and Lee, 2007), a PID controller is proved to be strictly
input-passive (i.e., dissipative with respect to a supply rate of
yTu—€|lul|? for some € >0) and results in closed-loop stability if
the plant is passive (i.e., dissipative with respect to y'u). However,
this has not been discussed in a dissipativity-based control setting,
where the plant may have more general forms of supply rate func-
tions. Moreover, an optimal way of designing the PID controller
gain matrices is lacking. These issues are addressed by the pro-
posed formulation (18) for the L,-optimal dissipativity-based PID
controller design.

3. Dissipativity learning control
3.1. Dissipativity set and dual dissipativity set

Now we deal with the problem of determining the dissipativ-
ity property of the system. We note that to obtain a dissipative
inequality, a storage function V (X, x) depending on the states of
the system (5) and an input and output dependent supply rate
function s(fi(t), d(t), u(t); ¥(t)) are needed. The involvement of the
state-dependent storage function is undesirable since only input
and output data are available. This can be avoided by using a theo-
rem similar to the one proved in Hill and Moylan (1976) under the
following assumption.

Assumption 1. For the system (5), any state (%, X) is reachable in
finite time from a state with zero state tracking error, i.e., there
exists a finite time T> 0 and a trajectory of inputs (éi(t), d(t), u(t))
on te [0, T], such that the state at t = 0 is (0, Xy) for some Xg, and
the state at t =T is (%, x).

This assumption is not restrictive, since the reachability from
zero state tracking error is naturally satisfied as long as the sys-
tem is controllable, which can be usually guaranteed by appropri-
ate control variable selection.

Theorem 2. Suppose that Assumption 1 holds. Then the system (5) is
dissipative with respect to s(il, d, i; ¥) in a nonnegative storage func-
tion V (%, Xx) satisfying V(0,X) =0 for any X, if and only if for any
trajectory starting from any states (X,x) with X = 0, the following in-
equality holds

/tzs(fl(f), d(t), u(t); y(t))dt = 0. (19)
t
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Proof. The necessity is evident by using Definition 1. We only
prove the sufficiency here. Consider the following function

T
V(& X)= / s(u(t), d(t), u(t); y(t))dt.

inf
(@@(e),d(t),u(t)), te[0,T] Jo
%(0)=0, R(T)=%, X(T)=x

(20)

According to the reachability assumption 1, the above function is
well-defined and finite. If (19) holds, the value of V is always non-
negative. Consider any trajectory (ii(t),d(t), u(t)) on any time in-
terval [t;, t;] and denote the initial and final states as (X;,X;) and
(X, X5), respectively. We then have

L
V(&%) -V (X, %) = sdt

inf
(@(t),d(e),u()), tel0,n] Jo
%(0)=0, X(T)=%, X(T)=%,
T
sdt, (21)

inf /
@(e).d(e).uc)), te[0.n]_Jo
X(0)=0. x(M)=%x. x(T)=%
where the first infimum can be relaxed with any trajectory start-
ing from a point with zero tracking error, passing (X, X;), and ex-
tended by the given trajectory from (X;,x;) to (%,, X,). Hence

5]

V(&%) —V(X.%) < ft s(T(t), d(t), u(t); y(t))dt. (22)
1

According to Definition 1, the system (5) is then dissipative in the

storage function V with respect to s. O

Under the quadratic form of supply rate
s@,d,;y)=[d" a" FriOf], (23)

the inequality condition (19) becomes

/”[dw) T 7O de = (I, /”H[dT g §Tlde) = 0,
ty 5]
(24)

where the inner product between any two symmetric matrices (-,
-) is specified as the trace of their product. Practically, we limit
(24) to trajectories on which d and @ belong to the L, class (i.e.,
are finite-time square integrable), so that the integral term in the
inner product is finite.

Now we give the key definitions that will be used for dissipa-
tivity learning.

Definition 2. The dual dissipativity parameter of each trajectory
(@(t), d(t), 4(t), §(©)), te[ty, ] is defined as

r= / d©T @ e de. (25)

The collection of dual dissipativity parameters of all the trajecto-
ries that start from any (X, x) with ¥ = 0 and are L,, (quadratically
integrable on any finite time interval) in the inputs (d, i) is called
the dual dissipativity set, denoted as S. The dual cone of the dual
dissipativity set S,

S* = {II|{I,T) > 0, VI € S}, (26)

is called the dissipativity set. We also define the dissipativity pa-
rameter of the system as the matrix IT in the supply rate (23).

Then it directly follows from Theorem 2 that the dissipativity
set S* defined above is the range of the dissipativity parameters.
This is stated as the following corollary.

Corollary 1. Suppose that Assumption 1 holds. If T1 € S*, then
the system (5) is dissipative with respect to s(d,d,u;y) =
[@" a’ yrmaf]

Hence, the problem of dissipativity learning refers to the de-
termination of the dissipativity set $*, which requires only to de-
termine the dual dissipativity set S - the collection of all possible
dual dissipativity parameters I.

In a model-free setting, the dual dissipativity set S is con-
structed by inference from data. Specifically, we collect P indepen-
dent samples of trajectories (@P(t). dP(t),@P(t); yP(t)). t e [t].t]].
p=1,2,...,P by randomly generating L,,-class inputs (d, i, i) and
simulating the system dynamics (5). Then we calculate for each
trajectory sample the corresponding dual dissipativity parameter

e — :2[-][dp(t)T ae)T JPE)Tdt e S. (27)

Then I'P, p=1,..., P are samples of a random distribution whose
support set (the set on which the probability density is nonzero)
is S, as long as the input trajectories are sampled from the L,
class, i.e., any L, signal has a chance of being chosen. This can in
principle be realized, for example as in the present paper, using
independent Wiener processes of random magnitudes or Orstein-
Uhlenbeck processes, although the optimal or near-optimal sam-
pling methods of input trajectories remain an important open
problem. Now the dissipativity learning is formally expressed as
the following problem:

Problem 1. Given samples I'?, p=1,2,..., P, infer the support set
S of the underlying distribution of the samples, and explicitly char-
acterize its dual cone S*.

3.2. Dissipativity learning approach

To estimate S, one may directly apply a probability density es-
timation scheme (see, e.g., Parzen 1962) or kernel (Scholkopf and
Smola, 2002) or deep (Ruff et al., 2018) one-class support vector
machine algorithms. However, the shape of such an estimated S
can be too complex to explicitly characterize its dual cone S* and
use it for a subsequent dissipativity-based control mainly due to
its non-convexity. In fact, it suffices to obtain a convex hull of S:

N N o;>0,Tes
conv(S) = Zairi‘zai:l’i:]lz_ ’ }\INeN
2 2 .2,...,N,

since the dissipativity set that we aim to find, S*, is also the dual
cone of conv(S) (S* = conv(S)*). Therefore in this work, we will
estimate S as a polyhedron, which can be viewed as the simplest
form of convex sets, from trajectory samples.

The key idea underlying the polyhedral estimation is to assume
that the components of I' form a random vector subject to a linear
mixture of independent bi-exponential distributions, so that its confi-
dence regions yield polyhedral approximations of its support set, and
that such a mixture of bi-exponential distributions can be inferred
through independent component analysis (ICA) and parametric sta-
tistical inference of the component distributions. Here we first rep-
resent the matrix I and IT isomorphically as vectors y and 7, re-
spectively, by choosing an orthonormal basis in the corresponding
matrix space {E,}, so that (IT,T) =xTy, ie,

=Y k. M=) mE;
k k

oS (28)

Ve = (U E), 7= (ILEy). (29)
By vectorizing all the samples to yP, p=1,...,P, Problem 1 is re-
stated as

Problem 2. Given samples y?, p=1,...,P, find the underlying in-
dependent components and infer their bi-exponential distributions,
thus explicitly characterizing any confidence set as a polyhedron
and its dual cone.
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ICA aims to determine a linear transformation of the translated
data samples:

yP=y+MnP, p=1.2,....P (30)

such that n?, p=1,..., P can be viewed as samples of a random
vector n whose components 7;, j=1,...,] are independent with
zero means and unit variances. y = % 22:1 yP is the average of all
samples. The classical algorithm (based on kurtosis maximization
of 1) was introduced in Hyvdrinen and Oja (2000), to which the
readers are referred for details. The dimension of the independent
components, denoted by J, is a tunable hyperparameter.

After the ICA processing, we estimate the bi-exponential distri-
bution of each independent component 7;, whose samples are nj.’ ,
p=1,...,P. Specifically, we suppose that the probability density
function of n; as a random variable is a linear combination of two
exponential distributions that have a contacting endpoint, opposite
directions, and weights summing up to 1:

(1—Wj)bjexp[—bj(cj—nj)], T’]] <Cj

where g;>0, b;>0, ¢;, 0 <w;j<1 are 4 parameters constrained by
the following 3 equalities:

lim q;(n;) — lim g;(n;) =0 (continuity);
nj—¢; nj—c;

;01) = {Wf"f A L (31)

+00
/ n9;(n;)dn; =0  (zero mean); (32)
8%
/ n?q;(n;)dn; =1 (unit variance).

One can verify that the only one remaining degree of freedom can
be represented by a parameter 0; € [-7 /4, 7t /4], with the follow-
ing expressions relating g;, b;, ¢;, w; to 6;:

aj = 1/sin(w /4 —06;), bj=1/sin(mw/4+0;),
cj =+2sinf;, w;=(1-tanb;)/2. (33)
The bi-exponential distribution (31) is hence

() = L (= V2sin6)),
93 = V2 cos0); P sin(w /4 - 6))

(nj— \/jsinej),
sin(r/4+6;) |
(34)
where the subscripts + and - for any real number stand for its
positive and negative parts, respectively, namely p. = max(0, p),
p— = —min(0, p), p € R. We use the maximum (logarithmic) like-
lihood estimation to optimize the value of 6 in the distribution,
ie.,
6; = argmin [In(v/2cos6;)
1 =V2sing), 12 (nf—ﬁsinej),] 35)
Pp=1 sin(rr /4 — 6;) szl sin( /4 + 6;)
With the distributions pf the independent components deter-
mined, we clearly see that

1 [ (nj—+2sing)),
52]}2[ sin(r /4 - 0;)

=1

(nj—ﬂsinej)i| 36)

sin(m /4 + 0;)

as an average of | independent variables, each subject to an expo-
nential distribution of parameter 1 (see (34)), is subject to the Er-
lang distribution whose probability density and cumulative density
functions are

_Jd T exp(—J0)
q¢) = W

respectively, with a mean of 1 and a variance of 1/J. When ] is
large, the central limit theorem dictates that the distribution Q is

J-1
Q) =1- k;o ]l!(lé“)"EXp(—JC) (37)

well approximated by a normal distribution A°(1,J-1/2). By letting
Q(¢) <1 — € for a small positive number €, we obtain a confidence
set

J-1
Z},(IC)" exp(—J¢) = € MUB £ <14 124, (38)
k=0""

in which 1—€ or A characterizes the confidence level. In real-
ity, due to the discrepancy between the empirical distribution of
¢ obtained from data samples and the assumed Erlang distribu-
tion, such a confidence level A needs to be chosen according to a
specific portion (e.g., 90% or 95%) of the samples.

By combining the ICA transformation (30) and the construction
of the Erlang-distributed random variable (36), we have a polyhe-
dral approximation of the dual dissipativity set:

Sp = {yIV:J?+Mn.

(nj — v2sin6)

1< (nj —~/2sin6;)_
J ; [ sin(r /4 - 6;)

sin(r /4 + 0;)

] <1 +j‘”2A}. (39)

Denote by ¢ the J-dimensional vector whose j-th component is
V/2sin 6, D* and D~ the diagonal matrix of bi-exponential scales
whose j-th diagonal entry is sin(;r /4 — 6;) and sin(w /4 +6;), re-
spectively. Denote by 1 and 0 the vector with all components equal
to 1 and 0, respectively. Then by using the variables o and o~
representing the scales of deviations from the contacting endpoint
c of the bi-exponential distributions, we have

Sa ={yly =y +M(c+D*o* -D"0"),
170t +176- <J+]J?A, 0%t >0,0~ > 0}. (40)

Finally, the dissipativity set S* is estimated by the dual cone of Sy,
calculated using linear duality theory,

Sk ={m|3r >0, st. 7T (y +Mc) = A(J +]J'2A),
(MDY > —A1, (MD™)Tm < A1) (41)

Our proposed dissipativity learning method is illustrated in
Fig. 2. The algorithmic steps are represented by the blue arrows,
namely the ICA, the inference of bi-exponential distributions for
independent components, and lumping of the independent com-
ponents into a one-dimensional random variable ¢. By picking a
confidence interval of ¢, a polyhedral estimation of S is acquired
by the inverse reasoning steps represented by the green arrows.
The learning procedure depends on only two hyperparameters
- the number of independent components J and the confidence
level A.

Remark 2. As will be shown in later case studies, the number of
independent components J is determined through a trial-and-error
approach to eliminate too large and too small choices that give ei-
ther overly conservative or loose estimations of the dissipativity
property. We note that under different choices of orthonormal ba-
sis {Ei} to vectorize IT and I', the linear transformation linking the
groups of basis will be compensated in the mixing matrix M in the
ICA step. Hence the dual dissipativity set Sy and dissipativity set
S if expressed in terms of the original I' and IT matrices rather
than vectorized y and 7, will be invariant to the choice of basis. In
other words, the choice of orthonormal basis {E;} can be arbitrary.

Remark 3. Since S* = coni(S)*, where coni(S) is the conic hull
of S:

N
. a;>0,TeS
coni(S) = :Zairi‘i:1'2_ ;VNeN}
i=1 Pl
={pl'|p>0,T € conv(S)} 2 conv(S) 2 S, (42)

one may seek to estimate a conic estimation of the dual dissipa-
tivity set instead of a bounded polyhedral one as we have done in
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Fig. 2. Illustration of the proposed dissipativity learning method.

the main text. This can be done by first scaling the samples onto
an affine subspace with a magnitude restriction (e.g., the set of
matrices with trace 1), which specifies a section of the conic es-
timation, and then inferring a polyhedron on this affine subspace.
Compared to a polyhedral estimation that is compact in space, the
conic counterpart better reflects the intrinsic unboundedness of
the dual dissipativity set, as we may have trajectories with suffi-
ciently large input and output signals. However, these trajectories
with too large inputs and outputs may not be of interest to charac-
terize system behavior for control purposes, and we tend to avoid
them in the data generation procedure due to numerical issues or
simulation validity.

Remark 4. The ICA and distribution inference approach proposed
here for constructing the polyhedral estimation of the dual dissi-
pativity set is motivated by the approach of Zhang et al. (2016) to

ples are generated on a finite time interval, and, although start-
ing with zero tracking error, they end up finitely distant from the
target trajectory. As a result, the dissipativity parameters learned
based on trajectories away from the target may fail to characterize
the system behavior near the target and guide us to a stabilizing
controller. Therefore, in addition to the previously constructed es-
timation of the dissipativity set, we need an additional constraint
that requires the dissipativity parameters to satisfy the condition
(19) for infinitesimal trajectories starting from zero tracking error.
Apparently, it suffices that the submatrix of IT corresponding to
inputs (d, i) be positive semidefinite. This means that when the
tracking error is zero, the storage function has reached its mini-
mum and any nonzero control inputs or disturbances will increase
the storage function. Thus we have reached the following formula-
tion of dissipativity learning control:

approximate the feasible region of optimization problems for es- min
. . IL.K.A
tablishing surrogate models, where convex hulls of data points
sampled from the region are found and refined, and the work of I 0 O -l 0 0 o
Ning and You (2018) to construct the polyhedral uncertainty set s.t. 0 KT I II+] 0 I o0 0 K|=0
for robust optimization, which involves a PCA and a nonparametric 0 0 I (U
distribution inference by kernel smoothing. Mygas =0, ITTeS™ (44)

Remark 5. The assumption of bi-exponential distributions of inde-
pendent components of 1 can be replaced by bi-normal distribu-

Substituting the true dissipativity set S with the learned polyhe-
dral conic approximation S§ (41), and expanding the descriptive

tions definition of S} combined with the basis expansion (29), the for-
2 mulation becomes

w; exp _(nj_Cj) ni = .

oyl U min B
W= (— )2 (43) Mk ,

erxp|:— 1) ] ni <c; -BI 0 0 I 0

V2mh, 212 e st [(’) I?T (I’] n+| o 1 of)lo k|<o
which gives confidence regions that are linearly transformed ellip- 0 0 I 0 I
soids following our procedures. Mygaz =0, M= anEk
k
3.3. Dissipativity learning control A>0, 7T (7 +Mc)=>A(+]J2A)
(MD)Tm > -A1, (MD™)"m <Al. (45)

The dissipativity learning controller design problem can be de-
rived by incorporating the dissipativity set estimation (41) into the
L,-optimal control formulation (15). However, the trajectory sam-

Remark 6. It is not hard to see that if the Assumption 1 on the
reachability of any state from a state of zero tracking error does
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not hold, the above-mentioned formulation can still be utilized to
obtain an L,-optimal controller that works as long as the initial
state of the plant is reachable from a hypothetical state of zero
tracking error under some input trajectories.

The above formulation is a non-convex semidefinite program-
ming problem, which can not be simplistically tackled by the
available convex optimization solvers such as cvx (Grant and
Boyd, 2014). The non-convexity arises from the trilinear semidefi-
nite inequality involving the controller gains K twice together with
the dissipativity parameters IT and upper bound of squared L,-
gain B. However, the problem is multi-convex - once K is fixed,
the rest of the problem on (I1, 7, A, B) is convex; once (I1, &, A,
B) is fixed, as long as I1; 45 = O is satisfied, we have IT; ; > 0 and
hence the remaining problem on K is a convex (quadratic) feasi-
bility problem. We therefore adopt an iterative algorithm to solve
(45), where each iteration involves the following two steps:

(a) fix K to solve (I1, &, A, B) to the optimum,;

(b) seek a different K satisfying the first constraint of (45), so
that after changing K the solution obtained in step (a) is still
feasible.

When we execute step (a) in the next iteration, the 8 is up-
dated from the previous feasible solution to the optimum un-
der the new K. Therefore, the iterations of steps (a) and (b) lead
to a sequence of feasible solutions with non-increasing values of
B. Specifically, since the left-hand side of the first constraint of
(45) is dependent on K through its bottom right principal minor,
KT (Mg g+ DK+ K" 5 + Iz 5K + (I 5 + 1), which is a quadratic
form of K, the different K in step (b) can always be chosen as the
one such that the quadratic form is the most negative definite. In
other words, step (b) updates K according to

K=—Mgg+D gy (46)

If the quantities M, D*, D, c are obtained from the ICA us-
ing the i and (¥p, ¥, ¥p) as inputs and outputs, the formulation
(45) can also be extended to an L,-optimal dissipativity learning
PID controller:

nin, A
-l 0 0 0 O 1 0 0 0
o0 I 0 0 O 0 K K K
st. [0+ o 0 I 0 O 0 I 0 0/}=<o0
0 0O 0 0 O 0 0 I 0
0 o 0 0 O 0 0 0 1
Mggaa =0, M=) mE
k
A=0, 7w (y+Mc)=Ar(J+ A7)
(MDH)Tm = —A1, (MD™)Tm <Al (47)

The solution algorithm has no formal difference expect that
the update of K=[Kp, Kj,Kp] is expressed as K=—(IT;;+
D7 M gg,55-

Remark 7. Although the properties of multiconvex optimization
algorithms have been discussed in some recent works (see, e.g.,
Shen et al., 2017), it appears that the theoretic convergence of the
above algorithm using simple iterations is an open problem. How-
ever, likely due to the exploitation of the quadratic constraint on
K, our algorithm achieves very fast practical convergence (within
20 iterations for the case studies in the following sections), and is
therefore suitable for use.

We summarize the entire procedure of dissipativity learning
control as follows.

1. Preliminaries.
(a) Generate data samples.

(b) Calculate dissipativity parameter samples I'?, p=1,2,...,P
according to (27).

(c) Choose orthonormal matrix bases {E,} and vectorize the I'P
into yP according to (29).

(d) Set the number of independent components J and confi-
dence level A.

(e) Initialize controller gains K.

2. Dissipativity learning.

(a) Perform ICA and return average y, mixing matrix M and
transformed samples »P in (30).

(b) For each component j, optimize the maximum likelihood es-
timate of the parameter 6; through (35).

(c) Obtain vector ¢ with components ¢;= [v2sin 0;l,
and matrices D' =diag(1/sin(wr/4-0;)), and D~ =
diag(1/sin(mr /4 + 6))).

3. Controller design.

(a) With fixed K, solve (45) for P control or (47) for PID control
and update (I, m, A, B).

(b) With fixed (T1, 7, A, B), update K by K = —(Iz 5+ )" Mgy
for P control and K = — (I 3+ 1)1 Iz 3,55, for PID control.

(c) If the updated K does not have a sufficiently small devia-
tion from the previous K, return to (a) to iterate. Otherwise
terminate.

4. Case study: Dissipativity learning regulating control of a
polymerization reactor

In this section we perform a case study of our proposed dis-
sipativity learning control method on a continuously stirred tank
reactor (CSTR) with exothermic polymerization reactions of methyl
methacrylate taking place, which was used as a benchmark for
nonlinear geometric control (Daoutidis et al., 1990; Soroush and
Kravaris, 1992) due to its highly nonlinear dynamics. Here we con-
sider the regulating control of such a reactor (i =0, y = 0) since
the polymerization extent needs to be held constant for the poly-
mer product.

4.1. System description

The system model involves 6 states, 2 inputs, 2 outputs and 2
exogenous disturbances. The 6 states represent the monomer and
initiator concentrations, reactor and jacket temperatures, amount
of substance and mass of the product. The initiator feed and the
cold water flow rates are used as control inputs (u; = E, uy = Ry).
The average molecular weight and temperature are outputs (y; =
Dq/Dg, y» =T, where Dy and D; are the molar and mass concen-
tration of the polymer products, respectively). There are two dis-
turbances - monomer concentration and temperature of the feed
stream (d; = Gy jp, da = Tjp).

The governing equations are given as follows:

. F
Cm = _(kp + km)cm¢ + V(Cm.in - Cm)

. EC;, — FG
¢ = _kici+ i 1,mV i
. —AH, UA F
T = kpCm(pTCp - oCV (T - 7}) + V(Tm -T)
. Fu UA
7] N W(TW a 7]) * PwlwVi (T - ]:')
. 1 FD,
Do = (§kc + kd)¢2 +knCngp — 2
FD;

Dy = (kp + km)CndM —

1%

The reaction rate constants k, for termination by coupling (c),
disproportionation (d), initiation (i), propagation (p) and chain

(48)
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Table 1
Parameters and nominal input and state values for the polymerization reactor sys-
tem.

Par. Value Par. Value

Ac 3.8223 x 10'° kmol/(m®-h)  f 0.58

Aq 3.1457 x 10" kmol/(m®-h) F 1.00 m3/h

A; 3.7920 x 108 h! 0 866 kg/m?

Ap 1.7700 x 10° kmol/(m3 - h) Ciin 6.0 kmol/m?
Am 1.0067 x 10'> kmol/(m3-h) R 8.314]/(mol -K)
Ec 2944.2 kJ/kmol AH, —57.8 kJ/mol
Eq 2944.2 kJ/kmol 1% 0.1m3

E; 128770 kJ/kmol M 100.12 kg/kmol
Ep 18283 kJ/kmol p 2.0KJ/(kg-K)
Em 74478 k]/kmol Tw 293.2 K

U 720K]/(h-K-m?) A 2.0 m?

Cw 4.2K]/(kg-K) Pw 103 kg/m3

Vi 0.02m?

Input Nominal value Input Nominal value
F; 0.01679m3/h Fuw 3.26363 m?/h
State Nominal value State Nominal value
Cm 7.7697 kg/kmol G 0.1143 kg/kmol
T 329.98 K T 296.67 K

Dy 3.5155 x 10~4 kmol/m? Dy 23.061 kg/m3
Disturbance ~ Nominal value Disturbance  Nominal value
Cinin 8.0 kmol/m3 T, 350 K

transfer to monomer (m) are expressed in the form of Arrhenius
law:

k. = A, exp(—E,/RT). (49)
The molar fraction of live monomer chains ¢ is specified by the
quasi-equilibrium assumption:
Zf*Cl ki

kd + kc '

¢ = (50)
The parameters and nominal states are given in Table 1. The in-
puts, outputs, disturbed variables and time are translated with the
corresponding nominal values (so that the origin is the steady state
to be regulated at) and scaled by 0.001 m3/h, 1 m3/h, 1000 kg/kmo],
1 K, 1 kmol/m3, 1 K and 0.1 h, respectively.

4.2. Data generation and dissipativity learning

The trajectory samples are generated using random walks. In-
dependent Wiener processes of random magnitudes uniformly dis-
tributed in [0,1] are assigned to uq, uy, di and d, in the time in-
terval [0,1] to simulate the system starting from the origin. 3000
independent trajectories are sampled, from which the dual dissi-
pativity parameters I'P are calculated by (27). With 2 disturbances,
2 control inputs and 2 outputs, each I'? is a symmetric r-th or-
der matrix (I € S") with r = 6. We choose the orthonormal bases
(r(r+1)/2 =21 in total) for S" according to
S/NT, i=j=1
Su/A/ili—1), i=j#1,k<i
—(i—D8y//ii=1), i=j#1k=i (51)
0, i=j#1,k>i
Gidji +8udj)/V2, i<

for 1<i<j<rand 1<k, I <r to vectorize the matrices I'? into yP €
R?!, where the Kronecker’s § symbol §;; for any two subscripts k
and [ equals 1 if k =1 and O otherwise.

We first pick the number of independent components J equal
to the dimension of sample vectors, i.e., ] = r(r + 1)/2 = 21 for ICA.
Subplots 2-22 in Fig. 3 show the histograms of the obtained com-
ponents for all the samples, with the probability density function

E%(Zr—i)(i—l)ﬂ,kl =

of their inferred bi-exponential distributions shown as red curves,
respectively. The accordingly computed samples of the lumped
random variable ¢ as defined in (36) and its inferred distribution
are shown in the first subplot of Fig. 3. It is observed that com-
pared to the inferred bi-exponential distribution, the empirical dis-
tribution of the samples has apparently higher densities near the
centers (¢; in (31)) but lower densities at moderate distances from
the centers. To keep the empirical and the inferred distributions
having the same variance equal to 1, the empirical distributions
have longer tails than the inferred distributions. The deviations in
n; result in the significant difference between the empirical and in-
ferred distributions of ¢. In principle, if our aim is only to capture
the dissipative property of the system based on the data samples,
we may seek to modify the bi-exponential distribution by asym-
metric generalized normal distributions:

(o) = A Witkjexp(=ajln; —c;l%), nj= ¢ 52
q;(n;) {(l—Wj)vjexp(—bjmj—cjl“f), nj < Cj (52)

with smaller powers ;<1 and optimized parameters aj, b;, ¢,
w; and normalizing constants w;, v;. However, when «; <1, the
confidence region obtained by the lumped random variable n =
ijﬂ ajln; - cj|"‘f is not a convex set, and will cause computational
intractability of the dissipativity learning control problem (45) or
(47). Unfortunately, this does not seem to improve by changing the
number of independent components J.

After ICA, we construct the polyhedral estimations of the dual
dissipativity set and subsequently the dissipativity set as in (41).
Since the empirical distribution of ¢ is different from an Erlang
or normal distribution, the confidence level A needs to be as-
signed according to the empirical distribution of ¢ rather than us-
ing the properties of the Erlang or normal distributions such as the
30 rule of thumb. Instead, due to the long-tail feature, we should
make A larger than the corresponding value to the desired confi-
dent level under the Erlang or normal distribution. For example, if
we need to cover 95% of the samples, the empirical distribution re-
quires to choose A >6.5762, which is significantly higher than the
value of 1.6449 required by the normal distribution A/(1,]~1/2).

For ] =21 and A corresponding to 95% of the samples, we
found that the origin is an interior point of S5 and therefore S}
is a singleton of IT = 0, which is physically meaningless since the
supply rate and hence the storage function are constantly zero.
This can be avoided only when A is as small as to cover 2% of the
samples, which fails to capture the true input-output response of
the system. Therefore, the independent component number J must
be well-tuned so that a meaningful dissipativity set can be gener-
ated under a sufficiently high confidence level A. For this, we vary
J and always set A at the value to cover 95% of the ¢ samples.
For each J, we find the element IT € S}, that minimizes the leading
eigenvalue of the output blocks:

n}_}n Pmax (Hy,y)

sit. eS8y, trace(Tlyzq) =1 (53)

where the last constraint is imposed for a fair comparison since
S is a cone. The II thus determined can be roughly considered
as the least conservative estimate of the dissipativity matrix. Their
traces are compared in Table 2.

From Table 2 we observe that both too large and too small
numbers of independent components are undesirable. On one
hand, when ] is large, the dissipativity learning procedure to con-
struct the dual dissipativity set Sp takes into consideration in-
significant dimensions of the data samples, and results in an overly
conservative estimation of S, (i.e. the constructed polyhedron is
much larger than it need be), thus making its dual cone S} too
small (which reduces to a singleton when J =20 or 21). On the
other hand, if J is too small, important dimensions of the data are
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Fig. 3. Distribution of the independent component parameters and the lumped random variable ¢ when J = 21 for the polymerization reactor.

Table 2
Minimized leading eigenvalue of the output blocks of the dissipativity matrix IT
under different numbers of independent components.

Table 3
Optimal control performances (8) under different number of independent compo-
nents and confidence levels for the polymerization reactor.

7 8 9 10

Pmax (5 5) -0 -0 -0.5917 —0.4034
11 12 13 14

Pmax (5 5) —0.4022 -0.3923 -0.3227 —0.1476
15 16 17 18

Pmax (5 5) —0.0689 —0.0684 0.3099 0.3964
19 20 21

Pmax (M5 5) 0.5324 +o00 400

ignored, and hence the dissipativity learning does not responsibly
capture the system dynamics and gives naively radical estimates,
such as in the case of /=7 or 8, when S} allows a dissipativ-
ity matrix with Iz g7 = 0 and Il ; < 0, meaning that the storage
can not increase anyhow. When J = 10, 11 and 12, the minimized
Pmax (I 3) results are similar, which suggest a proper range of J.
This can be further justified by the covariance matrix of the sam-
ples y?, p=1,...,P:

P
I o Lo (54)
p=1

whose 11th eigenvalue in descending order, 0.0059, is an order-of-
magnitude smaller than the 10th eigenvalue 0.0572, and the eigen-
values after the 13th are smaller than 1% of the leading eigenvalue,
0.1944, implying that there are about 10-13 orthogonal dimensions
in which the data variations significantly exist.

4.3. Controller design and simulation

Now we use different values of | between 10 and 13 and dif-
ferent values of A to cover different percentages of the data sam-
ples, and solve the L,-optimal P control problem (45) to obtain the
guaranteed upper bounds of the squared L,-gain, 8. The results are

A 85% 90% 95% 98% 99%

J=10 0.1919 1.5152 1.5152 1.5152 1.5152
Jj=1 0.4755 0.4844 0.5275 0.5586 0.5783
J=12 0.7323 0.7589 0.7904 0.8139 0.8297
J=13 5.3541 5.3541 5.3541 5.3541 5.3541

shown in Table 3. It can be observed that J should be chosen as 11
or 12, so that the confidence level A can be found to have a non-
trivial effect on the control performance. Since J = 11 gives lower
upper bound on the L,-gain than the other 3 values of J, in the
sequel we set | = 11.

When the degree of polymerization (reflecting the rate of re-
actions) and the temperature deviate from their setpoints, since
the reaction rates increase with temperature and the reactions are
exothermic, the deviations with opposite (same) signs annihilate
(exacerbate) each other to approach (escape) the setpoints, result-
ing in a decrease (an increase) of the storage function. To reflect
this dynamic feature of the system, the output block IT;; should
have one negative eigenvalue whose associated eigenvector has
two components with opposite signs, and one positive eigenvalue
whose associated eigenvector lies in the first quadrature. Also, the
controller gain K should have 4 positive elements so that the con-
troller signals are small when the output deviations have the same
signs and large when the output deviations are opposite. We note
that this is true for the optimized results obtained from the L,-
optimal controller problem (45), e.g., when the confidence level is
95%, we have

K — [1.5424 (55)

1.0371

2.1511
0.7978

and
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Fig. 4. Process simulation for dissipativity learning controllers under disturbances.
The blue, red, green, and yellow lines correspond to confidence levels 85%, 90%,
95% and 99%, respectively, under J = 11. The black lines correspond to the open-
loop system (u = 0). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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Fig. 5. Desired input and output trajectories the oscillatory reactor operated pe-
riodically under sinusoidal (upper subplots) and piecewise constant inputs (lower
subplots). Red and green curves correspond to u; and u,, respectively. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

0.3970 0.1460 04864 —-0.2130 —0.3465
0.1460 0.3642 0.6708 -1.0100 -0.1917
M- 0.4864 0.6708 13754 -1.7372 -1.8620
~|-0.2130 -1.0100 -1.7372 29100 -1.3759
—0.3465 -0.1917 -1.8620 —-1.3759  3.0431
—-1.6909 0.2739 -3.7239 0.6174 6.2436

The same physical explanations can be made for IT;; and Ilgy.
The eigenvectors associated with the larger eigenvalue of Il
and IT;4 should have opposite signs and same signs, respectively,
since the two control inputs have opposite effects (feeding initiator
accelerates polymerization while cooling water decelerates reac-
tions) and the two disturbances have the same effects (increasing
monomer feed and increasing feed temperature both accelerate re-

actions). These physical requirements are satisfied by the obtained
IT with Hahaz <0 and Hd1~d2 > 0.

We simulate the dissipativity learning controllers obtained un-
der confidence levels 85%, 90%, 95% and 99%, along with the open-
loop system with feedback gain equal to the zero matrix. The dis-
turbance signals d; and d, that we use are two independent zero-
mean Orstein-Uhlenbeck processes, defined as

dU = —wUdt + vdW, U(0) =0, (57)

where dW denotes the Wiener process, and v = 0.1, w =6 (cor-
responding to a time constant of 1/6 time scales or 1min).
Fig. 4 shows the simulated output trajectories within 100 time
scales (10 hours). Apparently, compared to the open-loop system,
the learned controllers have a better performance of disturbance
rejection, with the outputs (degree of polymerization and reactor
temperature) kept close to the setpoints and free from long-lasting
significant deviations.

Of course, the use of a P controller in this case study is only for
the illustration of how the dissipativity learning control method
can give well-performing controllers with reasonable physical in-
terpretations of the controller gains. P controllers may be not suit-
able and an offset will be expected if the setpoint of the process
can vary with time. In such cases, one may consider designing a
dissipativity-based PID controller, as illustrated in the next case
study.

5. Case study: Dissipativity learning tracking control of an
oscillatory reactor

In this section we apply the proposed dissipativity learning con-
trol method to the tracking control of a CSTR (Ozgiilsen et al,
1992) in which the catalyzed gas phase oxidization of ethylene
takes place. There exist two side reactions to oxidize the primary
product - ethylene oxide — and the reactant ethylene into carbon
dioxide. It is known that appropriate periodic operation of this re-
actor can be economically more favorable than the optimal steady-
state operation (Chen et al., 1994).

5.1. System description

The state-space model involves 4 states and 2 inputs:

X1 = (035 +uq)(1 —x1x4)
X3 = (0.35+11)(0.1 + Uz — X2X4) — A1 exp(Cy/X4) (X2X4)%
— Ay exp(Ca/Xs) (X2X4)?
—(0.35 + u1)x3X4 + A1 exp(Cy /x4) (X2%4) %>
— A3 exp(Cs/X4) (X3x4)°"
X4 = X7'[(0.35 4+ u1) (1 — x4) + By exp(Cy/X4) (X2%4)°?

+ By exp(C2/Xa) (2%4)** + B3 exp(C3/Xa) (x3%4)*°

— By(x4 —1-d)] (58)

X3

—1.6909
0.2739
—3.7239
0.6174
6.2436
1.4358

The 4 states (xq, xp, X3, X4) are the dimensionless density, ethy-
lene concentration, ethylene oxide concentration, and temperature,
respectively. The gas phase flow rate and the ethylene concentra-
tion at the reactor inlet are used as control inputs. We assume
that there is a disturbance d in the cooling water temperature.
The nominal steady states under zero inputs and disturbances are
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Parameters and nominal steady state for the oscillatory reactor system.
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Fig. 6. Trajectory samples of the oscillatory reactor system.
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given in Table 4. The reactor temperature is taken as the output
(¥ =X4 —x°). The inputs u; and u,, disturbance d, and output y
are then scaled by 0.35, 0.10, 0.0001 and 0.0001, respectively.

Chen et al. (1994) identified for d =0 the optimal operation
under control inputs in sinusoidal and piecewise constant forms,
whose concrete forms are omitted here for brevity and the result-
ing trajectories are illustrated in Fig. 5. In this section we assume
that these two sets of trajectories are available without model
knowledge, and examine whether the proposed dissipativity learn-
ing control method can efficiently track them. For tracking control
where the desired inputs and the output oscillate over consider-
able ranges, it may not be sufficient to use P controllers. Hence
we consider dissipativity learning with expanded outputs with in-
tegral and derivative of y, and controller design in the formulation
of (47).

5.2. Data generation and dissipativity learning

Independent trajectories (P = 2500) are sampled in a simi-
lar way as in Section 4. For each sample, zero-mean stochastic
processes bounded in [-1, 1] with a modified Orstein-Uhlenbeck
form:

wU
1-U4

du = — dU + odW (59)

(w=1, 0 =1) are used to generate ti(t) and u(t), and a standard
Wiener process is used to generate d(t) within a time scale to drive
the plant from the nominal steady state, yielding the trajectory
of (¥p,¥1.¥p), (Wp, ¥1, ¥p) and (Jp, J1, ¥p) by subtraction. Since the
output derivatives are used in dissipativity learning, the output sig-
nals need to be smooth enough. For this purpose, Savitzky-Golay
filters (Savitzky and Golay, 1964) of order 3 with a frame length
of 0.5 time scale are applied to the disturbance and inputs. 100
of these trajectories are shown in Fig. 6. From the trajectories, the
dual dissipativity parameters I'P are calculated.

The distributions of independent components n;, j=1,...,J
under /=21 are shown in Fig. 7. It can be expected that com-
pared with the polymerization reactor example, the I'? data sam-
ples from the oscillatory reactor can be better described by the
bi-exponential distributions of its independent components. This
is due to the higher extent of dispersion of independent compo-
nents from their distribution centers, which may be explained by
the fact that the data are sampled from a wide range of trajecto-
ries to track rather than a single steady state to regulate at. The
approach to determine the appropriate range of J is similar to the
previous case study, i.e., we perform the dissipativity learning step
under a series of different values of J and check whether solving
(53) returns a negative feasible solution. We then calculate the co-
variance matrix (54) to choose the number of eigenvalues greater
than 1% of the leading eigenvalue, which suggests that J = 5.

5.3. Controller design and simulation

Finally we solve the L,-optimal dissipativity learning PID con-
trol problem (47) under ] =5 and confidence levels A correspond-
ing to 85%, 90%, 95% and 99% of the samples. For example, under
the confidence level of 95% of the samples, the learned PID con-
troller is

i = 2.4407§p + 0.2008, + 0.1410§p,
i, = —4.71413p — 1.2145§, — 0.2655)p.



W. Tang and P. Daoutidis / Computers and Chemical Engineering 130 (2019) 106576 13

Fig. 7. Distribution of the independent components and the lumped random vari-
able ¢ when J = 21 for the oscillatory reactor.
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Fig. 8. Simulated signals of the output errors of tracking the periodic trajectories.
The upper and lower subplots correspond to the trajectories in Fig. 5 with sinu-
soidal and piecewise constant signals, respectively. The blue, red, green, and yellow
lines correspond to dissipativity learning controllers obtained under J =5 and con-
fidence levels 85%, 90%, 95% and 99%, respectively. The black lines correspond to
the open-loop system (u = 0). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

The negative gains for the second input reflect the cooling effect on
the reactor temperature of the cooling water. The positive gains for
the second input result from the fact that increasing (decreasing)
the gas phase flow rate decreases (increases) the residence time,
thus decreasing (increasing) the reactor temperature with a lower
(higher) extent of exothermic reactions.

A stochastic Orstein-Uhlenbeck process is generated as the dis-
turbance signal. The simulated trajectories under the obtained 4
controllers and the open-loop trajectories are shown in Fig. 8. It

becomes apparent that under the learned controllers, the distur-
bance is well attenuated compared to the open-loop system, where
the disturbance results in large fluctuations of the output.

6. Conclusions

Dissipativity, as an important characterization of the input-
output response of dynamic systems, can be leveraged in the set-
ting of input-output data-driven control. Specifically, with the tra-
jectories sampled from the dynamics, we can learn the range of
the parameters in the supply rate function (dissipativity set), based
on which a dissipative controller can be synthesized to shape the
closed-loop stability. In this work, we first pointed that such a
dissipativity learning method is applicable to both regulating and
tracking control, and then proposed a method of learning dissi-
pativity and synthesizing dissipativity-based controllers from tra-
jectory data based on independent component analysis and dis-
tribution estimation. Two chemical reactor systems are used for
detailed case studies that demonstrated the efficacy of our pro-
posed method. The P and PID controllers designed with the pro-
posed method achieve satisfactory performance. In addition, we
have shown that the learned dissipativity parameters are of good
physical interpretability, based on which the signs of the optimal
controller gains are found to be in accordance with the physical
relations among the process variables.

Although tested with only a few case studies so far, this frame-
work is promising for wider application of input-output data-
driven control on process systems, including those governed by
partial differential and differential-algebraic equations, and large-
scale processes. We note that as a machine learning-based ap-
proach, the performance of dissipativity learning control is essen-
tially dependent on the accuracy of the dissipativity learning re-
sult. To better guarantee the learning performance, there are two
open problems yet to be explored in future research, namely how
to optimally generate or select data samples, and how to perform
learning when data are less satisfactory, e.g., when sufficient open-
loop trajectories are not available.
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