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Abstract

Thermal fluid coupled analysis is essential to enable an accurate temperature prediction in additive manufacturing. However,
numerical simulations of this type are time-consuming, due to the high non-linearity, the underlying large mesh size and the
small time step constraints. This paper presents a novel adaptive hyper reduction method for speeding up these simulations.
The difficulties associated with non-linear terms for model reduction are tackled by designing an adaptive reduced integration
domain. The proposed online basis adaptation strategy is based on a combination of a basis mapping, enrichment by local
residuals and a gappy basis reconstruction technique. The efficiency of the proposed method will be demonstrated by
representative 3D examples of additive manufacturing models, including single-track and multi-track cases.
c⃝ 2020 Elsevier B.V. All rights reserved.
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1. Introduction

Additive manufacturing has gained tremendous research interests over the last decades for its abilities to
manufacture products with complex geometries which are difficult for standard manufacturing processes. However,
the lack of reproducibility of the additively manufactured pieces limits its application to real engineering scenario.
Numerical simulations have become an essential tool to study the process–structure–properties linkages in this
manufacturing process [1].

Numerical models of additive manufacturing, including laser or electron beam powder bed fusion and directed
energy deposition, have been developed for accounting for the physics and mechanisms across different scales.
Macroscopic part-scale models (e.g. [2–4]) usually consider the thermo-mechanical coupling to study the mechanical
properties of final pieces (e.g. residual stresses). In these models, the strong interaction between heat transfer and
fluid flow is usually neglected. An equivalent volumetric heat source model calibrated against experiments is usually
applied to represent the interaction between the beam and the materials. In addition, the thermal problem can be
solved prior to the mechanical problem, for predicting the temperature. Hence, such computations (especially the
temperature prediction) are relatively cheap to perform, compared to fine scale models. Models accounting for finer
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cale effects [5–8], e.g. the melt pool formation and materials solidification, are computationally expensive, due
o the high non-linearity induced by the thermal-fluid interaction and the underlying small time steps constraints.
herefore, these models are usually considered for studies on relatively small scale phenomena over a short time

ange, rather than for large part-scale predictions. However, it has been shown that accounting for the fine scale
ffects is crucial for an accurate prediction of the temperature field (e.g. [9]), which significantly affects the
ubsequent micro-structure evolution and macroscopic mechanical properties. From this perspective, a part-scale
hermal-fluid analysis should be ideal for accurate macroscopic mechanical predictions. Furthermore, if parametric
tudies are required to study the influence of the process parameters on the fine scale phenomena or macro-
cale properties, these models have to be run repetitively, which leads to a prohibitive cost. Hence, reducing the
omputational cost of the numerical models is desired for studying the additive manufacturing process. In this work,
e focus on the thermal fluid flow analysis.
In recent years, model order reduction has become one of the key techniques to reduce the computational

ost of numerical simulations. Projection based model reduction methods, like proper orthogonal decomposition
POD) [10–12] and proper generalized decomposition (PGD) [13–15], are based on the assumption of separability
f state variables. The separated representation of variables results in the so-called reduced basis, which is expected
o be very small compared to the original model size and hence expands a novel reduced solution subspace for
riginal problems. Depending on the solution strategy, the reduced basis can be found either offline from a database
omputed with full order models (e.g. POD), or on-the-fly by solving the reduced order models (e.g. PGD). The
eparability of state variables (i.e. reducibility) depends on the specific problems and dominates the efficiency
f the reduced order models. These methods are found more successful with linear problems. Nonlinear model
eduction usually requires additional techniques to deal with the difficulties induced by nonlinear terms or to improve
he reducibility of problems. For example, in order to deal with hyperelasticity problems, asymptotic numerical

ethods, in conjunction with POD and PGD [16,17], have been used to minimize the necessity of reconstruction
f tangent stiffness matrix in the Newton procedure, which is generally the most time-consuming operation in
he nonlinear solver. Other techniques devoted to the same idea but considering a partial evaluation of stiffness

atrix are missing point estimation [18], hyper reduction [19], and discrete empirical interpolation method [20]. A
lgorithmic comparison of these methods can be found in [21].

In the context of additive manufacturing or related processes (e.g. welding), model reduction becomes even more
hallenging, due to the multi-physics coupling, the high non-linearity and the lack of reducibility induced by the
oving heat source. Many attempts have been made for macroscopic thermal analysis. In order to improve the

educibility of the problem, a moving frame formulation [22–25] is usually considered, in which the temperature
eld is computed for a local moving domain attached to the heat source. Some attempts for the thermo-mechanical
odeling using non-intrusive model reduction methods are also based on a similar concept [26–29]. However, the
oving frame formulation needs assumptions in the boundary of the local domain and its extension to variable

oading paths seems difficult. In addition, the thermal analysis is relatively simplified in these works, interactions
ith the fluid flow are not taken into account.
In this work, we consider a strongly coupled thermal-fluid problem and propose an alternative to deal with

t, based on a fixed frame formulation. For tackling the non-linearity, we consider a hyper reduction technique,
ince it is less intrusive among different nonlinear model reduction methods [21] and therefore its implementation
o an existing research code or software for accounting for other physics should be very easy. For limiting the
ize of reduced basis, we consider a basis mapping from one time step to another so that the reduced basis can
e repetitively used. Standard hyper reduction methods rely on a large database which is expected to cover all
ossible state evolution paths, therefore the extracted POD basis can be kept constant over the entire time range
e.g. [19,23]). However, this is not suitable for the fixed frame based framework. We propose to use an efficient
nline basis adaptation strategy, in order to avoid the cost of computing a large database with full order models.

Basis adaptation for reduced order models is usually considered during the offline stage for parametric
tudies [30,31]. An online adaptation for dynamic data-driven modeling has also been considered [32]. In the context
f hyper reduction, online basis adaptation is usually considered to be very expensive, since the full stiffness matrix
s required [33]. A different and more efficient adaptation method has been proposed for damage problems in [34],
hich has potential to be applied to additive manufacturing. But for now, no definitive conclusions have been made.
The adaptation method proposed in this work is significantly different. The idea is to use the residuals of current
tep to enrich the current reduced basis while restricting the residual evaluation to a reduced domain. This domain
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s designed as a reduced integration domain used in the hyper reduced order model. Hence, only a small amount
f components in residual vectors has to be evaluated, which results in enhanced efficiency. In addition, since the
esidual vectors result naturally in a gappy basis, we propose a basis learning technique, via gappy POD, for basis
ompression and reconstruction. It has been shown that the proposed learning technique plays an essential role in
he quality of the hyper reduced order models. Together with the reduced integration domain adaptation, this basis
daptation leads to a novel efficient adaptive hyper reduction method. Numerical examples considering both 3D
ingle-track and multi-track simulations of additive manufacturing will be presented.

This paper is organized as follows. Section 2 presents a nonlinear transient thermal-fluid coupled formulation
sed in additive manufacturing. Section 3 gives a brief review of POD based model reduction and its limitations
ill be discussed. Section 4 will present the proposed hyper reduction method as well as the adaptation strategy.
he application of the proposed method to the thermal fluid analysis in additive manufacturing will be presented

n Section 5. Finally, the paper is closed by some concluding remarks.

. Problem formulation

.1. Thermal problem

The heat transfer in additive manufacturing is characterized as a nonlinear transient thermal problem, due to its
trong interaction with fluid flow, temperature-dependant material properties, material liquid–solid phase changes
nd the moving heat source.

Let us consider a fixed domain Ω with the heat flux q̄ on surface ∂Ωq and a prescribed temperature T̄ on ∂ΩT .
ssuming fluid flows with a velocity u through the domain, the energy balance equation reads then

C p

[
∂(ρT )

∂t
+∇ · (ρuT )

]
= −∇ · q in Ω (1)

here C p and ρ denote respectively the thermal capacity and the density of materials and can be considered as
temperature-dependant. The relation between the temperature and heat flux is given by the Fourier law

q = −k · ∇T (2)

where k is the thermal conductivity tensor. In isotropic cases, k = kI with I denoting the second-order identity
tensor. The boundary conditions, including the heat source, can be written as{

q̄ · n = −hc(T − T0)− σsε(T 4
− T 4

0 )+ qsource on ∂Ωq

T = T̄ on ∂ΩT
(3)

where hc denotes the convective heat transfer coefficient, σs the Stefan–Boltzmann constant, ε the emissivity, n the
normal direction of the surface ∂Ωq, T0 the initial temperature. The heat source qsource can be described in different
ways. A Gaussian-type distribution [5] is used in this work

qsource =
ϵQη

πr2
b

exp(−ϵ
x2

b + y2
b

r2
b

) (4)

here Q denotes the flux intensity, ϵ the intensity factor, η the absorptivity, xb and yb the coordinates in the local
eference system attached to the moving heat source. rb is the heat source radius.

The balance equation (1) can be equivalently written in terms of specific enthalpy H

∂(ρH )
∂t
+∇ · (ρuH ) = −∇ · q in Ω (5)

In case of solid–liquid phase transitions, the specific enthalpy can be divided into the sensible heat h and the
latent heat of fusion ∆H , which reads

H = h +∆H (6)

where we can define the sensible heat as

h =
∫ T

C pdT (7)

0
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Substituting (6) into (5) gives the following balance equation
∂(ρh)

∂t
+∇ · (ρuh) = −∇ · q−

∂(ρ∆H )
∂t

−∇ · (ρu∆H ) in Ω (8)

In this work, the thermal problem is considered with Eq. (8). The vaporization is not taken into account here.
ence, the loss of materials and heat due to vaporization and its effect on the materials composition are neglected.
The melt pool region Ω fl can be identified by a liquid volume fraction fl , which is defined as⎧⎪⎨⎪⎩

fl = 0, if T ≤ Ts

fl =
T−Ts
Tl−Ts

, if Ts < T < Tl

fl = 1, if T ≥ Tl

(9)

where Ts and Tl denote respectively the solidus and liquidus temperature of materials. Therefore, once a temperature
field is known, the melt pool can be identified as the region where fl > 0.

2.2. Fluid flow problem

The fluid flow problem is considered for the melt pool Ω fl in the additive manufacturing modeling. The fluid
flow can be assumed to be incompressible, laminar and Newtonian. The densities of materials (both liquid and
solid) are assumed to be constant except for the buoyance force, i.e. Boussinesq approximation (see e.g. [35]). The
top surface of melt pool is assumed flat.

The momentum equation to determine the flow velocity reads

∂(ρu)
∂t
+∇ · {ρuu} = µ∇2u −∇ p −

180µ(1− fl)2

c2( f 3
l + B)

u + fb in Ω fl (10)

here µ denotes the viscosity, {·} denotes the Dyadic product, fb is the body forces, p is the pressure inside the
elt pool. fl is the volume fraction of liquid. c is an approximate primary dendritic spacing which is set to 10−6

. B is a small constant (10−3) used to avoid singularity.
The pressure field p is a priori unknown and should be determined by incorporating the following continuity

quation

ρ∇ · u = 0 in Ω fl (11)

In this work, the body forces contain only the buoyancy force

fb = ρ0gβ(T − T0)I (12)

here ρ0 denotes the reference density at initial temperature T0, g the gravitational acceleration, β the thermal
xpansion coefficient.

The surface tension (i.e. Marangoni force) is considered as shear stress boundary conditions applied to the top
urface of melt pool

τx = µ
∂ux

∂z
=

dγ

dT
∇x T

τy = µ
∂u y

∂z
=

dγ

dT
∇y T

(13)

here the γ is the surface tension which depends on both temperature and materials. dγ

dT is the temperature
coefficient which has usually negative values [5].

Therefore, the driving forces of flow velocity contain only the surface tension and the buoyancy force. We remark
that the fluid flow equations are only solved for the melt pool region, whereas the heat transfer equations are solved
within the whole domain. The flow velocity outside the melt pool is simply set to zero.

2.3. Conservation formulation

The conservation formulation of the thermal problem and the fluid flow problem can be obtained by integrating

the presented balance equations over the domain and is summarized as follows.
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• Energy conservation∫
Ω

(
∂(ρh + ρ∆H )

∂t
+∇ · (ρuh + ρu∆H )+∇ · q

)
dV = 0 (14)

• Momentum conservation∫
Ω fl

(
∂(ρu)

∂t
+∇ · {ρuu} − µ∇2u +∇ p +

180µ(1− fl)2

c2( f 3
l + B)

u − fb

)
dV = 0 (15)

• Mass conservation∫
Ω fl

(ρ∇ · u) dV = 0 (16)

nd subjected to the boundary conditions as described in Eqs. (3) and (13).

.4. Semi-discretized formulation

The conservation equations can be discretized by a finite volume or stabilized finite element method. In this
ork, the finite volume method is adopted with a staggered arrangement for flow velocity components, as presented

n [36]. The semi-discretized forms of the three conservation equations can be written as

• Energy conservation
∂h
∂t
+K(h, u)h = Q(h, u, t) (17)

• Momentum conservation
∂u
∂t
+A(u, T)u = F(u, T, p, t) (18)

• Mass conservation

M(u) = 0 (19)

here h, u and p denote respectively the nodal values of entropy, velocity and pressure, and are functions of space
and time t . K and A are the discretized convection–diffusion terms respectively for energy and momentum

quations. Q and F are discretized source terms which are both functions of state variables (velocity, temperature
r entropy) and can vary in time.

This nonlinear thermal-fluid coupled problem can be solved by a linearization technique. This work uses the
ell-known SIMPLE algorithm [36] incorporated with an implicit scheme for the time integration. The solution
rocedure of each time step is summarized as follows.

1. Initialization for h, u and p.
2. Solve the energy equation (17) for h.
3. Compute the temperature T using (7).
4. Update the melt pool region.
5. Update A and F and solve the momentum equation (18) for u.
6. Solve the continuity equation (19) to correct the pressure p.
7. Correct the velocity u with pressure.
8. Check the velocity convergence: if convergence, go to step 9, otherwise, return to step 5 for a new u.
9. Update K and Q with u and h.

10. Check the global energy convergence criterion: if convergence, go to next time step, otherwise, return to step
2 for a new h.

Solving this problem is computationally expensive due to the repetitive solution of the underlying equations.
he computational expense for constructing the so-called “stiffness” matrix (e.g. K and A) and their inversion cost
ncrease quickly with the dimension of the system.
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. Brief review of POD based model reduction and its limitations

Standard POD based model reduction methods rely on an offline–online strategy. The offline stage consists in
earning (with data and POD) a reduced basis, deemed “optimal”, that is expected to approximate the original
olution space. The online stage is a projection procedure in which the original model is mapped to that reduced
olution subspace.

As an example, the thermal problem (17) is considered for illustration purposes. The same concept can be applied
o the fluid flow problem (18) and (19).

.1. Proper orthogonal decomposition

Considering a set of sampling data, for example the selected space–time solution of the thermal problem (17)
rom full order computations: hs = [h(t1), . . . , h(ts)] ∈ Rn×s , where n stands for the spatial degrees of freedom of

the original full order model, the POD attempts to seek an orthogonal projector ΠΦ = ΦΦT that minimizes the
ollowing summed projection error with respect to the original data.

Φ = argmin
s.t.YT Y=I

s∑
i=1

∥h(ti )− YYT h(ti )∥2
2 (20)

The solution of this minimization problem can be obtained by the Singular Value Decomposition (SVD), which
eads

hs = ΦΣVT (21)

here Φ =
[
Φ(1), . . . ,Φ(n)]

∈ Rn×n , V =
[
V(1), . . . , V(s)

]
∈ Rs×s . They are orthogonal bases and represent

respectively the variation of data in space and time. Σ ∈ Rn×s contains the singular values σ (i) with i ≤ min(n, s)
in decreasing amplitude which can be interpreted as the weights of the different modes. Hence, the projection error
with a reduced basis of m modes: Φm =

[
Φ(1), . . . ,Φ(m)] with m ≤ n can be measured by

ϵproj = ∥hs −ΠΦm hs∥F =

√ s∑
i=m+1

σ (i) (22)

where ∥ · ∥F denotes the Frobenius norm, which is equivalent to the summation error in (20). A problem is said to
be reducible if the necessary modes m is small enough for a good accuracy.

3.2. POD Based reduced order model

The POD method can be used to define a reduced solution subspace for the reduced order model. For the sake
of stability, we usually take the solution variation ∆hs with respect to a reference value as the original sampling
data matrix, the SVD reads then

∆hs = hs − h̄s = ΦΣVT (23)

where h̄s can be either the initial or mean value of h. In a transient problem, this usually takes the initial one. By
selecting the most representative modes and assuming the sampling database hs is large enough, the reduced basis
Φm can be obtained in such a way that the problem solution h falls into its span, i.e.

span(h− h̄) ≈ span(hs − h̄s) ≈ span(Φm) (24)

Hence, the following equality holds, if the approximation error is neglected

h(X, t) = h̄(X)+Φm(X)αm(t) ∀X ∈ Ω (25)

where αm ∈ Rm is the basis coefficient vector and is a priori unknown.
In what follows, we assume the reduced basis Φm is already known for a given level of approximation accuracy

by the offline stage. For simplicity, the subscript m is omitted and Φ takes the place of Φm . In addition, we adopt
the following reduced basis Ψ instead of Φ (as suggested by [23]) with

Ψ (i)
=

√

σ (i)Φ(i) (26)
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It can be noticed that span(Ψ ) = span(Φ). Hence, Eq. (25) can be written as

h(X, t) = h̄(X)+Ψ (X)α(t) ∀X ∈ Ω (27)

Now, we can define a reduced order model for the reference problem (17), which reads

Ψ TΨ
∂α

∂t
+Ψ TK(h, u)Ψα = Ψ T Q(h, u, t)−Ψ TK(h, u)h̄ (28)

r equivalently

Ψ TΨ
∂α

∂t
+Kr (h, u)α = Qr (h, u, t, h̄) (29)

here Kr ∈ Rm×m and Qr ∈ Rm , whereas K ∈ Rn×n and Q ∈ Rn . Recalling that n is the spatial degrees of
freedom of the full order model, the mode number m is generally very small compared to n: m ≪ n. Therefore,
the system for solving the unknown basis coefficient α is significantly reduced. The original problem solution can
be reconstructed using Eq. (27), once α is obtained.

3.3. Discussion on the limitations

The presented POD based reduced order model works well when the problem is linear, in which the so-called
“stiffness” matrix K can be constructed once for all during the computations. Instead of solving a large number n
of system equations, we solve only a small reduced system of dimension m ≪ n. The speedup is usually significant,
thanks to the reduced inversion cost.

In nonlinear cases, K depends on the state variables of the system (e.g. h, u), K (or sometimes a tangent stiffness
matrix) should be repetitively updated in an iterative scheme. Consequently, the main computational cost of the
numerical model is devoted to the construction of K, which results in a low efficiency of the reduced order model.

Another drawback of this method is that the offline-computed reduced basis Ψ is needed to be well representative
of the solution space. Otherwise, the solution computed by the reduced order mode is inaccurate. This implies the
necessity of a very large database which covers all the possible loading and boundary conditions as well as the
possible evolution of material properties. This kind of database is usually difficult to obtain.

These challenges are crucial for its application to additive manufacturing simulations. The highly nonlinear and
transient aspects of the underlying problem make the standard POD approaches inappropriate. In addition, the
moving heat source further challenges the reducibility of the underlying problem, although some of the issues can
be overcome by considering a steady state assumption with a moving frame formulation (e.g. [26,23]).

4. Hyper reduced order modeling with online reduced basis learning

This section presents a hyper model reduction method enhanced by an efficient online reduced basis learning
technique, in order to overcome the previously mentioned difficulties associated with POD based model reduction
methods.

4.1. Hyper model reduction

The hyper model reduction method is designed for the purpose of reducing the K-matrix construction cost for
nonlinear problems. The basic idea is to introduce a reduced integration domain (RID), denoted by ΩRI D , so that
only a small amount of the stiffness-matrix components are needed to be computed. This idea is based on the
observation that the POD reduced order model (29) requires only a small number of balance equations to make
the system solvable. Theoretically, in order to have a well conditioned stiffness-matrix Kr = Ψ TKΨ ∈ Rm×m , we
only need an original stiffness-matrix K ∈ Rn×n of rank l with m ≤ l ≤ n. This observation allows us to compute
partially the necessary components of K, instead of performing a full construction. Hence, the computational cost
can be reduced by selecting appropriately the components of the discretized balance equations (29).

Selecting the components of balance equations is equivalent to design a RID. It has been shown that the RID
selection is crucial for hyper reduction methods [23,37] in terms of accuracy and efficiency. For now, we assume
a RID is already selected for our problems. The proposed selection technique will be presented later in following

subsections.
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Now, let L ∈ Rl×n be a selection matrix with m ≤ l ≤ n. Each line of L contains only a nonzero component
equals to 1) in the selected position. The problem solution in the RID reads then

hRI D(X, t) = Lh(X, t) = Lh̄(X)+ LΨ (X)α(t) ∀X ∈ ΩRI D (30)

here hRI D ∈ Rl , Ψ is a reduced basis obtained from a database hs . It is obvious that hRI D obeys the energy
alance in ΩRI D . h̄ denotes the initial state in this work. Hence, substituting h by hRI D in Eq. (17) and multiplying
oth sides by the hyper reduced basis function (LΨ )T give

Ψ T LT LΨ
∂α

∂t
+Ψ T LT LK(h, u)Ψα = Ψ T LT LQ(h, u, t)−Ψ T LT LK(h, u)h̄ (31)

r equivalently,

Ψ T WΨ
∂α

∂t
+Ψ T WK(h, u)Ψα = Ψ T WQ(h, u, t)−Ψ T WK(h, u)h̄ (32)

here W = LT L ∈ Rn×n is a symmetric indicator matrix with 1 in selected diagonal components. This is the
yper reduced order model to the problem (17). Again, the unknown variable of the reduced order system is the
asis coefficient α. The original problem solution h can be found using Eq. (27). Unlike the standard POD reduced
rder model (29), the stiffness-matrix K of the nonlinear system is computed or updated only for selected useful
omponents, thanks to the introduction of the indicator matrix W. Hence, the computational cost is further reduced,

compared to standard POD reduced order models. This is also why the method is referred to as hyper model order
reduction or simply hyper reduction.

The efficiency of the method depends essentially on the choice of RID and the quality of reduced basis. A
large RID can lead to a good precision and meanwhile a high computational cost. The quality of the reduced
basis strongly depends on the reducibility of the underlying problem, which is directly related to the loading
condition and the problem description, etc. Therefore, these aspects become the most essential parts of a hyper
reduction method, especially when dealing with complex multi-physics problems, like additive manufacturing. In
what follows, a systematic adaptive hyper reduction framework is presented, dedicated to modeling a transient
nonlinear multi-physics problem with a concentrated moving source.

4.2. Reduced integration domain design

In general, the RID should be able to capture the most relevant variations of state variables in the solution
domain. In the hyper reduced order model, this information is stored inside the reduced basis Ψ . Denoted by ΩRB ,
the sub-domain containing the most relevant information of reduced basis can be defined as

ΩRB = {X ∈ Ω | ∥∇Ψ (i)(X)∥ ≥ cRB max
X
∥∇Ψ (i)(X)∥}, ∀i = 1, . . . , m (33)

here cRB is a small threshold. In general, higher order derivatives can be adopted. This work uses the gradient,
s a first attempt. The derivatives are computed by a finite difference method.

In addition, the sub-domain containing the relevant boundary conditions and the external loading should be
ncluded in the RID. Denoted by ΩBC , this sub-domain can be defined as

ΩBC = {X ∈ Ω | |Q(X)| ≥ cBC max
X
|Q(X)|} (34)

imilarly, cBC is a small threshold but not necessarily the same as cRB . Since the problem is multi-physically
oupled, the relevant interaction domain should be included. In this work, the melt pool region should be the
elevant sub-domain for the thermal fluid interaction.

Ω fl = {X ∈ Ω | fl(X) > 0} (35)

Hence, the basic reduced integration domain can be defined as

ΩRI D = ΩRB ∪ ΩBC ∪ Ω fl (36)
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.3. Reduced basis design and enrichment

The most challenging issue induced by a moving source for model reduction is the lack of problem reducibility
n the standard fixed frame. The concept of similarity in problem solutions from one time step to another is not
traightforwardly applicable. The reduced basis Ψ cannot be kept constant over the entire time range, unless a very
arge sampling database: hs (23) is available from the offline stage. This problem is usually addressed by considering

moving frame formulation (e.g. [26,23,22,27,28]), in which the moving source becomes a fixed one in a local
oving domain. However, this kind of approaches needs assumptions on the boundary of the local domain and its

eneralization to variable loading paths seems difficult.
In this work, we rely on a fixed frame formulation. Hence, the reduced basis design becomes an adequate task

o make the problem reducible. The proposed technique to deal with the problem is a combination of reduced basis
apping and enrichment.
Inspired by the moving frame formulation, we consider that the similarity of problem solutions around the moving

ource exists and is captured by a reduced basis mapping. Let tn and tn+1 be two different time steps, the reduced
basis mapping M : Rn×m

→ Rn×m is defined as a translation in the moving direction, which reads{
Ψ 0(X; tn+1) = Ψ (X− v∆t; tn), if X− v∆t ∈ Ω

Ψ 0(X; tn+1) = Ψ (X; tn), if X− v∆t /∈ Ω
(37)

here Ψ 0 denotes the initial reduced basis after mapping, v denotes the velocity of the moving source and
t = tn+1− tn . This is the simplest mapping that can be used for the problem. In more general cases with complex

oading paths, a morphing-like technique (e.g. [38]) can be considered.
Since the problem is fully transient and we do not assume a large database is available from the offline stage,

he initial POD reduced basis cannot well represent the entire time evolution of state variables. A basis adaptation
r enrichment is necessary during online computations.

In order to present the basis enrichment strategy, let us rewrite the problem (32) in the following residual form

Ψ T WR(Ψ , α, u, t) = 0 (38)

here R is the residual vector of the energy conservation equation for a given basis Ψ , the corresponding coefficient
and flow velocity u at time t . It is obvious that the residual is vanishing if and only if the reduced basis Ψ spans

the “exact” solution subspace. In addition, we can notice that WR is the error vector perpendicular to the reduced
subspace span(Ψ ). Therefore, WR should contain the information outside of span(Ψ ) and can be used to enrich
he reduced basis, which can be written as

Ψ new
= [Ψ , WR] (39)

It should be highlighted that this enrichment is not expensive since the residual vector R only needs to be evaluated
for the components in ΩRI D . Therefore, this enrichment can be done repetitively in a solution loop at a very low
cost. Based on the solution algorithm shown in Section 2, we present here an efficient enrichment strategy including
the basis mapping.

1. At time step tn+1.
2. Initialization for h, u and p.
3. Mapping for reduced basis Ψ = Ψ 0(X) =M(Ψ (X; tn)).
4. Update ΩRI D and solve the hyper reduced energy equation (32) for α and update h.
5. Solve the fluid flow problem to get correct u and p.
6. Update K and Q with u and h for ΩRI D .
7. Check the global energy convergence criterion: Ψ T WR(Ψ , α, u, t) = 0. If convergence, go to step 8,

otherwise, return to step 4 for a new h.
8. Check the residual in ΩRI D: WR = 0. If convergence, go to next time step, otherwise, reduced basis

enrichment: Ψ = [Ψ , WR], and return to step 4.

It can be noticed that this method explicitly ensures the energy balance in ΩRI D with the converged solution. The
global energy balance: R = 0 in the entire domain Ω is expected to be full-filled with an appropriate reduced basis.
Furthermore, the enriched reduced basis has gappy information in Ω \ΩRI D . Hence, this gappy reduced basis may
not be optimal, although the orthogonality property remains true. A learning technique will be proposed to improve

this point in Section 4.5.
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.4. Reduced integration domain adaptivity

According to the presented basis enrichment strategy, both the RID and basis would be updated frequently.
n particular, the basis enrichment introduces different spatial distribution of state variables and would lead to
he growth of the domain ΩRB and consequently the growth of ΩRI D . In addition, since the melt pool region is
pdated in each iteration, the thermal fluid interaction domain Ω fl should be updated accordingly. Hence, the RID
s adaptively selected during online computations.

In general, the integration domain ΩRI D can grow toward the global domain Ω . This may lead to the loss of
fficiency of the method and perhaps an oversized RID containing unnecessary elements or volumes. In order to
void this problem, an adaptation boundary can be prescribed for the RID as

ΩRI D = (ΩRB ∪ ΩBC ∪ Ω fl ) ∩ ΩM AX (40)

where ΩM AX denotes the biggest admissible adaptation domain and should be defined a priori for a given problem.
This domain is not difficult to choose since we always have some knowledge on the solution or at least the mesh
information of a full order model. This domain can be simply defined as the region in which the mesh is relatively
refined or the empirical region that contains the most relevant information of the solution.

4.5. Gappy reduced basis compression and reconstruction

As mentioned earlier, the enriched gappy reduced basis may not be optimal. Here we propose a learning technique
to compress and reconstruct the reduced basis. The idea is to consider the solution computed by the gappy basis
as a kind of gappy data and then use the gappy POD method [39] to reconstruct a new compact reduced basis.

The reduced basis learning problem can be formulated as finding an orthogonal basis Φ such that

Φ = argmin
s.t.YT Y=I

k∑
i=1

∥WM(Ψ (X; ti ))α(ti )− YYT WM(Ψ (X; ti ))α(ti )∥2
2 (41)

where Ψ (X; ti ) and α(ti ) are respectively the enriched gappy reduced basis and its coefficient at different time
teps. We assume they are known for up to step tk . M(Ψ (X; ti )) denotes the basis mapping to current loading step.
he reason behind this is the same as what is mentioned previously: the similarity of the basis exits in the region
urrounding the heat source. Since the sampling indicator matrix W has nonzero components in ΩRI D , the minimizer

guarantees first its components in ΩRI D have the same approximation accuracy as Ψ , and then uses this local
nformation to reconstruct the remaining components. This problem can be solved with an iterative incremental
rocedure using standard SVD, as shown in Algorithm 1.

In general, this learning procedure is not expensive and can be done in every time step or once in several steps.
rom our experience, once in 10 steps is good enough for most cases. In addition, the learning procedure can only

ake into account several previous steps instead of all the previous solutions, e.g. the index i in (41) can start from
= k − 9 to account for previous 10 steps.

.6. Overall offline–online algorithm

Similar to most of the POD model reduction methods, the presented hyper reduction method can be splitted into
n offline–online framework, which is summarized as follows.

The offline stage of the method consists in finding an initial reduced basis which can be used to describe the
patial distribution of state variables at the very beginning of the heating. The suggested method is to run the
eference full order model for a small number of time steps (e.g. 3 or 5) to get a sampling database hs and then use
VD (23)–(27) to get the initial basis. Nevertheless, this can be done by assigning an empirical or analytical one,
r directly extracting from experimental data. Hence, this offline stage is not time-consuming, unlike many other
odel reduction methods. The detailed offline procedure is presented in Algorithm 2.
The online stage consists in solving the hyper reduced order model of the underlying multi-physics system. In the

hermal fluid flow analysis, the three conservation equations (17)–(19) are solved. Again, the presented reduction
trategy is applicable to all the three equations, but we only consider to reduce the thermal one for illustration.
he overall online stage consisting of the presented RID adaptation and reduced basis learning is summarized in

lgorithm 3.
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Algorithm 1: Reduced basis learning via gappy POD
Input: Gappy reduced basis and coefficient: Ψ (X; ti ), α(ti ), ∀i ≤ k
Output: New reduced basis: Ψ new(X)

1 Map the basis to step tk : Ψ∗(X; ti ) =M(Ψ (X; ti )), ∀i < k
2 Reconstruction of ∆h =

[
Ψ∗(X; t1)α(t1), . . . ,Ψ∗(X; tk)α(tk)

]
3 for m = 1, . . . , k do
4 for i = 0, . . . , imax do
5 Compute the first m modes of ∆h by thin SVD: Φm , Σm , Vm // Eq. (23)

6 Compute an estimate with the m modes: ∆h̃
i+1
= ΦmΣmVT

m

7 Update the reference: ∆h(X) = ∆h̃
i+1

(X), ∀X ∈ Ω \ ΩRI D

/* Check the mode convergence: */

8 if ∥∆h̃
i+1
−∆h̃

i
∥ ≤ ϵi then

9 ∆hm
= ∆h

10 End the Loop i

11 else
12 (·)i

← (·)i+1

/* Check the basis convergence: */

13 if ∥∆hm
−∆hm−1

∥ ≤ ϵm then
14 Ψ ( j)

new =
√

σ ( j)Φ( j)
m , ∀ j ≤ m

15 End the Loop m

16 Return Ψ new = [Ψ (1)
new, . . . ,Ψ (m)

new]

Algorithm 2: Offline stage of the adaptive hyper reduction method
Input: Small simulated database via the full order model: hs = [h(t1), . . . , h(ts)]
Output: Initial reduced basis for hyper reduction: Ψ 0

1 Compute the reference ∆hs = hs − h(t0)
2 Compute the POD basis of ∆hs by thin SVD: Φm with m = s // Eq. (23)

3 Compute the amplified basis Ψ
( j)
0 =

√
σ ( j)Φ( j)

m , ∀ j ≤ m
4 Return Ψ 0 = [Ψ (1)

0 , . . . ,Ψ (m)
0 ]

5. Application to additive manufacturing

5.1. Model description

The proposed method is applied to model the thermal fluid interaction in a selective laser melting process with
bare plate scans. As a first attempt, the powder is not considered and a relatively simple geometry is considered
with a locally refined grid (see e.g Fig. 1). The mesh is refined for the expected melt pool and its surrounding
region and the refined region is traveling with the moving heat source. Following an exponential law, the mesh
size increases when away from the refined region. A straightforward advantage of this meshing strategy is that the
basis mapping Eq. (37) from one step to another is naturally performed when updating the mesh, without explicit
interpolation. The convection and radiation boundary conditions are prescribed for all the exposed surfaces. The
fluid flow is driven by the buoyancy force and the Marangoni force on the top of melt pool, as presented in Section 2.
The material properties are considered temperature-dependant. These properties as well as the parameters used in
boundary conditions and loading are illustrated in Table 1.

In order to demonstrate the capability of the method, two 3D test-cases are considered: single-track and multi-
track models. They are designed with the same boundary conditions and material set-up (as described previously)
but with different geometry dimensions and mesh sizes. The geometry and mesh information is described as follows.
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Algorithm 3: Online stage of the adaptive hyper reduction method
Input: Initial reduced basis Ψ 0 and state variables h, u and p
Output: Space-time solution of the problem: h(X, t), u(X, t) and p(X, t)

1 Initialization of reduced basis: Ψ (X; t0) = Ψ 0
2 for tk = t1, . . . , tmax do
3 Mapping for reduced basis Ψ (X) =M(Ψ (X; tk−1))
4 Update ΩRB , ΩBC , Ω fl
5 Update ΩRI D and indicator matrix W // Eq. (40)

6 for i = 1, . . . , imax do
7 Update WK and WQ
8 Solve the hyper reduced energy equation for α // Eq. (32)

9 Reconstruction of h = h̄+Ψα

/* Solve other physics quantities */

10 Solve the fluid flow problem to get correct u and p for fixed h // SIMPLE

/* Check the global energy convergence */

11 if ∥Ψ T WRi (Ψ , α, u, t)∥ ≤ ϵe∥Ψ
T WR0

∥ then
/* Check the residual in ΩRI D */

12 if ∥WRi
∥ ≤ ϵb∥WR0

∥ then
13 h(X, tk) = h
14 u(X, tk) = u
15 p(X, tk) = p
16 Ψ (X, tk) = Ψ
17 α(tk) = α

18 End the loop i

19 else
20 Reduced basis enrichment: Ψ = [Ψ , WR]

21 Update the melt pool region Ω fl but not ΩRB

22 Update ΩRI D and W // Eq. (40)

23 if tk = specific steps, e.g. [t10, t20, t30, · · · ] then
24 Gappy reduced basis reconstruction Ψ // Algorithm 1

25 Return h(X, tk), u(X, tk) and p(X, tk)

• Single-track model. The lengths in the three directions (x, y, z) are respectively: 5.4, 1.25, 0.6 (×10−3 m).
The number of elements in three directions is respectively: 120, 50, 30. This results in a mesh size of 180000.
The moving heat source velocity in the x-direction is 0.8 m.s−1. The track length is about 3.6× 10−3 m.
• Multi-track model. The lengths in the three directions (x, y, z) are respectively: 2.3, 1.4, 0.6 (×10−3 m). The

number of elements in three directions is respectively: 150, 83, 30. This results in a mesh size of 373500. The
moving heat source velocity in the x-direction is 1.2 m.s−1. Three tracks will be performed with a deviation
of 0.1× 10−3 m in the y-direction. Each single track length is about 0.84× 10−3 m.

Since the melt pool region is expected to be very small compared to the whole domain, the main computational
cost for such thermal fluid coupled problems is devoted to the thermal part. Hence, only the thermal energy equation
will be reduced in the test-cases. The fluid problem is solved in a standard way. For comparison purposes, the
solutions provided by full order models (17)–(19) based on the same numerical set-up will serve as a reference.

Although the track length in the test-cases is still small compared to real experiments, the main features of the
problem is captured, especially the highly transient and nonlinear aspects. The application to a larger model is
straightforward, since the temperature field will reach a steady state in a long term set-up. In that case, the reduced

basis can be repetitively used without adaptation.
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Fig. 1. Mesh for a single-track model at two different time instants. In particular, the mesh is relatively refined in the back side of loading,
compared to the front side. Red box shows an example for the choice of maximal RID adaptation domain ΩM AX .

Table 1
Process parameters and material properties of IN625 [9,5].

Name Properties Value

Solid density ρs (kg.m−3) 8440
Liquid density ρl (kg.m−3) 7640
Solidus temperature Ts (K) 1523
Liquidus temperature Tl (K) 1623
Solid specific capacity C ps (J.kg−1.K−1) 0.2441× T + 338.39
Liquid specific capacity C pl (J.kg−1.K−1) 709.25
Solid thermal conductivity ks (W.m−1.K−1) 0.0163× T + 4.5847
Liquid thermal conductivity kl (W.m−1.K−1) 30.078
Latent heat of fusion ∆H (J.kg−1.K−1) 290 × 103

Viscosity µ (Pa.s) 7 × 10−3

Thermal expansion coefficient β (K−1) 5 × 10−5

Marangoni coefficient dγ
dT (N.m−1.K−1) −4 × 10−4

Emissivity ε 0.4
Stefan–Boltzmann constant σs (W.m−2.K−4) 5.67 × 10−8

Convection coefficient hc (W.m−2.K−1) 10
Initial temperature T0 (K) 295
Loading intensity factor ϵ 0.25
Power Q (W) 195
Absorptivity η 0.43
Radius rb (m) 3.825 × 10−5

5.2. Single-track simulation

In this single-track simulation, the time discretization is as follows: ∆t = 1 × 10−6 s, 5 × 10−6 s, 1 × 10−5 s
or the first three time steps, then ∆t = 1 × 10−5 s for the rest. At the offline stage, the solutions are computed

with full order model (FOM) for the first five steps. This database provides the initial reduced basis and the initial
RID for the hyper reduced order model (HROM). The selection thresholds for ΩRB (33) and ΩBC (34) are chosen
as cRB = 0.01 and cBC = 0.1. The maximal adaptation domain ΩM AX is chosen as the region with relatively finer

esh: the surrounding region of loading and the back side, as shown in the red box in Fig. 1.
During the online computations, the reduced basis and RID are adaptively updated with the proposed strategy.

ig. 2 illustrates the initial reduced basis and the final one. It is shown that the final basis can be significantly
ifferent from the initial one. This clearly shows the challenges associated with standard model reduction methods:
large number of necessary modes, i.e. the lack of reducibility of the problem. Fortunately, the proposed strategy

llows to efficiently learn the basis evolution while keeping a relatively small size of the basis. Fig. 3 depicts the
asis size evolution during the online computations. The maximal size is less than 35 in this example. This is, in
articular, owed to the gappy basis compression and reconstruction. The final basis contains only 12 modes when
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Fig. 2. Evolution of the reduced basis in HROM.

Fig. 3. Evolution of the size of reduced basis in HROM for the single-track problem. The decrease of modes corresponds to the basis
ompression via the proposed technique.

he temperature field reaches the so-called steady-state. The evolution of RID with the local temperature field is
hown in Fig. 4. This evolution is obviously related to the evolution of reduced basis and it dominates the online
omputational cost. It can be expected that the RID remains unchanged once the temperature enters into a relatively
table regime.

The full field solutions reconstructed with the reduced basis and the computed coefficients are illustrated in
ig. 5(b)(d). Compared to the reference FOM solutions, both thermal and fluid solutions show a very good
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Fig. 4. Evolution of the reduced integration domain in HROM with local temperature field T (K ).

greement. The local temperature difference between the HROM and FOM is depicted in Fig. 6. We can observe
hat the small difference comes from the back of the heat source region and mostly the region undergoing a cooling
tage. This point may be improved by modifying the adaptation criteria used in the algorithm and will be studied
n our future development.

Fig. 7 compares the melt pool shapes obtained with the HROM and FOM. We can notice that the computed
elt pool size in the cross section has a very good accuracy. This is reasonable and confirms that the temperature
eld around the melt pool is well approximated. This measure is usually used as key characteristics in additive
anufacturing processes for model calibration.
In order to illustrate the influence of the RID selection threshold cRB . The comparison for three different values

s performed (see Fig. 8). A HROM solution without the gappy basis compression and reconstruction is depicted in
ig. 8(d) for comparison. It is shown that a smaller threshold leads to a larger RID (especially in the back side of
eat source) and consequently a better approximation for the region undergoing cooling stage. A convergence can
e found by decreasing the threshold. Table 2 summarizes some important quantities obtained by different models.
his confirms the convergence of the proposed HROM to the FOM when decreasing the RID selection threshold.
ll three hyper reduced models agree well with FOM in terms of the key measures. Interestingly, the size of final

educed basis decreases as well with the threshold. This may be related to the smoothness of the solution. A smaller
hreshold seems to provide a better smoothness for the region in the back of heat source. Nevertheless, any of the
hree HROM solutions is much better than the one depicted in Fig. 8(d), in terms of smoothness or regularity. This
onfirms the important role played by the proposed gappy basis learning strategy.

The computational cost for different models is summarized in Table 3. First, it confirms that the computation
ost of a FOM is mainly devoted to the thermal problem in this thermal fluid analysis. Hence, reducing the thermal
ost seems more crucial for speeding up the simulations. Indeed, applying the proposed hyper reduction method to
he thermal part has enabled a significant speed-up.

For a better visualization, we illustrate the accuracy of the HROM solutions as a function of the speed-up in
ig. 9. It is shown that a higher speed-up would lead to a slightly degraded accuracy. In general cases, a balance
hould be made between them.

Remark that in this example, the mesh size is still relatively coarse, compared to a realistic model in additive
anufacturing. A higher speed-up can be expected when dealing with a larger structure or a more complex geometry

hich usually requires a larger mesh size.
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Fig. 5. Evolution of the reconstructed state variables in full domain for the adaptive hyper reduced order model with comparison to the
reference full order model.

5.3. Multi-track simulation

The reduced order modeling of the multi-track problem is much more challenging, since the interactions of
different tracks need to be captured and this can lead to significant changes in the reduced basis. Hence, the
reducibility of such problem is questionable and very few works have considered this challenging problem for
reduced order modeling.
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Fig. 6. Local temperature difference between the HROM and FOM: |T−TFOM|
∥TFOM∥∞

in different time steps, from left to right, t50 : 4.86× 10−4 s,

t200 : 2× 10−3 s, t450 : 4.5× 10−3 s.

Fig. 7. Melt pool shape (red) comparison. Cross section, Left: FOM reference, Right: HROM solution.

Table 2
Solution quality assessment for the single-track simulation.

Model cRB Modes Final RID Err(T ) Peak T (K) Width (µm) Depth (µm)

FOM – – – – 3140 175 52.5
HROM 0.05 22 59621 16.3% 3204 192.5 61.2
HROM 0.03 12 79188 12.3% 3103 192.5 52.5
HROM 0.01 12 89634 11% 3146 192.5 52.5

Remark: Width and Depth are the computed melt pool size. Err(T ) =
∥T−TFOM∥L2(Ω×Ωt )
∥TFOM∥L2(Ω×Ωt )

, where Ωt stands for

the time domain of solution.

Table 3
Computational cost for the single-track simulation.

Model cRB Offline Thermal online Fluid online Total online Speed-up

FOM – – 137 h 18.5 h 155.5 h –
HROM 0.05 1.2 h 20 h 23 h 43 h 3.6
HROM 0.03 1.2 h 28 h 18.5 h 46.5 h 3.3
HROM 0.01 1.2 h 33.4 h 19 h 52.4 h 2.97

In this work, we attempt to attack this problem within the proposed HROM framework. The scan path for the
multi-track model is illustrated in Fig. 10. As previously mentioned, the mesh is locally refined around the melt
pool and the refined region is traveling along the loading path. In particular, we consider that the work-piece will
be cooling for 2 × 10−4 s at the end of each track, by removing the heat source. A constant time increment,
1× 10−5 s, is used during the entire computations. Similar to the single-track problem, the solutions of first 3 time
steps can be computed offline using the full order model to initialize the reduced basis. However, we can expect
that the appropriate reduced basis should differ significantly from one track to another. Therefore, we propose to
re-initialize the reduced basis at the beginning of each track. Furthermore, we consider that the reference initial field
h̄(X) is changing to the final solution of the previous track when starting a new one. The re-initialization requires
online full order computations for several time steps. Our experience showed that this is not expensive, compared
to the total cost of the multi-track simulation.

Figs. 11–14 illustrate the HROM results. They show a very good agreement to the reference FOM solution.
The interaction between different tracks is well captured. This HROM solution is obtained with the coefficient
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Fig. 8. Final RID for different selection thresholds cRB = 0.01, 0.03, 0.05 and with comparison to a solution without online reduced basis
ompression and reconstruction.

RB = 0.01. As shown in Table 4, the computed temperature field has an average error about 10%. This error can
e reduced by further decreasing the coefficient cRB . Furthermore, The computed melt pool size stays close to that
f FOM. This confirms that the difference in the temperature fields mainly come from the region outside the melt
ool region. We can observe that the temperature interaction between different tracks leads to the increase of melt
ool size. As expected, the reduced basis changes significantly in different tracks for capturing the previous heating
ffect and consequently the RID for the second and third tracks have to be larger than the first one. This is shown
n Figs. 15 and 16. We can expect that the reduced basis and integration domain will become stable when a steady
tate regime is reached. Again, Fig. 17 shows the capability of the gappy basis compression technique, which allows
o limit the basis size below 60 over the entire time range. The computational cost for the HROM is summarized in
able 5. Significant time saving is obtained with the proposed HROM. Due to the extensive adaptation of reduced
asis, the online cost for the fluid flow problem is increased compared to the FOM. This cost remains at a reasonable
evel, compared to the total time cost.

.4. Discussion on computational efficiency

In our work, all the computations are performed in MATLAB with a standard computer and without paralleliza-

ion. Hence, the computational cost of each model is relatively high. Although a locally refined mesh is used, the
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Fig. 9. Accuracy versus speed-up for the single-track simulation.

Fig. 10. Scan path (left) and mesh (right) of the multi-track model. Red box shows the boundaries of the maximal RID ΩM AX .

Table 4
Solution quality assessment for the multi-track simulation.

Model cRB Err(T ) W-1 (µm) W-2 W-3 D-1 (µm) D-2 D-3

FOM – – 150 170 170 20 24 24
HROM 0.01 9.9% 170 170 170 20 24 24
HROM 0.001 7.5% 170 170 170 20 24 24

Remark: W-i and D-i stand for the maximum width and depth of the i th track. Err(T ) =
∥T−TFOM∥L2(Ω×Ωt )
∥TFOM∥L2(Ω×Ωt )

,

where Ωt stands for the time domain of solution.

ost of FOM remains important and is mostly devoted to the stiffness matrix updating and inversion in different
ime steps and iteration loops. Obviously, more advanced adaptive meshing techniques can be used to improve the
fficiency of FOM. However, this may be difficult when dealing with large and complex geometries. The proposed
yper reduction method can be viewed as an alternative, since the effective computation domain (i.e. RID) can
emain very small regardless of the mesh size. This implies that a uniformly refined mesh can be used with the
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Fig. 11. Temperature profile snapshots in the first track.

Fig. 12. Temperature profile snapshots in the second track.
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Fig. 13. Temperature profile snapshots in the third track.

Fig. 14. Flow velocity magnitude in the multi-track model.

hyper reduction method at an affordable cost, even for a large structure. Therefore, the cumbersome meshing and
re-meshing procedure can be avoided.
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Fig. 15. Evolution of reduced basis in the multi-track model. The basis for the second (b) and third (c) track is altered by the influence
from previous tracks.

Fig. 16. Evolution of the reduced integration domain with local temperature field in the multi-track model, from left to right, t20 : 2×10−4 s,
t60 : 6× 10−4 s, t150 : 1.5× 10−3 s, t240 : 2.4× 10−3 s.

The speed-up obtained in the presented examples is around 3. A higher factor can be expected when considering

a large mesh size (especially uniformly refined mesh) or smaller time steps.
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Fig. 17. Evolution of the size of reduced basis in HROM for the multi-track problem. Steps 91 and 181 correspond to the re-initiation steps.

Table 5
Computational cost for the multi-track simulation.

Model cRB Offline Thermal online Fluid online Total online Speed-up

FOM – – 305.9 h 13.4 h 319.3 h –
HROM 0.01 3.1 h 59.8 h 31.3 h 91.1 h 3.5
HROM 0.001 3.1 h 103.2 h 30.5 h 133.7 h 2.4

6. Conclusion

A novel adaptive hyper reduction method has been proposed. This method is based on an online adaptation
strategy for both reduced basis and reduced integration domain. The efficiency of basis adaptation is ensured by a
local residual enrichment strategy following a basis mapping. Then, the quality of the enriched basis is ensured by
a proposed gappy basis learning technique.

The proposed hyper reduction method has been successfully applied to a highly nonlinear and transient thermal
fluid analysis for additive manufacturing. In particular, the challenging multi-track problem is also considered in
this work. It is shown that both single-track and multi-track problems can be solved with a unified hyper reduction
framework. A significant speed-up is obtained for both problems.

Future development can study the influence of different selection criteria (e.g. higher order derivatives) for
the reduced integration domain or consider a more advanced morphing technique [38] for the basis mapping.
Another direction is to extend the proposed method to account for other physics in additive manufacturing, e.g. the
macroscopic thermo-mechanical prediction. In addition, this method can be used as a data or snapshot generator
for other data-driven non-intrusive model reduction techniques (e.g. [28,29]) or artificial neural network based
approaches (e.g. [40]), for real time simulations. Concerning the modeling aspect, advanced techniques like Cut
finite element methods [41] could be considered for capturing complex geometry (or phase) changes during the
manufacturing process.
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