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ABSTRACT. Onsager’s conjecture for the 3D Navier-Stokes equations concerns the validity of energy equality of weak
solutions with regards to their smoothness. In this note, we establish the energy equality for weak solutions in a large
class of function spaces. These conditions are weak-in-time with optimal space regularity and therefore weaker than
previous classical results. Heuristics using intermittency argument and divergence-free counterexamples are given,
indicating the possible sharpness of our conditions.

1. INTRODUCTION

We consider the three-dimensional incompressible Navier-Stokes equations (3D NSE)

∂tu+ (u · ∇)u = −∇p+ ν∆u,

∇ · u = 0, (1.1)

u(x, 0) = u0(x),

where u(x, t) is the unknown velocity, p(x, t) is the scalar pressure, and ν > 0 is the kinematic viscosity. We also
restrict attention to spatial domain Ω = R3 or T3.

It is known from classical results by Leray [20] that for divergence-free initial data u0 ∈ L2, there exists a global
in time weak solution to (1.1) that satisfies the following energy inequality:

‖u(t)‖22 + 2ν

∫ t

t0

‖∇u‖22 ≤ ‖u(t0)‖22, (1.2)

for all t ∈ (0,∞) and a.e t0 ∈ [0, t] including 0. Weak solutions satisfying (1.2) are called Leray-Hopf weak
solutions. These solutions enjoy an additional regularity L2

tH
1
x and other analytic properties. For instance, regular

(smooth) solutions are unique in the Leray-Hopf class. On the other hand, regular solutions to the 3D NSE satisfy
the energy equality:

‖u(t)‖22 + 2ν

∫ t

t0

‖∇u‖22 = ‖u(t0)‖22. (1.3)

A natural question which still remains open is whether the energy equality is valid for Leray-Hopf weak solutions
or weak solutions in the energy class L∞t L

2
x∩L2

tH
1
x . The difference between (1.3) and (1.2) is a possible presence

of the anomalous energy dissipation due to nonlinearity. This phenomenon, predicted by Onsager [22], can occur
as a result of the energy cascade in rough solutions to fluid equations. Moreover, Onsager’s conjecture says that
the regularity threshold for the energy balance is given by the Hölder exponent 1/3.

For the 3D Euler equations the conjecture is basically settled. On the one hand, the energy conservation was
established for weak solutions in L3Bα3,∞, α > 1

3 in [8], which was later weakened to L3B
1/3
3,c0

in [5]. On the
other hand, the existence of anomalous dissipative weak solutions in spaces with less than Onsager regularity has
been proved by several authors [2, 11, 12, 13] using methods based on convex integration originated from the
work of Nash on isometry problem in differential geometry [21]. Finally, building upon these works, Isett [16]
constructed weak solutions in CtCαx , for any α < 1

3 , that fail to conserve energy, closing the conjecture from the
other direction.

The next natural question is whether Onsager’s conjecture holds for the 3D NSE. Is the regularity threshold still
1/3? After all, the energy dissipation due to the viscous term weakens the energy cascade on high modes, so we
might expect some improvements in the positive direction. Indeed, the energy equality was first proved by Lions

Date: October 14, 2020.
The authors were partially supported by the NSF grant DMS–1517583.

1



2 ALEXEY CHESKIDOV AND XIAOYUTAO LUO

for weak solutions in the class L4
tL

4
x [19], which was extended by Shinbrot [27] to LqtL

p
x, 2

p + 2
q ≤ 1 with p ≥ 4.

However, it turns out that all these results follow from the condition

u ∈ L3B
1/3
3,∞, (1.4)

that guarantees the energy balance for weak solution of the 3D NSE thanks to the energy flux estimate obtained
in [5]. This can be done via a simple interpolation with the energy class L∞t L

2
x ∩ L2

tH
1
x (see Section 2.2). To

the best of our knowledge, (1.4) has been the best energy balance condition until now. Even though some new
LqtL

p
x conditions were recently obtained by Leslie and Shvydkoy [17] using local energy estimates, they can only

be applied to regular solution up to the first blow-up time.

In this paper we establish the first genuine improvement of Shinbrot’s conditions. Indeed, our result implies the
energy equality in the class Lq,wt Lpx, 2

p + 2
q ≤ 1 with p > 4. Note that there are functions in these spaces that

also belong to the energy class L∞t L
2 ∩ L2H1, but not the Onsager space L3B

1/3
3,∞ (1.4) (See counterexamples in

Section 5). In other words, our result is not a consequence of the usual interpolation methods. This is done via
analyzing the possible range of intermittency dimensions of flows exhibiting anomalous dissipation, and taking
advantage of the locality of interactions between different Fourier modes. Another important consequence of our
result is the energy balance for Leray-Hopf weak solutions whose possible blow-ups are all of Type-I.

While for the 3D Euler equations the conjecture is basically settled in both directions, the existence of a weak
solution to the 3D NSE that exhibits anomalous dissipation was not known until very recently. In [1], the authors
show the nonuniqueness and anomalous dissipation of weak solutions in CtHβ

x for some small β > 0 using
the technique developed from settling Onsager’s conjecture for the 3D Euler equations. This motivates for a
thorough investigation of the energy equality for the 3D NSE. The anomalous energy dissipation is a supercritical
phenomenon, which suggests that the linear term does not play a major role. Nevertheless, it can still prohibit
some anomalous energy dissipation scenarios.

1.1. Main results. Recall that a weak solutions u(t) of the 3D NSE is a weakly continuous L2 valued function
in the class u ∈ L2

tH
1
x satisfying (1.1) in the sense of distribution.

Theorem 1.1. Suppose 1 ≤ β < p ≤ ∞ are such that 2
p + 1

β < 1. If a weak solution u(t) of the 3D NSE satisfies

u ∈ Lβ,w(0, T ;B
2
β+

2
p−1

p,∞ ), (1.5)

then u(t) satisfies the energy equality on [0, T ].

In view of LqtL
p
x conditions for energy equality, (1.5) is weaker than the result of Shinbrot [27]. It is worth noting

that there are functions in the energy class L∞L2 ∩ L2H1 satisfying (1.5) that do not belong to the Onsager
space L3B

1/3
3,∞ (see Section 5 for counterexamples). In other words, Theorem 1.1 does not follow from the usual

interpolation techniques that are commonly used to obtain energy balance results [19, 27]. To our knowledge, it
is the first time that the locality in the energy flux estimate is being taken advantage of (see Section 3). Another
important point of the condition (1.5) is that it is weak-in-time with the optimal Onsager spacial regularity expo-
nent 2

β + 2
p − 1. In contrast, Ladyzhenskaya-Prodi-Serrin regularity conditions [18, 23, 24] require 2

β + 3
p − 1 as

spacial regularity in order to rule out possible blowups.

The fact that the condition (1.5) is weak-in-time allows us to obtain the energy equality for various Type-I blowups
as an important corollary:

Corollary 1.2. If a strong solution u(t) of the 3D NSE on [0, T ) satisfies

‖u(t)‖B0
p,∞
.

1

(T − t)
1
2−

1
p

, 0 < t < T, (1.6)

for some p > 4, then u(t) does not lose energy at time T .

We note that the classical Type-I blowup ‖u(t)‖∞ . 1√
T−t , for which the loss of energy was ruled out by a recent

result by Leslie and Shvydkoy [17], is covered by (1.6). In addition, when p <∞, condition (1.6) is weaker than
the critical 3D NSE scaling reflected in the following upper bound if a blowup at time T occurs (a classical result
due to Leray [20]):

‖u(t)‖p &
1

(T − t)
1
2−

3
2p

, p > 3. (1.7)
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Remarkably, the worst intermittency dimension for (1.5) and (1.6) is d = 1− in contrast to regularity criteria, such
as (1.7), where d = 0 is the worst case scenario (more on this in Section 2).

Our last result extends previous conditions in the regime 2
p + 1

β ≥ 1. Unlike Theorem 1.1, the scaling of this
result corresponds to extreme intermittency d = 0, and thus the spacial regularity is different than that of Theorem
1.1.

Theorem 1.3. Suppose 1 ≤ p ≤ ∞, 0 < β ≤ 3 so that 2
p + 1

β ≥ 1. If a weak solution u(t) of the 3D NSE satisfies

u ∈ Lβ
(
0, T ;B

5
2β+

3
p−

3
2

p,∞
)
, (1.8)

then u(t) satisfies energy equality on [0, T ].

Note that only the regime 0 < β < 1 in (1.8) is new since in this case Lβ is not a normed space and hence one
can not use interpolation technique.

The rest of the note is organized as follows. In Section 2 we give some heuristics using the intermittency dimen-
sion to show the sharpness of our result and summarize previous works on the conditions for the energy equality.
Section 3 is devoted to preliminaries and tools we used, mainly the Littlewood-Paley theory and estimates involv-
ing the energy flux. Finally, we prove the main results in Section 4 and give some counterexamples in Section
5.

2. HEURISTICS AND COMPARISON WITH PREVIOUS RESULTS

2.1. Heuristics. Consider the following scenario for the anomalous energy dissipation. Assume that at each time
t, the total energy E = ‖u(t)‖22 is concentrated in a dyadic shell of radius λ(t) in the Fourier space. If the energy
is of order one, the time it takes for it to transfer to the shell of radius 2λ is

T =
Energy

Flux
.

Assuming the flow has intermittency dimension d ∈ [0, 3] (see [7]), namely

‖u‖2 ∼ λ
d−3
2 ‖u‖∞, (2.1)

it follows that
Flux ∼ λ

5−d
2 E3/2.

This implies that
λ(T ∗ − T ) ∼ (TE

1
2 )

2
d−5 ,

where T ∗ is the time of blow-up. Now note that the range (1, 3] for the intermittency dimension d is eliminated
because the linear term dominates in that regime and hence the solution is regular and has to satisfy the energy
equality. Heuristically, the linear and nonlinear terms scale as

L = Enstrophy = λ2E, N = Flux = λ
5−d
2 E

3
2 .

Hence,
L > N, provided d > 1.

Moreover, one can actually exclude the case d = 1 by noticing that the enstrophy behaves as

Enstrophy = ‖u(T ∗ − T )‖2H1 ∼ λ2E ∼ T
4
d−5 ,

which is not integrable when d ≥ 1. Here we assumed that the energy E is of order one, i.e., some chunk
of energy escapes to the infinite wavenumber. This suggests that the range for the intermittency dimension is
d ∈ [0, 1).

Now we can compute the speed with which various norms are allowed to blow up, for instance

‖u(T ∗ − T )‖Hα ∼ λα
√
E ∼ T

2α
d−5 . (2.2)

Optimizing this over d ∈ [0, 1) we obtain that the extreme intermittency d = 0 is the the “worst” (which is usually

the case), and the condition u ∈ L
5
2α
t Hα

x should imply the energy equality. In particular, we can see the familiar

scaling u ∈ L3
tH

5
6
x when α = 5/6.

This heuristics becomes more surprising when we look at Lp-based spaces. In particular, for L∞-based spaces we
have

‖u(T ∗ − T )‖Bα∞,∞ ∼ λ
α+ 3−d

2

√
E ∼ T

2α+3−d
d−5 .
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Optimizing this over d ∈ [0, 1) again, we obtain that the intermittency d near 1 is the the “worst”, which is
unusual.

In general, for Lp-based spaces we have (interpolating between L2 and L∞)

‖u(T ∗ − T )‖Bαp,∞ ∼ λ
α+(1− 2

p )
3−d
2

√
E ∼ T f(α,p,d),

where

f(α, p, d) =
2α+ (1− 2

p )(3− d)

d− 5
. (2.3)

To find the “worst” value of the intermittency dimension d, we must ask the following question: What is the
smallest possible value of the Bαp,∞-norm at time T ∗ − T so that the loss of energy can still occur at time T ∗?
Observe that ∂

∂df has the same sign as 1− 2
p − α. Therefore,

d = 0 is the worst intermittency dimension for α > 1− 2

p
,

d = 1− is the worst intermittency dimension for α < 1− 2

p
.

In what follows we often use p (space integrability exponent) and β = − 1
f (time integrability exponent) to

parametrize different cases. Simple algebra shows that

α < 1− 2

p
⇔ 2

p
+

1

β
< 1 and α ≥ 1− 2

p
⇔ 2

p
+

1

β
≥ 1.

Then the following optimal smoothness exponent α can be obtained from (2.3):

α =


2

β
+

2

p
− 1, when

2

p
+

1

β
< 1,

5

2β
+

3

p
− 3

2
, when

2

p
+

1

β
≥ 1.

2.2. Comparison with previous works. If a weak solution of the 3D NSE belongs to the Onsager spaceL3B
1
3
3,∞,

then it satisfies the energy equality. This follows from the estimate on the energy flux done in [5] and implies
classical results on energy equality, such as [19, 27], via interpolation with the energy class L∞t L

2
x ∩ L2

tH
1
x . We

provide a concise argument below.

We will determine the range of parameters 1 ≤ β ≤ ∞, 1 ≤ p ≤ ∞, and α ∈ R so that the following embeddings
hold: LβBαp,∞∩L2H1∩L∞L2 ⊂ L3Bα

′

p′,q′ ⊂ L3B
1
3
3,∞. The goal is to find the minimal space regularity exponent

α given β and p. In view of Hölder interpolation in time and Besov interpolation in space, for x and y satisfying
0 ≤ x+ y ≤ 1, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 we have the following relations:

1

3
= x · 1

β
+ y · 1

2
+ (1− x− y)

1

∞
, (2.4)

1

p′
= x · 1

p
+ y · 1

2
+ (1− x− y)

1

2
, (2.5)

α′ = x · α+ y · 1, (2.6)

α′ ≥ 3

(
1

p′
− 1

3

)
+

1

3
. (2.7)

After substitutions we find α ≥ ( 3
p + 2

β −
3
2 ) + 1

6x . So to find the minimal α we need to determine the range of
x.

First, p′ ≤ 3 in order to make sure that the Besov embedding Bα
′

p′,q′ ⊂ B
1
3
3,∞ holds, which is equivalent to

1
x ≥ 3− 6

p due to (2.5). Second, the inequality x+ y ≤ 1 is equivalent to 1
x ≥ 3− 6

β , and y ≥ 0 is equivalent to
1
x ≥

3
β thanks to (2.4).
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Therefore given time integrability β and space integrability p, the minimal spacial regularity exponent that implies
the energy equality is

α =


2
β + 2

p − 1 β ≥ 3 and p ≥ β,
1
β + 3

p − 1 β ≥ 3 and p ≤ β,
5
2β + 3

p −
3
2 β ≤ 3 and 1

β + 2
p ≥ 1,

2
β + 2

p − 1 β ≤ 3 and 1
β + 2

p ≤ 1.

We can summarize classical results as follows.

1
p

1
β

1
3

1

1

1
2

1
3

2
p + 1

β = 1

α = 2
β + 2

p − 1

α = 1
β + 3

p − 1

α = 5
2β + 3

p −
3
2

FIGURE 1. Regions for Lemma 2.1

Lemma 2.1 (Classical results). If u(t) is a weak solution to the 3D NSE satisfying either one of following three
conditions

u ∈ LβB
2
β+

2
p−1

p,∞ for some
1

β
+

2

p
≤ 1 and p ≥ β, (2.8)

u ∈ LβB
5
2β+

3
p−

3
2

p,∞ for some
1

β
+

2

p
≥ 1, 1 ≤ β ≤ 3, and p ≥ 1, (2.9)

u ∈ LβB
1
β+

3
p−1

p,∞ for some β ≥ 3 and 1 ≤ p ≤ β (2.10)

then u satisfies energy equality.

Remark 2.2. Taking α = 0 and β = p = 4 we can see the L4
tL

4
x result by Lions [19]. Moreover, if u ∈ LqtLpx

with 2
q + 2

p = 1 and p ≥ 4, then automatically u ∈ LβB0
p,∞ for β = 2p

p−2 ≤ p. Thus Lemma 2.1 recovers the
result of Shinbrot [27] (see Figure 1).

It is clear that Theorem 1.1 improves classical results in the interior of the region where α = 2
β + 2

p−1 (See Figure
2). In particular, if u ∈ Lq,wLp with 2

q + 2
p = 1 and p > 4, then u ∈ LβB0

p,∞ for β = 2p
p−2 < p, and hence our

condition 1.5 is satisfied. Thus Theorem 1.1 extends the result of Shinbrot [27] to weak-in-time Lebesgue spaces.
In addition Figure 3 shows that Theorem 1.3 extends the condition (2.9) to the regime where 0 < β < 1.

It is worth noting that in [17] the authors were able to obtain better scaling (better space regularity exponent) than
Figure 1 in a small region where α = 1

β + 3
p −1 for strong solutions up to the first time of blowup. However at the

moment it seems that Figure 1 is optimal for general weak solutions in terms of space regularity exponent.

3. PRELIMINARIES

3.1. Notations. We denote by A . B an estimate of the form A ≤ CB with some absolute constant C, and by
A ∼ B an estimate of the form C1B ≤ A ≤ C2B with some absolute constants C1, C2. We write ‖ · ‖p = ‖ · ‖Lp
for Lebesgue norms. The symbol (·, ·) stands for the L2-inner product and Lβ,w stands for weak Lebesgue spaces.
For any p ∈ N we let λp = 2p be the standard dyadic number.
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3.2. Littlewood-Paley decomposition. We briefly introduce a standard Littlewood-Paley decomposition. For a
detailed background on harmonic analysis we refer to [4]. Let χ : R+ → R be a smooth function so that χ(ξ) = 1
for ξ ≤ 3

4 , and χ(ξ) = 0 for ξ ≥ 1. We further define ϕ(ξ) = χ(λ−11 ξ) − ϕ(ξ) and ϕq(ξ) = ϕ(λ−1q ξ). For a
tempered distribution vector field u let us denote

uq = F−1(ϕq) ∗ u for q > −1, u−1 = uq = F−1(χ) ∗ u,

where F is the Fourier transform. With this we have u =
∑
q≥−1 uq in the sense of distribution.

We use the following version of Bernstein’s inequality, see for instance [4, pp. 175].

Lemma 3.1. Let r ≥ s ≥ 1. For any tempered distribution u ∈ S(R3)

‖uq‖r . λ
3( 1
s−

1
r )

q ‖uq‖s

holds for any −1 ≤ q ∈ Z, where the positive implicit constant is universal and independent of q.

Also let us finally note that the Besov space Bsp,q is the space consisting of all tempered distributions u satisfy-
ing

‖u‖Bsp,q :=
∥∥λsr‖ur‖p∥∥lq <∞.

3.3. Energy flux. We use the following truncated energy equality for 3D NSE through the wavenumber λq:

1
2‖u≤q(t)‖

2
2 = 1

2‖u≤q(t0)‖22 +

∫ t

t0

(
−ν‖∇u≤q(s)‖22 + Π≤q(s)

)
ds, (3.1)

where Π≤q is the energy flux through the wavenumber λq:

Π≤q =

∫
Tr((u⊗ u)≤q · ∇u≤q) dx. (3.2)

The next result was proven in [5], which we use for much of this paper.

Proposition 3.2 (Flux). For any vector field u ∈ L2 we we have the following estimate for the energy flux:

|Π≤q| .
[∑
r<q

λ
2
3
r ‖ur‖23λ

− 4
3

|r−q|

] 3
2

+

[∑
r≥q

λ
2
3
r ‖ur‖23λ

− 2
3

|r−q|

] 3
2

. (3.3)

1
p

1
β

1
3

1

1

1
2

1
3

2
p + 1

β = 1

Lβ,wB
2
β+

2
p−1

p,∞

FIGURE 2. Regions for Theorem 1.1

1
p

1
β

1
3

1

1

1
2

1
3

2
p + 1

β = 1

LβB
5
2β+

3
p−

3
2

p,∞

FIGURE 3. Regions for Theorem 1.3
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4. PROOF OF MAIN RESULTS

4.1. Energy equality for weak-in-time Onsager spaces. Recall that we denote the weak Lebesgue spaces by
Lβ,w for 1 ≤ p ≤ ∞. Thanks to (3.1), Theorem 1.1 is a direct consequence of the following.

Proposition 4.1. Suppose a weak solution u on [0, T ] satisfies

u ∈ Lβ,w(0, T ;B
2
β+

2
p−1

p,∞ ), (4.1)

for some 2
p + 1

β < 1 and p > β > 0. Then we have

lim sup
q→∞

∫ T

0

|Π≤q(s)| ds = 0. (4.2)

Proof. Throughout the proof we denote f(t) = ‖u(t)‖Bαp,∞ for any [0, T ] and α = 2
β + 2

p − 1. Let us also define

Eq = {s ∈ [0, T ] : f(s) ≥ λ
2
β
q }.

It follows from (4.1) that |Eq| . λ−2q . With this we split the energy flux as∫ T

0

|Π≤q(s)| ds ≤
∫
Eq

|Π≤q(s)| ds+

∫
[0,T ]\Eq

|Π≤q(s)| ds.

Step 1: Bounding
∫
Eq
|Π≤q(s)| ds.

We first use the Hölder interpolation inequality to obtain∫
Eq

|Π≤q(s)| ds .
∫
Eq

∑
r

λr‖ur‖
2p−6
p−2

2 ‖ur‖
p
p−2
p λ

− 2
3

|r−q| ds.

It follows from the definition of Besov norms that∫
Eq

|Π≤q(s)| ds .
∫
Eq

∑
r

‖ur‖
2p−6
p−2

2 λ
1− αp

p−2
r λ

− 2
3

|r−q|f(s)
p
p−2 ds. (4.3)

Since p
p−2 < β < p, we can choose ε > 0 small enough so that

p

p− 2
<

β

1 + ε
, ε1 :=

2

p− 2

(
p

β
− 1

)
+ 2ε′ > 0, and ε2 :=

2

p− 2

(
p

β
− 1

)
− 2ε′ > 0.

where ε′ = p
β(p−2)ε. Now we can use Hölder’s inequality to raise the power of f .∫

Eq

|Π≤q(s)| ds .
∑
r

λ
− 2

3

|r−q|

[ ∫
Eq

λ2r‖ur‖22 ds
]1− p

β(p−2)
−ε′

· λ2ε
′

r

[ ∫
Eq

f
β

1+ε ds

] p
β(p−2)

+ε′

· sup
t
‖u(t)‖ε12 ,

where we note that 1− p
β(p−2) − ε

′ > 0 thanks to the bound p
p−2 <

β
1+ε .

Due to (4.1), we have the following bound on the distribution function:

λf (t) = |{s : |f(s)| > t}| . t−β .
Hence we obtain ∫

Eq

f
β

1+ε ds =
β

1 + ε

∫ ∞
λ

2
β
q

t
β

1+ε−1λf (t) dt .
∫ ∞
λ

2
β
q

t
−εβ
1+ε−1 dt . λ

−2ε
1+ε
q .

Since p
β(p−2) + ε′ = ε′(1+ε)

ε , then we have

λ2ε
′

r

[ ∫
Eq

f
β

1+ε ds

] p
β(p−2)

+ε′

. 1.

Using this bound and the fact that the energy is bounded we arrive at∫
Eq

|Π≤q(s)| ds .
∑
r

λ
− 2

3

|r−q|

[ ∫
Eq

λ2r‖ur(s)‖22 ds
]1− p

β(p−2)
−ε′

→ 0,
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as q →∞ due to the fact that ∫ T

0

‖∇u(s)‖22 ds <∞.

Step 2: Bounding
∫
[0,T ]\Eq |Π≤q(s)|ds.

Similarly to Step 1 we have∫
[0,T ]\Eq

|Π≤q(s)|ds .
∫
[0,T ]\Eq

∑
r

λr‖ur‖
2p−6
p−2

2 ‖ur‖
p
p−2λ

− 2
3

|r−q| ds

.
∫
[0,T ]\Eq

∑
r

λ
1− αp

p−2
r ‖ur‖

2p−6
p−2

2 λ
− 2

3

|r−q|f(s)
p
p−2 ds.

Hölder’s inequality in time gives∫
[0,T ]\Eq

|Π≤q(s)| ds .
∑
r

λ
− 2

3

|r−q|

[ ∫
[0,T ]\Eq

λ2r‖ur‖22
]1− p

β(p−2)
+ε′

· λ−2ε
′

r

[ ∫
[0,T ]\Eq

f
β

1−ε ds

] p
β(p−2)

−ε′

· sup
t
‖u(t)‖ε22 ,

where ε′ and ε2 are as above. Using the distribution function again, we obtain∫
[0,T ]\Eq

f
β

1−ε ds =
β

1 + ε

∫ λ
2
β
q

0

t
β

1−ε−1λf (t) dt .
∫ λ

2
β
q

0

t
εβ
1−ε−1 dt . λ

2ε
1−ε
q .

Since p
β(p−2) − ε

′ = ε′(1−ε)
ε , we have

λ−2ε
′

r

[ ∫
Eq

f
β

1−ε ds

] p
β(p−2)

−ε′

. 1.

Thus, reasoning as before,∫
[0,T ]\Eq

|Π≤q(s)| ds .
∑
r

λ
− 2

3

|r−q|

[ ∫
[0,T ]\Eq

λ2r‖ur(s)‖22 ds
]1− p

β(p−2)
+ε′

→ 0,

as q →∞. �

4.2. Extension in the region 2
p + 1

β ≥ 1 and 0 < β ≤ 3. In this case the proof is much simpler. We can use
Sobolev or Bernstein’s inequalities since the intermittency dimension d is expected to be 0.

Proof of Theorem 1.3. Let us consider two sub-cases: p ≥ 3 and 1 ≤ p < 3.

First of all, when p ≥ 3, by Hölder’s inequality we obtain:

‖ur‖33 ≤ ‖ur‖
2p−6
p−2

2 ‖ur‖
p
p−2
p .

Since p
p−2 ≥ β, thanks to Bernstein’s inequality we have

‖ur‖33 . ‖ur(s)‖
3−β
2 ‖ur(s)‖βpλ

3
2+

3β
p −

3β
2

r .

In the second case, when 1 ≤ p < 3, a direct application of Bernstein’s inequality also amounts to

‖ur‖33 . ‖ur(s)‖
3−β
2 ‖ur(s)‖βpλ

3
2+

3β
p −

3β
2

r .

Note that in both cases the power of λr is 3
2 + 3β

p −
3β
2 ≥ 0 due to the fact that 2

p + 1
β ≥ 1. Therefore for any

p ≥ 1 we can proceed as∫ T

0

|Π≤q(s)|ds ≤
∫ T∗

0

∑
r

‖ur(s)‖3−β2 ‖ur(s)‖βpλ
5
2+

3β
p −

3β
2

r λ
− 2

3

|r−q|ds. (4.4)
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Since 0 < β ≤ 3 and the energy is bounded, the Dominated Convergence Theorem implies that∫ T

0

|Π≤q(s)|ds .
∫ T∗

0

∑
r

‖ur(s)‖βpλ
5
2+

3β
p −

3β
2

r λ
− 2

3

|r−q|ds→ 0 as q →∞.

Therefore energy equality holds under condition (1.8).

�

5. SOME COUNTEREXAMPLES

To demonstrate the sharpness of Theorem 1.1 and the fact that it can not be obtained via interpolation methods,
we construct vector fields that satisfy (1.5) but are not in the Onsager’s space L3

tB
1
3
3,∞.

Theorem 5.1. For any T > 0 and p, β ∈ R such that 1 ≤ β < p ≤ ∞ and 2
p + 1

β < 1, there exists smooth
divergence-free vector fields u(x, t) on T3 × [0, T ) such that

u ∈ L∞t L2 ∩ L2
tH

1 ∩ Lβ,wt B
2
β+

2
p−1

p,∞ , (5.1)

but
u 6∈ L3

tB
1
3
3,∞.

To obtain such examples, we need the following lemma.

Lemma 5.2. Let T > 0 and p, β be as in Theorem 1.1. Let λ(t) = 1√
T−t . For any γ > 0, there exists divergence-

free zero-mean vector fields u(x, t) on T3 × [0, T ) such that

(1) The frequency of u(t) is around λ(log+ λ)−γ:∥∥u(t)
∥∥
Ḣs
∼s [λ(log+ λ)−γ ]s for −1 ≤ s ≤ 1.

where log+ λ = ln(1 + |λ|).

(2) The intermittency of u is 1−: for any 2 ≤ q ≤ ∞, there holds

‖u‖q ∼
[
λ(log+ λ)

αγp
p−2
]1− 2

q . (5.2)

where α = 2
p + 2

β − 1.

(3) u(x, t) in smooth on [0, T ) \ E × T3, E = {tn} for some sequence tn → T .

All implicit constants are independent of t.

In view of the heuristics in Section 2, the above vector field has some addition logarithmic factors in the Lp

scaling that can not be captured by the intermittency exponent. Let us assume Lemma 5.2 hold for the moment
and proceed to prove Theorem 5.1.

Proof of Theorem 5.1. Given p, β as in Theorem 1.1, let us fix a constant γ such that

1

2
< γ <

1

2

1− 2
p

1− 2
p −

1
β

(5.3)

which is possible due to the assumptions on β and p.

Thanks to the above lemma, we have

‖u(t)‖Ḣ1 ∼ λ1(log+ λ)−γ ∼ 1

(T − t) 1
2 | ln(T − t)|γ

which implies that u ∈ L2
tH

1 since γ > 1
2 .

Denoting α = 2
p + 2

β − 1, using interpolations and the fact Ḣs = Bs2,2 together with Lemma 5.2, it is not hard to
show that

‖u(t)‖Bαp,∞ ∼ λ
αλ1−

2
p ∼ 1

(T − t)
1
β

which implies that u ∈ Lβ,wt B
2
β+

2
p−1

p,∞ . Therefore we have obtained (5.1).
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To show it is not in the Onsager’s space, we notice that

‖u(t)‖
B

1
3
3,∞

∼ 1

(T − t) 1
3 | ln(T − t)|

2γ
3 [1− p

β(p−2)
]
. (5.4)

Note that (5.3) implies that
2γ

3
[1− p

β(p− 2)
] <

1

3
.

Then it follows from (5.4) that u 6∈ L3
tB

1
3
3,∞.

Finally, to fix the issue of u(t) not being smooth on [0, T ), we can simply multiply it by a suitable smooth cutoff
in time so that it is supported away from the set E.

�

Proof of Lemma 5.2. Choose a divergence-free mean-free vector field ϕ ∈ C∞c (R3) such that

suppϕ ⊂ {x ∈ R3 : |x| ≤ 1

2
} and

∫
R3

|ϕ|2 = 1.

Define for simplicity of notation

µ =
(
λ(log+ λ)

αγp
p−2

) 2
3

and σ = µ−1λ(log+ λ)−γ (5.5)

and consider the rescaled function ϕ̃µ ∈ C∞c (R3) :

ϕ̃µ = µϕ(µx). (5.6)

So the support of ϕ̃µ is in the ball of radius 1
2µ
−1 centered at the origin.

Let ϕµ be the natural periodization of ϕ̃µ on T3 by means of the Poisson formula, then due to the small support
property, we have

ϕµ = ϕ̃µ for all x ∈ [−1

2
,

1

2
]3 (5.7)

We are ready to define the vector field u. Denoting dxe the smallest integer bigger or equal than x, let

u = ϕµ(dσex). (5.8)

Then u is a divergence-free vector field defined on [0, T )× T3. Moreover, u(x, t) is smooth whenever σ(t) 6∈ N.

Thanks to (5.6), (5.7) and (5.8) we may conclude that

‖u‖L2(T3) = ‖ϕµ‖L2(R3) = 1

As for the Lp scaling, by the same reason we simply have

‖u‖q = ‖ϕµ‖q ∼q µ
3
2−

3
q =

[
λ(log λ)

γp
p−2
]1− 2

q for all 2 ≤ q ≤ ∞

Finally we prove the Ḣs estimates for −1 ≤ s ≤ 1. By interpolations it suffices to show that

‖∆u‖2 ∼ [λ(log+ λ)−γ ]2

and
‖∆−1u‖2 ∼ [λ(log+ λ)−γ ]−2

where we use the standard definition that on T3 the inverse Laplacian is zero-mean. The first estimate follows
simply by the chain rule of differentiation and keeping track of the scalings. Let us show the latter one. Due to
periodic rescaling (5.8), we have

‖∆−1u‖L2(R3) ∼ σ−2‖∆−1ϕµ‖L2(T3).

Since ϕµ is the periodization of ϕ̃µ, which has zero mean and is supported in [0, 1]3, the inverse Laplacian on R3

of ϕ̃µ agrees with the inverse Laplacian on T3 of ϕµ:

∆−1ϕµ = ∆−1ϕ̃µ for all x ∈ [0, 1]3

Also by the Euclidean rescaling, we have

‖∆−1ϕ̃µ‖L2(R3) ∼ µ−2
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which completes the proof:

‖∆−1u‖L2(R3) ∼ σ−2‖∆−1ϕµ‖L2(T3) ∼ σ−2‖∆−1ϕ̃µ‖L2(R3) ∼ [λ(log+ λ)−γ ]−2.

�
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[11] C. De Lellis and L. Székelyhidi Jr. On admissibility criteria for weak solutions of the Euler equa-
tions. Arch. Ration. Mech. Anal. 195, 1, 225–260, 2010.
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