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 16 
ABSTRACT 17 

This paper describes a heuristic approach that combines limited number of experimental 18 
measurement with random finite element method (RFEM) to significantly accelerate the process 19 
in measuring the hydraulic conductivity of unsaturated soils. A microstructure-based RFEM model 20 
is established to describe the unsaturated soils with distribution of phases based on their respective 21 
volumetric contents. The intrinsic hydraulic properties of each phase (soil particle, water, and air) 22 
are applied based on the microscopic structures. The intrinsic permeability of each soil phase is 23 

firstly calibrated from soil measured under dry and saturated conditions, which is then used to 24 
predict the hydraulic conductivities at different extent of saturations. The results match closely 25 
with the experimental data. The pore size parameter was obtained from the variations of hydraulic 26 
conductivity with degree of saturation, from this the soil-water characteristic curve (SWCC) is 27 
predicted. The results show that the SWCC estimated matches very well with experimental data. 28 
Overall, this study provides a new modeling-based approach to predict the hydraulic conductivity 29 

function and SWCC of unsaturated soils based on measurement at complete dry or completely 30 
saturated conditions. An efficient way to measure these critical unsaturated soil properties will 31 

benefit introducing unsaturated soil mechanics into the engineering practice.  32 

 33 
 34 

Key words: Finite-element modelling, Permeability, Seepage 35 
 36 

INTRODUCTION  37 

 38 
Hydraulic conductivity, or permeability, is a critical soil property describing the hydraulic 39 

behavior of unsaturated soils, and it is related to the water content and pore size of the soil (Das 40 
and Thyagaraj, 2016; Stipcevich et al. 2015; Jaafar and Likos, 2013; Arya et al. 1999). In the 41 
microstructural view, hydraulic conductivity depends on the structure of the soil skeleton, the 42 
connectedness of the pore space, and the intrinsic permeability of each phase of the unsaturated 43 
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soil. The hydraulic conductivity of different type of soils (clay, silt, sand) varies with a wide range 1 

to the tune of several orders of magnitudes. It is challenging to determine the hydraulic 2 
conductivity due to the variation in the mineral composition and complex texture of the soil. The 3 
wide range in hydraulic conductivity and in its composition make it challenging to measure the 4 
hydraulic properties under unsaturated conditions. 5 

Empirical method and experimental method have been proposed to determine the hydraulic 6 
conductivity of unsaturated soils. The empirical approach relates the hydraulic conductivity with 7 
soil index properties such as the water content (Liu et al. 2011), particle size distributions (Jaafar 8 
and Likos 2013), and soil texture. Table 1 lists a few representative types of empirical equations 9 
for the unsaturated hydraulic conductivity. 10 

 11 
Table 1. A few representative empirical equations for the unsaturated hydraulic conductivity (k) 12 
 13 

Equation †  Reference 
bk a  Gardner (1958) 

 /  n
s sk k    

Campbell (1973) 

 s sk k exp        Davidson et al. (1969) 

   
3.5

/s r s rk k           
Averjanov (1950) 
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Mualem (1976) 

 14 
† ks is the saturated hydraulic conductivity; θ is the volumetric water content; θs is the saturated volumetric water 15 

content; n is the pore size parameter; a, b and α are the fitting parameter; θr is the residual volumetric water content; 16 
Se is the effective degree of saturation and Sr is the residual saturation. 17 
 18 

The hydraulic conductivity of soils can also be measured by direct laboratory 19 
measurements. From these the empirical equations can be obtained between the hydraulic 20 
conductivity and volumetric water content (or degree of saturation), which is then used in the 21 
engineering practice.  For saurated soils, Darcy’s law is commonly used to determine the hydraulic 22 
conductivity from hydraulic experiments. The experimental approach in the laboratory include the 23 

transient-flow test, infiltration column tests and deformation test (McCartney et al. 2007; Lu et al. 24 
2014); the experimental procedures in the field tests include small scale field tests that use 25 
observations of the water level in cavities installed in soil, and large scale field tests such as pump 26 

tests conducted in multiple wells. The experimental methods has the advantages of being reliable 27 
and accurate in determining the hydraulic conductivity, however, it is time-consuming and 28 

expensive to conduct the hydraulic experiments for unsaturated soils.  29 
The hydraulic conductivity of unsaturated soil is typically obtained by multiplying that of 30 

the saturated soil with a hydraulic conductivity function (HCF). The theoretical basis for the 31 
hydraulic conductivity function (HCF) is provided by Fredlund et al. (1994). It has been proven 32 
that the HCF can be integrated from the soil-water characteristic curve (SWCC). The SWCC, or 33 
the soil-water retention curve, is a critical property describing the relationship between matric 34 
suction and moisture content. The experimental approach to determine the SWCC includes 35 

thermocouple psychrometry, pressure plate, suction plate, field tensiometer, pressure membrance 36 
and filter paper methods (Likos and Lu 2002; Likos and Lu 2003; Liu et al, 2012). Although these 37 

methods are commonly used in practice, they have the limitations of being labor intensive, time 38 
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consuming, and not reliable in the high suction range (over 100,000 kPa).  Empirical equations for 1 

the SWCC curve have been developed by Genuchten (1980), Maulem (1976),Fredlund and Xing 2 
(1994), Arya (1999) and Kosugi (1998), where the fitting parameters in the equations are 3 
determined through laboratory or field data. 4 

This paper aims to provide a new method to provide quick estimation of the hydraulic 5 
conducitivty and soil water characteristics curve of unsaturated soils. This new method include 6 
phase-coded microstructure based REFM model and calibration experiments conducted at 7 
complete dry and saturated conditions. These calibration experiments allows to determine the 8 
transport properties of indiviudal phase and account for the effects of phase interactions. By use 9 
of the RFEM and calibrated parameters for individual phase, the bulk hydraulic conductivities at 10 
different degrees of saturation are predicted. Comparison of experimental data show that the  11 
results of hydraulic conductivity of unsaturated soils predicted by this new approach match very 12 
well with the experimental data. The approach is further extended to estimate the SWCC of 13 

unsaturated soils and demonstrates promising results.  14 
 15 

THEORETICAL BACKGROUND 16 

Random Finite Element Method 17 

The hydraulic properties of soil are inherently variable due to its microstructure. The 18 
parameters affecting the bulk transport properties of soils (i.e., phases, pore structure, etc.) are 19 
randomly distributed throughout the soil due to the complex geological process. The effects of 20 
such random processes have been simulated by the random-finite element method (RFEM) 21 
(Fenton and Griffiths 2003; Griffiths et al. 2006; Griffiths et al. 2010), where the parameters 22 
including Young’s modulus, Poisson’s ratio, density, permeability, and a variety of other 23 
parameters demonstrate spatial randomness (Bharrucha-Reid 1968; Sobczyk 1985; Chamis 1987). 24 

The RFEM is an extension of the traditional FEM by adding randomness to the material properties. 25 
Griffiths and Fenton (1993) modeled soil as a spatially random medium and represented the soil’s 26 
permeability as a stochastic field and used the RFEM to investigate the seepage beneath water 27 
retaining structures.  28 

In the microstructural view, unsaturated soil is a three-phased material that includes soil 29 
particles, water, and air, arranged randomly due to complex geological processes (Andersland and 30 
Ladanyi, 2004). Microstructural based model has been developed for soil (Chang and Hicher, 2005; 31 
Ferber et al. 2006). Tracy et al. (2015) and Helliwell et al. (2013) obtained the structure of soil by 32 

using X-ray Computed Tomography (CT) images. Zhang et al. (2016) built the 3D digital images 33 
of the porous rock with porosity properties and mineral contents to study the elastic properties of 34 
the Longmaxi shale. The microstructure extracted from the high-resolution images provides a 35 
foundation to build models at multiple scales, i.e. micro-scale or pore-scale, of soil samples. 36 

 37 

Principle for Hydraulic Conductivity Measurements 38 
 39 
            The theoretical basis for measuring the bulk hydraulic conductivity in the conventional 40 
geotechnical engineering settings is the Darcy’s law,  41 

                                                                  q p


                                                                  (1) 42 

where ∇𝑝 is the pressure gradient, κ is the bulk permeability, μ is the dynamic viscosity of the pore 43 
fluid, and q is the flux per unit area. 44 
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From Equation (1), it is seen that the bulk hydraulic conductivity can be measured by use of 1 

different transport fluids. The most commonly used in the laboratory is water and for saturated 2 
conditions. Direct measurement of the hydraulic conductivity of soil in unsaturated conditions is 3 
much more complex, partly due to the difficulty to maintain the degree of unsaturation or suction.   4 

            To resolve this challenge, this paper proposes a microstructure-based RFEM model to 5 
describe the transport process in unsaturated soil and to predict its bulk transport properties 6 
including the SWCC. The soil models are phase coded with the distribution of different phases 7 
and properties based on the volumetric contents and type of the individual phases. The phase coded 8 
model is converted into a finite element model, where the hydraulic and mechanical properties of 9 
each soil phase (soil particle, water, and air) are applied based on its phase constituents. With this 10 
idea in mind, the transport of fluid through soil is assumed to occur within different phases 11 
following Darcy’s law for each phase (Equation 2): 12 

                                                               j
jq p




                                                                    (2) 13 

where the terms bear similar physical interpretation as Equation (1), except that the subscript j 14 
denotes different phases of the poromaterial (i.e., air, water and soil solids) and represents the 15 
intrinsic hydraulic conductivity of each phase.   16 

The total flux across per unit cross section area of the soil specimen is determined from 17 
Equation (3), which is then combined with Equation (1) to determine the bulk transport properties 18 
(i.e., hydraulic conductivity). 19 

                                                             𝑞 = ∑𝑎𝑘𝑞𝑘                                                                     (3) 20 
Where summation of k is over all the phase-coded pixels in the unit cross section area.   ak is the 21 
effective cross section area of each pixel, Σak equals to unit area (1).  Flow rate at each pixel is 22 
determined by Equation (2).  The percentage of each phase along the cross section area equals to 23 

its volume content in the bulk soil sample. 24 

            By use of the phase coded RFEM, the bulk hydraulic conductivity of the unsaturated soil 25 
is calculated from the finite element model which considers the phase distribution and hydraulic 26 
conductivities of individual phases.   27 

 28 

CONSTRUCTION OF MICROSTRUCTURE-BASED RFEM MODEL  29 
             30 
            The microstructure-based RFEM models are firstly constructed from the bulk properties.  31 
Four types of soils (Denver claystone, BALT silt, Hopi silt and Ottawa sand) are included in this 32 
study, which properties obtained from the literature (Lu et al. 2014). Table 2 summarizes the 33 
important hydraulic parameters from the experimental data. Procedures in producing the 34 
microstructure based RFEM model are described in the following context. 35 
 36 
Table 2.  Summary of major hydro-physical parameters determined from transient-flow experiments (Lu et al. 2014) 37 
  38 

Soil n ks (m/s)    Porosity 
Denver claystone 1.40 8.58E-9 0.55 
BALT silt 1.38 1E-6 0.47 
Hopi silt 1.70 3E-8 0.48 
Ottawa sand 6.00 2.56E-5 0.38 

 39 
† n is the pore size parameter.  40 
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The following steps are undertaken to simulate the microstructure of these soils in 1 

unsaturated conditions, 1) determination of volume content of different phases. The volumetric 2 
content of each phase is calculated from the physical information including the dry density, water 3 
content, porosity, and specific gravity. 2) generation of matrix for soil specimen. A m×n matrix is 4 
generated by use of Matlab, where each cell in the matrix contains the corresponding phase coding.  5 
For the dimension of the matrix, m is set to be equal to the height of the soil specimens divided by 6 
the diameter of the soil particle, while n equals to the radius of the soil specimens divided by the 7 
diameter of the soil particle. Thus, m×n equals the total number of elements in the image of a 2-D 8 
soil model specimen. 3) Phase coding of digital soil specimen. Each element in the matrix is 9 
assigned with a value to represent a particular phase of the soil specimens. Three different numbers 10 
(0, 0.5, and 1) are assigned to represent different phases (soil particles, water and air) within the 11 
soil specimens. The phase is determined by a random number generator where the probability of 12 
occurrence of a particular phase is determined by the volumetric content of that phase. For fine 13 

grained soils, such as clay and silt, each cell is assumed to be independent and represent the 14 
smallest construction unit for hydraulic transport. For coarse grained particles, the soil particle size 15 
distribution is incorporated by use of the discrete element model.    16 

The phase coded matrix can be visualized by a grey scale image. Figure 1a shows a zoom 17 
in view of the element. Each pixel of the image represents an element in the matrix, with the color 18 
of each pixel representing the types of that element. Three different colors (black, grey, and white) 19 
represent the soil particles, water, and air, respectively (Figure 1). The probability of occurrence 20 
of each phase (or color) is decided upon the volumetric content of that phase. The phase coded 21 
image produced by MATLAB is imported into a general finite element software COMSOL, which 22 
allows to set the material properties based on the value of the matrix.    23 

 24 

               25 
 26 

    a)                                                                                b) 27 

Figure 1. a) zoom-in gray scale image of model for unsaturated clay generated in Matlab (the 28 
white, grey and black pixel represents air, water and solid particle respectively; b) the 29 

corresponding phase coded image converted into Comsol (the red, green, and blue pixels 30 

represents air, water, soil particles respectively) 31 

            For coarse grained soil such as sand, the image is generated based on the particle size 32 
distribution of the sand, with three different colors (black, grey, and white) represent the soil 33 

particles, water, and air, respectively (Figure 2).   34 
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 4 
 5 
 6 
                                                             7 

    8 

                         9 

Figure 2. 2-D microstructure-based phase coded image of sand generated in Matlab based on 10 
particle size distribution (the white, grey and black pixel represents air, water and solid particle 11 

respectively).  12 

 13 
The microstructure based phase coded image is imported to COMSOL and material 14 

properties are assigned based on the color coding of the image. Figures 3 shows examples of color 15 
coded digital specimen of 2-D silt at different volumetric water content in Matlab and after 16 
conversion into COMSOL, which then allows to set the properties of individual phase based on 17 

phase coding.  18 
 19 

 20 
 21 

            0%                                             50%                                             100%  22 
 23 

Figure 3. 2-D microstructure-based phase coded model for silt at different degree of saturation 24 
(the gray scale image is digital specimen produced by Matlab, the corresponding color image is 25 

the digital specimen after conversion into Comsol) 26 
 27 

SIMULATION OF THE BULK HYDRAULIC CONDUCTIVITY BY RFEM 28 
 29 

With the microstructure based random FEM model that is phase coded, the hydraulic 30 
parameters can be assigned to each pixel (phase) based on the phase coding. Here the hydraulic 31 
parameters refer to those for the individual phase, which is different from the bulk properties 32 
commonly referred or measured. Therefore, the term intrinsic hydraulic permeability is used in 33 
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this paper to describe the hydraulic properties of each phase (i.e., solid particles, water, and air).  1 

These properties are different from the bulk hydraulic properties and should firstly be calibrated 2 
from controlled experiments.  3 

Figure 4 and Figure 5 show the procedures to calibrate the intrinsic hydraulic properties of 4 
individual phase, which is then used to predict the hydraulic conductivity at different degrees of 5 
saturation.   6 

 7 

 8 
 9 

Figure 4. Flow chart for the prediction of the bulk hydraulic conductivity of soil at different 10 

degrees of saturation 11 
 12 

To demonstrate the calibration and prediction procedures, experimental data by Lu et al. 13 
(2014), which include the hydraulic conductivity at different degrees of saturation (including 14 
completely dry or saturated conditions), are utilized in the analyses. The experimental data on soil 15 
samples under two phased conditions (i.e., complete dry or 100% degree of saturation) are used 16 
for calibration purpose. The phase coded images of totally dried soil specimens and totally 17 
saturated soil specimens (both are two-phased image) are generated in Matlab. Next, the images 18 
are converted into Comsol which allows to assign properties to individual phase based on phase 19 
coding. The saturated condition is used to calibrate the intrinsic hydraulic properties of water. The 20 
dry condition is used to calibrate the intrinsic hydraulic properties of air. The intrinsic properties 21 
of mineral are assumed to be magnitude smaller so that they are impermeable compared with other 22 
phases. The digital soil specimen is assumed to be subjected to hydraulic conductivity experiments 23 

with a hydraulic pressure difference of 25 kPa. No flow boundary conditions are applied on the 24 
sides with a hydraulic pressure of 25 kPa applied to the surface to produce one dimensional flow 25 

(Figure 2). Sensitivity studies are conducted to determine the intrinsic permeability values of solid 26 
particles, water, and air by matching the bulk hydraulic conductivities with experimental data 27 

(Figure 5). The intrinsic properties of different phases are determined based on this procedure. The 28 
calibration results for each phase of these four types of soils are listed in Table 3 and the parameters 29 
used for bulk hydraulic conductivity simulations are listed in Table 4. 30 

 31 
 32 

Sensitivity studies are conducted to determine the intrinsic permeability of solid particles, water, and 
air by matching the bulk hydraulic conductivities with experimental data under saturated and dry 

conditions 

The calibrated intrinsic hydraulic properties are assigned based on phase coding of digital specimen 

Hydraulic boundary conditions applied:  No flow boundary conditions on the sides, differential 
hydraulic pressure of 25 kPa applied between top and bottom surfaces for 1D flow 

With the calibrated intrinsic hydraulic properties, the bulk hydraulic properties at different degree of 
saturation is predicted by phase coded RFEM model 
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 1 
Table 3. Calibrated results of intrinsic hydraulic conductivities 2 
 3 

Constant Value Units Description 
κs 10-19 m2 Intrinsic permeability of solid particle for Denver claystone 
κw 8.08×10-16  m2 Intrinsic permeability of water for Denver claystone 
κa 8.92×10-19  m2 Intrinsic permeability of air for Denver claystone 
κs 10-17 m2 Intrinsic permeability of solid particle for BALT silt 
κw 3.08×10-13  m2 Intrinsic permeability of water for BALT silt 
κa 1.31×10-19 m2 Intrinsic permeability of air for BALT silt 
κs 10-18 m2 Intrinsic permeability of solid particle for Hopi silt 
κw 8.08×10-15  m2 Intrinsic permeability of water for Hopi silt 
κa 1.31×10-19 m2 Intrinsic permeability of air for Hopi silt 
κs 10-16 m2 Intrinsic permeability of solid particle for Ottawa sand 
κw 3.08×10-10 m2 Intrinsic permeability of water for Ottawa sand 
κa 8.92×10-16 m2 Intrinsic permeability of air for Ottawa sand 

 4 
Table 4. Parameters used for hydraulic conductivity simulations 5 
 6 

Constant Value Units Description 
D 100 mm Diameter of soil specimens 
H 21 mm Height of soil specimens 
Es 12.7 GPa Young’s modulus of solid particle 
Ew 3.9×10-5 Pa Young’s modulus of water 
Ea 0 Pa Young’s modulus of air 
ρs 2600 kg/m3 Density of solid particle 
ρw 1000 kg/m3 Density of water 
ρa 1.29 kg/m3 Density of air 
μs 0.3 1 Poisson’s ratio of solid particle 
μw 0.5 1 Poisson’s ratio of water 
μa 0 1 Poisson’s ratio of air 
μ 8.9×10-4 Pa·s Dynamic viscosity of water 
χf 4.6×10-10 1/Pa Compressibility of water 
dc 2 μm Diameter of clay particle 
ds 0.01 mm Diameter of silt particle 
D10 0.181 mm The particle size where 10% of the particles in the sand are smaller 
D60 0.347 1 The particle size where 60% of the particles in the sand are smaller 
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 1 
Figure 5. Sensitivity analysis to determine the intrinsic permeability of water and air for Ottawa 2 

sand                       3 

Figure 6 shows the flow lines across the digital soil specimen. Interesting observations are 4 
made. As shown in Figure 6, the flowlines in the clay specimen are mostly zigzagged because the 5 
directions of the water flow are altered by the solid particles and the numbers of clay particles are 6 
magnitudes higher than that of silt and sand. In addition, clay contains more tortuous pores that 7 
abruptly end, so clay has the least permeability. For the silt specimen, the directions of the water 8 
flow are less zigzagged due to larger intrinsic hydraulic conductivity of water as well as there are 9 
possibly fewer solid particles in silt. Besides that, the pore size in silt is larger than that in clay, so 10 
the dissipative force is larger and therefore the bulk permeability is larger in silt than that in clay. 11 

The moisture flows in the sand specimen are most vertically distributed because sand is a material 12 
with very open pores that pass completely and directly through the sand. Besides that, the numbers 13 
of sand particles are magnitudes smaller than that of clay and silt, which caused decreased 14 
resistance to the moisture flow. The last but not the least, the pore size in which the water is flowing 15 
is the largest in sand, so the sand has the largest permeability among these three different kinds of 16 
soils. 17 
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 m=2100; n=5000   1 
                                                                     Silt 2 

 m=210; n=500    3 

                                                                   Sand 4 
Figure 6. Flowline simulated in the hydraulic conduction experiment in three different type of 5 

soils (the left figures are the enlarged images of the flowlines) 6 

            To further illustrate the impact of the microstructure on the fluid transport process, the 7 
contour plots of the hydraulic head distribution with and without considering the microstructure 8 
of the soil specimen are shown in Figure 7. For a uniform specimen without microstructure, the 9 

hydraulic head contours are horizontally distributed. For specimen considering the 10 
microstructure, the contours of hydraulic head are more complicated and does not show a 11 
horizontal line, which is evidently affected by the randomly distributed microstructure of the 12 
soil. In reality, the hydraulic head in soil is not uniformly distributed and varies from point to 13 
point obtained from the borehole data on site. The phase coded microstructure-based model is 14 
built based on the structure of the soil specimen from the experiment. The simulation results 15 
clearly demonstrate the microstructure are introduced in the new model to make the prediction 16 

closer to the reality.  17 
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 5 

Figure 7. Contour plots of the hydraulic head distribution in different types of soil specimens 6 

(the microstructure is not considered in the upper-left figure)  7 

            With the calibrated intrinsic hydraulic properties for individual phases, the bulk hydraulic 8 

properties at different extent of saturation can be predicted via the microstructure based model by 9 

use of the simulated hydraulic conductivity test on the digital specimens. The results of the 10 

hydraulic conductivities at different degrees of saturations are compared with those from direct 11 
experimental measurements.   12 

Mualem (1976) proposed the following model to describe the variation of hydraulic 13 
conductivity K with the effective degree of saturation Se: 14 

                                         
1/2 /(1 n) ( 1)/ 2[1 (S 1) ]n n n

s e e eK K S S                                             (4) 15 
where n represents pore size parameter, it is determined by the distribution of the pore size, or 16 

the structure of the soil; Ks represents saturated hydraulic conductivity; and the effective degree 17 

of saturation can be defined as 18 
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where Sr represents residual saturation.  2 

This model is also used to fit the predicted data. The results compared favorably with 3 
experimental results for clay, silt, and sand. As shown in Figure 8, hydraulic conductivity of soils 4 
generally decreased abruptly (as much as 7 orders of magnitude) from its saturated value, Ks, with 5 
decreasing degrees of saturation. The simulated hydraulic conductivities agree well with the 6 
measured hydraulic conductivities of Denver claystone, BALT silt, Hopi silt and Ottawa sand. By 7 
fitting Mualem’s equation to the simulated hydraulic conductivity, the pore size parameters n can 8 
be back calculated as 1.38, 1.37, 1.69, and 6.10 for Denver claystone, BALT silt, Hopi silt and 9 
Ottawa sand, respectively. The simulated pore size parameters (n) are close to the measured ones 10 
(in Table 2, n=1.40, 1.38, 1.70, and 6.00 for Denver claystone, BALT silt, Hopi silt and Ottawa 11 

sand, respectively). 12 
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Figure 8. Comparison of the simulated hydraulic conductivity with the measured data from the 3 

experiments for the four soils and Mualem’s equation 4 
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PREDICTION OF SWCC 1 

 2 
From Figure 8, the fitted parameter n is calculated for different type of soils. Based on the 3 

soil water retention equation proposed by Genuchten (1980): 
1

( 1)
n

n n
eS 



  , the SWCC curve 4 

of different soil specimens can be produced based on curve fitting of the simulation results. In the 5 
equation, Ψ is the matric suction and α is the inverse of the air-entry suction. Abdelkabir et al. 6 

(2014) proposed an equation to predict the air-entry values: 60(2.8 03/ )
01/ 19.57*( ) E D

ch 
 , in which, 7 

ℎ𝑐𝑜 (cm) is the equivalent capillary rise and D60 is the grain diameter at 60% passing. 8 
For Denver claystone, BALT silt, Hopi silt and Ottawa sand, α are 0.02 kPa-1, 0.07 kPa-1, 9 

α=0.03 kPa-1 and α=0.23 kPa-1, respectively (Lu et al. 2014).  10 
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Figure 9. Comparison of the predicted SWCC curve with the measured data for the four soils 3 

In Figure 9, the SWCC curves predicted by the numerical simulation agree well with the 4 
experimental data of different type of soils. The simulated SWCC curves compare favorably with 5 

the measured ones. This indicates that the proposed procedures will provide an inexpensive and 6 
efficient way to predict the SWCC curve. (i.e., the SWCC curve can be predicted by knowing the 7 
dried and saturated hydraulic conductivity of certain type of soil as well as the air-entry suction of 8 
that soil).  It is noted that the SWCC curves are predicted under the drying process and phenomena 9 
such as hysteresis are not considered.   This is an aspect that requires further investigation. 10 
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 2 
 3 

CONCLUSION 4 
 5 

This research develops a method to estimate the hydraulic conductivity and soil water 6 
characteristic curve of unsaturated soils by use of microstructure-based random finite element 7 
model with limited number of calibration experiments that are conducted under conventional 8 
settings. The randomly generated soil structures are linked to the particle size and the volumetric 9 
content of each phase in unsaturated soils.  Therefore, important factors affecting the hydraulic 10 
and transport properties such as the microstructure and phase distribution in the soils are 11 
considered.  This combined modeling and experimental approach simulate the bulk transport 12 
behaviors based on the behaviors of individual phase, which allows the efforts to be focused on 13 

understanding the behaviors of indiviudal phase.  Besides, the calibration experiments for the 14 
intrinsic hydraulic properties of individual phase, which are conducted  under complete saturated 15 
or dry conditiomns, are easily implemented with conventional experimental procedures. 16 
Experimental data of unsaturated soils of different types are used to demonstrate the proposed 17 
approach. The results showed that the hydraulic conductivity under unsaturated conditions are 18 
prediced with reasonable accurate.  In addition, the method is further extended to predice the 19 
SWCC at different extent of saturation, whose results are consistent with experimental data.  The 20 
developed microstructure based modeling approach combines the advantages of discrete element 21 
model in simulating the bulk behaviors of particulate system and the computational efficiency of 22 
finite element model.  It provides a new and reliable simulation-based tool to predict unsaturated 23 
soil behaviors, which is anticipated significantly save the time and cost in introducing unsaturated 24 
soil mechanics into the engineering practice. 25 
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