
Journal of Scientific Computing (2020) 83:39

https://doi.org/10.1007/s10915-020-01222-z

Comparison of ROW, ESDIRK, and BDF2 for Unsteady Flows
with the High-Order Flux Reconstruction Formulation

Lai Wang1 ·Meilin Yu1

Received: 6 April 2019 / Revised: 7 April 2020 / Accepted: 16 April 2020 / Published online: 13 May 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract

We conduct a comparative study of the Jacobian-free linearly implicit Rosenbrock–Wanner

(ROW) methods, the explicit first stage, singly diagonally implicit Runge–Kutta (ESDIRK)

methods, and the second-order backward differentiation formula (BDF2) for the high-order

flux reconstruction/correction procedure via reconstruction solution of the unsteady Navier–

Stokes equations. Pseudo-transient continuation is employed to solve the nonlinear equation

at each stage of ESDIRK (excluding the first stage) and each step of BDF2. A Jacobian-free

implementation of the restarted generalized minimal residual method solver is employed

with a low storage element-Jacobi preconditioner to solve the linear system at each stage

of ROW and each pseudo time iteration of ESDIRK and BDF2. Several numerical exper-

iments, including both laminar and turbulent flow simulations, are conducted to carry out

the comparison. We observe that the multistage ROW2 and ESDIRK2 are more efficient

than the multistep BDF2, and higher-order implicit time integrators are more efficient than

lower-order ones. In general, the ESDIRK method allows a larger physical time step size for

unsteady flow simulation than the ROW method when the element-Jacobi preconditioner is

employed, especially for wall-bounded flows; and the ROW method can be more efficient

than the ESDIRK method when the time step size is refined.

Keywords Rosenbrock–Wanner · ESDIRK · BDF2 · Jacobian-free GMRES · Flux

reconstruction/correction procedure via reconstruction · High-order spatiotemporal

methods · Unsteady flows

1 Introduction

High-order computational fluid dynamics (CFD) methods have been attracting much research

attention in past decades due to their high-resolution and low-dissipation properties that

B Meilin Yu

mlyu@umbc.edu

Lai Wang

bx58858@umbc.edu

1 Department of Mechanical Engineering, University of Maryland, Baltimore County, Baltimore, MD

21250, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-020-01222-z&domain=pdf
http://orcid.org/0000-0003-3071-0487

39 Page 2 of 27 Journal of Scientific Computing (2020) 83 :39

enable high-fidelity simulation of intricate flows. High-order spatial discretization methods,

such as discontinuous Galerkin (DG) methods [1–3] and FR/CPR methods [4–7], have shown

their capabilities of dealing with turbulent flows [8–15]. Usually, the high-order explicit

strong stability preserving Runge–Kutta (SSPRK) methods [16] are used to integrate the

semi-discretized governing equations for unsteady flow simulation. Due to the Courant–

Friedrichs–Lewy (CFL) number constraint, explicit time integration methods may not be the

optimal choice for efficient numerical simulation of stiff flow problems, such as wall-bounded

turbulent flows at high Reynolds numbers. To circumvent the CFL restriction, an implicit

time integration method can be employed. Recent work [17–19] has confirmed that time

integration methods can have significant impact on unsteady flow simulation with high-order

spatial formulations. This motivates the present study to conduct a systematic comparison of

accuracy and efficiency among several widely used implicit time integration methods.

One family of the implicit time integrators is the multistep method [20]. In this family,

the standard BDF method is popular in the CFD community arguably due to its ease of

implementation. Since a BDF method is not A-stable when the order of accuracy exceeds

two, the second-order BDF2 is widely used for large-scale simulations instead of higher-order

BDF methods [21–23]. One direction to search for high-order A-stable multistep methods is

to “throw in additional stages, off-step points, super-future points and the like, which leads

into the large field of general linear methods” [20], such as the modified extended BDF

(MEBDF) [24], the split Adams–Moulton formula (SAMF) [25], and two implicit advanced

step-point (TIAS) method [26,27]. Interested readers are referred to the work by Carpenter

et al. [22] on a comparative study of implicit time integrators including the fourth-order

MEBDF4, and the work by Nigro et al. [28,29] on the application of MEBDF and TIAS to

Navier–Stokes equations discretized by the high-order DG method.

An alternative family of the implicit time integrators is the multistage implicit Runge–

Kutta (IRK) method [30]. We note that fully coupled IRK methods are not widely used in the

CFD community due to the complication of solving fully coupled nonlinear systems. Solution

strategies based on the dual time stepping procedure [31] have recently been reported by

Jameson [32] and several fully coupled IRK methods have been evaluated for unsteady flow

simulation. To decrease computational complexity, diagonally implicit Runge–Kutta (DIRK)

and singly diagonally implicit Runge–Kutta (SDIRK) methods can be used. A comprehensive

review of DIRK methods by Kennedy and Carpenter can be found in [33]. Vermeire and

Vincent have analyzed the dispersion and dissipation properties of fully-discrete high-order

FR methods with two SDIRK schemes, and provided insights on their suitability for implicit

large eddy simulation [18]. As a special case of SDIRK, the ESDIRK method reduces the

degree of the nonlinear systems of SDIRK by one. Comparisons of BDF and ESDIRK

methods have been performed in [21,23]. ESDIRK methods are found to be more efficient

than BDF methods. We note that for BDF and DIRK, a nonlinear system needs to be solved

at each step or each stage.

For the linearly implicit Rosenbrock method, only one linear system is to be solved at each

stage. Besides, the Jacobian matrix is only evaluated once at the first stage. All these features

can potentially make a Rosenbrock method more computationally efficient than a DIRK

method when they have the same number of stages and order of accuracy. In a traditional

Rosenbrock method, the exact Jacobian matrix [34,35] is critical to ensure accuracy. However,

in many stiff flow problems, the analytical Jacobian matrices are not easy to obtain; and

the matrix-based implementation can consume tremendous memory, thus impeding efficient

simulation of large-scale flow problems. The ROW method [36–38] can preserve the nominal

order of accuracy with an approximate Jacobian matrix. This flexibility makes it possible to

implement a Jacobian-free Krylov subspace solver. The Rosenbrock–Krylov (ROK) method

123

Journal of Scientific Computing (2020) 83 :39 Page 3 of 27 39

[39] reformulates the Rosenbrock/ROW method such that stage vectors are obtained from the

Krylov subspace using the modified Arnoldi iteration. The ROK method naturally favors the

matrix-free implementation. We notice that the Rosenbrock method can suffer from order

reduction for moderately stiff problems and improvements have been developed in [40].

Recent results on the performance of several Rosenbrock methods on solving Navier–Stokes

equations with high-order DG-type schemes have been reported in a series of works [41–44].

When the Jacobian-free implementation is used, the advantage that the Jacobian matrix of

the Rosenbrock method only needs to be evaluated once for each time step does not hold any-

more. In fact, the performance of ROW and ESDIRK highly depends on how the linear and

nonlinear systems are solved. Blom et al. [45] have shown that ROW is not necessarily more

efficient than ESDIRK when a second-order central finite volume method is used. Liu et al.

[42] has conducted a comparative study of several third-order ROW methods and a third-order

ESDIRK (ESDIRK3) [21] method with a third-order hierarchical WENO (weighted essen-

tially non-oscillatory) reconstructed discontinuous Galerkin (rDG) method. They observed

that the third-order ROW methods tested are more efficient than ESDIRK3. Sarshar et al.

[46] conducted a comparative study of various matrix-free implicit time-stepping methods

on solving two-dimensional (2D) Navier–Stokes equations including SDIRK, Rosenbrock,

ROW, and ROK using a second-order spatial discretization. It is found that ROK can be a

competitive method compared to other implicit time integrations.

Contributions. In this work, we conduct comparison of the Jacobian-free ROW (second-,

third- and fourth-order schemes), ESDIRK (second-, third- and fourth-order schemes) and

BDF2 for the high-order FR solution of the unsteady compressible Navier–Stokes equations.

The nonlinear systems in ESDIRK and BDF2 are solved by means of pseudo-transient contin-

uation. The restarted GMRES solver [47] with the element-Jacobi preconditioner serves as the

linear solver. The Jacobian-free implementation decreases the tremendous memory consump-

tion of matrix-based implementation. The accuracy and efficiency of different implicit time

integrators are compared using several laminar and turbulent flows, including 2D isentropic

vortex propagation, 2D laminar flow over a cylinder, three-dimensional (3D) Taylor–Green

vortex evolution, and the 3D transitional flow over the SD7003 wing at the chord-based

Reynolds number of 60000.

Article Organization. The rest of the paper is organized as follows. The FR discretization

of the 3D compressible Navier–Stokes equations is reviewed in Sect. 2. Section 3 introduces

all the time integration methods tested in this study as well as the matrix-free implementation

of the iterative methods. Numerical results and corresponding discussions are documented

in Sect. 4. We summarize this work in the last section.

2 The Flux ReconstructionMethod

2.1 Governing Equations

The 3D unsteady compressible Navier–Stokes equations can be written as

∂q

∂t
+ ∇ · F = 0, (1)

where q = (ρ, ρu j , E)⊺, j = 1, 2, 3, is the vector of conserved variables, and F is the

corresponding flux tensor. Specifically, ρ is the fluid density, u j , j = 1, 2, 3, are the velocities

in three orthogonal directions, and E =
p

γ−1
+ 1

2
ρ

∑3
k=1(ukuk) is the total energy per unit

volume, where p = ρRT is the pressure, T is the temperature, R = cp − cv is the ideal

123

39 Page 4 of 27 Journal of Scientific Computing (2020) 83 :39

gas constant, γ is the specific heat ratio defined as γ = cp/cv , and cp and cv are specific

heat capacities at constant pressure and volume, respectively. In this study, γ is set as 1.4.

The flux tensor F consists of the inviscid part and viscous part, which can be expressed as

F = Finv(q) − Fvis(q,∇q). Note that Finv(q) and Fvis(q,∇q) can be rewritten in a vector

format as: for any j, j ∈ {1, 2, 3},

Finv, j (q) =

⎛
⎜⎜⎜⎜⎝

ρu j

ρu1u j + δ1 j p

ρu2u j + δ2 j p

ρu3u j + δ3 j p

u j (E + p)

⎞
⎟⎟⎟⎟⎠

, and Fvis, j (q,∇q) =

⎛
⎜⎜⎜⎜⎝

0

τ1 j

τ2 j

τ3 j∑3
k=1 ukτk j − K j

⎞
⎟⎟⎟⎟⎠

, (2)

where δi j is the Kronecker delta, τi j is the viscous stress defined as

τi j = μ

(
∂ui

∂x j

+
∂u j

∂xi

)
−

2

3
μ

3∑

k=1

∂uk

∂xk

δi j with i = 1, 2, 3,

and following Fourier’s law, the heat flux K j is defined as K j = −κ∂T /∂x j . In this study,

the thermal conductivity κ is calculated from the Prandtl number Pr as κ = μcp/Pr. The

fluid viscosity μ and the Prandtl number Pr are treated as constants.

2.2 The Spatial Discretization

To achieve an efficient implementation of the FR method, we transfer the Navier–Stokes

equations Eq. (1) from the physical domain (x, y, z) to the computational domain (ξ, η, ζ).

Thus Eq. (1) can be expressed as

∂ Q

∂t
+

∂ F

∂ξ
+

∂G

∂η
+

∂ H

∂ζ
= 0, (3)

where ⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Q = |J |q,

F = |J |(f ξx + gξy + hξz),

G = |J |(f ηx + gηy + hηz),

H = |J |(f ζx + gζy + hζz),

(4)

and

J =
∂(x, y, z)

∂(ξ, η, ζ)
, and |J | = det(J). (5)

Herein, f = F1, g = F2, and h = F3 are flux vectors in the x , y, and z directions

of a Cartesian coordinate system. ∂ξi/∂x j , i, j = 1, 2, 3, are metrics in the coordinate

transformation.

The reconstructed flux polynomial in the FR method consists of two parts. One is the

local flux polynomial and the other one is the correction polynomial. On solving Eq. (3), the

reconstructed polynomials F̃, G̃ and H̃ of F, G and H can be expressed as

⎧
⎪⎨
⎪⎩

F̃ = Fl + Fc,

G̃ = Gl + Gc,

H̃ = H l + Hc,

(6)

123

Journal of Scientific Computing (2020) 83 :39 Page 5 of 27 39

where the superscript ‘l’ stands for the local flux and ‘c’ stands for the correction flux.

Consequently, Eq. (1) can be rewritten as

∂q

∂t
+

∂ f l

∂x
+

∂ gl

∂ y
+

∂hl

∂z
+

1

|J |

(
∂ Fc

∂ξ
+

∂Gc

∂η
+

∂ Hc

∂ζ

)
= 0. (7)

For a hexahedral element, Fc , Gc and Hc can be explicitly expressed as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fc(ξ, η, ζ) = (F̃(−1, η, ζ) − Fl(−1, η, ζ))gL (ξ)

+ (F̃(1, η, ζ) − Fl(1, η, ζ))gR(ξ),

Gc(ξ, η, ζ) = (G̃(ξ,−1, ζ) − Gl(ξ,−1, ζ))gL (η)

+ (G̃(ξ, 1, ζ) − Gl(ξ, 1, ζ))gR(η),

Hc(ξ, η, ζ) = (H̃(ξ, η,−1) − H l(ξ, η,−1))gL (ζ)

+ (H̃(ξ, η, 1) − H l(ξ, η, 1))gR(ζ),

(8)

where gL/R are the correction polynomials. In this study, we employ the Radau polynomials

to recover the nodal FR-DG method. F̃, G̃ and H̃ at the element interface are referred as

numerical fluxes Fnum , Gnum and Hnum . The inviscid common fluxes can be obtained from

approximate Riemann solvers. In this study, the Roe approximate Riemann solver [48] is

used to calculate the common fluxes at the cell interface in the normal directions as

f com
n,inv =

f +
n,inv + f −

n,inv

2
− R|�|R−1 q+ − q−

2
, (9)

where superscripts ‘−’ and ‘+’ denote the left and right side of the current interface, the

subscript n = (nx , ny, nz)
⊺ is the unit normal direction from left to right, f n = f nx +

gny + hnz is the flux projection in the n direction, � is a diagonal matrix consisting of the

eigenvalues of the Jacobian ∂ f n/∂q, and R consists of the corresponding right eigenvectors

evaluated with the Roe-averaged variables. Numerical common fluxes can be obtained as
⎧
⎪⎨
⎪⎩

Fnum = |J ||∇ξ | f com
n sign(n · ∇ξ),

Gnum = |J ||∇η| f com
n sign(n · ∇η),

Hnum = |J ||∇ζ | f com
n sign(n · ∇ζ).

(10)

The common viscous fluxes are f com
n,vis = f vis(q

+,∇q+, q−,∇q−) at the cell interface.

Here we need to define the common solution qcom and common gradient ∇qcom at the cell

interface. By simply taking the average of the conserved variables, we get

qcom =
q+ + q−

2
. (11)

The common gradient is computed as

∇qcom =
∇q+ + r+ + ∇q− + r−

2
, (12)

where r+ and r− are the corrections to the gradients on the interface. The second approach of

Bassi and Rebay (BR2) [8] is used to calculate the corrections. For the hexahedral element,

the correction terms are defined as

r = γ
(
qcom − qL/R

)
n, and γ = |∇̟ |g′

L/R(̟) sign(n · ∇̟), (13)

where ̟ ∈ {ξ, η, ζ }, and qL/R is the local solution on the interface. If the interface is the

left boundary of the element, then the local solution qL is used, and ̟ is −1; if the interface

123

39 Page 6 of 27 Journal of Scientific Computing (2020) 83 :39

is the right boundary of the element, then the local solution q R is used, and ̟ is 1. In this

study, g(±1) = ±(P + 1)(P + 2)/2 is used to stabilize the FR method [49], where P is the

polynomial degree of the solution.

3 Implicit Time Integrators and Iterative Methods

3.1 Implicit Time Integrators

We rewrite Eq. (7) in a semi-discretized form as

∂q

∂t
= R(q), (14)

for convenience of notation. We use the method of lines approach to solve this equation: the

partial differential equation is first discretized in space with the FR formulation in Sect. 2,

and then is marched in time. In this study, three different types of implicit or linearly implicit

time integration methods are studied.

The BDF Method. The first one is the backward differentiation formula. A general formu-

lation of the s-th order BDF method for solving Eq. (14) can be expressed as

qn+1 = �t ω R
(
qn+1

)
+

s∑

j=1

a j qn+1− j , (15)

A BDF method is not A-stable when the order of accuracy exceeds two. In this study, we

only consider the BDF2 method for comparison. For BDF2, s = 2, ω = 2/3, a1 = 4/3 and

a2 = −1/3. BDF2 is not able to start by itself. Therefore, at the first time step the backward

Euler method or BDF1 is used.

The ESDIRK Method. The second one is the explicit first stage, single diagonally implicit

Runge–Kutta method, which reads
{

qn+1 = qn + �t
∑s

i=1 bi R(qi),

qi = qn + �t
∑i

j=1 ai j R(q j), i = 1, . . . , s,
(16)

where s is the number of stages. The second-order, three-stage ESDIRK2 [33], third-order,

four-stage ESDIRK3 [21] and fourth-order, six-stage ESDIRK4 [21] methods are studied in

this paper. All the ESDIRK methods investigated in this study have the feature that

ai i =

{
0, i = 1,

ω, i �= 1.
(17)

Therefore, we can rewrite Eq. (16) as
⎧
⎪⎨
⎪⎩

qn+1 = qn + �t
∑s

i=1 bi R(qi),

q1 = qn,

qi = �t ω R(qi) + qn + �t
∑i−1

j=1 ai j R(q j), i = 2, . . . , s.

(18)

The ROW Method. The last one is the linearly implicit Rosenbrock–Wanner method. The

general form of a s-stage Rosenbrock method can be written as [20]

{
qn+1 = qn +

∑s
j=1 b j K j ,

K i = �t R
(

qn +
∑i−1

j=1 αi j Y j

)
+ �t ∂ R

∂q

∑i
j=1 γi j K j , i = 1, 2, . . . , s.

(19)

123

Journal of Scientific Computing (2020) 83 :39 Page 7 of 27 39

The above equations are reorganized to avoid the matrix-vector product of the Jacobian matrix

and the summation of stage vectors [20,41], following

{
qn+1 = qn +

∑s
j=1 m j Y j ,(

I
ω�t

− ∂ R
∂q

)n

Y i = R
(

qn +
∑i−1

j=1 ai j Y j

)
+ 1

�t

∑i−1
j=1 ci j Y j , i = 1, 2, . . . , s.

(20)

Similarly, ω = γi i is defined for the Rosenbrock method. Herein, K i = 1
ω

Y i −
∑i−1

j=1 ci j Y j ,

(m1, . . . , ms) = (b1, . . . , bs)Γ
−1, (ai j)

s
i, j=1 = (αi j)

s
i, j=1Γ

−1, (ci j)
s
i, j=1 = 1

ω
I − Γ

−1 and

Γ = (γi j)
s
i, j=1 [20,41]. The Rosenbrock–Wanner method has the flexibility of evaluating the

Jacobian matrix approximately while preserving the accuracy. In this study, we restrict our

attention to three popular Rosenbrock–Wanner methods, namely, the second-order, three-

stage ROS2PR [37], the third-order, four-stage ROS34PW2 [36], and the fourth-order, six-

stage RODASP [38]. We note that it has been shown in [40] that ROS34PW2 and RODASP

can suffer from order reduction. For simplicity, we use ROW2, ROW3 and ROW4 to denote

them, respectively.

The coefficients of all ESDIRK and ROW methods can be found in the “Appendix”.

3.2 Iterative Methods

For BDF2 and ESDIRK, one needs to solve the nonlinear equations in Eqs. (15) and (18).

We can rewrite them as

F(q∗) = 0, (21)

where q∗ is qn+1 for BDF and qi for ESDIRK, respectively. For BDF2, F(q∗) reads

F
(
qn+1

)
=

(
1

ω �t
qn+1 − R(qn+1)

)
−

1

ω �t

2∑

j=1

a j q
n+1− j . (22)

For ESDIRK methods,

F(qi) =

(
1

ω �t
qi − R(qi)

)
−

1

ω �t

⎛
⎝qn + �t

i−1∑

j=1

ai j R(q j)

⎞
⎠ , (23)

where i = 2, . . . , s. In this work, the pseudo-transient continuation is employed [21,31,32].

The pseudo-transient continuation is an inexact Newton’s method to solve the steady state

equation F(q∗) = 0 iteratively as

qk+1,∗ − qk,∗

�τ
= −F

(
qk+1,∗

)
. (24)

Herein, k is the iteration step for the pseudo-transient continuation. Eq. (24) can be linearized

as (
I

�τ
+

∂ F

∂q

)k

�qk,∗ = −F
(
qk,∗

)
. (25)

For a steady problem, as k → ∞, τ → ∞ and �qk → 0. Therefore, F(qk,∗) → F(q∗).

The Jacobian matrix for fully implicit methods can be expressed as

(
∂ F

∂q

)k

=

(
I

ω�t
−

∂ R

∂q

)k

. (26)

123

39 Page 8 of 27 Journal of Scientific Computing (2020) 83 :39

Substitute the Jacobian matrix into Eq. (25) to obtain the final form of the linear system in

the pseudo-transient continuation procedure as follows

(
I

�τ
+

I

ω�t
−

∂ R

∂q

)k

�qk,∗ = −F
(
qk,∗

)
. (27)

The pseudo-transient continuation procedure requires an adaptation algorithm of the pseudo

time step size to complete the method. In this study, we employ the successive evolution

relaxation (SER) algorithm [50] as

τ 0 = τini t , �τ k+1 = min

(
�τ k

||F||k−1
L2

||F||kL2

,�τmax

)
. (28)

As the pseudo time marches forward, a series of linear equations (27) is successively solved

until convergence. Ideally, we would expect that when �τ approaches �τmax = ∞, the

residual of the pseudo-transient procedure will gradually converge to machine zero. However,

in our practice of simulating wall-bounded flows with elements clustered in near wall regions,

we have to choose a moderately large �τmax to ensure that the residual of the linear solver

can at least drop by one order of magnitude when �τ equals to �τmax . Once the linear

solver fails, we would reject the current pseudo-transient continuation iteration and decrease

�τmax by half to continue. In this study, if not specifically mentioned, �τini t = �t and

�τmax = 1020.

Restarted GMRES is employed to solve Eq. (27) as well as the linear system in Eq. (20).

All linear systems can be expressed as

AX = b, (29)

where

A = D(�t,�τ) −
∂ R

∂q
. (30)

The first term D(�t,�τ) on the right-hand side of the above equation is a diagonal matrix

related to �t and �τ . The GMRES method approximates the exact solution by a vector

xn ∈ K n that minimizes the Euclidean norm ||Axn − b|| where K n is the n-th Krylov

subspace

K n = span
{

b, Ab, A2b, · · · , An−1b
}
. (31)

The sparse matrix ∂ R
∂q

in A only appears in the matrix-vector product. For an unknown vector

X , the matrix-vector product can be approximated as
(

∂ R

∂q

)
X =

R(q + εX) − R(q)

ε
+ O(ε). (32)

ε = 10−8 is employed in this study. Interested readers are referred to [51] for more discussions

on this approximation. We take advantage of the framework of the restarted GMRES solver in

PETSc [52] with user-defined functions to perform the matrix-vector product approximation

and left preconditioning.

The performance of the Newton–Krylov method substantially depends on the precondi-

tioner. In the context of the Jacobian-free implementation, the element-Jacobi preconditioner

is arguably the simplest one with acceptable performance for many applications among the

low-storage preconditioners, such as the matrix-free LU-SGS (Lower-Upper Symmetric-

Gauss-Seidel) preconditioner [53], and p-multigrid preconditioner [54]. In this study, only

the element-Jacobi preconditioner is considered and it is updated at the starting stage of each

123

Journal of Scientific Computing (2020) 83 :39 Page 9 of 27 39

physical time step. The restart number of the GMRES solver is set as 60. The maximum num-

ber of iterations for GMRES are specifically designated for different numerical experiments

in this work.

4 Numerical Results

All the simulations presented in this section are performed on the high performance computing

facility (HPCF) of the University of Maryland, Baltimore county (UMBC). All nodes used

in this work have two Intel E5-2650v2 Ivy Bridge (2.6 GHz, 20 MB cache) processors with

eight cores apiece, for a total of 16 cores per node. A quad data rate (QDR) Infiniband switch

connects all the nodes. Ideally the system can achieve a latency of 1.2 μsec to transfer a

message between two nodes, and can support a bandwidth of up to 40 gigabits per second

(40 Gbps). Every node possesses 64 GB RAM. All nodes are running Red Hat Enterprise

Linux 6.4. We employ g++ (GCC) 4.8.4 with mpich-3.1.4 to compile the code for parallel

simulation.

4.1 Vortex Propagation

The 2D isentropic vortex propagation problem is employed as a benchmark to investigate

the accuracy and efficiency of different time integrators in this subsection. The free stream

flow conditions are set as (ρ, u, v, Ma)⊺ = (1, 1, 1, 0.5)⊺ and the ideal gas constant R is set

as 1.0 for this case. The perturbation is defined as [41]

⎧
⎪⎪⎨
⎪⎪⎩

δu = − α
2π

(y − y0)e
φ(1−r2),

δv = α
2π

(x − x0)e
φ(1−r2),

δT = −
α2(γ−1)

16φγπ2 e2φ(1−r2),

(33)

where φ = 1
2

and α = 5 are parameters that define the vortex strength, and r = (x − x0)
2 +

(y − y0)
2 is the distance to the center of the vortex (x0, y0) = (0, 0) at t = 0. The periodic

domain is defined as � = [−10, 10]2. We use 16 CPU processes to simulate this problem on

a uniform mesh of 50 × 50 elements with the P6 (i.e. 7th order) FR method for one period

tp = 20. The time step size �t is refined from tp/100 to tp/800. The error of any variable s

is defined as

Error(s) =

√∫
�
(sexact − snum)2dV

V
, (34)

where sexact is the exact value, snum is the numerical value, and V is the volume of the domain

�.

Two convergence criteria are discussed in this section. The first one is the tolerance for

the relative residual of the pseudo-transient continuation tolrel,nonlinear and the second one

is that for the relative residual of the GMRES solver tolrel,linear . Herein, the subscript ‘rel’

stands for ‘relative’. On solving Eq. (21), tolrel,nonlinear will determine the error level of

the pseudo-transient continuation, which will affect the order of accuracy of ESDIRK and

BDF2 and tolrel,linear is more related to the efficiency and robustness of the pseudo-transient

continuation [55]. On solving Eq. (29), tolrel,linear will determine the order of accuracy of

ROW directly. The maximum number of iterations of the GMRES solver is 200, which is

123

39 Page 10 of 27 Journal of Scientific Computing (2020) 83 :39

sufficiently large for the GMRES solver to converge to the designated tolerances for this

problem.

4.1.1 Effect of the Nonlinear and Linear Convergence Criteria on ESDIRK and BDF2

The pseudo-transient continuation does not require an exact solution of the linear system at

each iteration. We first employ a relatively large tolerance tolrel,linear = 10−1 for GMRES to

investigate the effect of tolrel,nonlinear on accuracy and efficiency of fully implicit methods.

The convergence study of ESDIRK and BDF2 using different tolrel,nonlinear , namely, 10−2,

10−4, 10−6 and 10−8, is presented in Table 1. We observe that when tolrel,nonlinear is refined

from 10−2 to 10−4, all ESDIRK methods studied here will preserve the nominal order of

accuracy except that ESDIRK4 shows slightly order reduction when �t is refined from

tp/400 to tp/800 (due to insufficient tolrel,nonlinear); when tolrel,nonlinear is refined from

10−4 to 10−6, no order reduction shows up. We also note that overrefined tolrel,nonlinear ,

such as 10−8, will not improve simulation accuracy, but only increase the computational cost

(i.e. run time; in this study, run time is the wall clock time spent by parallel simulations).

ESDIRK methods have shown better accuracy and efficiency than BDF2. Generally, the

higher the order of accuracy of ESDIRK is, the more efficient ESDIRK is (see Fig. 1b).

The impact of tolrel,linear on efficiency is investigated when tolrel,nonlinear = 10−6 is

employed. tolrel,linear spans {10−1, 10−2, 10−4, 10−6}. The run time results are presented in

Table 2. For this specific problem, all values of tolrel,linear lead to the same numerical errors

as expected since the accuracy of ESDIRK and BDF2 solely depends on the convergence of

pseudo-transient continuation. As documented in Table 2, the computational cost will keep

on increasing when we refine the tolerance tolrel,linear . This indicates that in order to save

computational cost, tolrel,linear for ESDIRK and BDF2 can be relaxed.

4.1.2 Effect of the GMRES Convergence Criterion on ROW

A comparison of different convergence criteria tolrel,linear of the restarted GMRES solver

is conducted to study its impact on the accuracy and efficiency of the ROW time integrators.

The results are presented in Table 3. It is observed that when the convergence criterion is not

tight enough, such as tolrel,linear = 10−2 and 10−4, the ROW methods cannot preserve the

nominal order of accuracy. This is not a surprise considering that the residual convergence

is directly related to the accuracy of the solution in ROW. When tolrel,linear is sufficiently

small, such as tolrel,linear = 10−6 and 10−8, all ROW methods can preserve the nominal

order of accuracy, excepted that ROW4 shows order reduction [40] when the time step is

refined from tp/400 to tp/800. We also notice that when tolrel,linear is refined from 10−6

to 10−8, no significant differences in errors are observed. Another observation is that when

tolrel,linear is overrefined, the run time of the simulation is noticeably increased. In general,

we do not recommend machine zero convergence criterion for tolrel,linear . A relatively tight

value such as 10−6 is sufficient to preserve the accuracy of high-order Rosenbrock methods

for this problem.

4.1.3 Comparison of Different Time Integrators

The order of accuracy study of ESDIRK and BDF2 and linearly implicit ROW are summarized

in Fig. 1. For ESDIRK and BDF2, tol
E SDI RK ,B DF2
rel,nonlinear = 10−6 and tol

E SDI RK ,B DF2
rel,linear = 10−1.

tol ROW
rel,linear = 10−6 is employed for ROW.

123

Journal of Scientific Computing (2020) 83 :39 Page 11 of 27 39

Table 1 The convergence study for ESDIRK and BDF2 with different tolrel,nonlinear when tolrel,linear is

set to 10−1

�t/tp EL2
(ρ) Order EL2

(u) Order Run time (s)

tolrel,nonlinear = 10−2, tolrel,linear = 10−1

ESDIRK2 1/100 4.4097 × 10−4 5.7334 × 10−3 317

1/200 1.1313 × 10−4 1.97 1.4622 × 10−3 1.97 603

1/400 2.8315 × 10−5 2.00 3.6523 × 10−4 2.00 1159

1/800 7.0714 × 10−6 2.00 9.1104 × 10−5 2.00 2247

ESDIRK3 1/100 1.5341 × 10−4 1.7108 × 10−3 398

1/200 2.3518 × 10−5 2.71 2.6017 × 10−4 2.90 734

1/400 3.1802 × 10−6 2.89 3.4016 × 10−5 2.94 1392

1/800 1.0661 × 10−6 1.58 9.7414 × 10−6 1.80 2478

ESDIRK4 1/100 4.5157 × 10−6 3.2613 × 10−5 425

1/200 7.7894 × 10−7 2.54 4.7845 × 10−5 2.77 773

1/400 6.0568 × 10−8 3.68 3.2420 × 10−7 3.88 1511

1/800 2.2122 × 10−8 1.45 1.5485 × 10−7 1.07 2802

BDF2 1/100 1.9170 × 10−3 3.0021 × 10−2 292

1/200 8.1561 × 10−3 1.23 1.1195 × 10−2 1.42 548

1/400 2.1372 × 10−4 1.93 2.8983 × 10−3 1.95 1074

1/800 5.6824 × 10−5 1.91 7.3097 × 10−4 1.99 2133

tolrel,nonlinear = 10−4, tolrel,linear = 10−1

ESDIRK2 1/100 4.4088 × 10−4 5.7335 × 10−3 375

1/200 1.1278 × 10−4 1.97 1.4549 × 10−3 1.98 723

1/400 2.8267 × 10−5 2.00 3.6420 × 10−4 2.00 1323

1/800 7.0691 × 10−6 2.00 9.1040 × 10−5 2.00 2504

ESDIRK3 1/100 1.5167 × 10−4 1.6911 × 10−3 537

1/200 2.3024 × 10−5 2.72 2.5401 × 10−4 2.74 956

1/400 3.0921 × 10−6 2.90 3.3171 × 10−5 2.94 1685

1/800 3.9376 × 10−7 2.97 4.1908 × 10−6 2.98 2890

ESDIRK4 1/100 3.4484 × 10−6 3.1216 × 10−5 597

1/200 2.1713 × 10−7 3.99 1.9593 × 10−6 4.00 1046

1/400 1.3573 × 10−8 4.00 1.2257 × 10−7 4.00 1920

1/800 1.1691 × 10−9 3.54 7.6729 × 10−9 3.81 3193

BDF2 1/100 1.9126 × 10−3 3.0095 × 10−2 329

1/200 8.4137 × 10−4 1.18 1.1454 × 10−2 1.39 627

1/400 2.3001 × 10−4 1.87 2.9892 × 10−3 1.94 1179

1/800 5.8417 × 10−5 1.98 7.5360 × 10−4 1.99 2294

123

39 Page 12 of 27 Journal of Scientific Computing (2020) 83 :39

Table 1 continued

�t/tp EL2
(ρ) Order EL2

(u) Order Run time (s)

tolrel,nonlinear = 10−6, tolrel,linear = 10−1

ESDIRK2 1/100 4.4088 × 10−4 5.7335 × 10−3 464

1/200 1.1278 × 10−4 1.97 1.4549 × 10−3 1.98 814

1/400 2.8267 × 10−5 2.00 3.6420 × 10−4 2.00 1503

1/800 7.0691 × 10−6 2.00 9.1041 × 10−5 2.00 2672

ESDIRK3 1/100 1.5165 × 10−4 1.6911 × 10−3 692

1/200 2.3021 × 10−5 2.72 2.5399 × 10−4 2.74 1138

1/400 3.0914 × 10−6 2.90 3.3165 × 10−5 2.94 1877

1/800 3.9326 × 10−7 2.97 4.1867 × 10−5 2.99 3369

ESDIRK4 1/100 3.4502 × 10−6 3.1249 × 10−5 780

1/200 2.1706 × 10−7 3.99 1.9593 × 10−6 4.00 1310

1/400 1.3584 × 10−8 4.00 1.2270 × 10−7 4.00 2156

1/800 8.4961 × 10−10 4.00 7.6728 × 10−9 4.00 3751

BDF2 1/100 1.9126 × 10−3 3.0096 × 10−2 389

1/200 8.4141 × 10−4 1.18 1.1454 × 10−2 1.39 708

1/400 2.3010 × 10−4 1.87 2.9890 × 10−3 1.94 1230

1/800 5.8409 × 10−5 1.98 7.5350 × 10−3 1.99 2463

tolrel,nonlinear = 10−8, tolrel,linear = 10−1

ESDIRK2 1/100 4.4088 × 10−4 5.7335 × 10−3 546

1/200 1.1278 × 10−4 1.97 1.4549 × 10−3 1.98 930

1/400 2.8267 × 10−5 2.00 3.6420 × 10−4 2.00 1601

1/800 7.0691 × 10−6 2.00 9.1041 × 10−5 2.00 3003

ESDIRK3 1/100 1.5165 × 10−4 1.6911 × 10−3 891

1/200 2.3021 × 10−5 2.72 2.5399 × 10−4 2.74 1373

1/400 3.0913 × 10−6 2.90 3.3164 × 10−5 2.94 2138

1/800 3.9326 × 10−7 2.97 4.1867 × 10−5 2.99 3867

ESDIRK4 1/100 3.4502 × 10−6 3.1249 × 10−5 971

1/200 2.1706 × 10−7 3.99 1.9593 × 10−6 4.00 1550

1/400 1.3584 × 10−8 4.00 1.2270 × 10−7 4.00 2543

1/800 8.4976 × 10−10 4.00 7.6747 × 10−9 4.00 4370

BDF2 1/100 1.9126 × 10−3 3.0096 × 10−2 455

1/200 8.4141 × 10−4 1.18 1.1454 × 10−2 1.39 786

1/400 2.3010 × 10−4 1.87 2.9890 × 10−3 1.94 1393

1/800 5.8409 × 10−5 1.98 7.5350 × 10−3 1.99 2651

123

Journal of Scientific Computing (2020) 83 :39 Page 13 of 27 39

Table 2 The effect of

tolrel,linear on computational

cost of ESDIRK

tolrel,linear Run time (s)

10−1 10−2 10−4 10−6

ESDIRK2 tp/100 464 503 693 1041

tp/200 814 856 1109 1551

tp/400 1503 1563 1909 2501

tp/800 2672 2875 3334 4203

ESDIRK3 tp/100 692 686 1036 1041

tp/200 1138 1128 1584 2419

tp/400 1877 1865 2580 3695

tp/800 3369 3526 4430 5908

ESDIRK4 tp/100 780 875 1326 2095

tp/200 1310 1410 2133 3004

tp/400 2156 2439 3277 4844

tp/800 3751 4136 5527 7636

Figure 1b presents the run time versus errors of different time integrators with differ-

ent convergence criteria. As illustrated in Fig. 1b, all multistage methods are significantly

more efficient than BDF2. We notice that ROW2 and ESDIRK2 intersect with ROW3 and

ESDIRK3. However, as the error threshold is decreased, higher-order methods will be more

efficient. When tol E SDI RK
rel,nonlinear is the same as tol ROW

rel,linear , ROW methods are more efficient

than ESDIRK methods. However, ROW methods cannot preserve the nominal order of accu-

racy when the convergence criterion is not tight, and even suffer from severe order reduction

[40]. Instead, tolrel,nonlinear = 10−4 can make ESDIRK methods preserve the nominal order

of accuracy (0.46 order reduction at most). It is observed that when tol ROW
rel,linear = 10−6 and

tol E SDI RK
rel,nonlinear = 10−4 are employed, the ESDIRK method is more efficient than the ROW

method when they have the same order of accuracy and number of stages. This indicates

that the ESDIRK method tends to be over-solved more easily than the ROW method if the

nonlinear convergence criterion tol E SDI RK
rel,nonlinear is not set up judiciously. We also note that

ESDIRK can be more robust than ROW. As documented in Tables 1 and 3, when the tolerance

criteria are set to 10−2, ESDIRK2 can show optimal convergence rate, while ROW cannot;

when �t = tp/100, ROW2 even fails to converge.

4.2 Laminar Flow Over a Circular Cylinder

In this subsection, we employ laminar flow over the circular cylinder as an example to study

the performance of different time integrators. This case has been tested in various literature

[21,45]. The Reynolds number of the inflow with respect to the diameter of the cylinder is

Red = 1200, and the Mach number is Ma = 0.1. The diameter of the cylinder is d = 1, and

the computational domain is [−100, 200] × [−100, 100]. The mesh in the near wall region

and the wake region, and an instance of the vortex shedding are presented in Fig. 2. There are

5690 elements in the mesh. The height of the first layer of the mesh is roughly 0.0033. The

P3 FR method is employed for spatial discretization. 16 processes are used for this case.

�τini t = 0.01 and �τmax = 1.0 are used for all numerical experiments in this section.

tol ROW
rel,linear = tol

E SDI RK ,B DF2
rel,nonlinear = 10−6, and tol

E SDI RK ,B DF2
rel,linear = 10−1. The maximum

123

39 Page 14 of 27 Journal of Scientific Computing (2020) 83 :39

Table 3 The convergence study for ROW methods with different tolrel,linear

�t/tp EL2
(ρ) Order EL2

(u) Order Run time (s)

tolrel,linear = 10−2

ROW2 1/100 Diverged − − −

1/200 2.3615 × 10−4 3.3198 × 10−3 537

1/400 9.9393 × 10−5 1.25 1.3753 × 10−3 1.27 1052

1/800 5.5248 × 10−5 0.85 7.4627 × 10−4 0.88 2073

ROW3 1/100 2.6132 × 10−4 2.6888 × 10−3 300

1/200 8.8493 × 10−5 1.56 8.3870 × 10−4 1.68 564

1/400 3.3446 × 10−5 1.40 4.0554 × 10−4 1.05 1124

1/800 9.1969 × 10−6 1.86 1.1447 × 10−4 1.82 2191

ROW4 1/100 3.6161 × 10−5 4.1926 × 10−4 344

1/200 9.0325 × 10−6 2.00 8.3350 × 10−5 2.33 638

1/400 2.7913 × 10−6 1.69 2.7282 × 10−5 1.61 1194

1/800 3.9397 × 10−6 −0.50 5.1692 × 10−5 -0.92 2282

tolrel,linear = 10−4

ROW2 1/100 Diverged − − −

1/200 8.6277 × 10−5 1.1163 × 10−3 641

1/400 2.1800 × 10−5 1.98 2.8024 × 10−3 1.99 1189

1/800 5.4708 × 10−6 1.99 7.1383 × 10−5 1.97 2255

ROW3 1/100 1.5467 × 10−4 1.7185 × 10−3 449

1/200 2.3151 × 10−5 2.74 2.5539 × 10−4 2.75 779

1/400 3.1137 × 10−6 2.89 3.3395 × 10−5 2.94 1382

1/800 4.0729 × 10−7 2.93 4.2406 × 10−6 2.98 2565

ROW4 1/100 4.0016 × 10−6 3.8660 × 10−5 487

1/200 3.5565 × 10−7 3.49 3.4725 × 10−6 3.47 846

1/400 2.7298 × 10−8 3.70 1.6676 × 10−7 4.38 1563

1/800 1.8642 × 10−8 0.55 2.2003 × 10−7 -0.40 2769

tolrel,linear = 10−6

ROW2 1/100 Diverged − − −

1/200 8.6820 × 10−5 1.1229 × 10−3 767

1/400 2.1813 × 10−5 1.99 2.8148 × 10−4 2.00 1377

1/800 5.4628 × 10−6 2.00 7.0399 × 10−5 2.00 2500

ROW3 1/100 1.5474 × 10−4 1.7185 × 10−3 690

1/200 2.3165 × 10−5 2.74 2.5534 × 10−4 2.75 1036

1/400 3.1047 × 10−6 2.90 3.3251 × 10−5 2.94 1712

1/800 4.0081 × 10−7 2.95 4.1768 × 10−6 2.99 3004

ROW4 1/100 3.9102 × 10−6 3.6770 × 10−5 682

1/200 2.5386 × 10−7 3.95 2.3433 × 10−6 3.97 1091

1/400 2.5819 × 10−8 3.30 1.3773 × 10−7 4.09 1849

123

Journal of Scientific Computing (2020) 83 :39 Page 15 of 27 39

Table 3 continued

�t/tp EL2
(ρ) Order EL2

(u) Order Run time (s)

1/800 7.5834 × 10−9 1.78 1.7492 × 10−8 2.98 3184

tolrel,linear = 10−8

ROW2 1/100 Diverged − − −

1/200 8.6824 × 10−5 1.1229 × 10−3 906

1/400 2.1810 × 10−5 1.99 2.8147 × 10−4 2.00 1557

1/800 5.4619 × 10−6 2.00 7.0398 × 10−5 2.00 2722

ROW3 1/100 1.5476 × 10−4 1.7186 × 10−3 862

1/200 2.3158 × 10−5 2.74 2.5535 × 10−4 2.75 1589

1/400 3.1015 × 10−6 2.90 3.3242 × 10−5 2.94 2149

1/800 4.0093 × 10−7 2.95 4.2024 × 10−6 2.98 3481

ROW4 1/100 3.9055 × 10−6 3.6728 × 10−5 1186

1/200 2.5299 × 10−7 3.96 2.3382 × 10−6 3.97 1381

1/400 2.6107 × 10−8 3.28 1.4352 × 10−7 4.03 2237

1/800 7.5988 × 10−9 1.78 1.7442 × 10−8 3.04 3720

number of iterations for GMRES is 500. As aforementioned, for ESDIRK and BDF2, if the

linear solver fails to drive the residual to drop by one order of magnitude, the current iteration

in the pseudo-transient continuation procedure will decrease �τmax by half and restart.

The flow is initialized with the steady solution when Re = 40. Then, we use ESDIRK4

to run this simulation untill t = 180 with �t = 0.001 to obtain the initial conditions for

the convergence and efficiency study. For the convergence and efficiency study, we run all

simulations for ten convective time units. The time step size �t is refined from 0.2 to 0.00625.

We use the numerical results of explicit SSPRK3 with a small time step �t = 5 × 10−6 as

the reference. The drag coefficient Cd is used for the error estimation. The error is calculated

as

Error(Cd) =

√∑N
n=1(Cd,n − Cd,re f ,n)2

N
, (35)

where Cd,re f ,n is the reference value from SSPRK3, and N is the number of time steps.

The results from convergence and efficiency study are presented in Fig. 3a, b, respectively.

As the time step size �t is refined, all second- and third-order methods will converge at the

nominal convergence rate. For both ROW4 and ESDIRK4, we have observed order reduction.

The order reduction of ROW4 is more severe than that of ESDIRK4. In terms of run time,

when �t = 0.2, unexpected computational cost is observed for ESDIRK and BDF2. Many

iterations in the pseudo-transient continuation are rejected due to the poor performance of the

element-Jacobi preconditioner. However, all ROW methods fail when �t = 0.2 and ROW2

even fails when �t = 0.1. At a relatively large error level, such as 10−3, second-order

methods take the least amount of time. However, to reach a lower error level, higher-order

methods are more efficient. We have noticed that the abnormal increase in run time for ROW4

when �t = 0.05 and �t = 0.025. This is due to the fact that the residual of the restarted

GMRES solver with an element-Jacobi preconditioner sometimes cannot converge to the

designated tol ROW
rel,linear when the maximum number of iteration is reached. From this study,

123

39 Page 16 of 27 Journal of Scientific Computing (2020) 83 :39

t/t
p

E
r
r
o
r

0.002 0.004 0.006 0.008 0.01
10

-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

ROW2

ROW3

ROW4

BDF2

ESDIRK2

ESDIRK3

ESDIRK4

2

3

4

(a)

Run time (seconds)

E
r
r
o
r

2000 4000 6000 8000 10000

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

ROW2, 10
-4

ROW2, 10
-6

ROW3, 10
-4

ROW3, 10
-6

ROW4, 10
-4

ROW4, 10
-6

BDF2, 10
-4

BDF2, 10
-6

ESDIRK2, 10
-4

ESDIRK2, 10
-6

ESDIRK3, 10
-4

ESDIRK3, 10
-6

ESDIRK4, 10
-4

ESDIRK4, 10
-6

(b)

Fig. 1 a The convergence study of different time integrators and b efficiency study of different time integrators

for the vortex propagation

we find that the performance of schemes from the ESDIRK family is more consistent than

that of ROW methods when simulating unsteady flows over walls. Due to the limitation of the

element-Jacobi preconditioner, ROW is only found to be consistently more efficient when the

time step size �t is small enough such that the GMRES solver can converge to the designated

tol ROW
rel,linear within the maximum number of iterations.

123

Journal of Scientific Computing (2020) 83 :39 Page 17 of 27 39

Fig. 2 The mesh and an instance of the wake of vortex shedding for the laminar flow over a circular cylinder

when Red = 1200

t

E
r
r
o
r

0.05 0.1 0.15 0.2

10
-6

10
-5

10
-4

10
-3

10
-2

ROW2

ROW3

ROW4

BDF2

ESDIRK2

ESDIRK3

ESDIRK4

2

3

4

Run time (seconds)

E
r
r
o
r

3000 6000 9000 12000

10
-6

10
-5

10
-4

10
-3

10
-2

ROW2

ROW3

ROW4

BDF2

ESDIRK2

ESDIRK3

ESDIRK4

(b)(a)

Fig. 3 The convergence and efficiency study for the laminar flow over the circular cylinder. a Error vs. the

time step size �t and b error vs. run time

4.3 Taylor–GreenVortex

The Taylor–Green vortex is a benchmark to test the accuracy and performance of high-order

methods on the direct numerical simulation of a 3D periodic and transitional flow defined by

initial conditions [42]
⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u = V0 sin(x/L) cos(y/L) cos(z/L),

v = −V0 cos(x/L) sin(y/L) cos(z/L),

w = 0,

p = p0 +
ρ0V 2

0
16

(cos(2x/L) + cos(2y/L)) (cos(2z/L) + 2) .

(36)

The domain is � = [−π L, π L]3. The Reynolds number of the flow is defined as Re =
ρ0V0 L

μ

and is equal to 1600. For this study, we consider the flow with weak compressibility and the

perfect gas law holds, i.e., p = ρRT . The Prandtl number is Pr =
μcp

κ
= 0.71. We assume

that the gas has zero bulk viscosity μv = 0. The Mach number Ma = V0
c0

= 0.1, where c0

is the speed of sound corresponding to p0. The characteristic convection time is defined as

tc = L
V0

. The maximum dissipation occurs at t ≈ 8tc. An uniform 643 mesh is employed

and the P3 FR methods is used for the spatial discretization. 512 processes are employed to

123

39 Page 18 of 27 Journal of Scientific Computing (2020) 83 :39

Fig. 4 The isosurface of the Q criterion, where Qcri terion = 1, colored by Ma at t = 8tc for Taylor–Green

vortex evolution

conduct the numerical experiments. The numerical simulation is conducted until t = 10tc.

Figure 4 presents the isosurface of the Q criterion, where Qcri terion = 1, colored by Ma at

t = 8tc.

We employ the error of kinetic energy dissipation rate for the accuracy and efficiency

study. The kinetic energy dissipation rate of compressible flows is the summation of three

parts as ǫ = ǫ1 + ǫ2 + ǫ3:

ǫ1 = 2
μ

ρ0

1

V

∫

�

Sd : Sd V , (37)

where Sd is the deviatoric part of the strain rate tensor, and V is the volume of the domain

�,

ǫ2 =
μv

ρ0

1

V

∫

�

(∇ · v)2dV , (38)

where μv = 0, and

ǫ3 = −
1

ρ0

1

V

∫

�

p∇ · vdV . (39)

The numerical results of SSPRK3 method with �t = 2 × 10−4tc is adopted as the reference

data for error evaluations. We define the error of the kinetic energy dissipation rate as

Error(ǫ) =

√∑N
n=1(ǫn − ǫre f ,n)2

N
, (40)

where ǫre f ,n is the reference value from SSPRK3, and N is the number of time steps.

As discovered in previous sections, the convergence criteria have significant effect on

the efficiency of ROW, ESDIRK and BDF2. In this section, we only consider tolrel,linear

123

Journal of Scientific Computing (2020) 83 :39 Page 19 of 27 39

t/t
c

0 2 4 6 8 10

0.002

0.004

0.006

0.008

0.010

0.012

ROW2

ROW3

ROW4

BDF2

ESDIRK2

ESDIRK3

ESDIRK4

SSPRK3

Spectral

t/t
c

7 7.5 8 8.5 9 9.5 10
0.010

0.010

0.011

0.011

0.012

0.012 ROW2

ROW3

ROW4

BDF2

ESDIRK2

ESDIRK3

ESDIRK4

SSPRK3

Spectral

(b)(a)

Fig. 5 The kinetic energy dissipation rate history of Taylor–Green vortex decaying. a A full view when

t/tc ∈ [0, 10], b a close-up view when t/tc ∈ [7, 10]

of ROW is the same as tolrel,nolinear of ESDIRK and BDF2. Herein, tol ROW
rel,linear =

tol
E SDI RK ,B DF2
rel,nonlinear = 10−6. For the inexactly linear-solving part of ESDIRK and BDF2,

we employ tol
E SDI RK ,B DF2
rel,linear = 10−1 to save computational cost. The maximum number of

iterations for GMRES is 600, which is large enough to guarantee that GMRES can converge

to the designated tolerance for all implicit time integrators.

The time step size �t is refined from tc/25 to tc/100. The kinetic energy dissipation rate

history when �t = tc/25 is presented in Fig. 5a. A close-up view within t/tc ∈ [8.5, 10]

is illustrated in Fig. 5b. The numerical results from the spectral method on a 5123 mesh is

also presented for reference [56]. Our observation is that the results of ROW4 and ESDIRK4

almost coincide with that of SSPRK3. BDF2 is much more dissipative than ROW2 and

ESDIRK2. The convergence study is presented in Fig. 6. Figure 6a shows the error vs. time

step size �t/tc and Fig. 6b shows the error vs. run time. From Fig. 6a, the convergence features

of ROW and ESDIRK are almost the same. As is shown in Fig. 6b, BDF2 is not as efficient

as ROW2 and ESDIRK2 as expected. When tol ROW
rel,linear = tol

E SDI RK ,B DF2
rel,nonlinear = 10−6, ROW

methods are found to be more efficient than ESDIRK methods. From Fig. 5, we find that for

turbulent simulation, compared to the results from SSPRK3 with very small time steps, all

time integrators with excessively large time step size will lead to numerical dissipation of the

kinetic energy dissipation rate except ROW4 and ESDIRK4. This reveals that the dissipation

due to the temporal disretization should also be taken into account for turbulent simulation.

We refers interested readers to Refs. [18,19] for more discussions.

4.4 Transitional Flow Over the SD7003Wing

The transitional flow over the SD7003 wing is studied when the Reynolds number of the

inflow with respect to the chord length of the wing is Rec = 60000 and the angle of attack

(AoA) of the inflow is 8◦. The Mach number is Ma = 0.1. The geometry is obtained from

the 1st International Workshop on High-Order CFD Methods [57]. The chord length is c = 1

with the sharp trailing edge rounded by an arc of radius r ≈ 0.0004c. The unstructured mesh

near the SD7003 wing is illustrated in Fig. 7. The height of the first layer close to the wall is

0.0003c. The 3D mesh is obtained by extruding a 2D mesh along the z-direction for 20 layers

123

39 Page 20 of 27 Journal of Scientific Computing (2020) 83 :39

t/t
c

E
r
r
o
r
(

)

0.01 0.02 0.03 0.04

10
-8

10
-7

10
-6

10
-5

10
-4

ROW2

ROW3

ROW4

BDF2

ESDIRK2

ESDIRK3

ESDIRK4

2

3

4

Run time (seconds)

E
r
r
o
r
(

)

50000 100000 150000 200000

10
-7

10
-6

10
-5

10
-4

ROW2

ROW3

ROW4

BDF2

ESDIRK2

ESDIRK3

ESDIRK4

(b)(a)

Fig. 6 The convergence and efficiency study for Taylor–Green vortex evolution. a Error vs. time step size

�t/tc and b error vs. run time

and each layer has a thickness of 0.01c. There are 109540 quadric hexahedral elements. The

third-order FR method is employed for spatial discretization. 252 processes are used for the

parallel simulation in this section.

We compare the computational cost of BDF2, ESDIRK2, ROW2 and the explicit SSPRK3.

We run all simulations until tend = 32 and the instantaneous solutions in t ∈ (26, 32] are

averaged for statistics. For BDF2 and ESDIRK2, �t = 0.002 is used and the flow field is

initialized uniformly with the inflow conditions. ROW2 fails when the time step �t equals

to 0.002. Therefore, we use a smaller time step size �t = 0.001 for ROW2. In this section,

tol ROW
rel,linear = tol

E SDI RK ,B DF2
rel,nonlinear = 10−4 and tol

E SDI RK ,B DF2
rel,linear = 10−1. �τini t = 0.0002

and �τmax = 0.004 are used for ESDIRK2 and BDF2. The maximum number of iterations

for the GMRES solver is 200. We use SSPRK3 to run this simulation for 32 convective time

units with �t = 2 × 10−6, which is slightly smaller than the allowed maximum time step

size, as a reference. Note that the time step for the explicit SSPRK3 method is about three

orders of magnitude smaller than that for the implicit methods due to the highly anisotropic

mesh near the wing.

The instantaneous isosurface of Q criterion, where Qcri terion = 500, and the averaged

field of the velocity component in the x-direction are plotted in Fig. 8a, b, respectively.

Numerical predictions, namely, the time-averaged lift coefficient Cl , drag coefficient Cd , the

separation point xs , and the reattachment point xre, are documented in Table 4. The predictions

of different time integration methods are close to each other. Compared to previous numerical

and experimental results, a decent agreement has been observed. Run time of all methods is

also provided. Due to the difficulty of determining the accuracy of different time integration

methods via inspecting the averaged values, we examine the run time only. It is observed that

all implicit time integration methods are significantly faster than the explicit method. Up to

82.36% computational cost can be saved by employing an implicit time integrator instead of

using an explicit one. Not surprisingly, BDF2 takes the largest amount of run time to finish

the simulation. Even though ROW2 diverged when �t = 0.002, it can still outperform BDF2

with a smaller �t = 0.001 and is only slightly more expensive than ESDIRK2. Note that the

total number of time steps of ROW is twice as that of ESDIRK2 and BDF2. This indicates

that when the time step size is refined to a suitable level, i.e., the linear solver can easily

123

Journal of Scientific Computing (2020) 83 :39 Page 21 of 27 39

Fig. 7 Unstructured meshes near the SD7003 wing

Fig. 8 a The isosurface of Q criterion, where Qcri terion = 500, at t = 32 and b averaged velocity component

in the x-direction using ESDIRK2

converge to preserve the accuracy of ROW, the performance of ROW is comparable with that

of ESDIRK.

5 Conclusions

In this work, we compare the accuracy and efficiency of ROW and ESDIRK (from second

order to fourth order) and BDF2 for unsteady flow simulation with the high-order FR for-

mulation. We find that ROW2 and ESDIRK2 are more computationally efficient than BDF2.

To achieve an accurate estimation, i.e., the target error is small, higher-order implicit time

integrators are more efficient than lower-order ones.

The efficiency of ROW and ESDIRK highly depends on the convergence criteria of solving

nonlinear and linear equations. For most of the case, when tol ROW
rel,linear = tol E SDI RK

rel,nonlinear and

the time step size is refined, ROW is more efficient since it only needs to solve one linear sys-

tem at each stage. However, the tolerance tol ROW
rel,linear needs to be sufficiently small to preserve

the order of accuracy of ROW. With a large time step size, to drive the residual of GMRES to a

trivial value is expensive with the element-Jacobi preconditioner for wall-bounded flows; this

may degrade the advantage of ROW over ESDIRK. Besides, the ROW method is more prone

to suffer from order reduction. On the contrary, the tolerance tol E SDI RK
rel,nonlinear for the pseudo-

time iterations in ESDIRK can be relatively larger than tol ROW
rel,linear to preserve the nominal

123

39 Page 22 of 27 Journal of Scientific Computing (2020) 83 :39

Table 4 A summary of flow statistics from long-time simulation of the transitional flow over SD7003

Time marching Ma Cl Cd xs xre Run time (h)

BDF2 (current work) 0.1 0.9212 0.0476 0.0301 0.3290 58.77

ESDIRK2 (current work) 0.1 0.9191 0.0474 0.0302 0.3258 56.06

ROW2 (current work) 0.1 0.9236 0.0459 0.0293 0.3119 57.02

SSPRK3 (current work) 0.1 0.9201 0.0463 0.0306 0.3216 317.75

Beck et al. [58] 0.1 0.923 0.045 0.027 0.310

Galbraith and Visbal [59] 0.1 0.91 0.043 0.04 0.28

Bassi et al. [41] Inc. 0.953 0.045 0.027 0.294

Selig [60] Exp. 0.92 0.029

The abbreviation Inc. stands for incompressible and Exp. stands for experiment

order of accuracy. Therefore, when tol E SDI RK
rel,nonlinear is allowed to be larger than tol ROW

rel,linear ,

ESDIRK can be more efficient. The inexact Newton’s method, i.e., the pseudo-transient con-

tinuation, gives ESDIRK the edge that the stiffness of the linearized system can be controlled

with the pseudo time step size. A relaxed GMRES tolerance, such as tol E SDI RK
rel,linear = 10−1,

can be used to accelerate simulation. This feature makes ESDIRK more robust and allow for

a larger time step size than ROW.

We note that the preconditioner has a significant impact on the performance of implicit

time integrators. In this work, only the element-Jacobi preconditioner is considered. Future

work will be to develop low-storage preconditioners, such as the p-multigrid preconditioner,

to improve the efficiency of implicit time marching methods.

Acknowledgements The authors gratefully acknowledge the support of the Office of Naval Research through

the award N00014-16-1-2735, and the faculty startup support from the department of mechanical engineering

at the University of Maryland, Baltimore County (UMBC). The hardware used in the computational studies

is part of the UMBC High Performance Computing Facility (HPCF). The facility is supported by the U.S.

National Science Foundation through the MRI program (Grant Nos. CNS-0821258, CNS-1228778, and OAC-

1726023) and the SCREMS program (Grant No. DMS-0821311), with additional substantial support from

UMBC.

Appendix

The coefficients of ESDIRK and ROW methods investigated in this study are documented

here for completeness.

See Tables 5 and 6.

123

Journal of Scientific Computing (2020) 83 :39 Page 23 of 27 39

Table 5 Coefficients of ESDIRK methods

ESDIRK2 [33] ESDIRK4 [21]

ω = 0.2928932188134524 ω = 0.25

a21 = 0.2928932188134524 a21 = 0.25

a31 = 0.3535533905932738 a31 = 0.137776

a32 = 0.3535533905932738 a32 = −0.055776

b1 = 0.3535533905932738 a41 = 0.1446368660269822

b2 = 0.3535533905932738 a42 = −0.2239319076133447

b3 = 0.2928932188134524 a43 = 0.4492950415863626

ESDIRK3 [21] a51 = 0.0982587832835648

ω = 0.4358665215084590 a52 = −0.5915442428196704

a21 = 0.4358665215084590 a53 = 0.8101210538282996

a31 = 0.2576482460664272 a54 = 0.2831644057078060

a32 = −0.0935147675748862 a61 = 0.1579162951616714

a41 = 0.1876410243467238 a62 = 0.0

a42 = −0.5952974735769549 a63 = 0.1867589405240008

a43 = 0.9717899277217721 a64 = 0.6805652953093346

b1 = 0.1876410243467238 a65 = −0.2752405309950067

b2 = −0.5952974735769549 b1 = 0.1579162951616714

b3 = 0.9717899277217721 b2 = 0.0

b4 = 0.4358665215084590 b3 = 0.1867589405240008

b4 = 0.6805652953093346

b5 = −0.2752405309950067

b6 = 0.25

123

39 Page 24 of 27 Journal of Scientific Computing (2020) 83 :39

Table 6 Coefficients of ROW methods

ROW2 [37] ROW4 [38]

ω = 0.2281554936539618 ω = 0.25

a21 = 4.3829757679062376 a21 = 3.0

a31 = 4.3829757679062376 a31 = 1.831036793486759

a32 = 4.3829757679062376 a32 = 0.495518396743379

c21 = −4.3829757679062376 a41 = 2.304376582692669

c31 = −4.3829757679062376 a42 = −0.052492752457430

c32 = −16.827500814147036 a43 = −1.176798761832782

m1 = 4.3829757679062377 a51 = −7.170454962423024

m2 = 4.3829757679062377 a52 = −4.741636671481785

m3 = 1.0 a53 = −16.31002631330971

ROW3 [36] a54 = −1.062004044111401

ω = 0.4358665215084590 a61 = −7.170454962423024

a21 = 2.0 a62 = −4.741636671481785

a31 = 1.4192173174557646 a63 = −16.31002631330971

a32 = −0.2592322116729697 a64 = −1.062004044111401

a41 = 4.1847604823191607 a65 = 1.0

a42 = −0.2851920173554959 c21 = 3.0

a43 = 2.2942803602790417 c31 = 1.831036793486759

c21 = −4.5885607205580834 c32 = 0.495518396743379

c31 = −4.1847604823191607 c41 = 2.304376582692669

c32 = 0.2851920173554959 c42 = −0.052492752457430

c41 = −6.3681792001283574 c43 = −1.176798761832782

c42 = −6.7956209444668360 c51 = −7.170454962423024

c43 = 2.8700986043310560 c52 = −4.741636671481785

m1 = 4.1847604823191602 c53 = −16.31002631330971

m2 = −0.2851920173554959 c54 = −1.062004044111401

m3 = 2.2942803602790414 c61 = −7.170454962423024

m4 = 1.0 c62 = −4.741636671481785

c63 = −16.31002631330971

c64 = −1.062004044111401

c65 = 1.0

m1 = −7.170454962423024

m2 = −4.741636671481785

m3 = −16.31002631330971

m4 = −1.062004044111401

m5 = 1.0

m6 = 1.0

123

Journal of Scientific Computing (2020) 83 :39 Page 25 of 27 39

References

1. Cockburn, B., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element

method for conservation laws II: general framework. Math. Comput. 52, 411–435 (1989)

2. Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution

of the compressible Navier–Stokes equations. J Comput Phys 131(2), 267–279 (1997)

3. Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Appli-

cations. Springer, New York (2008)

4. Huynh, H.T.: A flux reconstruction approach to high-order schemes including discontinuous Galerkin

methods. In: The 18th AIAA Computational Fluid Dynamics Conference, (Miami, FL), AIAA-2007-

4079 (2007)

5. Huynh, H.T.: A reconstruction approach to high-order schemes including discontinuous Galerkin methods

for diffusion. In: The 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and

Aerospace, (Orlando, FL), AIAA-2009-403 (2009)

6. Wang, Z.J., Gao, H.Y.: A unifying lifting collocation penalty formulation including the discontinuous

Galerkin, spectral volume/difference methods for conservation laws on mixed grids. J. Comput. Phys.

228, 8161–8186 (2009)

7. Vincent, P.E., Castonguay, P., Jameson, A.: A new class of high-order energy stable flux reconstruction

schemes. J. Sci. Comput. 47, 50–72 (2011)

8. Bassi, F., Crivellini, A., Rebay, S., Savini, M.: Discontinuous Galerkin solution of the Reynolds-averaged

Navier–Stokes and k − −ω turbulence model equations. Comput. Fluids 34, 507–540 (2005)

9. Liang, C., Premasuthana, S., Jameson, A., Wang, Z.J.: Large eddy simulation of compressible turbulent

channel flow with spectral difference method. In: 47th AIAA Aerospace Sciences Meeting including The

New Horizons Forum and Aerospace Exposition, AIAA-2009-402, (2009)

10. Uranga, A., Persson, P.O., Drela, M., Peraire, J.: Implicit large eddy simulation of transition to turbulence

at low Reynolds numbers using a discontinuous Galerkin method. Int. J. Numer. Methods Eng. 87, 232–

261 (2011)

11. Bassi, F., Botti, L., Colombo, A., Crivellini, A., Ghidoni, A., Massa, F.: On the development of an implicit

high-order discontinuous Galerkin method for DNS and implicit LES of turbulent flows. Eur. J. Mech.-

B/Fluids 55, 367–379 (2016)

12. Ceze, M.A., Fidkowski, K.J.: High-order output-based adaptive simulations of turbulent flow in two

dimensions. AIAA J. 54, 2611–2625 (2016)

13. Wang, Z.J., Li, Y., Jia, F., Laskowski, G.M., Kopriva, J., Paliath, U., Bhaskaran, R.: Towards industrial

large eddy simulation using the FR/CPR method. Comput. Fluids 156, 579–589 (2017)

14. Park, J.S., Witherden, F.D., Vincent, P.E.: High-order implicit large-eddy simulations of flow over a

NACA0021 aerofoil. AIAA J. 55, 2186–2197 (2017)

15. Ahrabi, B.R., Brazell, M.J., Mavriplis, D.J.: An investigation of continuous and discontinuous finite-

element discretizations on benchmark 3D turbulent flows. In 2018 AIAA aerospace sciences meeting,

AIAA-2018-1569 (2018)

16. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods.

SIAM Rev. 43(1), 89–112 (2001)

17. Yang, H., Li, F., Qiu, J.: Dispersion and dissipation errors of two fully discrete discontinuous Galerkin

methods. J. Sci. Comput. 55, 552–574 (2013)

18. Vermeire, B., Vincent, P.: On the behaviour of fully-discrete flux reconstruction schemes. Comput. Meth-

ods Appl. Mech. Eng. 315, 1053–1079 (2017)

19. Alhawwary, M., Wang, Z.: Fourier analysis and evaluation of DG, FD and compact difference methods

for conservation laws. J. Comput. Phys. 373, 835–862 (2018)

20. Wanner, G., Hairer, E.: Solving Ordinary Differential Equations II. Springer, Berlin (1996)

21. Bijl, H., Carpenter, M.H., Vatsa, V.N., Kennedy, C.A.: Implicit time integration schemes for the unsteady

compressible Navier–Stokes equations: laminar flow. J. Comput. Phys. 179(1), 313–329 (2002)

22. Carpenter, M.H., Viken, S.A., Nielsen, E.J.: The efficiency of high order temporal schemes. In: AIAA

Paper, vol. 86 (2003)

23. Wang, L., Mavriplis, D.J.: Implicit solution of the unsteady euler equations for high-order accurate

discontinuous Galerkin discretizations. J. Comput. Phys. 225(2), 1994–2015 (2007)

24. Cash, J.: On the integration of stiff systems of ODEs using extended backward differentiation formulae.

Numer. Math. 34(3), 235–246 (1980)

25. Voss, D.A., Casper, M.J.: Efficient split linear multistep methods for stiff ordinary differential equations.

SIAM J. Sci. Stat. Comput. 10(5), 990–999 (1989)

26. Psihoyios, G.-Y., Cash, J.: A stability result for general linear methods with characteristic function having

real poles only. BIT Numer. Math. 38(3), 612–617 (1998)

123

39 Page 26 of 27 Journal of Scientific Computing (2020) 83 :39

27. Psihoyios, G.: A general formula for the stability functions of a group of implicit advanced step-point

(IAS) methods. Math. Comput. Model. 46(1–2), 214–224 (2007)

28. Nigro, A., Ghidoni, A., Rebay, S., Bassi, F.: Modified extended BDF scheme for the discontinuous

Galerkin solution of unsteady compressible flows. Int. J. Numer. Methods Fluids 76(9), 549–574 (2014)

29. Nigro, A., De Bartolo, C., Bassi, F., Ghidoni, A.: Up to sixth-order accurate A-stable implicit schemes

applied to the discontinuous Galerkin discretized Navier–Stokes equations. J. Comput. Phys. 276, 136–

162 (2014)

30. Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. Wiley, Chichester (2002)

31. Jameson, A.: Time dependent calculations using multigrid, with applications to unsteady flows past airfoils

and wings. In 10th Computational Fluid Dynamics Conference, p. 1596 (1991)

32. Jameson, A.: Evaluation of fully implicit Runge Kutta schemes for unsteady flow calculations. J. Sci.

Comput. 73(2–3), 819–852 (2017)

33. Kennedy, C.A., Carpenter, M.H.: Diagonally Implicit Runge-Kutta Methods for Ordinary Differential

Equations. A Review. Tech. Rep. NASA/TM–2016–219173, NASA (2016)

34. Baker, A.J., Iannelli. G.S.: A stiffly-stable implicit Runge-Kutta algorithm for CFD applications. In: 26th

AIAA Aerospace Sciences Meeting, AIAA Paper 88-0416 (1988)

35. Lang, J., Verwer, J.: ROS3P—an accurate third-order Rosenbrock solver designed for parabolic problems.

BIT Numer. Math. 41(4), 731–738 (2001)

36. Rang, J., Angermann, L.: New Rosenbrock W-methods of order 3 for partial differential algebraic equa-

tions of index 1. BIT Numer. Math. 45(4), 761–787 (2005)

37. Rang, J.: An analysis of the Prothero–Robinson example for constructing new DIRK and ROW methods.

J. Comput. Appl. Math. 262, 105–114 (2014)

38. Steinebach, G.: Order-reduction of ROW-methods for DAEs and method of lines applications.

Preprint/Fachbereich Mathematik, Technische Hochschule Darmstadt, vol. 1741 (1995)

39. Tranquilli, P., Sandu, A.: Rosenbrock–Krylov methods for large systems of differential equations. SIAM

J. Sci. Comput. 36(3), A1313–A1338 (2014)

40. Rang, J.: Improved traditional Rosenbrock–Wanner methods for stiff ODEs and DAEs. J. Comput. Appl.

Math. 286, 128–144 (2015)

41. Bassi, F., Botti, L., Colombo, A., Ghidoni, A., Massa, F.: Linearly implicit Rosenbrock-type Runge-Kutta

schemes applied to the discontinuous Galerkin solution of compressible and incompressible unsteady

flows. Comput. Fluids 118, 305–320 (2015)

42. Liu, X., Xia, Y., Luo, H., Xuan, L.: A comparative study of Rosenbrock-type and implicit Runge-Kutta time

integration for discontinuous Galerkin method for unsteady 3D compressible Navier–Stokes equations.

Commun. Comput. Phys. 20(4), 1016–1044 (2016)

43. Franciolini, M., Crivellini, A., Nigro, A.: On the efficiency of a matrix-free linearly implicit time integra-

tion strategy for high-order discontinuous Galerkin solutions of incompressible turbulent flows. Comput.

Fluids 159, 276–294 (2017)

44. Wang, L., Yu, M.: On the parallel implementation and performance study of high-order Rosenbrock-type

implicit Runge–Kutta methods for the FR/CPR solutions of the Navier–Stokes equations. In: 2018 AIAA

Aerospace Sciences Meeting, AIAA-2018-1095 (2018)

45. Blom, D.S., Birken, P., Bijl, H., Kessels, F., Meister, A., van Zuijlen, A.H.: A comparison of Rosenbrock

and ESDIRK methods combined with iterative solvers for unsteady compressible flows. Adv. Comput.

Math. 42(6), 1401–1426 (2016)

46. Sarshar, A., Tranquilli, P., Pickering, B., McCall, A., Roy, C.J., Sandu, A.: A numerical investigation of

matrix-free implicit time-stepping methods for large CFD simulations. Comput. Fluids 159, 53–63 (2017)

47. Persson, P.-O., Peraire, J.: Newton-GMRES preconditioning for discontinuous Galerkin discretizations

of the Navier–Stokes equations. SIAM J. Sci. Comput. 30, 2709–2733 (2008)

48. Roe, P.L.: Approximate Riemann solvers, parameter vectors and difference schemes. J. Comput. Phys.

43, 357–372 (1981)

49. Gao, H., Wang, Z., Huynh, H.: Differential formulation of discontinuous Galerkin and related methods

for the Navier–Stokes equations. Commun. Comput. Phys. 13(4), 1013–1044 (2013)

50. Mulder, W.A., Van Leer, B.: Experiments with implicit upwind methods for the Euler equations. J. Comput.

Phys. 59(2), 232–246 (1985)

51. Knoll, D.A., Keyes, D.E.: Jacobian-free Newton–Krylov methods: a survey of approaches and applica-

tions. J. Comput. Phys. 193(2), 357–397 (2004)

52. Balay, S., Abhyankar, S., Adams, M.F., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Eijkhout, V.,

Gropp, W.D., Kaushik, D., Knepley, M.G., McInnes, L.C., Rupp, K., Smith, B.F., Zampini, S., Zhang,

H., Zhang, H.: PETSc users manual. Tech. Rep. ANL-95/11-Revision 3.7, Argonne National Laboratory

(2016)

123

Journal of Scientific Computing (2020) 83 :39 Page 27 of 27 39

53. Sharov, D., Luo, H., Baum, J., Löhner, R.: Implementation of unstructured grid GMRES+LU-SGS method

on shared-memory, cache-based parallel computers. In: 38th Aerospace Sciences Meeting and Exhibit,

p. 927 (2000)

54. Franciolini, M., Botti, L., Colombo, A., Crivellini, A.: p-Multigrid matrix-free discontinuous Galerkin

solution strategies for the under-resolved simulation of incompressible turbulent flows (2018).

arXiv:1809.00866

55. Wang, L., Yu, M.: An Implicit high-order preconditioned flux reconstruction method for low-mach-

number flow simulation with dynamic meshes. Int. J. Numer. Methods Fluids 91, 348–366 (2019)

56. Van Rees, W.M., Leonard, A., Pullin, D., Koumoutsakos, P.: A comparison of vortex and pseudo-spectral

methods for the simulation of periodic vortical flows at high reynolds numbers. J. Comput. Phys. 230(8),

2794–2805 (2011)

57. Wang, Z.J., Fidkowski, K., Abgrall, R., Bassi, F., Caraeni, D., Cary, A., Deconinck, H., Hartmann, R.,

Hillewaert, K., Huynh, H.T., Kroll, N., May, G., Persson, P.O., van Leer, B., Visbal, M.: High order CFD

methods: current status and perspective. Int. J. Numer. Methods Fluids 72, 811–845 (2013)

58. Beck, A.D., Bolemann, T., Flad, D., Frank, H., Gassner, G.J., Hindenlang, F., Munz, C.-D.: High-order

discontinuous Galerkin spectral element methods for transitional and turbulent flow simulations. Int. J.

Numer. Methods Fluids 76(8), 522–548 (2014)

59. Galbraith, M., Visbal, M.: Implicit large eddy simulation of low Reynolds number flow past the SD7003

airfoil. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, p. 225 (2008)

60. Selig, M.S.: Summary of low speed airfoil data, vol. 1. SoarTech Publications, Virginia Beach (1995)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and

institutional affiliations.

123

http://arxiv.org/abs/1809.00866

	Comparison of ROW, ESDIRK, and BDF2 for Unsteady Flows with the High-Order Flux Reconstruction Formulation
	Abstract
	1 Introduction
	2 The Flux Reconstruction Method
	2.1 Governing Equations
	2.2 The Spatial Discretization

	3 Implicit Time Integrators and Iterative Methods
	3.1 Implicit Time Integrators
	3.2 Iterative Methods

	4 Numerical Results
	4.1 Vortex Propagation
	4.1.1 Effect of the Nonlinear and Linear Convergence Criteria on ESDIRK and BDF2
	4.1.2 Effect of the GMRES Convergence Criterion on ROW
	4.1.3 Comparison of Different Time Integrators

	4.2 Laminar Flow Over a Circular Cylinder
	4.3 Taylor–Green Vortex
	4.4 Transitional Flow Over the SD7003 Wing

	5 Conclusions
	Acknowledgements
	Appendix
	References

