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Abstract

We conduct a comparative study of the Jacobian-free linearly implicit Rosenbrock—Wanner
(ROW) methods, the explicit first stage, singly diagonally implicit Runge—Kutta (ESDIRK)
methods, and the second-order backward differentiation formula (BDF2) for the high-order
flux reconstruction/correction procedure via reconstruction solution of the unsteady Navier—
Stokes equations. Pseudo-transient continuation is employed to solve the nonlinear equation
at each stage of ESDIRK (excluding the first stage) and each step of BDF2. A Jacobian-free
implementation of the restarted generalized minimal residual method solver is employed
with a low storage element-Jacobi preconditioner to solve the linear system at each stage
of ROW and each pseudo time iteration of ESDIRK and BDF2. Several numerical exper-
iments, including both laminar and turbulent flow simulations, are conducted to carry out
the comparison. We observe that the multistage ROW2 and ESDIRK?2 are more efficient
than the multistep BDF2, and higher-order implicit time integrators are more efficient than
lower-order ones. In general, the ESDIRK method allows a larger physical time step size for
unsteady flow simulation than the ROW method when the element-Jacobi preconditioner is
employed, especially for wall-bounded flows; and the ROW method can be more efficient
than the ESDIRK method when the time step size is refined.

Keywords Rosenbrock—Wanner - ESDIRK - BDF2 - Jacobian-free GMRES - Flux
reconstruction/correction procedure via reconstruction - High-order spatiotemporal
methods - Unsteady flows

1 Introduction

High-order computational fluid dynamics (CFD) methods have been attracting much research
attention in past decades due to their high-resolution and low-dissipation properties that
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enable high-fidelity simulation of intricate flows. High-order spatial discretization methods,
such as discontinuous Galerkin (DG) methods [1-3] and FR/CPR methods [4—7], have shown
their capabilities of dealing with turbulent flows [8—15]. Usually, the high-order explicit
strong stability preserving Runge—Kutta (SSPRK) methods [16] are used to integrate the
semi-discretized governing equations for unsteady flow simulation. Due to the Courant—
Friedrichs—Lewy (CFL) number constraint, explicit time integration methods may not be the
optimal choice for efficient numerical simulation of stiff flow problems, such as wall-bounded
turbulent flows at high Reynolds numbers. To circumvent the CFL restriction, an implicit
time integration method can be employed. Recent work [17—-19] has confirmed that time
integration methods can have significant impact on unsteady flow simulation with high-order
spatial formulations. This motivates the present study to conduct a systematic comparison of
accuracy and efficiency among several widely used implicit time integration methods.

One family of the implicit time integrators is the multistep method [20]. In this family,
the standard BDF method is popular in the CFD community arguably due to its ease of
implementation. Since a BDF method is not A-stable when the order of accuracy exceeds
two, the second-order BDF2 is widely used for large-scale simulations instead of higher-order
BDF methods [21-23]. One direction to search for high-order A-stable multistep methods is
to “throw in additional stages, off-step points, super-future points and the like, which leads
into the large field of general linear methods” [20], such as the modified extended BDF
(MEBDF) [24], the split Adams—Moulton formula (SAMF) [25], and two implicit advanced
step-point (TTAS) method [26,27]. Interested readers are referred to the work by Carpenter
et al. [22] on a comparative study of implicit time integrators including the fourth-order
MEBDF4, and the work by Nigro et al. [28,29] on the application of MEBDF and TIAS to
Navier—Stokes equations discretized by the high-order DG method.

An alternative family of the implicit time integrators is the multistage implicit Runge—
Kutta (IRK) method [30]. We note that fully coupled IRK methods are not widely used in the
CFD community due to the complication of solving fully coupled nonlinear systems. Solution
strategies based on the dual time stepping procedure [31] have recently been reported by
Jameson [32] and several fully coupled IRK methods have been evaluated for unsteady flow
simulation. To decrease computational complexity, diagonally implicit Runge—Kutta (DIRK)
and singly diagonally implicit Runge—Kutta (SDIRK) methods can be used. A comprehensive
review of DIRK methods by Kennedy and Carpenter can be found in [33]. Vermeire and
Vincent have analyzed the dispersion and dissipation properties of fully-discrete high-order
FR methods with two SDIRK schemes, and provided insights on their suitability for implicit
large eddy simulation [18]. As a special case of SDIRK, the ESDIRK method reduces the
degree of the nonlinear systems of SDIRK by one. Comparisons of BDF and ESDIRK
methods have been performed in [21,23]. ESDIRK methods are found to be more efficient
than BDF methods. We note that for BDF and DIRK, a nonlinear system needs to be solved
at each step or each stage.

For the linearly implicit Rosenbrock method, only one linear system is to be solved at each
stage. Besides, the Jacobian matrix is only evaluated once at the first stage. All these features
can potentially make a Rosenbrock method more computationally efficient than a DIRK
method when they have the same number of stages and order of accuracy. In a traditional
Rosenbrock method, the exact Jacobian matrix [34,35] is critical to ensure accuracy. However,
in many stiff flow problems, the analytical Jacobian matrices are not easy to obtain; and
the matrix-based implementation can consume tremendous memory, thus impeding efficient
simulation of large-scale flow problems. The ROW method [36-38] can preserve the nominal
order of accuracy with an approximate Jacobian matrix. This flexibility makes it possible to
implement a Jacobian-free Krylov subspace solver. The Rosenbrock—Krylov (ROK) method
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[39] reformulates the Rosenbrock/ROW method such that stage vectors are obtained from the
Krylov subspace using the modified Arnoldi iteration. The ROK method naturally favors the
matrix-free implementation. We notice that the Rosenbrock method can suffer from order
reduction for moderately stiff problems and improvements have been developed in [40].
Recent results on the performance of several Rosenbrock methods on solving Navier—Stokes
equations with high-order DG-type schemes have been reported in a series of works [41-44].

When the Jacobian-free implementation is used, the advantage that the Jacobian matrix of
the Rosenbrock method only needs to be evaluated once for each time step does not hold any-
more. In fact, the performance of ROW and ESDIRK highly depends on how the linear and
nonlinear systems are solved. Blom et al. [45] have shown that ROW is not necessarily more
efficient than ESDIRK when a second-order central finite volume method is used. Liu et al.
[42] has conducted a comparative study of several third-order ROW methods and a third-order
ESDIRK (ESDIRK3) [21] method with a third-order hierarchical WENO (weighted essen-
tially non-oscillatory) reconstructed discontinuous Galerkin (rDG) method. They observed
that the third-order ROW methods tested are more efficient than ESDIRK3. Sarshar et al.
[46] conducted a comparative study of various matrix-free implicit time-stepping methods
on solving two-dimensional (2D) Navier—Stokes equations including SDIRK, Rosenbrock,
ROW, and ROK using a second-order spatial discretization. It is found that ROK can be a
competitive method compared to other implicit time integrations.

Contributions. In this work, we conduct comparison of the Jacobian-free ROW (second-,
third- and fourth-order schemes), ESDIRK (second-, third- and fourth-order schemes) and
BDF2 for the high-order FR solution of the unsteady compressible Navier—Stokes equations.
The nonlinear systems in ESDIRK and BDF?2 are solved by means of pseudo-transient contin-
uation. The restarted GMRES solver [47] with the element-Jacobi preconditioner serves as the
linear solver. The Jacobian-free implementation decreases the tremendous memory consump-
tion of matrix-based implementation. The accuracy and efficiency of different implicit time
integrators are compared using several laminar and turbulent flows, including 2D isentropic
vortex propagation, 2D laminar flow over a cylinder, three-dimensional (3D) Taylor—Green
vortex evolution, and the 3D transitional flow over the SD7003 wing at the chord-based
Reynolds number of 60000.

Article Organization. The rest of the paper is organized as follows. The FR discretization
of the 3D compressible Navier—Stokes equations is reviewed in Sect. 2. Section 3 introduces
all the time integration methods tested in this study as well as the matrix-free implementation
of the iterative methods. Numerical results and corresponding discussions are documented
in Sect. 4. We summarize this work in the last section.

2 The Flux Reconstruction Method

2.1 Governing Equations

The 3D unsteady compressible Navier—Stokes equations can be written as

oq
24 V.F=0, 1
o+ (D

where ¢ = (p, puj, E)T, j = 1,2, 3, is the vector of conserved variables, and IF' is the
corresponding flux tensor. Specifically, p is the fluid density, u j, j = 1, 2, 3, are the velocities
in three orthogonal directions, and E = % + %p 22:1 (uruy) is the total energy per unit
volume, where p = pRT is the pressure, T is the temperature, R = ¢, — ¢, is the ideal
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gas constant, y is the specific heat ratio defined as y = ¢, /cy, and ¢, and ¢, are specific
heat capacities at constant pressure and volume, respectively. In this study, y is set as 1.4.
The flux tensor [F consists of the inviscid part and viscous part, which can be expressed as
F = Finv(q) — Fuis(q, Vq). Note that IF;,,,(¢) and ;5 (g, Vq) can be rewritten in a vector
format as: for any j, j € {1, 2, 3},

ouj 0
puinj +81;p Ty
Finv,j(q) = | puguj +382p |, and Fyi5 j(q, Vq) = T2j , (@
pusij +83;p T3
uj(E+ p) Sio uktij — K

where §;; is the Kronecker delta, ;; is the viscous stress defined as

3

ou;  Ouj 2 dug o
i = - = E —§;; withi =1, 2, 3,
tij “(axj+ ax,-> 3“](71 oxg 0 W
and following Fourier’s law, the heat flux K; is defined as K; = —«d7 /0x;. In this study,

the thermal conductivity « is calculated from the Prandtl number Pr as k = pucj,/Pr. The
fluid viscosity p and the Prandtl number Pr are treated as constants.

2.2 The Spatial Discretization

To achieve an efficient implementation of the FR method, we transfer the Navier—Stokes
equations Eq. (1) from the physical domain (x, y, z) to the computational domain (&, 1, ¢).
Thus Eq. (1) can be expressed as

00  9F 0G oH _

— 4+ — =0, 3
ot & an a¢ )
where
0=\Jlg,
F = |J|(f& + g& + h&;), @
G = |J|(fnx + gny + hny),
H =1|J|(f&x + g¢&y +he),
and a( )
X, ¥, Z
= —— and |J| = det(J). (5)
96,1, ¢)
Herein, f = F{, g = F,, and h = I3 are flux vectors in the x, y, and z directions
of a Cartesian coordinate system. 0;/dx;, i, j = 1,2,3, are metrics in the coordinate
transformation.

The reconstructed flux polynomial in the FR method consists of two parts. One is the
local flux polynomial and the other one is the correction polynomial. On solving Eq. (3), the
reconstructed polynomials F, G and H of F, G and H can be expressed as

F = F' + Fe,
G =G'+G°, 6)
H=H'+ H,
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where the superscript ‘I’ stands for the local flux and ‘¢’ stands for the correction flux.
Consequently, Eq. (1) can be rewritten as

ag  of  oag' on' 1 (9F° 9G° 9H\ _
T Yy g m<as+an+a;>_0' M
For a hexahedral element, F¢ , G and H€ can be explicitly expressed as
Fe.n.0) = F(—1,n¢0) —F(~1,7,0)gL)
+(F(1,m,0) — F'(1,n, 0)gr(®),
G&.1.0)=(GE, —1,0) — G'E —1,0))gL(m) ®)

+(GE 1,0 - G'E 1L 0)gr(,
He(E, 0, ¢) = (HE n,—1) — H' (&, 1, —1)gL ()

+ (H(E, 0, 1) — H'(¢,17,1)gr(),

where gy /g are the correction polynomials. In this study, we employ the Radau polynomials
to recover the nodal FR-DG method. F s G and H at the element interface are referred as
numerical fluxes F™™ G"™" and H™™. The inviscid common fluxes can be obtained from
approximate Riemann solvers. In this study, the Roe approximate Riemann solver [48] is
used to calculate the common fluxes at the cell interface in the normal directions as

+ - -
) o+ f _qt—¢q
;&”}w _ Ininv > n,inv R|A|R 1 5 i (9)
where superscripts ‘—’ and ‘4’ denote the left and right side of the current interface, the

subscript n = (n,, ny, n;)7 is the unit normal direction from left to right, f, = fn, +
gny + hn is the flux projection in the n direction, A is a diagonal matrix consisting of the
eigenvalues of the Jacobian d f,,/9¢, and R consists of the corresponding right eigenvectors
evaluated with the Roe-averaged variables. Numerical common fluxes can be obtained as

Frm = | JI|VE| fi7" sign(n - VE),
G"'" = |J||Vyl| f7" sign(n - Vi), (10)

H™™ = |J[|VE|f,™" sign(n - V?).
The common viscous fluxes are f170 = f s (g7, Vqt,q=,Vq™) at the cell interface.
Here we need to define the common solution g“°”* and common gradient Vg©®™ at the cell
interface. By simply taking the average of the conserved variables, we get

+ —
g = q —;—q ' (11)
The common gradient is computed as
X e T+ Vg -
vgeon = A T AT (12)

2

where r and r ™~ are the corrections to the gradients on the interface. The second approach of
Bassi and Rebay (BR2) [8] is used to calculate the corrections. For the hexahedral element,
the correction terms are defined as

com

r=y(@“" —qu)n, andy = |V g p(@)sign(n - Vo), (13)

where @ € {§, 7, ¢}, and ¢ g is the local solution on the interface. If the interface is the
left boundary of the element, then the local solution g is used, and @ is —1; if the interface
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is the right boundary of the element, then the local solution ¢ ¢ is used, and @ is 1. In this
study, g(£1) = £=(P + 1)(P 4 2)/2 is used to stabilize the FR method [49], where P is the
polynomial degree of the solution.

3 Implicit Time Integrators and Iterative Methods
3.1 Implicit Time Integrators

We rewrite Eq. (7) in a semi-discretized form as

g
rrie R(q), (14

for convenience of notation. We use the method of lines approach to solve this equation: the
partial differential equation is first discretized in space with the FR formulation in Sect. 2,
and then is marched in time. In this study, three different types of implicit or linearly implicit
time integration methods are studied.

The BDF Method. The first one is the backward differentiation formula. A general formu-
lation of the s-th order BDF method for solving Eq. (14) can be expressed as

s
qn+1 — AtwR(q”+1) + Zaj qn+1—j! (15)
j=1
A BDF method is not A-stable when the order of accuracy exceeds two. In this study, we
only consider the BDF2 method for comparison. For BDF2, s = 2, w = 2/3,a; = 4/3 and
a; = —1/3. BDF2 is not able to start by itself. Therefore, at the first time step the backward
Euler method or BDF1 is used.
The ESDIRK Method. The second one is the explicit first stage, single diagonally implicit
Runge—Kutta method, which reads

"t =q"+ At Y]_ b R(q,),
q; an+Al Z?j:laij R(qj), i=1,...,s,
where s is the number of stages. The second-order, three-stage ESDIRK?2 [33], third-order,

four-stage ESDIRK3 [21] and fourth-order, six-stage ESDIRK4 [21] methods are studied in
this paper. All the ESDIRK methods investigated in this study have the feature that

0, i=1
ai,:{”_ ’ (17)
w, 1 #1.

(16)

Therefore, we can rewrite Eq. (16) as

q"t' =q"+ At Y biR(q)),
0 =4q" ' (18)
g =AtwR@)+q"+ At Y\ aijR(g)), i=2,....5.

The ROW Method. The last one is the linearly implicit Rosenbrock—Wanner method. The
general form of a s-stage Rosenbrock method can be written as [20]

{q”“ =q"+ 310K,

Ki=AtR (" + X2 oY) + AR Y Ky i =12, s,

(19)
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The above equations are reorganized to avoid the matrix-vector product of the Jacobian matrix
and the summation of stage vectors [20,41], following

¢ =q"+ 35 miY (20)
i1 )
(ﬁ_%) Y; _R(q11+2] 1az]Yj)+$le=1Cinj’ i=1,2,...,s8

Similarly, w = y;; is defined for the Rosenbrock method. Herein, K; = Y Z c, i
(mls" ymg) = (by,...,b)I'” ! (al])l j=1= (az])l ]71[‘ ! (Cz]), =1 II F ! d
= i)} 1= [20,41]. The Rosenbrock—Wanner method has the ﬂex1b111ty of evaluating the
Jacoblan matrix approximately while preserving the accuracy. In this study, we restrict our
attention to three popular Rosenbrock—Wanner methods, namely, the second-order, three-
stage ROS2PR [37], the third-order, four-stage ROS34PW?2 [36], and the fourth-order, six-
stage RODASP [38]. We note that it has been shown in [40] that ROS34PW2 and RODASP
can suffer from order reduction. For simplicity, we use ROW?2, ROW3 and ROW4 to denote
them, respectively.
The coefficients of all ESDIRK and ROW methods can be found in the “Appendix”.

3.2 Iterative Methods

For BDF2 and ESDIRK, one needs to solve the nonlinear equations in Egs. (15) and (18).
We can rewrite them as
F(g™) =0, (21)

where g* is ¢"*! for BDF and q; for ESDIRK, respectively. For BDF2, F(g*) reads

2

F(g"") = (iq”*‘ - R(q”*‘)) - ﬁ ;ajq"“‘f : (22)
For ESDIRK methods,
1 1 —
F(q;) = (Eqi - R(q,-)> Py q" + At;ain(qj) ; (23)
where i = 2, ..., s. In this work, the pseudo-transient continuation is employed [21,31,32].

The pseudo-transient continuation is an inexact Newton’s method to solve the steady state
equation F(g*) = 0 iteratively as

k+1,% k,*
q —9q
AT

Herein, k is the iteration step for the pseudo-transient continuation. Eq. (24) can be linearized
as

—F(g"*"). (24)

I aF\*
— 4+ — ) AgF* = —F(¢""). 25
<M+aq> q (¢"%) (25)

For a steady problem, as k — 00, T — 00 and Agf — 0. Therefore, F(¢%*) — F(q*).
The Jacobian matrix for fully implicit methods can be expressed as

k k
() (%)
aq wAt  0q
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Substitute the Jacobian matrix into Eq. (25) to obtain the final form of the linear system in
the pseudo-transient continuation procedure as follows

I I AR\
— 4+ —— — — ) A¢h*=—F(¢"). 27
<Ar wAt 8q> 1 (q ) @7)
The pseudo-transient continuation procedure requires an adaptation algorithm of the pseudo
time step size to complete the method. In this study, we employ the successive evolution
relaxation (SER) algorithm [50] as

0 o JIFIE
T = Tinit, AT =min | At —_— ATpax | - (28)
IFII,

As the pseudo time marches forward, a series of linear equations (27) is successively solved
until convergence. Ideally, we would expect that when At approaches At,,,, = o0, the
residual of the pseudo-transient procedure will gradually converge to machine zero. However,
in our practice of simulating wall-bounded flows with elements clustered in near wall regions,
we have to choose a moderately large At,,,, to ensure that the residual of the linear solver
can at least drop by one order of magnitude when At equals to Aty,y. Once the linear
solver fails, we would reject the current pseudo-transient continuation iteration and decrease
AT,qy by half to continue. In this study, if not specifically mentioned, At;,;; = At and
ATpax = 10%.

Restarted GMRES is employed to solve Eq. (27) as well as the linear system in Eq. (20).
All linear systems can be expressed as

AX = b, (29)

where
oR
A = D(At, At) — —. (30)
dq

The first term D(At¢, At) on the right-hand side of the above equation is a diagonal matrix
related to Ar and At. The GMRES method approximates the exact solution by a vector
x, € K, that minimizes the Euclidean norm ||Ax, — b|| where K, is the n-th Krylov
subspace

K, = span{b, Ab, A’b,--- , A""'b}. 31

The sparse matrix % in A only appears in the matrix-vector product. For an unknown vector
X, the matrix-vector product can be approximated as

(%) X — R(q +¢X) — R(q)
aq - e

+ O(e). (32)

& = 10~% isemployed in this study. Interested readers are referred to [51] for more discussions
on this approximation. We take advantage of the framework of the restarted GMRES solver in
PETSc [52] with user-defined functions to perform the matrix-vector product approximation
and left preconditioning.

The performance of the Newton—Krylov method substantially depends on the precondi-
tioner. In the context of the Jacobian-free implementation, the element-Jacobi preconditioner
is arguably the simplest one with acceptable performance for many applications among the
low-storage preconditioners, such as the matrix-free LU-SGS (Lower-Upper Symmetric-
Gauss-Seidel) preconditioner [53], and p-multigrid preconditioner [54]. In this study, only
the element-Jacobi preconditioner is considered and it is updated at the starting stage of each

@ Springer



Journal of Scientific Computing (2020) 83:39 Page90f27 39

physical time step. The restart number of the GMRES solver is set as 60. The maximum num-
ber of iterations for GMRES are specifically designated for different numerical experiments
in this work.

4 Numerical Results

All the simulations presented in this section are performed on the high performance computing
facility (HPCF) of the University of Maryland, Baltimore county (UMBC). All nodes used
in this work have two Intel E5-2650v2 Ivy Bridge (2.6 GHz, 20 MB cache) processors with
eight cores apiece, for a total of 16 cores per node. A quad data rate (QDR) Infiniband switch
connects all the nodes. Ideally the system can achieve a latency of 1.2 usec to transfer a
message between two nodes, and can support a bandwidth of up to 40 gigabits per second
(40 Gbps). Every node possesses 64 GB RAM. All nodes are running Red Hat Enterprise
Linux 6.4. We employ g++ (GCC) 4.8.4 with mpich-3.1.4 to compile the code for parallel
simulation.

4.1 Vortex Propagation

The 2D isentropic vortex propagation problem is employed as a benchmark to investigate
the accuracy and efficiency of different time integrators in this subsection. The free stream
flow conditions are set as (p, u, v, Ma)T = (1, 1, 1, 0.5)T and the ideal gas constant R is set
as 1.0 for this case. The perturbation is defined as [41]

2
Su = —2=(y — yo)e? !,

2
8v = 2= (x — x0)e? 1), (33)
_ =D 2¢(1-r?)
8T = — 6gyn2 € ’

where ¢ = % and o = 5 are parameters that define the vortex strength, and r = (x — x)* +
(y — yo)2 is the distance to the center of the vortex (xo, yo) = (0, 0) at # = 0. The periodic
domain is defined as = [—10, 10]%. We use 16 CPU processes to simulate this problem on
a uniform mesh of 50 x 50 elements with the P® (i.e. 7th order) FR method for one period
tp = 20. The time step size At is refined from ¢, /100 to ¢, /800. The error of any variable s
is defined as

Error(s) = \/fg(sexact — Spum)>dV , (34)
Vv

where sqxqcr 18 the exact value, s, 1S the numerical value, and V is the volume of the domain

Q.

Two convergence criteria are discussed in this section. The first one is the tolerance for
the relative residual of the pseudo-transient continuation 70l¢; noniinear and the second one
is that for the relative residual of the GMRES solver 10,/ jineqr - Herein, the subscript ‘rel’
stands for ‘relative’. On solving Eq. (21), t0l,e1 nontinear Will determine the error level of
the pseudo-transient continuation, which will affect the order of accuracy of ESDIRK and
BDF2 and t0l,¢1 jinear is more related to the efficiency and robustness of the pseudo-transient
continuation [55]. On solving Eq. (29), t0l,¢/ jinear Will determine the order of accuracy of
ROW directly. The maximum number of iterations of the GMRES solver is 200, which is
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sufficiently large for the GMRES solver to converge to the designated tolerances for this
problem.

4.1.1 Effect of the Nonlinear and Linear Convergence Criteria on ESDIRK and BDF2

The pseudo-transient continuation does not require an exact solution of the linear system at
each iteration. We first employ a relatively large tolerance t0l,¢/ jinear = 10~! for GMRES to
investigate the effect of 10l,¢/ nontinear 0N accuracy and efficiency of fully implicit methods.
The convergence study of ESDIRK and BDF?2 using different t0l,¢/ nontinear, Namely, 1072,
104,10 %and 1078, is presented in Table 1. We observe that when 101,/ noniinear 1s refined
from 1072 to 10~4, all ESDIRK methods studied here will preserve the nominal order of
accuracy except that ESDIRK4 shows slightly order reduction when At is refined from
t5/400 to t,/800 (due to insufficient 10l,¢; nontinear); When tolyei nontinear 18 refined from
10~* to 1079, no order reduction shows up. We also note that overrefined t0l,¢; nontinear
such as 1078, will not improve simulation accuracy, but only increase the computational cost
(i.e. run time; in this study, run time is the wall clock time spent by parallel simulations).
ESDIRK methods have shown better accuracy and efficiency than BDF2. Generally, the
higher the order of accuracy of ESDIRK is, the more efficient ESDIRK is (see Fig. 1b).

The impact of 10l 1inear ON efficiency is investigated when t0l,e; nontinear = 107% is
employed. t0l,¢/ 1inear SPans {1071, 1072, 10~%, 10~9}. The run time results are presented in
Table 2. For this specific problem, all values of 10l jinear 1€ad to the same numerical errors
as expected since the accuracy of ESDIRK and BDF?2 solely depends on the convergence of
pseudo-transient continuation. As documented in Table 2, the computational cost will keep
on increasing when we refine the tolerance 70/, jineqar. This indicates that in order to save
computational cost, 10l 1inear for ESDIRK and BDF2 can be relaxed.

4.1.2 Effect of the GMRES Convergence Criterion on ROW

A comparison of different convergence criteria t0l,¢/ jineqar Of the restarted GMRES solver
is conducted to study its impact on the accuracy and efficiency of the ROW time integrators.
The results are presented in Table 3. It is observed that when the convergence criterion is not
tight enough, such as 10l jinear = 1072 and 10~*, the ROW methods cannot preserve the
nominal order of accuracy. This is not a surprise considering that the residual convergence
is directly related to the accuracy of the solution in ROW. When 10, jinear 18 sufficiently
small, such as t0l,e1 jinear = 107 and 103, all ROW methods can preserve the nominal
order of accuracy, excepted that ROW4 shows order reduction [40] when the time step is
refined from ¢,/400 to ¢,/800. We also notice that when t0l,¢ jineqr 18 refined from 107
to 1078, no significant differences in errors are observed. Another observation is that when
10lyel linear 15 Overrefined, the run time of the simulation is noticeably increased. In general,
we do not recommend machine zero convergence criterion for 10l,¢/ jinear. A relatively tight
value such as 107° is sufficient to preserve the accuracy of high-order Rosenbrock methods
for this problem.

4.1.3 Comparison of Different Time Integrators

The order of accuracy study of ESDIRK and BDF2 and linearly implicit ROW are summarized
in Fig. 1. For ESDIRK and BDF2, tol E3PIRK.BDF2 _ 106 anq o) ESDIRK.BDF2 _ q0—1,

rel,nonlinear rel,linear

tolROW — 107° is employed for ROW.

rel,linear
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Table 1 The convergence study for ESDIRK and BDF2 with different 10l,-¢; noniinear When tolyej jinear is

setto 1071

At/tp

Ep,(u)

Run time (s)

tozrel,n(mlinear

= 10727 tozrel,linear =

ESDIRK2

ESDIRK3

ESDIRK4

BDF2

1/100
1/200
1/400
1/800
1/100
1/200
1/400
1/800
1/100
1/200
1/400
1/800
1/100
1/200
1/400
1/800

5.7334 x 1073
1.4622 x 1073
3.6523 x 1074
9.1104 x 107
1.7108 x 1073
2.6017 x 10~4
3.4016 x 1073
9.7414 x 107°
3.2613 x 1073
47845 x 1073
3.2420 x 1077
1.5485 x 1077
3.0021 x 1072
1.1195 x 1072
2.8983 x 1073
7.3097 x 10~%

317
603
1159
2247
398
734
1392
2478
425
773
1511
2802
292
548
1074
2133

mlrel,nonlinear

= 10_4» tolyel linear =

ESDIRK2

ESDIRK3

ESDIRK4

BDF2

1/100
1/200
1/400
1/800
1/100
1/200
1/400
1/800
1/100
1/200
1/400
1/800
1/100
1/200
1/400
1/800

5.7335 x 1073
1.4549 x 1073
3.6420 x 1074
9.1040 x 107
1.6911 x 1073
2.5401 x 10~4
33171 x 1073
4.1908 x 10~°
3.1216 x 1073
1.9593 x 10~°
1.2257 x 1077
7.6729 x 1072
3.0095 x 1072
1.1454 x 1072
2.9892 x 1073
7.5360 x 1074

375
723
1323
2504
537
956
1685
2890
597
1046
1920
3193
329
627
1179
2294
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Table 1 continued

At/tp Ep,(p) Order Ep, ) Order Run time (s)
mlrel,nonlinear = 10—6’ mlrel,linear =10"!
ESDIRK?2 1/100 4.4088 x 104 5.7335 x 1073 464
1/200 1.1278 x 10~4 1.97 1.4549 x 1073 1.98 814
1/400 2.8267 x 1073 2.00 3.6420 x 1074 2.00 1503
1/800 7.0691 x 1076 2.00 9.1041 x 1075 2.00 2672
ESDIRK3 1/100 1.5165 x 104 1.6911 x 1073 692
1/200 2.3021 x 1073 2.72 2.5399 x 1074 2.74 1138
17400 3.0914 x 107° 2.90 3.3165 x 1073 2.94 1877
1/800 3.9326 x 1077 2.97 4.1867 x 1075 2.99 3369
ESDIRK4 1/100 3.4502 x 1076 3.1249 x 1073 780
1/200 2.1706 x 10~7 3.99 1.9593 x 1070 4.00 1310
1/400 1.3584 x 1078 4.00 1.2270 x 1077 4.00 2156
1/800 8.4961 x 10710 4.00 7.6728 x 1077 4.00 3751
BDF2 1/100 1.9126 x 1073 3.0096 x 1072 389
1/200 8.4141 x 10~ 1.18 1.1454 x 1072 139 708
17400 23010 x 10~% 1.87 2.9890 x 1073 1.94 1230
1/800 5.8409 x 1075 1.98 7.5350 x 1073 1.99 2463
10lrel nontinear = 1078, t0lyet tinear = 107"
ESDIRK?2 1/100 4.4088 x 10~4 57335 x 1073 546
1/200 1.1278 x 10~4 1.97 1.4549 x 1073 1.98 930
1/400 2.8267 x 1073 2.00 3.6420 x 1074 2.00 1601
1/800 7.0691 x 1076 2.00 9.1041 x 1073 2.00 3003
ESDIRK3 1/100 1.5165 x 1074 1.6911 x 1073 891
1/200 23021 x 1073 272 2.5399 x 10~4 274 1373
1/400 3.0913 x 1076 2.90 3.3164 x 1075 2.94 2138
1/800 3.9326 x 1077 2.97 4.1867 x 1075 2.99 3867
ESDIRK4 1/100 3.4502 x 107° 3.1249 x 1073 971
1/200 2.1706 x 10~7 3.99 1.9593 x 1070 4.00 1550
1/400 1.3584 x 1078 4.00 1.2270 x 1077 4.00 2543
1/800 8.4976 x 1010 4.00 7.6747 x 1077 4.00 4370
BDF2 1/100 1.9126 x 1073 3.0096 x 102 455
1/200 8.4141 x 10~ 1.18 1.1454 x 1072 139 786
1/400 23010 x 1074 1.87 2.9890 x 1073 1.94 1393
1/800 5.8409 x 1075 1.98 7.5350 x 1073 1.99 2651
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Table 2 The effect of

. tol i Run time (s
t0lyel lineqr ON cOMputational rel linear )

cost of ESDIRK 10~! 1072 10=4 10°°
ESDIRK2  1,,/100 464 503 693 1041
1p/200 814 856 1109 1551

1/400 1503 1563 1909 2501

15/800 2672 2875 3334 4203

ESDIRK3  1,/100 692 686 1036 1041
15/200 1138 1128 1584 2419

1p /400 1877 1865 2580 3695

15/800 3369 3526 4430 5908
ESDIRK4  1,,/100 780 875 1326 2095
15/200 1310 1410 2133 3004

1/400 2156 2439 3277 4844

15/800 3751 4136 5527 7636

Figure 1b presents the run time versus errors of different time integrators with differ-
ent convergence criteria. As illustrated in Fig. 1b, all multistage methods are significantly
more efficient than BDF2. We notice that ROW2 and ESDIRK?2 intersect with ROW3 and
ESDIRK3. However, as the error threshold is decreased, higher-order methods will be more
efficient. When tolrb;i fl’ {frﬁilflmr is the same as tolﬁ?mmr, ROW methods are more efficient
than ESDIRK methods. However, ROW methods cannot preserve the nominal order of accu-
racy when the convergence criterion is not tight, and even suffer from severe order reduction

[40]. Instead, tol,ei nontinear = 10~* can make ESDIRK methods preserve the nominal order

of accuracy (0.46 order reduction at most). It is observed that when tol:if}?;mr =10"°and
tolﬁilz (5,55 car = 10~* are employed, the ESDIRK method is more efficient than the ROW

method when they have the same order of accuracy and number of stages. This indicates
that the ESDIRK method tends to be over-solved more easily than the ROW method if the
nonlinear convergence criterion tolrb;i g 01,5112 eqr 18 DOt set up judiciously. We also note that
ESDIRK can be more robust than ROW. As documented in Tables 1 and 3, when the tolerance
criteria are set to 1072, ESDIRK2 can show optimal convergence rate, while ROW cannot;

when At = t,/100, ROW2 even fails to converge.

4.2 Laminar Flow Over a Circular Cylinder

In this subsection, we employ laminar flow over the circular cylinder as an example to study
the performance of different time integrators. This case has been tested in various literature
[21,45]. The Reynolds number of the inflow with respect to the diameter of the cylinder is
Re; = 1200, and the Mach number is Ma = 0.1. The diameter of the cylinder is d = 1, and
the computational domain is [—100, 200] x [—100, 100]. The mesh in the near wall region
and the wake region, and an instance of the vortex shedding are presented in Fig. 2. There are
5690 elements in the mesh. The height of the first layer of the mesh is roughly 0.0033. The
P3 FR method is employed for spatial discretization. 16 processes are used for this case.
Atinir = 0.01 and A7, = 1.0 are used for all numerical experiments in this section.

ROW ESDIRK,BDF2 — 10—6’ and tolESDIRK,BDFZ

— -1 :
rel,linear rel,nonlinear rel,linear = 107". The maximum

tol = tol
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Table 3 The convergence study for ROW methods with different t0l,.¢; jinear

At/tp Ep,(p) Order Ep, ) Order Run time (s)

tozrel,linear = 1072

ROW2 1/100 Diverged — - —
1,200 23615 x 1074 3.3198 x 1073 537
1/400 9.9393 x 107 1.25 1.3753 x 1073 1.27 1052
1/800 5.5248 x 107 0.85 7.4627 x 1074 0.88 2073

ROW3 1/100 26132 x 1074 2.6888 x 1073 300
1/200 8.8493 x 1077 1.56 8.3870 x 10~4 1.68 564
1/400 3.3446 x 1075 1.40 4.0554 x 1074 1.05 1124
1/800 9.1969 x 10~6 1.86 1.1447 x 1074 1.82 2191

ROW4 1/100 3.6161 x 1073 4.1926 x 104 344
1/200 9.0325 x 107° 2.00 8.3350 x 1073 233 638
1/400 2.7913 x 1076 1.69 2.7282 x 1073 1.61 1194
1/800 3.9397 x 1070 —0.50 5.1692 x 1073 -0.92 2282

mlrel,linear =10"*%

ROW2 1/100 Diverged - - -
1/200 8.6277 x 1073 1.1163 x 1073 641
1/400 2.1800 x 107 1.98 2.8024 x 1073 1.99 1189
1/800 5.4708 x 10~6 1.99 7.1383 x 1075 1.97 2255

ROW3 1/100 1.5467 x 104 1.7185 x 1073 449
1/200 23151 x 107 2.74 2.5539 x 1074 2.75 779
1/400 3.1137 x 1076 2.89 3.3395 x 1079 2.94 1382
1/800 4.0729 x 1077 2.93 4.2406 x 1076 2.98 2565

ROW4 1/100 4.0016 x 107° 3.8660 x 1073 487
1/200 3.5565 x 1077 3.49 3.4725 x 1076 347 846
17400 2.7298 x 1078 3.70 1.6676 x 10~7 438 1563
1/800 1.8642 x 1078 0.55 2.2003 x 1077 -0.40 2769

10lyel linear = 1076

ROW2 1/100 Diverged — - -
1/200 8.6820 x 1079 1.1229 x 1073 767
1/400 2.1813 x 1073 1.99 2.8148 x 10~4 2.00 1377
1/800 5.4628 x 1076 2.00 7.0399 x 1073 2.00 2500

ROW3 1/100 1.5474 x 10~4 1.7185 x 1073 690
1/200 23165 x 1079 2.74 2.5534 x 1074 2.75 1036
1/400 3.1047 x 1076 2.90 3.3251 x 107 2.94 1712
1/800 4.0081 x 1077 2.95 4.1768 x 1076 2.99 3004

ROW4 1/100 3.9102 x 1076 3.6770 x 1073 682
1/200 2.5386 x 1077 3.95 2.3433 x 1076 3.97 1091
1/400 2.5819 x 1078 3.30 1.3773 x 1077 4.09 1849
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Table 3 continued

At/tp Ep,(p) Order Ep,(u) Order Run time (s)

1/800 7.5834 x 1072 1.78 1.7492 x 108 2.98 3184

tolrel,lineur = 10_8

ROW2 1/100 Diverged - — —
1/200 8.6824 x 107 1.1229 x 1073 906
1/400 2.1810 x 1073 1.99 2.8147 x 1074 2.00 1557
1/800 5.4619 x 107° 2.00 7.0398 x 1073 2.00 2722

ROW3 1/100 1.5476 x 1074 1.7186 x 1073 862
1/200 2.3158 x 1075 2.74 25535 x 1074 2.75 1589
1/400 3.1015 x 1070 2.90 3.3242 x 107 2.94 2149
1/800 4.0093 x 1077 2.95 4.2024 x 107° 2.98 3481

ROW4 1/100 3.9055 x 1070 3.6728 x 1073 1186
1/200 2.5299 x 107 3.96 23382 x 1070 3.97 1381
1/400 2.6107 x 1078 3.28 1.4352 x 1077 4.03 2237
1/800 7.5988 x 1072 1.78 1.7442 x 1078 3.04 3720

number of iterations for GMRES is 500. As aforementioned, for ESDIRK and BDF?2, if the
linear solver fails to drive the residual to drop by one order of magnitude, the current iteration
in the pseudo-transient continuation procedure will decrease At by half and restart.
The flow is initialized with the steady solution when Re = 40. Then, we use ESDIRK4
to run this simulation untill # = 180 with Ar = 0.001 to obtain the initial conditions for
the convergence and efficiency study. For the convergence and efficiency study, we run all
simulations for ten convective time units. The time step size At is refined from 0.2 to 0.00625.
We use the numerical results of explicit SSPRK3 with a small time step At = 5 x 107° as
the reference. The drag coefficient Cy is used for the error estimation. The error is calculated

as
N
Can — Cdorefm)?
Error(Cg) = \/an( d’nN dref n) ) (35)

where Cy ref.n is the reference value from SSPRK3, and N is the number of time steps.
The results from convergence and efficiency study are presented in Fig. 3a, b, respectively.
As the time step size At is refined, all second- and third-order methods will converge at the
nominal convergence rate. For both ROW4 and ESDIRK4, we have observed order reduction.
The order reduction of ROW4 is more severe than that of ESDIRK4. In terms of run time,
when At = 0.2, unexpected computational cost is observed for ESDIRK and BDF2. Many
iterations in the pseudo-transient continuation are rejected due to the poor performance of the
element-Jacobi preconditioner. However, all ROW methods fail when At = 0.2 and ROW2
even fails when Ar = 0.1. At a relatively large error level, such as 1073, second-order
methods take the least amount of time. However, to reach a lower error level, higher-order
methods are more efficient. We have noticed that the abnormal increase in run time for ROW4
when At = 0.05 and At = 0.025. This is due to the fact that the residual of the restarted
GMRES solver with an element-Jacobi preconditioner sometimes cannot converge to the

designated tolf;lol‘?; «qr When the maximum number of iteration is reached. From this study,
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Fig.1 a The convergence study of different time integrators and b efficiency study of different time integrators
for the vortex propagation

we find that the performance of schemes from the ESDIRK family is more consistent than
that of ROW methods when simulating unsteady flows over walls. Due to the limitation of the
element-Jacobi preconditioner, ROW is only found to be consistently more efficient when the
time step size At is small enough such that the GMRES solver can converge to the designated

R 0 W . . . . .
tol, el linear within the maximum number of iterations.
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Fig.2 The mesh and an instance of the wake of vortex shedding for the laminar flow over a circular cylinder
when Rey = 1200
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Fig. 3 The convergence and efficiency study for the laminar flow over the circular cylinder. a Error vs. the
time step size At and b error vs. run time

4.3 Taylor-Green Vortex

The Taylor—Green vortex is a benchmark to test the accuracy and performance of high-order
methods on the direct numerical simulation of a 3D periodic and transitional flow defined by
initial conditions [42]

u = Vysin(x/L)cos(y/L)cos(z/L),
vw=_:)V0 cos(x/L) sin(y/L) cos(z/L), 36)

p=po+ pol\6/02 (cos(2x/L) + cos(2y/L)) (cos(2z/L) +2).

The domainis Q@ = [—7 L, 7 L]*. The Reynolds number of the flow is defined as Re = 2oVoL
and is equal to 1600. For this study, we consider the flow with weak compressibility and the
perfect gas law holds, i.e., p = pRT. The Prandtl number is Pr = % — 0.71. We assume

K

that the gas has zero bulk viscosity u, = 0. The Mach number Ma = ? = 0.1, where cq
is the speed of sound corresponding to pg. The characteristic convection time is defined as
te = %. The maximum dissipation occurs at & 8t.. An uniform 64> mesh is employed

and the P3 FR methods is used for the spatial discretization. 512 processes are employed to
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Fig.4 The isosurface of the Q criterion, where Q. iterion = 1, colored by Ma at t = 8¢, for Taylor—Green
vortex evolution

conduct the numerical experiments. The numerical simulation is conducted until = 10¢,.
Figure 4 presents the isosurface of the Q criterion, where Q. iterion = 1, colored by Ma at
t = 8t.

We employ the error of kinetic energy dissipation rate for the accuracy and efficiency
study. The kinetic energy dissipation rate of compressible flows is the summation of three
parts as € = €] + €3 + €3:

1
. =zi_/ s sy, (37)
PV Ja
where S¢ is the deviatoric part of the strain rate tensor, and V is the volume of the domain
Q’

1
o=t !l f (V- )2V, (38)
ro 'V Ja

where ©, = 0, and
11
E3=———/pV-l)dV. (39)
PV Ja

The numerical results of SSPRK3 method with At = 2 x 10~ is adopted as the reference
data for error evaluations. We define the error of the kinetic energy dissipation rate as

N _ 2
Error(e) = \/Z”ZI(EnN €ref.n) , (40)

where €7  is the reference value from SSPRK3, and N is the number of time steps.
As discovered in previous sections, the convergence criteria have significant effect on
the efficiency of ROW, ESDIRK and BDF2. In this section, we only consider t0l,¢/ jinear
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Fig. 5 The kinetic energy dissipation rate history of Taylor-Green vortex decaying. a A full view when
t/t- € [0, 10], b a close-up view when ¢/t € [7, 10]

of ROW is the same as 10l,¢ notinear of ESDIRK and BDF2. Herein, rolROW =

rel,linear

1ol ESPIRK.BDF2 _ 1=6 For the inexactly linear-solving part of ESDIRK and BDF2,

rel,nonlinear
we employ tolrEdS Zifalf BDE2 — 101 10 save computational cost. The maximum number of

iterations for GMRES is 600, which is large enough to guarantee that GMRES can converge
to the designated tolerance for all implicit time integrators.

The time step size At is refined from #./25 to 7. /100. The kinetic energy dissipation rate
history when At = t./25 is presented in Fig. 5a. A close-up view within 7/z. € [8.5, 10]
is illustrated in Fig. 5b. The numerical results from the spectral method on a 5123 mesh is
also presented for reference [56]. Our observation is that the results of ROW4 and ESDIRK4
almost coincide with that of SSPRK3. BDF2 is much more dissipative than ROW?2 and
ESDIRK?2. The convergence study is presented in Fig. 6. Figure 6a shows the error vs. time
step size At /t. and Fig. 6b shows the error vs. run time. From Fig. 6a, the convergence features
of ROW and ESDIRK are almost the same. As is shown in Fig. 6b, BDF2 is not as efficient
as ROW2 and ESDIRK2 as expected. When rolRO) = 101"7DIRK-BDF2 — 19-6 Row
methods are found to be more efficient than ESDIRK methods. From Fig. 5, we find that for
turbulent simulation, compared to the results from SSPRK3 with very small time steps, all
time integrators with excessively large time step size will lead to numerical dissipation of the
kinetic energy dissipation rate except ROW4 and ESDIRK4. This reveals that the dissipation
due to the temporal disretization should also be taken into account for turbulent simulation.
We refers interested readers to Refs. [18,19] for more discussions.

4.4 Transitional Flow Over the SD7003 Wing

The transitional flow over the SD7003 wing is studied when the Reynolds number of the
inflow with respect to the chord length of the wing is Re, = 60000 and the angle of attack
(Ao0A) of the inflow is 8°. The Mach number is Ma = 0.1. The geometry is obtained from
the 1! International Workshop on High-Order CFD Methods [57]. The chord lengthis ¢ = 1
with the sharp trailing edge rounded by an arc of radius » ~ 0.0004¢. The unstructured mesh
near the SD7003 wing is illustrated in Fig. 7. The height of the first layer close to the wall is
0.0003c. The 3D mesh is obtained by extruding a 2D mesh along the z-direction for 20 layers
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Fig. 6 The convergence and efficiency study for Taylor—Green vortex evolution. a Error vs. time step size
At /tc and b error vs. run time

and each layer has a thickness of 0.01c¢. There are 109540 quadric hexahedral elements. The
third-order FR method is employed for spatial discretization. 252 processes are used for the
parallel simulation in this section.

We compare the computational cost of BDF2, ESDIRK2, ROW?2 and the explicit SSPRK3.
We run all simulations until #,,; = 32 and the instantaneous solutions in ¢ € (26, 32] are
averaged for statistics. For BDF2 and ESDIRK?2, At = 0.002 is used and the flow field is
initialized uniformly with the inflow conditions. ROW?2 fails when the time step At equals

to 0.002. Therefore, we use a smaller time step size At = 0.001 for ROW2. In this section,
ROW __ JESDIRK,BDF2 _ {n—4 ESDIRK,BDF2 __ ,~—1 o
tOlrel,linear =1 rel,nonlinear = 10 and IOIrel,lineur = 107" At = 0.0002

and AT,q = 0.004 are used for ESDIRK?2 and BDF2. The maximum number of iterations
for the GMRES solver is 200. We use SSPRK3 to run this simulation for 32 convective time
units with Az = 2 x 107, which is slightly smaller than the allowed maximum time step
size, as a reference. Note that the time step for the explicit SSPRK3 method is about three
orders of magnitude smaller than that for the implicit methods due to the highly anisotropic
mesh near the wing.

The instantaneous isosurface of Q criterion, where Q. rizerion = 500, and the averaged
field of the velocity component in the x-direction are plotted in Fig. 8a, b, respectively.
Numerical predictions, namely, the time-averaged lift coefficient C;, drag coefficient Cy4, the
separation point x;, and the reattachment point x,.., are documented in Table 4. The predictions
of different time integration methods are close to each other. Compared to previous numerical
and experimental results, a decent agreement has been observed. Run time of all methods is
also provided. Due to the difficulty of determining the accuracy of different time integration
methods via inspecting the averaged values, we examine the run time only. It is observed that
all implicit time integration methods are significantly faster than the explicit method. Up to
82.36% computational cost can be saved by employing an implicit time integrator instead of
using an explicit one. Not surprisingly, BDF2 takes the largest amount of run time to finish
the simulation. Even though ROW?2 diverged when At = 0.002, it can still outperform BDF2
with a smaller Az = 0.001 and is only slightly more expensive than ESDIRK?2. Note that the
total number of time steps of ROW is twice as that of ESDIRK?2 and BDF2. This indicates
that when the time step size is refined to a suitable level, i.e., the linear solver can easily
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Fig.8 a The isosurface of Q criterion, where Qriterion = 500, att = 32 and b averaged velocity component
in the x-direction using ESDIRK?2

converge to preserve the accuracy of ROW, the performance of ROW is comparable with that
of ESDIRK.

5 Conclusions

In this work, we compare the accuracy and efficiency of ROW and ESDIRK (from second
order to fourth order) and BDF2 for unsteady flow simulation with the high-order FR for-
mulation. We find that ROW2 and ESDIRK?2 are more computationally efficient than BDF2.
To achieve an accurate estimation, i.e., the target error is small, higher-order implicit time
integrators are more efficient than lower-order ones.

The efficiency of ROW and ESDIRK highly depends on the convergence criteria of solving
nonlinear and linear equations. For most of the case, when tolf;?mmr = tolrEeifl’ ;,Silfwar and
the time step size is refined, ROW is more efficient since it only needs to solve one linear sys-
tem at each stage. However, the tolerance tolrlif?m qr N€€ds to be sufficiently small to preserve
the order of accuracy of ROW. With a large time step size, to drive the residual of GMRES to a
trivial value is expensive with the element-Jacobi preconditioner for wall-bounded flows; this
may degrade the advantage of ROW over ESDIRK. Besides, the ROW method is more prone

; ESDIRK
to suffer from order reduction. On the contrary, the tolerance ol ol nonlinear fOT the pseudo-
ROW

time iterations in ESDIRK can be relatively larger than tol, ;7 ,,, to preserve the nominal
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Table4 A summary of flow statistics from long-time simulation of the transitional flow over SD7003

Time marching Ma Cy Cy Xg Xre Run time (h)
BDEF?2 (current work) 0.1 0.9212 0.0476 0.0301 0.3290 58.77
ESDIRK?2 (current work) 0.1 0.9191 0.0474 0.0302 0.3258 56.06
ROW?2 (current work) 0.1 0.9236 0.0459 0.0293 0.3119 57.02
SSPRK3 (current work) 0.1 0.9201 0.0463 0.0306 0.3216 317.75
Beck et al. [58] 0.1 0.923 0.045 0.027 0.310

Galbraith and Visbal [59] 0.1 091 0.043 0.04 0.28

Bassi et al. [41] Inc. 0.953 0.045 0.027 0.294

Selig [60] Exp. 0.92 0.029

The abbreviation Inc. stands for incompressible and Exp. stands for experiment

order of accuracy. Therefore, when tolf;fg gﬁ{i car 18 allowed to be larger than ZOIZE,?ZKI car®
ESDIRK can be more efficient. The inexact Newton’s method, i.e., the pseudo-transient con-
tinuation, gives ESDIRK the edge that the stiffness of the linearized system can be controlled
with the pseudo time step size. A relaxed GMRES tolerance, such as tolf‘;i ﬁifalf =101,
can be used to accelerate simulation. This feature makes ESDIRK more robust and allow for
a larger time step size than ROW.

We note that the preconditioner has a significant impact on the performance of implicit
time integrators. In this work, only the element-Jacobi preconditioner is considered. Future
work will be to develop low-storage preconditioners, such as the p-multigrid preconditioner,

to improve the efficiency of implicit time marching methods.
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Appendix
The coefficients of ESDIRK and ROW methods investigated in this study are documented

here for completeness.
See Tables 5 and 6.

@ Springer



Journal of Scientific Computing (2020) 83:39

Page230f27 39

Table 5 Coefficients of ESDIRK methods

ESDIRK2 [33]

o = 0.2928932188134524
az) = 0.2928932188134524
a3 = 0.3535533905932738
azpy = 0.3535533905932738
b1 = 0.3535533905932738
by = 0.3535533905932738
b3 = 0.2928932188134524
ESDIRK3 [21]

o = 0.4358665215084590
az1 = 0.4358665215084590
az] = 0.2576482460664272
azy = —0.0935147675748862
ag) = 0.1876410243467238
agy = —0.5952974735769549
ag3 = 0.9717899277217721
by =0.1876410243467238
by = —0.5952974735769549
b3z =0.9717899277217721
bsy = 0.4358665215084590

ESDIRK4 [21]

=025
ar] =025
a1 = 0.137776

azp = —0.055776

aq = 0.1446368660269822
agy = —0.2239319076133447
ag3 = 0.4492950415863626
as) = 0.0982587832835648
asy = —0.5915442428196704
as3 = 0.8101210538282996
asyq = 0.2831644057078060
ae] = 0.1579162951616714
agy = 0.0

ae3 = 0.1867589405240008
aes = 0.6805652953093346
ags = —0.2752405309950067
b; =0.1579162951616714
by =0.0

b3 = 0.1867589405240008
bg = 0.6805652953093346
bs = —0.2752405309950067
be =0.25
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Table 6 Coefficients of ROW methods

ROW2 [37]

w = 0.2281554936539618
ap| = 4.3829757679062376
a3 = 4.3829757679062376
azp = 4.3829757679062376
cp1 = —4.3829757679062376
c31 = —4.3829757679062376
¢33 = —16.827500814147036
m1 = 4.3829757679062377
my = 4.3829757679062377
m3 = 1.0

ROW3 [36]

w = 0.4358665215084590
ay; =2.0

az] = 1.4192173174557646
azy = —0.2592322116729697
aq) = 4.1847604823191607
agn = —0.2851920173554959
aq3 = 2.2942803602790417
cp1 = —4.5885607205580834
c31 = —4.1847604823191607
¢33 = 0.2851920173554959
cq1 = —6.3681792001283574
c4p = —6.7956209444668360
c43 = 2.8700986043310560
m1 = 4.1847604823191602
my = —0.2851920173554959
m3 = 2.2942803602790414
my = 1.0

ROW4 [38]

=025

ay; =3.0

az] = 1.831036793486759
azy = 0.495518396743379
ag) = 2.304376582692669
agr = —0.052492752457430
as3 = —1.176798761832782
as; = —7.170454962423024
asy = —4.741636671481785
as3 = —16.31002631330971
asy = —1.062004044111401
ag] = —7.170454962423024
agy = —4.741636671481785
agz = —16.31002631330971
ags = —1.062004044111401
aes = 1.0

c1 =3.0

c31 = 1.831036793486759
c3p = 0.495518396743379
c41 = 2.304376582692669
cqp = —0.052492752457430
c43 = —1.176798761832782
c51 = —7.170454962423024
csp = —4.741636671481785
c53 = —16.31002631330971
cs4 = —1.062004044111401
cel = —7.170454962423024
cep = —4.741636671481785
ce3 = —16.31002631330971
cea = —1.062004044111401
cgs = 1.0

my = —7.170454962423024
my = —4.741636671481785
m3 = —16.31002631330971
my = —1.062004044111401
ms = 1.0

me = 1.0
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