
Journal of Computational Physics 417 (2020) 109581

Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

A dynamically load-balanced parallel p-adaptive implicit
high-order flux reconstruction method for under-resolved

turbulence simulation

Lai Wang a, Matthias K. Gobbert b, Meilin Yu a,∗

a Department of Mechanical Engineering, University of Maryland, Baltimore County, United States of America
b Department of Mathematics and Statistics, University of Maryland, Baltimore County, United States of America

a r t i c l e i n f o a b s t r a c t

Article history:
Received 8 October 2019
Received in revised form 29 March 2020
Accepted 18 May 2020
Available online 25 May 2020

Keywords:

Dynamic load balancing
Dynamic p-adaptation
Under-resolved turbulence simulation

Implicit high-order flux reconstruction
Matrix-free GMRES

We present a dynamically load-balanced parallel p-adaptive implicit high-order flux recon-
struction method for under-resolved turbulence simulation. The high-order explicit first
stage, singly diagonal implicit Runge–Kutta (ESDIRK) method is employed to circumvent
the restriction on the time step size. The pseudo transient continuation is coupled with
the matrix-free restarted generalized minimal residual (GMRES) method to solve the non-
linear equations at each stage, except the first one, of ESDIRK. We use the spectral decay
smoothness indicator as the refinement/coarsening indicator for p-adaptation. A dynamic
load balancing technique is developed with the aid of the open-source library ParMETIS.
The trivial cost, compared to implicit time stepping, of mesh repartitioning and data re-
distribution enables us to conduct p-adaptation and load balancing every time step. An
isentropic vortex propagation case is employed to study the impact of element weights
used in mesh repartitioning on parallel efficiency. We apply the p-adaptive solver for im-

plicit large eddy simulation (ILES) of the transitional flows over a cylinder when Reynolds
number (Re) is 3900 and the SD7003 wing when Re is 60000. Numerical experiments
demonstrate that a significant reduction in the run time (up to 70%) and total number of
solution points (up to 76%) can be achieved with p-adaptation.

 2020 Elsevier Inc. All rights reserved.

1. Introduction

Recent decades have witnessed tremendous developments in high-order computational fluid dynamics (CFD) methods,
such as discontinuous Galerkin methods (DG) [1–8], spectral difference methods (SD) [9–12], classic compact finite dif-
ference methods [13,14], finite difference summation by parts (SBP) operators [15–17], and flux reconstruction/correction
procedure via reconstruction methods (FR/CPR) [18–24]. Low-dissipation and low-dispersion properties of high-order meth-

ods have made them attractive for ILES of turbulent flows. It has been reported in [25] that DG-based ILES can outperform
subgrid-model-based LES for transitional flows and wall bounded flows. The dissipation of high-order methods on low-

frequency large-scale flow features is trivial, and it is only significant on high wavenumbers/frequencies. Therefore, the
truncation error of high-order methods is considered as an implicit subgrid model for turbulence simulation. We note that
high-order methods are prone to suffer from instabilities due to aliasing errors in under-resolved turbulence simulation,

* Corresponding author.
E-mail address: mlyu@umbc.edu (M. Yu).

https://doi.org/10.1016/j.jcp.2020.109581

0021-9991/ 2020 Elsevier Inc. All rights reserved.

2 L. Wang et al. / Journal of Computational Physics 417 (2020) 109581

especially when the spatial polynomial degree exceeds two. It has been shown that with proper de-aliasing techniques,
ILES using high-order methods has promising capabilities in under-resolved turbulence simulation [7]. Four popular types
of stabilization approaches for under-resolved turbulence simulation can be found in the literature, including (a) the split
form [26,27], (b) over integration [28,29], (c) artificial viscosity via spectral vanishing viscosity [30–32], and (d) polynomial
filtering [33–35]. In this study, we employ nodal polynomial filtering proposed by Fischer and Mullen [35] when de-aliasing
is needed.

A uniformly high-order spatial discretization in the entire flow field for under-resolved turbulence simulation of certain
problems, such as wall bounded turbulent flows at high Reynolds numbers, is very expensive. As a matter of fact, the
high-order spatial discretization is only needed in the near wall region, such as the turbulent boundary layer, and the wake
region where vortex shedding dominates. Collocation schemes favor a straightforward implementation of p-adaption, which
has the potential to significantly decrease computational cost. Instead of refining/coarsening the polynomial degrees, mesh-

adaptation either relocates the mesh points or locally refines/coarsens the mesh to adapt the mesh resolution. Comparison
of h-, p-, and hp-adaptation for high-order methods has been carried out [36,37]. It is found that p-adaptation is more
advantageous for smooth flows, and h- and hp-adaptation perform better for flows with discontinuities. In this work, we
only consider p-adaptation for smooth flows.

In the literature, three major groups of adaptation methodologies can be found. The first one is the feature-based adap-
tation [38–40], the second one is the truncation-error-based or discretization-error-based adaptation [41–43], and the last
one is the output-based or adjoint-based adaptation [44–47]. Feature-based adaptation methods are usually ad hoc and
heavily rely on empirical parameters; however, their ease of implementation and reasonable robustness make them a good
choice for adaptation. Truncation-error based approaches usually use the correction from either an additional coarser mesh
or a lower-order discretization to estimate the local discretization error, which can serve as the adaptation indicator. A
comparison of several feature-based and discretization-error-based adaptation indicators is conducted by Naddei et al. [40].
Adjoint-based adaptation methods are popular for engineering purposes since engineers are more interested in output func-
tionals, such as lift and drag. Their superiority over the former two approaches has been demonstrated for steady flow
problems. However, the computational cost of adjoint-based adaptation, especially for unsteady turbulence simulation, can
be large. Recently, Bassi et al. [48] employed an efficient entropy-adjoint-based [49] p-adaptive DG solver to conduct scale-
resolving turbulence simulation. In this study, we will evaluate the performance of a feature-based adaptation method [40],
which employs the spectral decay smoothness indicator [50] as the refinement/coarsening indicator when it is applied to
under-resolved turbulence simulation.

Explicit high-order Runge–Kutta (RK) methods [51,52] have been widely applied to unsteady flow simulation. p-

adaptation will naturally lead to p-enrichment in near wall regions where the elements are usually clustered, thus wors-

ening the Courant–Friedrichs–Lewy (CFL) condition when explicit methods are employed. Implicit time integrators can
essentially circumvent the CFL restriction that explicit methods have. Diagonally implicit RK methods [53] and backward
differentiation formula (BDF) methods are among the most popular implicit time integration methods. Recently, linearly
implicit Rosenbrock methods have become popular for under-resolved turbulence simulation [54,55]. Matrix-based im-

plicit methods are notorious for the large memory consumption. Therefore, the matrix-free implementation [55,56] is
usually employed to reduce memory usage [57] for massive turbulence simulation. In our recent comparative study of BDF,
Rosenbrock-Wanner (ROW), and ESDIRK [55], we found that multistage implicit RK is more efficient than multistep BDF, and
ESDIRK method is generally more robust than ROW in the context of matrix-free implementation with an element-Jacobi
preconditioner. Therefore, we employ ESDIRK in this study. Interested readers are also referred to [58,59] for implicit-explicit
(IMEX) Runge–Kutta methods, which use explicit and implicit RK for non-stiff and stiff terms, respectively.

Given that the time step size of an implicit time integrator can be relatively large, dynamic adaptivity is desired to
track the rapid change of turbulence features. Consequently, the work loads on all processes in parallel simulation will be
imbalanced once p-adaptation takes place. The difference of numbers of degrees of freedom on different processes can
be over 500% for a simple isentropic vortex propagation problem [60]. Hence, a dynamic load balancing technique is of
crucial importance for the parallel efficiency of p-adaptive methods. Existing publications regarding p-adaptive high-order
methods for turbulence simulation use the mean flow field to conduct the adaptation without dynamic adaptivity [39,48].
We utilize the open-source library ParMETIS [61] to achieve dynamic load balancing for p-adaptation. Technical details on
using ParMETIS for dynamic adaptivity are presented in Section 3 for interested readers. In our numerical experiments, we
find that the cost of mesh repartitioning and data redistribution is trivial compared to that of implicit time stepping. This
enables p-adaptation to be conducted every time step to significantly decrease the overall unsteady flow simulation time.

Contributions. We develop a dynamically load-balanced p-adaptation technique for parallel implicit high-order flux recon-
struction solution of unsteady Navier–Stokes equations. The implementation regarding the dynamic load balancing technique
is presented in detail. We discuss the impact of weight calculation for each element on the parallel efficiency of p-adaptation
when implicit time integrators are used. The p-adaptive solver is applied to under-resolved turbulence simulation of the
transitional flow over an infinite cylinder at Re = 3900 and the transitional flow over the SD7003 wing at Re = 60000. Com-

pared to the p-uniform spatial discretization, the p-adaptive FR method can save up to 70% computational cost when p ≤ 3

in our experiments and provide favorable numerical predictions. We expect more savings when p is higher as demonstrated
in a simple experiment of the isentropic vortex propagation problem.

Organization. The remainder of the paper is organized as follows. Section 2 provides the mathematical background of the
governing equations, the spatial discretization, and the time integration. Section 3 introduces the p-adaptation algorithm

L. Wang et al. / Journal of Computational Physics 417 (2020) 109581 3

with the spectral decay smoothness indicator, and then explains the parallel mesh partitioning technique with ParMETIS.
A simple example is employed to demonstrate the impact of weight calculation of each element on the parallel efficiency.
Applications of the p-adaptive solver to under-resolved turbulence simulation are presented in Section 4. In Section 5, we
draw conclusions from the current work.

2. Background

2.1. Governing equations

Using Einstein summation convention, the compressible Navier–Stokes equations can be written as

∂ρ

∂t
+

∂(ρu j)

∂x j

= 0, (1)

∂(ρui)

∂t
+

∂(ρu jui + δ ji P)

∂x j

=
∂τ ji

∂x j

, (2)

∂(ρE)

∂t
+

∂(ρu jH)

∂x j

=
∂(uiτi j − K j)

∂x j

, (3)

where i = 1, . . . , nd , and nd is the dimension number. Herein, ρ is the fluid density, ui is the velocity component, P is the
pressure, E =

P/ρ
γ −1

+ 1
2
ukuk is the specific total energy, H = E + P

ρ is the specific total enthalpy, τi j is the viscous stress and
K j is the heat flux. γ is the specific heat ratio defined as γ = cP /cv , where cP and cv are specific heat capacity at constant
pressure and volume, respectively. In this study, γ is set as 1.4. The ideal gas law P = ρRT holds, where R is the ideal gas
constant and T is the temperature. The viscous stress tensor and heat flux vector are given by

τi j = 2μ

{
S i j −

1

3

∂uk

∂xk
δi j

}
, (4)

K j = −
µcP

Pr

∂T

∂x j

, (5)

where μ is the fluid dynamic viscosity, Pr is the molecular Prandtl number, and the strain-rate tensor S i j is defined as

S i j =
1

2

(
∂ui

∂x j

+
∂u j

∂xi

)
. (6)

In this study, μ and Pr are treated as constants.

2.2. The FR/CPR method

For completeness, a brief review of the FR/CPR method [20] is presented in this section. A symbolic form of the com-

pressible Navier–Stokes equations (1), (2), (3) is written as

∂q

∂t
+ ∇ · f = 0, (7)

which is defined in domain �. � is partitioned into N non-overlapping and conforming elements �e , where e =
0, 1, . . . , N − 1. After multiplying each side by the test function ϑ and integrate over �e , one obtains

∫

�e

∂qe

∂t
ϑ dV +

∫

�e

ϑ ∇ · f e dV = 0. (8)

On applying integration by parts and Gauss divergence theorem, Eq. (8) reads
∫

�e

∂qe

∂t
ϑ dV +

∫

∂�e

ϑ f e · ndS −

∫

�e

f e · ∇ϑ dV = 0, (9)

where n is the outward-facing unit normal vector of the faces of the element �e . In the discrete form, we assume qhe is
the approximate solution in element �e . The solution and the test function belong to the polynomial space of degree k,
i.e., qhe ∈ pk and ϑh ∈ pk . To ensure conservation, f e · n in Eq. (9) is replaced with f comn , the common flux in the normal
direction of the element surfaces. Eq. (9) then reads

∫

�e

∂qhe

∂t
ϑ
h dV +

∫

∂�e

ϑ
h f comn dS −

∫

�k

f he · ∇ϑ
h dV = 0. (10)

4 L. Wang et al. / Journal of Computational Physics 417 (2020) 109581

After applying integration by parts and Gauss divergence theorem again to the last term of Eq. (10), one obtains

∫

�e

∂qhe

∂t
ϑ
h dV +

∫

�e

ϑ
h ∇ · f he dV +

∫

∂�e

ϑ
h [f]dS = 0, (11)

where [f] = f comn − f locn with f locn = f he · n. In the FR/CPR method, the correction field δe ∈ pk is defined as [20]

∫

∂�e

ϑ
h [f]dS =

∫

�e

ϑ
h
δe dV . (12)

Therefore, Eq. (11) can be expressed as

∫

�e

(
∂qhe

∂t
+ ∇ · f he + δe

)
ϑ
h dV = 0. (13)

The differential form can then be employed as

∂qhe

∂t
+ P

(
∇ · f he

)
+ δe = 0. (14)

Herein, P
(
∇ · f he

)
is the projection of the flux divergence

(
∇ · f he

)
, which may not be a polynomial, onto an appropriate

polynomial space. We note that Eq. (14) can be directly derived from the differential form; their equivalence has been
established in [62]. Specifically, for quadrilateral and hexahedral elements, the correction field can be obtained by means of
the tensor product of the one dimensional correction polynomials; for triangular and tetrahedral elements, the readers are
referred to [20,63]. Only hexahedral elements are considered in this study.

The Roe approximate Riemann solver [64] is used to calculate the common inviscid fluxes at the cell interfaces in their
normal directions as

f comn,inv =
f +
n,inv

+ f −
n,inv

2
− R|Λ|R−1 q

+ − q−

2
, (15)

where superscripts ‘−’ and ‘+’ denote the left of right side of the current interface, the subscript n is the unit normal
direction from left to right, Λ is a diagonal matrix consisting of the eigenvalues of the Jacobian ∂ f n/∂q, and R consists
of the corresponding right eigenvectors evaluated with the Roe averaged values. The common viscous fluxes at the cell
interfaces are f comn,vis = f vis(q

+, ∇q+, q−, ∇q−). Here, we need to define the common solution qcom and common gradient
∇qcom at the cell interface. On simply taking average of the primitive variables, we get

qcom =
q+ + q−

2
. (16)

The common gradient is computed as

∇qcom =
∇q+ + r+ + ∇q− + r−

2
, (17)

where r+ and r− are the corrections to the gradients on the interface. The second approach of Bassi and Rebay (BR2) [5] is
used to calculate the corrections.

2.3. ESDIRK methods with pseudo transient continuation

The ESDIRK methods for the compressible Navier-Stokes equation (7) can be written as
⎧
⎪⎨
⎪⎩

qn+1 = qn + �t
∑s

i=1 biR(qi),

qi = qn, i = 1,

qi = �tω R(qi) + qn + �t
∑i−1

j=1 ai jR(q j), i = 2, . . . , s,

(18)

where i is the stage number, s is number of total stages, n denotes the physical time step, and R = −∇ · f . The second-order,
three-stage ESDIRK2 [53], and fourth-order, six-stage ESDIRK4 [65] methods are employed in this paper. A comparative study
of different implicit time integration methods can be found in [55]. In every stage except the first one, a nonlinear system,
which can be expressed as

L. Wang et al. / Journal of Computational Physics 417 (2020) 109581 5

F (qi) =

(
−

1

ω�t
qi + R(qi)

)
+

1

ω�t

⎛
⎝qn + �t

i−1∑

j=1

ai jR(q j)

⎞
⎠ , i = 2, . . . , s, (19)

needs to be solved for qi .

The pseudo transient continuation for the i-th stage reads

qm+1,i − qm,i

�τ
= F (qm+1,i), (20)

where m is the iteration step. Eq. (20) can be linearized as
(

1

ω�t
+

1

�τ
−

∂R

∂q

)m

�qm,i = F (qm,i), (21)

where �qm,i = qm+1,i −qm,i . We employ the successive evolution relaxation (SER) algorithm [66] to update the pseudo time
step size as

�τ 0 = �τinit, and �τm+1 = min

(
�τm

||F ||
m−1
L2

||F ||mL2

,�τmax

)
. (22)

In all the numerical experiments conducted in this study, we set the convergence tolerance of relative residual of the pseudo
transient continuation as tolpseudo

rel
= 10−4 .

We use the restarted GMRES framework in the portable, extensible toolkit for scientific computation (PETSc) package [67]

with user-defined functions to conduct the matrix-vector product and preconditioning. In Krylov subspace methods, the
Jacobian matrix only appears in the matrix-vector product. A finite difference approximation of the matrix-vector product
reads (

∂R

∂q

)
X =

R(q + εX) − R(q)

ε
+ O (ε), (23)

where ε = 10−6 in this study. The element-Jacobi preconditioner, i.e., the inverse of the diagonal blocks of
(

1
ω�t

+ 1
�τmax

−

∂R
∂q

)
, is used for left preconditioning in this study. The preconditioner is only evaluated once at the starting stage of each

physical time stepping.
The pseudo transient continuation is an inexact Newton’s method. Therefore, we assign a relatively large tolerance to the

GMRES solver, i.e., tolgmres

rel
= 10−1 , to save computational cost [55]. However, for stiff problems, tolgmres

rel
= 10−1 may lead

to divergence of the pseudo transient continuation [68]. In this case, we will decrease tolgmres

rel
to 10−2 . If not specifically

mentioned, the restart number is 60 for all numerical experiments. We note that the performance of the element-Jacobi
preconditioner will quickly deteriorate as �τ increases to large values �τ ≫ �t . Therefore, in the pseudo transient contin-
uation, we do not increase the pseudo time step �τ to large values to ensure that the relative tolerance of GMRES tolgmres

rel
can always be met within 100 iterations. Otherwise, we will decrease the current pseudo time step size by half and redo the
current pseudo-time iteration. In this study, we set �τmax as �τmax = O (�t) and �τmin is usually one magnitude smaller
than �t . We have developed a p-multigrid solver for coarsely-resolving simulation of low-Mach-number turbulent flows
in [69]. Applying the p-multigrid solver as a preconditioner for Newton-Krylov methods will be our future work.

3. Dynamically load-balanced p-adaptation for high performance computing

3.1. p-adaptation using spectral decay smoothness indicator

The spectral decay smoothness indicator has been successful used to detect trouble cells for shock-capturing [50]. It is
defined as

ηk =

∥∥sp − sp−1

∥∥
L2∥∥sp

∥∥
L2

(24)

for one element. For a hexahedral element, ‖·‖L2 is defined as

‖·‖L2 =

∑p+1
ξ=1

∑p+1
η=1

∑p+1
ζ=1

[
(·)2ωξωηωζ | J |ξ,η,ζ

]
∑p+1

ξ=1

∑p+1
η=1

∑p+1
ζ=1

[
ωξωηωζ | J |ξ,η,ζ

] , (25)

where J is the Jacobian matrix of the coordinate transformation from a physical element to the standard element, | J | is
the determinant of J , and ωξ/η/ζ are the quadrature weights in the ξ/η/ζ directions, respectively. sp−1 is obtained by
projecting the solution from the degree p polynomial space to the degree p − 1 space. With the spectral decay smoothness
indicator, the adaptation procedure can be achieved as follows:

6 L. Wang et al. / Journal of Computational Physics 417 (2020) 109581

• calculate the smoothness indicator of every element;

• adjust the polynomial degree of every element according to the adaptation criteria;
• limit the difference of polynomial degrees at non-conforming interfaces to one; and
• project or prolong the solutions when the polynomial is decreased or increased, respectively.

The adaptation criteria we employ in the present study are organized as follows:

• increasing the polynomial degree by one when ηk > νmaxηk,max; and
• decreasing the polynomial degree by one when ηk < νminηk,max .

Herein, νmax and νmin are problem dependent. The polynomial degree p of an element in the flow field is p ∈ [pmin, pmax],
where pmin and pmax are the minimum and maximum polynomial degree, respectively. If not specifically mentioned, we
choose momentum in the x direction, i.e., ρu, as the variable for smoothness indicator calculation; νmax = 0.1 and νmin =

0.001. In this study, all adaptive solvers will have pmin = 1. When the description adaptive pk FR or pk FR with p-adaptation
is used, we are referring to the adaptive FR method with pmin = 1 and pmax = k. Some preliminary results using the current
p-adaptation method to solve 2D unsteady Navier–Stokes equations have been presented in [60]. Since no dynamic load
balancing was employed there, the differences of the numbers of degrees of freedom on different processors in parallel
simulation can be over 500% for a simple isentropic vortex propagation problem. In this study, we propose to develop a
dynamic load balancing strategy for parallel simulation with p-adaptation.

3.2. Implementation of parallel mesh partitioning

To achieve dynamic load balancing, ParMetis_V3_AdaptiveRepart() in the open source library ParMETIS [61] is
employed for efficient parallel mesh partitioning. This application programming interface (API) is particularly developed to
repartition locally adapted mesh in parallel computing. It allows one to use nproc processes to partition the mesh into npart

parts. In this work, nproc = npart is used to assure the load of repartitioning is balanced among all processes. A distributed
mesh is required as one of the inputs of ParMetis_V3_AdaptiveRepart(). We employ METIS_PartMeshDual() in
serial METIS [61] to partition the mesh to obtain the initial distributed mesh and no weights are assigned to any elements.
On using ParMetis_V3_AdaptiveRepart(), each element of the unstructured mesh is regarded as a vertex in the
graph. An illustration of the parallel mesh partitioning is presented in Fig. 1 to explain the technical details. Following
C++ convention, all indices start from 0. There are nproc processes and each process possesses one mesh partition. Assume
the i-th process has ne

i
elements. The global index of the j-th local element in the i-th process must be Index(j, i) =∑i−1

m=0 n
e
m + j to ensure that the distributed mesh is a legal input of ParMetis_V3_AdaptiveRepart(). One output of

ParMetis_V3_AdaptiveRepart() is an array of size ne
i
which stores the process indices of the local elements after

parallel mesh partitioning. As shown in the second row in Fig. 1, before the parallel mesh partitioning, each process has
four elements. Process 0 has Elements 0 to 3, Process 1 has Elements 4 to 7, etc. After parallel mesh parititioning, the index
of the process that an element belongs to is stored locally. Due to change of element weights resulting from p-adaptation,
elements could appear to be ‘randomly’ distributed to all processes. In other words, some processes will possess a part of
the elements that they have before partitioning and some will obtain all elements from other processes. As shown in the
fourth row in Fig. 1, Process 0 has four elements and two of them, Elements 4 and 5, are obtained from Process 1. Process
3 needs to fetch Elements 2, 3 from Process 0, Elements 6, 7 from Process 1, and Element 11 from Process 2. To make the
new distributed mesh as a legal input for ParMetis_V3_AdaptiveRepart() in the next parallel mesh partitioning,
one needs to reorganize the global element indices as illustrated in the last row of Fig. 1. Corresponding CFD data should
also be reorganized following the mapping between the old and new global element indices.

For data redistribution, we use a collect-and-distribute strategy. We utilize MPI_Allgather() to gather all the con-
servative variables on all the processes and each process will fetch the corresponding working variables from the collected
data pool. The aforementioned randomness of redistributing elements to all processes leads to the fact that when it comes
to data redistribution, the elements on many of the processes could be totally different from those before the parallel mesh
partitioning. This implies that the cost of a process-to-process communication strategy to exchange CFD data could possibly
be close to that of the collect-and-distribute strategy. We refer interested readers to several advanced scalable distribution
approaches developed in [70,71]. In our numerical experiments, we have found that the total amount of run time needed
for mesh partitioning and data redistribution is trivial when compared to that of implicit time stepping. We would like to
clarify that in the spatial and temporal solvers, communication among all processes is done in a process-to-process manner
to maximize efficiency.

An important input of ParMetis_V3_AdaptiveRepart() is the weight of each element in the distributed mesh.
For the FR/CPR discretization, the number of solution points nsp within a element is (p + 1)3 for a hexahedral element.
And there are five equations at each solution point to be solved in three dimensional problems. Hence, the number of de-
grees of freedom in one element is ndof = 5nsp . For a hexahedral element, all operations of the FR/CPR methods are indeed
conducted dimension by dimension. Therefore, we roughly estimate the computational complexity of one-time residual eval-
uation as O

(
ndof · (p + 1)

)
. When implicit time integrators are employed, the cost of one-time residual evaluation is trivial

compared to three major parts, (a) evaluating the element Jacobian matrix, (b) calculating the element-Jacobi preconditioner

L. Wang et al. / Journal of Computational Physics 417 (2020) 109581 7

Fig. 1. Illustration of the parallel mesh partitioning using the ParMETIS API.

and (c) solving the nonlinear/linear equations using Newton/Krylov methods. When evaluating the element Jacobian matrix,
the finite difference approach is used. For each element, there will be ndof times the residual evaluation and the compu-

tational complexity is O (n2
dof

· (p + 1)). We use lower-upper (LU) decomposition to invert the element Jacobian matrix to

obtain the element-Jacobi preconditioner. The computational complexity of is O (n3
dof

). In the matrix-free implementation
of the GMRES solver, the approximation of matrix-vector product and preconditioning will contribute to the computational
cost dominantly. For the matrix-vector product approximation, the computational cost will be that of one-time residual
evaluation. The left preconditioning is used in our approach and the complexity is O (n2

dof
). Overall, the complexity of the

Newton-Krylov solver is G(O (n2
dof

) + O
(
ndof · (p + 1)

)
, where G is the total number of GMRES iterations in the pseudo tran-

sient continuation. G is highly problem dependent. Thus, three candidates to calculate the weight of each element, namely,
ωe = ndof /5 = nsp , ωe = n2sp , and ωe = n3sp , will be investigated.

Though we can sketch the computational complexity within each element to pursue an optimal candidate for weight
calculation, the parallel performance is only directly related to the output distributed mesh of ParMETIS. In our numerical
experiments, we observe that when the disparity of element weights is excessively large, e.g., we = n3sp , pmin = 2, and
pmax = 5, the output mesh will lead to degraded parallel efficiency and the large disparity will occasionally lead to failure
of ParMETIS, even when p is smaller than 4 and we = nsp is used. Specifically, there will be processes which have no
elements after parallel mesh partitioning. Therefore, when ParMETIS failure is encountered, we will decrease the weight of
each element to we = p + 1 and redo the mesh partitioning for the current time step. Note that the computational cost
of parallel mesh partitioning is trivial compared to implicit time stepping. In the following subsection, a simple example is
employed to demonstrate the proposed dynamic load balancing strategy.

3.3. A simple example of dynamic load balancing

We simulate the 2D isentropic vortex propagation on a 3D mesh (obtained by extruding a 2D mesh in the z direc-

tion for two layers) to demonstrate the dynamic load balancing strategy. The free stream condition is (ρ, u, v, w, Ma)⊺ =

(1, 1, 1, 0, 0.5)⊺ . The fluctuation is defined as [54]

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

δu = − α
2π (y − y0)e

φ(1−r2),

δv = α
2π (x− x0)e

φ(1−r2),

δw = 0,

δT = −
α2(γ −1)

16φγπ2 e
2φ(1−r2),

(26)

8 L. Wang et al. / Journal of Computational Physics 417 (2020) 109581

where φ = 1
2

and α = 5 are parameters that define the vortex strength. r = (x − x0)
2 + (y − y0)

2 is the distance from any
point (x, y, z) to the center of line the vortex (x0, y0, z) = (0, 0, z) at t = 0. The domain is within [−10, 10] × [−10, 10] ×
[0, 0.8]. A uniform mesh of 50 × 50 × 2 elements is used for the numerical experiments. Periodic boundary conditions are
imposed on all boundaries. We only simulate this problem for 60 steps with a time step size �t = 0.05. In the pseudo
transient continuation, �τinit = 0.05 and �τmax = 10 are used for SER. For the adaptive solver, the flow field is initialized
using uniform pmax discretization.

72 processes are employed in this section. Herein, we take p5 FR with p-adaptation as an example to show how the
elements will be distributed to all processes. Elements in the first seven processes and the corresponding order-of-accuracy
distribution, i.e., (p + 1) distribution, of four consecutive time steps are presented in Fig. 2. From t = 0.15 to t = 0.20, the
local polynomial degree at non-critical region will be coarsened to pmin = 1 while a circular region surrounding the vortex
will maintain high polynomial degrees. Due to this coarsening, the redistributed mesh change drastically. From t = 0.20

to t = 0.25, all the first seven processes except the third one do not exchange any elements with other processes. From
t = 0.25 to t = 0.3, even though the order-of-accuracy distribution only changes slightly, almost all the seven processes will
send a large portion of local elements to other processes and obtain a significant amount of elements from other processes.
For turbulence simulation, we anticipate that the change of the distributed mesh will be more dramatic than this simple
problem.

In Fig. 3, numerical results from p/pmax-refinement studies for the FR solver with/without adaptation are presented.
From Fig. 3(a), it is observed that both the p-uniform solver and p-adaptive solver have spectral convergence. The errors
of the p-adaptive and p-uniform solvers are of the same magnitude when the highest polynomial degrees are the same.
Run time of different solvers and the run time reduction of the p-adaptive solver using different weight algorithms (with
respect to the p-uniform solver) are illustrated in Fig. 3(b) and Fig. 3(c), respectively. Overall, with proper weights assigned
to all the elements, around 80% run time reduction can be achieved via p-adaptation when pmax ≥ 3 (highest order of
accuracy is no smaller than 4). For ωe = nsp , when pmax > 3, the parallel efficiency will keep decreasing as pmax increases.
This is due to the fact the computational cost of the Jacobian matrix and preconditioner evaluation will grow at much larger
rates than that of the one-time residual evaluation. When pmax = 5, ωe = n2sp and ωe = n2sp(p + 1) have better performance
than ωe = nsp . However, it is shown that ωe = n3sp generally degrades the efficiency than other candidates. Especially, when
ωe = n3sp and pmax = 5, the p-adaptive solver fails to finish the simulation within the time that the p-uniform solver needs.
In order to achieve optimal performance, both the weight calculation and the parallel mesh partitioning algorithm should be
taken into account. In the following section, we use we = nsp for the p-adaptive solver when it is applied to under-resolved
turbulence simulation since we only consider pmax ≤ 3 there.

In Fig. 4, we present the distribution of order, smoothness indicator in the log scale, and point-wise error of ρu defined
as Err(ρu) = (ρu)exact − (ρu). Large η resides at the vortex region and the transition region of high-degree polynomials to
low-degree polynomials. Note that this is consistent with the error distribution. It indicates that the smoothness indicator
can be used to effectively adjust the polynomial degrees in the flow field to maintain simulation accuracy, thus enhancing
the efficiency of p-adaptive solvers.

4. Applications to under-resolved turbulence simulation

The numerical studies in this section use seven computational nodes in a distributed-memory cluster. Each node has
two 18-core Intel Xeon Gold 6140 Skylake CPUs (2.3 GHz clock speed, 24.75 MB L3 cache) and 384 GB memory (12 × 32

GB DDR4). The nodes are connected by a network of four 36-port EDR (Enhanced Data Rate) InfiniBand switches (100
Gb/s bandwidth, 90 ns latency). 252 processes are used for every simulation. The CFD codes and third party libraries,
such as ParMETIS and PETSc, are compiled using MPICH 3.2.1 and GCC 7.3.0 compilers. The C++11 standard is used in the
compilation of the CFD codes.

4.1. Under-resolved simulation of the flow over an infinite cylinder

Long time simulations of the transitional flow over an infinite cylinder are conducted to validate the reliability of
the p-adaptive solver in this section. The diameter of the cylinder is d = 1. The inflow conditions are set as the vector
(ρ∞, u∞, v∞, w∞, Ma∞)⊺ = (1, 1, 0, 0, 0.1)⊺ . The Reynolds number of the inflow with respect to the diameter of the cylin-
der is Red = ρ∞u∞d/μ = 3900. The Prandtl number is Pr = 0.71. A 2D view of the mesh is illustrated in Fig. 5. The center
of the cylinder sits at the origin. The 3D mesh is obtained by extruding the 2D mesh along the z direction, i.e., (0, 0, 1)⊺ ,
for eight layers and the thickness of each layer is 0.25d. There are 17694 hexahedral elements and the curved wall bound-
ary is represented by p3 elements. p2 and p3 FR are employed with/without p-adaptation. The cylinder surface is treated
as a no-slip adiabatic wall. Farfield boundary conditions are applied to outer boundaries. Periodic boundary conditions are
imposed at the front and back sides. We employ ESDIRK4 for time integration and �t = 0.025. In the pseudo transient
continuation, �τinit = 0.001 and �τmax = 0.01 are used for SER. The tolerance for the pseudo transient continuation is
tol

pseudo

rel
= 10−4 and that of the GMRES solver is tolgmres

rel
= 10−1 . We run all simulations until tend = 800. The instanta-

neous solutions in t ∈ (100, 800] are used for time averaging. For p2 FR with adaptation, (νmax, νmin) = (0.1, 0.001) and
(νmax, νmin) = (0.1, 0.01) are tested. For p3 FR, only (νmax, νmin) = (0.1, 0.01) is used to carry out the p-adaptation. The flow
field is initialized uniformly with the inflow conditions and the p-adaptive solver starts from a uniform p1 discretization.

L. Wang et al. / Journal of Computational Physics 417 (2020) 109581 9

Fig. 2. (a), (c), (e), and (g) are elements in Processes 0–6 at four consecutive time steps. Processes 0–6 are colored by red, yellow, green, blue, orange, pink,
and dark green, respectively. (b), (d), (f), and (h) are corresponding instantaneous order-of-accuracy distributions. (For interpretation of the colors in the
figure(s), the reader is referred to the web version of this article.)

10 L. Wang et al. / Journal of Computational Physics 417 (2020) 109581

Fig. 3. p/pmax-refinement of the p-uniform and p-adaptive FR solvers for the isentropic vortex propagation. (a) Error vs. order of accuracy, (b) error vs.
run time, and (c) reduction of run time vs. order of accuracy. For the p-adaptive solver, the order of accuracy indicates the highest order of accuracy, i.e.,
pmax + 1 in the flow field.

Table 1

Run time of all simulations of the transitional flow over the infinite cylinder.

Method (νmax,νmin) Run time (hours) Reduction of run time Reduction of ntotsp

p2 FR no adaptation 27.43 0 0

(0.1,0.001) 22.43 18.23% 49.96% at t = 800

(0.1,0.01) 16.55 39.66% 63.43% at t = 800

p3 FR no adaptation 149.78 0 0

(0.1,0.01) 45.56 69.58% 75.98% at t = 800

The run time of all simulations is documented in Table 1. Overall, the p-adaptive solver can reduce a significant amount
of run time. Particularly, for p3 FR, the adaptive solver can reduce the run time by 69.58% when (νmax, νmin) = (0.1, 0.01). At
t = tend , the adaptive p2 FR solver has 239,073 solution points when (νmax, νmin) = (0.1, 0.001) and 17,4701 solution points
when (νmax, νmin) = (0.1, 0.01); the adaptive p3 FR solver has 271,958 solution points. When turbulence is fully developed,
the total number of p-refined elements will be similar at different time steps. In general, the reduction of run time and
that of ntotsp are consistent with each other and p-adaptation with larger pmax is encouraged as shown in Table 1. From the
isosurfaces of Q -criterion, where Q = 0.5, illustrated in Fig. 6, it is intuitive that the p-adaptive solver is more dissipative
than p-uniform solver in the wake region away from the cylinder. The order-of-accuracy distributions of the adaptive solver
with different adaptation parameters at slice z = 0 are also presented. When νmin is decreased from 0.01 to 0.001, the p2

region will substantially extend into the wake region away from the cylinder. Thus, the reduction in run time will decrease.
The order-of-accuracy distributions of the adaptive p3 FR solver at different slices are shown in Fig. 7 to give a better
presentation of the local p-adaptation.

L. Wang et al. / Journal of Computational Physics 417 (2020) 109581 11

Fig. 4. The distribution of (a) order of accuracy, (b) smoothness indicator η, and (c) point-wise error of ρu at t = 3 using the adaptive p5 FR method. Note
that the smaller the η is, the smoother the flow is.

Fig. 5. 2D views of the unstructured mesh around a circular cylinder.

12 L. Wang et al. / Journal of Computational Physics 417 (2020) 109581

Fig. 6. Transitional flow over the infinite cylinder at Re = 3900. Instantaneous isosurfaces of Q = 0.5 colored by velocity component in the x direction at
t = 800. Order-of-accuracy distribution at slice z = 0 is turned on in (b) and (c). A close-up view of the near wall region is also presented in (c).

Fig. 7. Instantaneous order-of-accuracy distribution of p3 FR with adaptation at different slices when t = 800.

We further examine the power spectral density (PSD) of the total velocity at four locations in the wake region, namely
(0.58, 0, 1)⊺ , (1.54, 0, 1)⊺ , (6, 0, 1)⊺ , and (10, 0, 1)⊺ as presented in Fig. 8. Compared to the DNS results in [72], a large
portion of the inertial range can be resolved at the first two points. At the last two points, (6, 0, 1)⊺ , and (10, 0, 1)⊺ , the
adaptive solver gets more dissipative as the parameter νmin increases. The velocity profiles at different positions on the
x-axis in Fig. 9, where y/d ∈ [−3, 3], further demonstrates this observation. At x = 0.58 and x = 1.54, the velocity profiles

L. Wang et al. / Journal of Computational Physics 417 (2020) 109581 13

Fig. 8. Power spectral density of the total velocity at different locations in the wake region. (a)–(d) adaptive p2 FR without adaptation, (e)–(h) adaptive p2
FR with (νmax, νmin) = (0.1, 0.001), (i)–(l) adaptive p2 FR with (νmax, νmin) = (0.1, 0.01), (m)–(p) p3 FR without adaptation, and (q)–(t) adaptive p3 FR with
(νmax, νmin) = (0.1, 0.01). A line of slope −5/3 is added to every graph as a reference.

of the p-adaptive FR methods are close to those of the p-uniform FR methods. At x = 6 and x = 10, the local extrema of
the p-adaptive FR are largely dissipated, even when (νmin, νmax) = (0.1, 0.001).

The surface pressure coefficient C P and surface friction coefficient C f on the y > 0 side of the cylinder are presented in
Fig. 10. When (νmax, νmin) = (0.1, 0.001), the results of the adaptive p2 FR method is close to that of the p-uniform p2 FR
method. When (νmax, νmin) = (0.1, 0.01), the results of adaptive solver are still comparable to those of the p-uniform solver
even though a large portion of the wake region uses p1 polynomials only.

14 L. Wang et al. / Journal of Computational Physics 417 (2020) 109581

Fig. 9. Profiles of velocity component u in x-direction at different locations. Legend 1, p-uniform p2 FR; Legend 2, p-adaptive p2 FR with (νmax, νmin) =
(0.1, 0.001); Legend 3, p-adaptive p2 FR with (νmax, νmin) = (0.1, 0.01); Legend 4, p-uniform p3 FR; Legend 5, p-adaptive p3 FR with (νmax, νmin) =
(0.1, 0.01).

Fig. 10. Surface C P and C f in the averaged field of the transitional flow over the infinite cylinder at Re = 3900.

L. Wang et al. / Journal of Computational Physics 417 (2020) 109581 15

Fig. 11. 2D views of the unstructured mesh around the SD7003 wing.

4.2. Under-resolved simulation of the transitional flow over the SD7003 wing

In this section, we apply the p-adaptive solver to the simulation of the transitional flow over the SD7003 wing. The
geometry of the wing is obtained from the 1st International Workshop on High-Order CFD Methods. The chord length
of the wing is c = 1 with the sharp trailing edge rounded by an arc of radius r ≈ 0.0004. The inflow conditions are
(ρ∞, u∞, v∞, w∞, Ma∞)⊺ = (1, 1, 0, 0, 0.1)⊺ . The angle of attack of the inflow is 8◦ . The Reynolds number of the inflow
with respect to the chord length of the wing is Rec = ρ∞u∞c/μ = 60000. The Prandtl number is Pr = 0.72. 2D views of the
unstructured mesh used for under-resolved simulation are illustrated in Fig. 11. The height of the first layer of elements in
the normal direction of the wing is 0.0003c. We extrude the 2D mesh along the z direction to obtain the 3D mesh. The first
3D mesh has 20 layers in the z direction and 109,540 hexahedral elements in total. The thickness of each layer is 0.01c. The
second one has 10 layers in the spanwise direction and each layer has a thickness of 0.02c. The p-adaptation parameters
are set as (νmax, νmin) = (0.1, 0.001).

The time step �t = 0.002 and tolerance for the pseudo transient continuation tolpseudo
rel

= 10−4 are employed for all
numerical experiments (except when computational cost profiling was conducted). For the simulation on the 20-layer mesh,
ESDIRK2 is employed for time integration with tolgmres

rel
= 10−1 for the GMRES solver. In the pseudo transient continuation,

�τmin = 0.0002 and �τmax = 0.004 are used for SER. We first run the simulation with adaptive p2 FR until t1 = 26. The
instantaneous values of conservative variables in t ∈ (20, 26] are used for averaging. Then we increase the pmax to pmax = 3

and resume the simulation until t2 = 42. Averaging is done for t ∈ (36, 42]. When p3 FR with p-adaptation is used to
simulate this problem on the 10-layer mesh, aliasing errors will lead to failure. Therefore, we employ a simple nodal
polynomial filtering method proposed by Fischer and Mullen [35] for every element whose polynomial degree exceeds two.

The p2 polynomial is employed as a basis to perform a cut-off as ̃qp3 = (1 − α)qp3 + αP
p3

p2
qp3 , where P p3

p2
is the projection

operation from p3 to p2 and α = 0.2. With this nodal polynomial filtering, a small amount of dissipation is introduced
to stabilize the numerical methods. ESDIRK4 serves as the time integrator for the simulation on the 10-layer mesh with
adaptive p3 FR. To increase the robustness of the pseudo transient continuation, tolgmres

rel
= 10−2 , �τmin = 0.0002, and

�τmax = 0.002 are used. We run the simulation until t1 = 26 only. Solutions in t ∈ (20, 26] are averaged for statistics.
Two snapshots of the instantaneous isosurfaces of the Q -criterion, where Q = 500, are presented in Fig. 12 for the

simulation conducted on the 20-layer mesh. One visible difference is that more finer structures are resolved using adaptive
p3 FR. From Fig. 13 and Fig. 14, we observe that polynomials of degree p > 1 are clustered in regions near the stagna-
tion point, turbulent boundary layers as well as the wake region. The order-of-accuracy distributions at different slices
in the spanwise direction are not exactly the same since the p-adaptation is conducted locally. Overall, the feature-based
adaptation method can give an feature-tracking p-distribution. Unlike the transitional flow over the cylinder, the choice
of (νmax, νmin) = (0.1, 0.001) actually clusters all the polynomials of degree p > 1 in a small domain and only a few
high-order elements can be found in the wake region far away from the wing. The power spectral density of the total
velocity at four locations close to the suction side of the wing, i.e., (0.3, 0.057, 0.1)⊺ (0.5, 0.048, 0.1)⊺ , (0.7, 0.032, 0.1)⊺ ,
and (0.9, 0.012, 0.1)⊺ are illustrated in Fig. 15. The first point is near the end of the separation bubble, where the transition
from laminar flow to turbulent flow takes place. The slopes of PSDs are generally steeper than −5/3 at high frequencies
at the first point in all simulation. At the other three points, PSDs align with the reference lines in a certain range of high
frequencies, which agrees with the results in [73].

16 L. Wang et al. / Journal of Computational Physics 417 (2020) 109581

Fig. 12. Instantaneous Q -isosurfaces colored by velocity component u in the x direction when simulating the transitional flow on the 20-layer mesh.

Fig. 13. Instantaneous order-of-accuracy distributions of adaptive p2 FR at different slices in the spanwise direction when simulating the transitional flow
over the SD7003 wing. t = 26.

Fig. 14. Instantaneous order-of-accuracy distributions of adaptive p3 FR at different slices in the spanwise direction when simulating the transitional flow
over the SD7003 wing. t = 40.

The mean field of the averaged velocity component u in the x direction are presented in Fig. 16. Predictions of the
time-averaged flow features, namely, lift coefficient Cl , drag coefficient Cd , separation point xs , and reattachment point xre ,
are documented in Table 2. The reduction of the total number of solution points ntotsp at specific time instances are also pro-
vided in Table 2. The time-averaged surface pressure coefficient C P and surface friction coefficient C f on the SD7003 wing
are illustrated in Fig. 17. All numerical experiments over-predict the drag when compared to the experimental result [74].
Simulation of the incompressible Navier–Stokes equations done by Bassi et al. [54] gave larger Cd than those of the com-

pressible Navier–Stokes equations when Ma = 0.1. The numerical results of our current work have a decent agreement with
those in [75]. For simulation conducted on the 20-layer mesh, the adaptive p2 FR has 1,644,414 solution points at t1 = 26;
the adaptive p3 FR has 2,570,297 solution points at t2 = 42. The reductions compared to p-uniform p2 and p3 FR are
44.40% and 63.34%, respectively. The reduction of solution points on the 10-layer mesh using p-adaptive p3 FR is 60.57% at

L. Wang et al. / Journal of Computational Physics 417 (2020) 109581 17

Fig. 15. Power spectral density of the total velocity at different locations in the wake region. (a)–(d) adaptive p2 FR and (e)–(h) adaptive p3 FR. A line of
slope −5/3 is added to every graph as a reference. Simulations are conducted on the 20-layer mesh.

Fig. 16. Averaged velocity component in the x direction on the 20-layer mesh.

t1 = 26. From the reduction in the total number of solution points, we speculate a similar reduction in the computational
cost or run time. We note that insufficient resolution of the physical scales will lead to failure of the under-resolved turbu-
lence simulation due to insufficient grid resolution in the 10-layer mesh. However, with a small dissipation introduced by
nodal polynomial filtering, the force prediction can be accurate to 0.01 and the length of separation bubble is only slightly
shorter. It is hard to know whether one under-resolved turbulence simulation will fail due to aliasing errors. Therefore,
in the practice of performing under-resolved turbulence simulation using high-order methods, we would recommend to
employ proper de-aliasing techniques.

We profile our code for simulating this problem on the 20-layer mesh using adaptive p2 , p3 , and p4 solvers. We restart
our simulations from previous results and average the run time of each components for 20 time steps. (νmax, νmin) =
(0.1, 0.001) is employed for this test. Specifically, we document the cost of mesh repartitioning ̂t1 , the cost of data redis-
tribution ̂t2 , the total cost of adaptation ̂t1,2 = t̂1 + t̂2 , the cost of element Jacobi evaluation ̂t3 , the cost of preconditioner
evaluation ̂ t4 , and the cost of the linear solver ̂ t5 , as well as the total cost of one implicit time stepping ̂ t0 , in Table 3.
ESDIRK2 and ESDIRK4 are employed as the time integrators and �t = 0.002 and �t = 0.004 are tested. Note that nonlinear

18 L. Wang et al. / Journal of Computational Physics 417 (2020) 109581

Table 2

Predictions of the transitional flow using the p-adaptive solver. Rows 1–3 are from current work using p-adaptive FR. Rows 4–9 are previous numerical
results using p-uniform high-order methods. Row 10 presents the results from experiment. The abbreviation Inc. stands for “incompressible”.

Spatial discretization Ma Cl Cd xs xre Reduction of ntotsp

1 p-adaptive, p2 FR (20-layer) 0.1 0.9289 0.0459 0.0321 0.3075 44.40% at t1 = 26

2 p-adaptive, p3 FR (20-layer) 0.1 0.9270 0.0470 0.0301 0.3123 63.34% at t2 = 42

3 p-adaptive, p3 FR (10-layer) 0.1 0.9316 0.0419 0.0336 0.2735 60.57% at t1 = 26

4 p4 FR (Vermeire et al. [76]) 0.2 0.941 0.049 0.045 0.315

5 p3 DG (Beck et al. [75]) 0.1 0.923 0.045 0.027 0.310

6 p7 DG (Beck et al. [75]) 0.1 0.932 0.050 0.030 0.336

7 O (h6) FD (Galbriath & Visbal [13]) 0.1 0.91 0.043 0.04 0.28

8 p3 DG (Bassi et al. [54]) Inc. 0.962 0.042 0.027 0.268

9 p4 DG (Bassi et al. [54]) Inc. 0.953 0.045 0.027 0.294

10 Experiment (Selig et al. [74]) 0.92 0.029

Fig. 17. Time-averaged surface pressure coefficient C P and surface friction coefficient C f on the SD7003 wing.

tolerance tolpseudo
rel

= 10−4 is employed for all cases. tolgmres

rel
= 10−1 is used for ESDIRK2 and tolgmres

rel
= 10−2 is employed

for ESDIRK4. The averaged number of solution points for adaptive p2 , p3 , and p4 solvers are around 1.6 × 106 , 2.6 × 106 ,
and 4.0 × 106 , respectively. We find that the cost of adaptation is trivial compared to other operations in one implicit
time stepping. We observe that either increasing the polynomial order p or the number of stages of ESDIRK will decrease
the ratio ̂t1,2/̂t0 , which is only 0.004 when ESDIRK4 with �t = 0.004 and adaptive p4 FR are used. This justifies perform-

ing p-adaptation and load balancing every time step. As the polynomial degree increases, the cost (i.e., the ratio t̂4 /̂t0)
of evaluating the preconditioner becomes more and more dominant in one implicit time stepping, and the relative cost
(i.e., the ratio ̂t5/̂t0) of the linear solver decreases. This indicates that research efforts are still needed to further improve
the performance of preconditioners. As mentioned previously, applying the p-multigrid solver [69] as a preconditioner for
Newton-Krylov methods will be our future work.

5. Conclusion

In this work, a dynamically load balanced parallel p-adaptive implicit high-order flux reconstruction method is
developed and applied to under-resolved turbulence simulation. The parallel mesh partitioning API in ParMETIS, i.e.,
ParMetis_V3_AdaptiveRepart(), is utilized for efficient parallel mesh partitioning. A collect-and-distribute strategy
is used to redistribute the working variables to different processes. We have discussed the impact of weight calculation for
each element on the parallel efficiency in the context of matrix-free implementation of the ESDIRK method. We investigate
different weights related to the cost of residual evaluation, Jacobian matrix and preconditioner evaluation, and GMRES it-
erations. For p ≤ 3, we recommend ωe = nsp , and as p grows larger, ωe = nksp , where k > 1, is more preferable. Overall, a
significant reduction in the run time and total number of solution points can be achieved via p-adaptation for turbulence
simulation and favorable results can be obtained.

When the adaptive solver is applied to solving the transitional flow over an infinite cylinder, due to the presence of
large flow separation, the featured-based solver can result in a large domain where the polynomial degrees are refined.
One can adjust the adaptation criteria towards wall-resolving to save computational cost; however, the accuracy would be
compromised. When the flow separation is small, e.g., transitional flow over the SD7003 wing at a moderate angle of attack,

L. Wang et al. / Journal of Computational Physics 417 (2020) 109581 19

Table 3

Profiling results of the adaptive p2 , p3 , and p4 FR methods on simulating the transitional flow over the SD7003 wing. Time unit is second.

Adaptive p2 FR

ESDIRK2, �t = 0.002 ESDIRK2, �t = 0.004 ESDIRK4, �t = 0.002 ESDIRK4, �t = 0.004

Run time Ratio Run time Ratio Run time Ratio Run time Ratio

t̂1 0.392 0.035 0.393 0.025 0.375 0.021 0.386 0.014

t̂2 0.178 0.016 0.178 0.011 0.143 0.008 0.184 0.007

t̂1,2 0.570 0.050 0.571 0.036 0.518 0.030 0.570 0.021

t̂3 1.507 0.133 1.549 0.099 1.375 0.079 1.372 0.051

t̂4 1.126 0.099 1.174 0.075 1.015 0.058 1.016 0.038

t̂5 8.132 0.717 12.376 0.790 14.562 0.834 23.919 0.890

t̂0 11.335 1.000 15.670 1.000 17.470 1.000 26.876 1.000

Adaptive p3 FR

ESDIRK2, �t = 0.002 ESDIRK2, �t = 0.004 ESDIRK4, �t = 0.002 ESDIRK4, �t = 0.004

Run time Ratio Run time Ratio Run time Ratio Run time Ratio

t̂1 0.433 0.013 0.436 0.010 0.436 0.007 0.417 0.006

t̂2 0.270 0.008 0.271 0.006 0.271 0.004 0.258 0.004

t̂1,2 0.703 0.021 0.707 0.016 0.707 0.011 0.675 0.009

t̂3 4.588 0.136 4.569 0.106 4.620 0.072 4.403 0.061

t̂4 9.761 0.289 9.626 0.223 9.692 0.152 9.506 0.132

t̂5 18.722 0.554 28.267 0.655 48.885 0.765 57.653 0.798

t̂0 33.775 1.000 43.169 1.000 63.903 1.000 72.237 1.000

Adaptive p4 FR

ESDIRK2, �t = 0.002 ESDIRK2, �t = 0.004 ESDIRK4, �t = 0.002 ESDIRK4, �t = 0.004

Run time Ratio Run time Ratio Run time Ratio Run time Ratio

t̂1 0.523 0.004 0.538 0.004 0.536 0.003 0.679 0.002

t̂2 0.381 0.003 0.389 0.003 0.408 0.002 0.512 0.002

t̂1,2 0.904 0.007 0.927 0.007 0.945 0.005 1.191 0.004

t̂3 12.943 0.104 12.890 0.091 12.983 0.065 17.701 0.059

t̂4 67.902 0.548 67.652 0.478 68.083 0.339 77.380 0.256

t̂5 42.141 0.340 60.072 0.424 118.913 0.592 206.231 0.682

t̂0 123.890 1.000 141.540 1.000 200.924 1.000 302.502 1.000

the feature-based p-adaptation method is able to confine the p-refined region close to the wing, thus significantly reducing
the cost while providing good predictions. We also show, with the SD7003 case, that insufficient mesh resolution can lead
to instabilities triggered by aliasing errors of high-order methods in under-resolved turbulence simulation. A proper de-
aliasing technique can overcome this issue and provide acceptable predictions. According to the computational cost profiling
results from transitional flow simulations, we find that the cost of adaptation is trivial compared to that of one implicit
time stepping. This justifies our approach to conduct p-adaptation and load balancing every time step. We also find that the
cost of preconditioner evaluation increases when the spatial polynomial degree increases. This indicates that research efforts
are still needed to further improve preconditioners’ performance for high-order numerical simulation with Newton-Krylov
methods.

The framework of dynamically load balanced p-adaptive implicit high-order methods developed in this study paves the
way towards robust and efficient ILES of turbulent flows at higher Reynolds numbers with the high-order FR/CPR method.
The dynamic load balancing technique presented here can be easily extended to other types of high-order collocation
methods.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

Wang and Yu gratefully acknowledge the support of the Office of Naval Research through the award N00014-16-1-2735,
and the faculty startup support from the department of mechanical engineering at the University of Maryland, Baltimore
County (UMBC). The hardware used in the computational studies is part of the UMBC High Performance Computing Facility
(HPCF). The facility is supported by the U.S. National Science Foundation through the MRI program (grant nos. CNS-0821258,
CNS-1228778, and OAC-1726023) and the SCREMS program (grant no. DMS-0821311), with additional substantial support
from UMBC.

20 L. Wang et al. / Journal of Computational Physics 417 (2020) 109581

References

[1] B. Cockburn, C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework,
Math. Comput. 52 (1989) 411–435.

[2] B. Cockburn, S. Hou, C.-W. Shu, The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidi-

mensional case, Math. Comput. 54 (190) (1990) 545–581.
[3] F. Bassi, S. Rebay, A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations,

J. Comput. Phys. 131 (2) (1997) 267–279.
[4] B. Cockburn, C.-W. Shu, Runge–Kutta discontinuous Galerkin methods for convection-dominated problems, J. Sci. Comput. 16 (3) (2001) 173–261.
[5] F. Bassi, A. Crivellini, S. Rebay, M. Savini, Discontinuous Galerkin solution of the Reynolds-averaged Navier–Stokes and k–ω turbulence model equations,

Comput. Fluids 34 (4–5) (2005) 507–540.
[6] J.S. Hesthaven, T. Warburton, Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications, Springer-Verlag, New York, 2008.
[7] G.J. Gassner, A.D. Beck, On the accuracy of high-order discretizations for underresolved turbulence simulations, Theor. Comput. Fluid Dyn. 27 (3–4)

(2013) 221–237.
[8] A. Uranga, P.-O. Persson, M. Drela, J. Peraire, Implicit large eddy simulation of transition to turbulence at low Reynolds numbers using a discontinuous

Galerkin method, Int. J. Numer. Methods Eng. 87 (1–5) (2011) 232–261.
[9] Y. Liu, M. Vinokur, Z.J. Wang, Spectral difference method for unstructured grids I: basic formulation, J. Comput. Phys. 216 (2) (2006) 780–801.

[10] Y. Zhou, Z.J. Wang, Implicit large Eddy simulation of low Reynolds number transitional flow over a wing using high-order spectral difference method,
in: 40th Fluid Dynamics Conference and Exhibit, 2010, p. 4442.

[11] P. Castonguay, C. Liang, A. Jameson, Simulation of transitional flow over airfoils using the spectral difference method, in: 40th Fluid Dynamics Confer-
ence and Exhibit, 2010, p. 4626.

[12] M.L. Yu, Z.J. Wang, H. Hu, A high-order spectral difference method for unstructured dynamic grids, Comput. Fluids 48 (2011) 84–97.
[13] M. Galbraith, M. Visbal, Implicit large eddy simulation of low Reynolds number flow past the SD7003 airfoil, in: 46th AIAA Aerospace Sciences Meeting

and Exhibit, 2008, p. 225.
[14] D.J. Garmann, M.R. Visbal, P.D. Orkwis, Comparative study of implicit and subgrid-scale model large-eddy simulation techniques for low-Reynolds

number airfoil applications, Int. J. Numer. Methods Fluids 71 (12) (2013) 1546–1565.
[15] P. Boom, D. Zingg, Time-accurate flow simulations using an efficient newton-krylov-schur approach with high-order temporal and spatial discretization,

in: 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2013, p. 383.
[16] M.H. Carpenter, T.C. Fisher, E.J. Nielsen, S.H. Frankel, Entropy stable spectral collocation schemes for the Navier–Stokes equations: discontinuous inter-

faces, SIAM J. Sci. Comput. 36 (5) (2014) B835–B867.
[17] M. Svärd, J. Nordström, Review of summation-by-parts schemes for initial–boundary-value problems, J. Comput. Phys. 268 (2014) 17–38.
[18] H.T. Huynh, A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods, in: 18th AIAA Computational Fluid

Dynamics Conference, 2007, p. 4079.
[19] H.T. Huynh, A reconstruction approach to high-order schemes including discontinuous Galerkin for diffusion, in: 47th AIAA Aerospace Sciences Meeting

Including the New Horizons Forum and Aerospace Exposition, 2009, p. 403.
[20] Z.J. Wang, H. Gao, A unifying lifting collocation penalty formulation including the discontinuous Galerkin, spectral volume/difference methods for

conservation laws on mixed grids, J. Comput. Phys. 228 (21) (2009) 8161–8186.
[21] P.E. Vincent, P. Castonguay, A. Jameson, A new class of high-order energy stable flux reconstruction schemes, J. Sci. Comput. 47 (1) (2011) 50–72.
[22] J. Romero, K. Asthana, A. Jameson, A simplified formulation of the flux reconstruction method, J. Sci. Comput. 67 (1) (2016) 351–374.
[23] L. Wang, M. Yu, Compact direct flux reconstruction for conservation laws, J. Sci. Comput. (2017) 1–23.
[24] F.D. Witherden, A.M. Farrington, P.E. Vincent, PyFR: an open source framework for solving advection–diffusion type problems on streaming architectures

using the flux reconstruction approach, Comput. Phys. Commun. 185 (11) (2014) 3028–3040.
[25] P. Fernandez, N.-C. Nguyen, J. Peraire, Subgrid-scale modeling and implicit numerical dissipation in DG-based large-Eddy simulation, in: 23rd AIAA

Computational Fluid Dynamics Conference, 2017, p. 3951.
[26] G.J. Gassner, A skew-symmetric discontinuous Galerkin spectral element discretization and its relation to SBP-SAT finite difference methods, SIAM J.

Sci. Comput. 35 (3) (2013) A1233–A1253.
[27] G.J. Gassner, A.R. Winters, D.A. Kopriva, Split form nodal discontinuous Galerkin schemes with summation-by-parts property for the compressible Euler

equations, J. Comput. Phys. 327 (2016) 39–66.
[28] R.M. Kirby, G.E. Karniadakis, De-aliasing on non-uniform grids: algorithms and applications, J. Comput. Phys. 191 (1) (2003) 249–264.
[29] G. Mengaldo, D. De Grazia, D. Moxey, P.E. Vincent, S.J. Sherwin, Dealiasing techniques for high-order spectral element methods on regular and irregular

grids, J. Comput. Phys. 299 (2015) 56–81.
[30] E. Tadmor, Convergence of spectral methods for nonlinear conservation laws, SIAM J. Numer. Anal. 26 (1) (1989) 30–44.
[31] G. Karamanos, G.E. Karniadakis, A spectral vanishing viscosity method for large-eddy simulations, J. Comput. Phys. 163 (1) (2000) 22–50.
[32] R. Pasquetti, Spectral vanishing viscosity method for large-eddy simulation of turbulent flows, J. Sci. Comput. 27 (1–3) (2006) 365–375.
[33] D. Gottlieb, J.S. Hesthaven, Spectral methods for hyperbolic problems, J. Comput. Appl. Math. 128 (1–2) (2001) 83–131.
[34] J. Hesthaven, R. Kirby, Filtering in Legendre spectral methods, Math. Comput. 77 (263) (2008) 1425–1452.
[35] P. Fischer, J. Mullen, Filter-based stabilization of spectral element methods, C. R. Acad. Sci., Ser. 1 Math. 332 (3) (2001) 265–270.
[36] Y. Li, S. Premasuthan, A. Jameson, Comparison of h-and p-adaptations for spectral difference methods, AIAA Pap. 4435 (2010).
[37] M. Woopen, A. Balan, G. May, J. Schütz, A comparison of hybridized and standard DG methods for target-based hp-adaptive simulation of compressible

flow, Comput. Fluids 98 (2014) 3–16.
[38] G. Gassner, M. Staudenmaier, F. Hindenlang, M. Atak, C.-D. Munz, A space–time adaptive discontinuous Galerkin scheme, Comput. Fluids 117 (2015)

247–261.

[39] M. Tugnoli, A. Abbà, L. Bonaventura, M. Restelli, A locally p-adaptive approach for large Eddy simulation of compressible flows in a DG framework,
J. Comput. Phys. 349 (2017) 33–58.

[40] F. Naddei, M. de la Llave Plata, V. Couaillier, A comparison of refinement indicators for p-adaptive discontinuous Galerkin methods for the Euler and
Navier–Stokes equations, in: 2018 AIAA Aerospace Sciences Meeting, 2018, p. 0368.

[41] R. Hartmann, P. Houston, Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations, J. Comput. Phys. 183 (2) (2002)
508–532.

[42] H. Gao, Z. Wang, A residual-based procedure for Hp-adaptation on 2-D hybrid meshes, in: 49th AIAA Aerospace Sciences Meeting Including the New
Horizons Forum and Aerospace Exposition, 2011, p. 492.

[43] M. Kompenhans, G. Rubio, E. Ferrer, E. Valero, Comparisons of p-adaptation strategies based on truncation-and discretisation-errors for high order
discontinuous Galerkin methods, Comput. Fluids 139 (2016) 36–46.

[44] D.A. Venditti, D.L. Darmofal, Anisotropic grid adaptation for functional outputs: application to two-dimensional viscous flows, J. Comput. Phys. 187 (1)
(2003) 22–46.

L. Wang et al. / Journal of Computational Physics 417 (2020) 109581 21

[45] L. Wang, D.J. Mavriplis, Adjoint-based h–p adaptive discontinuous Galerkin methods for the 2D compressible Euler equations, J. Comput. Phys. 228 (20)
(2009) 7643–7661.

[46] K.J. Fidkowski, D.L. Darmofal, Review of output-based error estimation and mesh adaptation in computational fluid dynamics, AIAA J. 49 (4) (2011)
673–694.

[47] K.J. Fidkowski, Y. Luo, Output-based space–time mesh adaptation for the compressible Navier–Stokes equations, J. Comput. Phys. 230 (14) (2011)
5753–5773.

[48] F. Bassi, A. Colombo, A. Crivellini, K. Fidkowski, M. Franciolini, A. Ghidoni, G. Noventa, An entropy-adjoint p-adaptive discontinuous Galerkin method
for the under-resolved simulation of turbulent flows, in: AIAA Aviation 2019 Forum, 2019, p. 3418.

[49] K.J. Fidkowski, P.L. Roe, An entropy adjoint approach to mesh refinement, SIAM J. Sci. Comput. 32 (3) (2010) 1261–1287.
[50] P.-O. Persson, J. Peraire, Sub-cell shock capturing for discontinuous Galerkin methods, in: 44th AIAA Aerospace Sciences Meeting and Exhibit, 2006,

p. 112.

[51] B. Cockburn, C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework,
Math. Comput. 52 (186) (1989) 411–435.

[52] S. Gottlieb, C.-W. Shu, E. Tadmor, Strong stability-preserving high-order time discretization methods, SIAM Rev. 43 (1) (2001) 89–112.
[53] C.A. Kennedy, M.H. Carpenter, Diagonally implicit Runge-Kutta methods for ordinary differential equations. A review, NASA/TM–2016–219173, 2016.
[54] F. Bassi, L. Botti, A. Colombo, A. Ghidoni, F. Massa, Linearly implicit Rosenbrock-type Runge–Kutta schemes applied to the discontinuous Galerkin

solution of compressible and incompressible unsteady flows, Comput. Fluids 118 (2015) 305–320.
[55] L. Wang, M. Yu, A comparative study of implicit Jacobian-free Rosenbrock-Wanner, ESDIRK and BDF methods for unsteady flow simulation with high-

order flux reconstruction formulations, preprint, arXiv:1904 .04825, 2019.
[56] M. Franciolini, A. Crivellini, A. Nigro, On the efficiency of a matrix-free linearly implicit time integration strategy for high-order discontinuous Galerkin

solutions of incompressible turbulent flows, Comput. Fluids 159 (2017) 276–294.
[57] D.A. Knoll, D.E. Keyes, Jacobian-free Newton–Krylov methods: a survey of approaches and applications, J. Comput. Phys. 193 (2) (2004) 357–397.
[58] C. Kennedy, M. Carpenter, Additive Runge–Kutta schemes for convection–diffusion–reaction equations, Appl. Numer. Math. 44 (2003) 139–181.
[59] L. Pareschi, G. Russo, Implicit–explicit Runge–Kutta schemes and applications to hyperbolic systems with relaxation, J. Sci. Comput. 25 (1) (2005)

129–155.

[60] L. Wang, M. Yu, Jacobian-free implicit p-adaptive high-order compact direct flux reconstruction methods for unsteady flow simulation, in: AIAA Aviation
2019 Forum, 2019, p. 3062.

[61] G. Karypis, METIS and ParMETIS, in: Encyclopedia of Parallel Computing, 2011, pp. 1117–1124.
[62] M. Yu, Z.J. Wang, On the connection between the correction and weighting functions in the correction procedure via reconstruction method, J. Sci.

Comput. 54 (1) (2013) 227–244.
[63] D.M. Williams, P. Castonguay, P.E. Vincent, A. Jameson, Energy stable flux reconstruction schemes for advection–diffusion problems on triangles, J. Com-

put. Phys. 250 (2013) 53–76.
[64] P.L. Roe, Approximate Riemann solvers, parameter vectors, and difference schemes, J. Comput. Phys. 43 (2) (1981) 357–372.
[65] H. Bijl, M.H. Carpenter, V.N. Vatsa, C.A. Kennedy, Implicit time integration schemes for the unsteady compressible Navier–Stokes equations: laminar

flow, J. Comput. Phys. 179 (1) (2002) 313–329.
[66] W.A. Mulder, B. Van Leer, Experiments with implicit upwind methods for the Euler equations, J. Comput. Phys. 59 (2) (1985) 232–246.
[67] S. Balay, S. Abhyankar, M.F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W.D. Gropp, D. Kaushik, M.G. Knepley, L.C. McInnes,

K. Rupp, B.F. Smith, S. Zampini, H. Zhang, PETSc users manual, Tech. Rep. ANL-95/11 - Revision 3.6, Argonne National Laboratory, 2015.
[68] L. Wang, M. Yu, An implicit high-order preconditioned flux reconstruction method for low-Mach-number flow simulation with dynamic meshes, Int. J.

Numer. Methods Fluids (2019).
[69] L. Wang, M. Yu, An implicit P -multigrid flux reconstruction method for simulation of locally preconditioned unsteady Navier-Stokes equations at low

Mach numbers, preprint, arXiv:1908 .03972, 2019.
[70] C. Burstedde, L.C. Wilcox, O. Ghattas, p4est: scalable algorithms for parallel adaptive mesh refinement on forests of octrees, SIAM J. Sci. Comput. 33 (3)

(2011) 1103–1133.
[71] M. Lange, L. Mitchell, M.G. Knepley, G.J. Gorman, Efficient mesh management in firedrake using petsc dmplex, SIAM J. Sci. Comput. 38 (5) (2016)

S143–S155.

[72] O. Lehmkuhl, I. Rodríguez, R. Borrell, A. Oliva, Low-frequency unsteadiness in the vortex formation region of a circular cylinder, Phys. Fluids 25 (8)
(2013) 085109.

[73] F. Bassi, L. Botti, A. Colombo, A. Crivellini, A. Ghidoni, F. Massa, On the development of an implicit high-order discontinuous Galerkin method for DNS
and implicit LES of turbulent flows, Eur. J. Mech. B, Fluids 55 (2016) 367–379.

[74] M.S. Selig, Summary of Low Speed Airfoil Data, Vol. 1, SoarTech Publications, 1995.
[75] A.D. Beck, T. Bolemann, D. Flad, H. Frank, G.J. Gassner, F. Hindenlang, C.-D. Munz, High-order discontinuous Galerkin spectral element methods for

transitional and turbulent flow simulations, Int. J. Numer. Methods Fluids 76 (8) (2014) 522–548.
[76] B.C. Vermeire, F.D. Witherden, P.E. Vincent, On the utility of GPU accelerated high-order methods for unsteady flow simulations: a comparison with

industry-standard tools, J. Comput. Phys. 334 (2017) 497–521.

	A dynamically load-balanced parallel p-adaptive implicit high-order flux reconstruction method for under-resolved turbulenc...
	1 Introduction
	2 Background
	2.1 Governing equations
	2.2 The FR/CPR method
	2.3 ESDIRK methods with pseudo transient continuation

	3 Dynamically load-balanced p-adaptation for high performance computing
	3.1 p-adaptation using spectral decay smoothness indicator
	3.2 Implementation of parallel mesh partitioning
	3.3 A simple example of dynamic load balancing

	4 Applications to under-resolved turbulence simulation
	4.1 Under-resolved simulation of the flow over an infinite cylinder
	4.2 Under-resolved simulation of the transitional flow over the SD7003 wing

	5 Conclusion
	Acknowledgements
	References

