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The interaction of flexible structures with viscoelastic flows can result in very rich dynamics. In
this paper, we present the results of the interactions between the flow of a viscoelastic polymer
solution and a cantilevered beam in a confined microfluidic geometry. Cantilevered beams with
varying length and flexibility were studied. With increasing flow rate and Weissenberg number, the
flow transitioned from a fore-aft symmetric flow to a stable detached vortex upstream of the beam,
to a time-dependent unstable vortex shedding. The shedding of the unstable vortex upstream
of the beam imposed a time-dependent drag force on the cantilevered beam resulting in flow-
induced beam oscillations. The oscillations of the flexible beam were classified into two distinct
regimes: a regime with a clear single vortex shedding from upstream of the beam resulting in
a sinusoidal beam oscillation pattern with the frequency of oscillation increasing monotonically
with Weissenberg number, and a regime at high Weissenberg numbers characterized by 3D flow
instabilities where the frequency of oscillations plateaued. The critical onset of the flow transitions,
the mechanism of vortex shedding and the dynamics of the cantilevered beam response are
presented in detail here as a function of beam flexibility and flow viscoelasticity.

1 Introduction
Fluid-structure interactions (FSI) have been heavily studied by
researchers because of their ubiquity in a variety of mechanical,
industrial and biological processes. At high Reynolds numbers,
the interaction of flexible structures with flow instabilities leads
to very rich dynamics documented in many books and review pa-
pers1–7. In low Reynolds number flows, although flows are sta-
ble, complexity arises from non-linear interactions between de-
formable structures and viscous flow. Viscous fluid motion can
modify the shape, orientation and position of a structure which
in turn leads to coupling between the flow field and the struc-
tural response8. FSI studies of these flows are relevant to the
biological and physiological world seen in the flow past flagella9,
swimming of micro-organisms10, the deformation of red blood
cells during transport in blood vessels11 or the deformation of soft
fluid-conveying vessels12,13. An important class of low Reynolds
number flows includes viscoelastic fluid flows. In these flows,
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purely elastic instabilities can occur even in the absence of iner-
tia14–17 and can in turn interact with flexible structures. Although
these elastic flow instabilities have been reported in a host of vis-
coelastic fluids and flow geometries, such viscoelastic FSI stud-
ies (VFSI) remain scarce and have only recently been conducted
for the flow of wormlike micelle solutions past flexible structures
placed in a crossflow18–20. However, the interplay between the
various types of viscoelastic fluids, flexible structures and flow
geometries is expected to lead to a large variety of dynamics, rel-
evant for a number of fields such as low Reynolds number flows
and structural mechanics.

Polymer solutions are often classified as viscoelastic fluids due
to the complex behavior of these fluids imparted by the physical
nature of a mobile polymer macromolecule. As a flexible polymer
coil stretches within a flow field, it is deformed out of its equi-
librium random walk configuration. An elastic restoring force
results, driving the polymer back toward its entropically favor-
able equilibrium state21. High molecular weight polymers can
thus impart an entropic elasticity to a fluid which allows the poly-
mer solution or melt to carry stress along the flow streamlines
and can lead to the build up of normal stresses in simple shear
flows. The importance of elasticity in the flow is described by
the non-dimensional Weissenberg number, Wi = λ γ̇, where λ is
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fluid relaxation time and γ̇ =U/L is the shear rate, where U is the
flow velocity and L is the characteristic lengthscale. The impor-
tance of inertia is described by the Reynolds number, Re =UL/ν ,
where ν is the kinematic viscosity of the fluid. High Weissenberg
number flows have become easily achievable in the absence of
inertia, Re � 1, in microfluidics22. The micrometer sized flow
geometries result in large shear rates23,24 and Weissenberg num-
bers while simultaneously minimizing the Reynolds number. The
combination of large elastic stresses resulting from those high
Weissenberg numbers and streamline curvature,15,25 while keep-
ing the Reynolds number small, leads to purely elastic flow insta-
bilities, making these flows quite different from Newtonian fluid
flows. The low Reynolds number-high Weissenberg number space
that can be probed due to microfluidics has led to many studies
of viscoelastic instabilities in polymer solutions. Various microflu-
idic geometries such as contraction-expansion flows26, cross-slot
flows27,28, T-channel flows29, flow past cylinders30 and serpen-
tine channel flows31 have been studied. Although all of these
flows demonstrate the onset of elastic instabilities at large Weis-
senberg numbers, in all of the examples, the structure geometry
is rigid and not actively interacting with the instabilities.

Alternatively, allowing these instabilities to affect the position,
deformation and motion of an object falls in the domain of fluid-
structure interaction problems and introduces a host of interest-
ing questions regarding the dynamics and elasticity of the struc-
tures and boundaries of the flow. In this paper, using viscoelastic
flow past a flexible beam attached as a cantilever to one side of
a microchannel, we provide evidence that elastic flow instabili-
ties occurring at high Weissenberg numbers in a confined flow of
a polymer solution can, given the right structural flexibility, gen-
erate motion in the structure and subsequently couple with the
structural motion.

The geometry of flexible beams used in this study has appli-
cations in the field of microfluidics in the development of micro-
and nano-devices such as flow rate sensors and actuators32–35.
Development of fluid-actuated cantilevered microscale beams to
act as fluid energy harvestors is also a promising technology36.
The results of this work could provide an insight into the use
of viscoelastic flow instability as a mechanism of inducing vi-
brations in micro-structures. Thin flexible fibers are also com-
monly seen in biology, where they appear as cilia and flagella
used for locomotion and feeding of various micro-organisms.
Micro-organisms interact with biological flows which are often
viscoelastic and always at low Reynolds numbers10,37. Mimicking
of micro-organisms using bio-inspired cilia and flagella has appli-
cations in the development of artificial micro-swimmers, micro-
pumps, valves and mixers38–40. Our study of thin cantilevered
micro-scale beams placed in a viscoelastic polymer solution could
help in understanding the dynamics and interactions of micro-
organisms in a host of different micro-environments.

This paper describes the investigation of the flow of a viscoelas-
tic polymer solution past a cantilevered beam attached to a side
wall of a micro scale flow channel. The beam is confined by the
top and bottom walls of the channel, occupying nearly the full
channel depth and partially blocks the channel height due to its
significant length. With increasing flow velocity, elastic instabili-

ties arise in the flow due to the presence of the cantilevered beam
which in turn begin to couple with the cantilevered beam. This
interaction has been studied by varying the flexibility of the can-
tilevered beam placed in the flow path. The critical onset of beam
oscillations, underlying mechanism of the oscillations, the charac-
teristics of the flow instabilities and flow-induced beam deforma-
tion over a range of Weissenberg numbers are discussed. Across
the tests of the cantilevered beams, two distinct regimes of the os-
cillatory response of the flexible beam are identified in this paper.

2 Experimental Setup
The experimental geometry consisted of a long rectangular chan-
nel with a rectangular beam extending from one of the side-
walls (Fig. 1(a)). The channel was made of polydimethylsilox-
ane (polydimethylsiloxane, Sylgard 184, Corning) (PDMS) and
fabricated using traditional soft-lithography techniques with a
depth of dc = 48 μm and heights of H = 150 μm and 360 μm.
A bounding wall and beams of a controlled geometry were fab-
ricated using the stop-flow microscope-based projection photo-
lithography process41,42. In order to attach the beam to a wall,
a polymerized wall was first fabricated around PDMS posts close
to the channel walls as followed by Wexler et. al43. The mi-
crochannel was filled with a photosensitive solution composed
of 10 vol% of Darocur 1173 photo-initiator (PI, 2-hydroxy-2-
methylpropiophenone, Sigma) and 90 vol % of polyethylene
glycol-diacrylate (PEGDA, Mw = 700, Sigma). Under a zero flow
condition, a photomask with the wall geometry was placed in the
field-stop position of a microscope (Zeiss) equipped with a UV
light source (Lamp HBO 130W) and a × 10 Fluar objective, and
the shutter was opened for 800 ms. With an open shutter, the pho-
tosensitive solution in the microchannel exposed to UV through
the photo-mask underwent polymerization. Subsequently, a sec-
ond photosensitive solution composed of 10 vol% Darocur 1173
photo-initiator (PI, 2-hydroxy-2-methylpropiophenone, Sigma),
45 vol% polyethylene glycol-diacrylate (PEGDA, Mw = 700,
Sigma) and 45 vol% of a solvent (mixture of water and polyethy-
lene glycol (PEG,Mw = 1000, (Sigma) at a ratio of 1:2 in vol-
ume) was introduced into the microchannel for the fabrication
of the flexible beam. A photomask of the beam geometry was
placed at the base of the bounding wall and allowed to photo-
polymerize similarly. As PDMS is permeable to oxygen which
quenches this reaction, a non-polymerized layer was left along the
top and bottom walls which resulted in free-standing beams in the
microchannel41. A cantilevered beam with a clamped boundary
condition was produced as shown in Fig. 1(b).

The photosensitive solution was then flushed to introduce the
viscoelastic fluid into the microchannel. As the polymerized beam
was exposed to the incoming aqueous viscoelastic solution, a
swelling of the beam by 15% was observed for the flexible beams.
The swelling of the beam in the microchannel was found to oc-
cur only at the initial inflow of the solution and no consequent
changes in the polymerized beam were observed with time once
the channel was filled with the aqueous polymer solution. The
elastic modulii of the flexible beam and bounding wall were deter-
mined outside the microfluidic device by measuring the deflection
of a photo-polymerized beam under gravity after immersion in
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Fig. 1 (a) Schematic of the cantilevered beam in the fabricated microchannel and (b) an image of the fabricated beam.

Table 1 The beam length (l), channel height (H), channel blockage ratio at zero flow conditions (α = l/H), beam stiffness (κ) and the range of the
elasto-viscous numbers tested (μ̃) of the fabricated beam geometries.

l [μm] H [μm] α κ [N/m] μ̃

Beam 1 105±2 150±2 0.7 2×10−1 2×10−4 to 1×10−2

Beam 2 290±2 360±2 0.8 1×10−2 1.2×10−3 to 1×10−1

the aqueous polymer solution. The elastic modulii of the bound-
ing wall and flexible beam were found to be 12 MPa and 3 MPa,
respectively. The non-polymerized layer at the top and bottom of
the beam was deduced to be 4±1.5 μm. The relative intensity of
viscous and elastic forces acting on the beam can be compared us-
ing a dimensionless elasto-viscous number, μ̃ = ηUl3/EI, where
η is the fluid viscosity, U is a typical flow velocity, E is the material
Young’s modulus, I is the area moment of inertia8,44,45. The de-
tails of the fabricated beam geometries such as beam length (l),
channel height (H), channel blockage ratio at zero flow condi-
tions (α = l/H), beam stiffness (κ = EI/l3) and the range of the
elasto-viscous numbers tested (μ̃)are provided in Table 1. The
channel depth, cantilevered beam width and depth, and elastic
modulus were dc = 48 ± 2 μm, w = 17 ± 2 μm and db = 40 ± 2 μm
and E = 3 ± 0.2 MPa respectively while the fluid viscosity was
η0 = 0.22 Pas for both beam geometries. The theoretical natural
frequency of the cantilevered beam in air was calculated to be
fN ≈ 1 MHz which is much larger than any oscillation frequencies
that are expected in this experiment46. As a result, lock-in behav-
ior often observed in Newtonian fluid-structure interactions is not
anticipated.

The viscoelastic fluid was composed of Flopaam 3630 (SNF Flo-
erger) mixed with deionized water at a concentration of 0.02
wt%. Flopaam is a partially hydrolysed polyacrylamide of high
molecular weight and a 25-30 % of hydrolysis. At a concentra-
tion of 0.02 wt%, the mixture showed a zero shear rate viscosity
of approximately η0 = 0.22 Pas. The relaxation time of the fluid

was found to be λ = 0.05 s using capillary breakup extensional
rheometry experiments47.

A precision pump (Nemesys, Cetoni) was used to drive the flow
in the microchannel at flow rates ranging from 0 to 150 nl/s. The
flow experiments were recorded at a frame rate of 500 frames per
second (Hamamatsu Orca-flash 4.0 camera). Particle image ve-
locimetry was used to generate a complete and quantitative mea-
surement of the velocity flow field around the cantilevered beam.
The polymer solution was seeded with fluorescent microparticles
of size 1 μm (Sigma Aldrich) at 0.005% by weight. The responses
of the fabricated beams and the test fluid were analysed using a
particle tracking software (Tracker), ImageJ (NIH) and the parti-
cle image velocimetry (PIV) technique (Lavision) respectively.

3 Results
In order to illustrate the response of the beam to the oncom-
ing flow, a dimensionless Weissenberg number, Wi = λUgap/dc, is
used where λ is the fluid relaxation time, dc is the channel depth
and Ugap is the average flow velocity in the gap between the tip
of the beam and the opposite channel wall, neglecting leakage
through the layer on top and bottom of the beam. This flow ve-
locity in the gap is obtained as Ugap = Q/(dc(H − ȳ)), where Q is
the flow rate, dc is the channel depth and ȳ is the time-averaged
projected length of the deformed beam perpendicular to the on-
coming flow. This definition of the gap velocity ensures that the
effects of increasing beam deformation with the flow rate and
thus a flow-rate-dependent blockage ratio (αflow = ȳ/H) are in-
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Fig. 2 The (a) darkfield streakline and (b) PIV images of viscoelastic flow past Beam 1 for Weissenberg numbers of (a) Wi = 1.5 and (b) Wi = 3. The
flow is from left to right.

corporated in the Weissenberg number.

The images in Fig. 2 represent the streakline and PIV images
captured at Weissenberg numbers of Wi = 1.5 and Wi = 3 for sta-
ble flow past Beam 1 (see details in Table 1). At these flow rates,
the cantilevered beam was observed to undergo a small static de-
formation in the flow direction, as observed by Wexler et. al43

for a cantilevered beam in the flow of a Newtonian fluid. In
Fig. 2(a) and (b), a small re-circulation zone can be observed
just upstream of the cantilevered beam. The stability of the re-
circulation zone can be confirmed by the streakline image taken
over the course of a long exposure time of 0.5 s. This flow separa-
tion was found to be initiated at Weissenberg numbers of Wi ≥ 1.
At these Weissenberg numbers, separated vortices upstream of
flow obstacles have been observed in a number of viscoelastic
microfluidic flows including flow into corners, into contractions
and past posts26,48–51. All of these flows have the combination
of streamline curvature and elasticity known to be necessary for
elastic vortex formation15,25. This re-circulation zone was ob-
served to increase in size with increasing flow velocity. As seen
in Fig. 2, the vortex appears to originate at the corner between
the beam and the upper wall. With increasing flow velocity, the
vortex grows in size and intensity. Although the majority of the
flow is deflected downward and around the tip of the cantilevered
beam, a small fraction (≈ 2%) of the flow can also be seen in the
movies to pass through the small 4μm gap between the beam and
the upper and lower walls of the microchannel. At even higher
flow velocities, the vortex upstream of the beam was found to
become unstable and time dependent, which in turn triggered os-
cillations of the beam.

This flow transition was observed to occur at a Weissenberg
number of Wicrit = 5. The shedding of the unstable vortex was
observed to produce periodic beam oscillations. A sequence of
PIV images captured at time intervals of Δt = 20 ms at Wi = 16
for a shedding vortex are presented in Fig. 3. These PIV images
illustrate the vortex evolution and the subsequent beam oscilla-
tions. In Fig. 3(a), the corner vortex at its maximum size can
be seen at a location of about 100 μm upstream of the flexible

beam. As time progressed from Fig. 3(b) to (c), the strength of
the vortex, its vorticity, is observed to increase as the vortex cen-
ter began to approach the flexible beam and move from the wall.
As time progresses further in Fig. 3(d), the center of the vortex is
observed to move towards the tip of the flexible beam. At this po-
sition, the high flow velocity of the fluid passing around the tip of
the cantilevered beam provides sufficient shear stress to dislodge
the vortex, strip it from the beam and convect it downstream as
seen in Fig. 3(e). In Fig. 3(f), the x-position of the cantilevered
beam’s tip is shown as a function of time. It is clear from Fig. 3(f)
that the growth and decay of the vortex is directly coupled to
oscillations observed at the tip of the cantilevered beam. The
maximum deflection of the beam tip correlates with the instance
shown in Fig. 3(c), when the center of the vortex is at the same
height as the tip of the beam, where the large torque arm helps
maximize the deflection of the tip of the beam. The motion of
the beam’s tip in Fig. 3(f) appears to follow a sinusoidal motion
with time. This motion is similar to the oscillations observed dur-
ing vortex-induced vibration at high Reynolds numbers, but very
different from the viscoelastic fluid-structure interactions previ-
ously observed for the flow of wormlike micelles past cylinders19

or sheets18. In those systems, vortices upstream of the cylinder
or sheet were not observed and instead, the oscillations were in-
duced by a breakdown of the elastic fluid in the extensional flow
region downstream of the cylinder or sheet. The resulting oscil-
lations followed a saw-tooth profile as the failure of the worm-
like micelles that induced the observed flow instability was quite
rapid19.

In Fig. 4(a), the oscillation frequency of the tip of Beam 1 and
the frequency of velocity fluctuations a distance of 2w = 34 μm
upstream of the tip of the beam are plotted against increasing
Weissenberg number in the gap, Wi. The velocity fluctuations
were obtained from PIV images. At the Weissenberg number of
Wi = 5, the stable vortex upstream of the beam transitioned to an
unstable time-dependent vortex resulting in a periodic shedding
with a frequency of 2 Hz. The velocity fluctuations upstream of
the beam resulting from the vortex shedding did not yet provide
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Fig. 3 (a-e) PIV image sequence for flow past Beam 1 at Wi = 16. The time interval between each two consecutive images is 20 ms. The flow is from
left to right. (f) The corresponding time history of the beam oscillations.

sufficient forcing to cause a time-dependent beam displacement
that could be resolved at the magnification used in these exper-
iments. A slight increase in the Weissenberg number led to the
enhancement of the unstable vortex upstream of the beam and its
subsequent shedding resulted in the onset of Beam 1 oscillations
at the Weissenberg number of Wi = 10. Over most of the range
where oscillations were observed, the frequency of the fluctuat-
ing velocity upstream of Beam 1 and the frequency of Beam 1
oscillations closely matched each other and increased monoton-
ically with Weissenberg number (Fig. 4(a)). However, the beam
oscillation frequency reached a plateau at Wi = 50 at about 33
Hz while the frequency of fluctuating velocity vectors continued
to increase with Weissenberg number. As the natural frequency
of the beam is many orders of magnitude larger than the fre-
quency of observed beam oscillations, fN ≈ 1 MHz, the observed
plateau is not associated with the lock-in observed for Newto-
nian FSI. At Wi > 50, the coherent vortices observed in Fig. 3
are no longer present upstream of the beam. The oscillations
beyond this Weissenberg number are induced not by the shed-
ding of a vortex with a single dominant frequency, but by 3D ve-
locity fluctuations originating upstream and observed in the flow
around the tip of the beam with a dominant frequency accompa-
nied by higher harmonics exciting the motion of the beam. These
3D flow fluctuations around Beam 1 appear to be similar to the
flow fluctuations observed for elastic turbulence at low Reynolds
numbers52–54. A complex power spectra characteristic of elastic

turbulence has been recently reported for the flow of wormlike
micelle solutions past a microfluidic cylinder20. The limitations
of the current experimental setup do not allow the verification
of the occurrence of elastic turbulence. In Fig. 4(b), the ampli-
tude of the Beam 1 tip oscillations and the mean beam deflec-
tion (x̄) are plotted against increasing Weissenberg number. Even
though the frequency plateaus beyond Wi > 50, the amplitude of
oscillations and the mean beam deflection were observed to in-
crease monotonically with the Weissenberg number reaching a
maximum amplitude A = 5 μm at the highest Weissenberg num-
ber tested, Wi = 70.

A second set of experiments was conducted where the flexible
Beam 1 was replaced with a more flexible beam, Beam 2 (see de-
tails in Table 1) which had the same beam width and elastic mod-
ulus but a longer beam length while maintaining a similar chan-
nel blockage ratio. By increasing the beam length while keeping
other parameters constant, Beam 2 is an order of magnitude more
flexible than Beam 1 resulting in a significantly larger mean de-
flection under the same flow conditions as seen in the inset of
Fig. 4(b). The frequency and amplitude of Beam 2 oscillations
are plotted over a range of Weissenberg numbers in Fig. 4(a) and
(b). Similar to the case of Beam 1, a re-circulation zone was ob-
served to grow upstream of Beam 2 at low flow velocities while
the beam maintained a constant static deflection. The transition
from a stable vortex to an unstable time-dependent vortex shed-
ding was observed to occur at a similar Weissenberg number to
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Fig. 4 (a and inset) Frequency of Beam 1 (�) and Beam 2 (�) along with the frequency of fluctuating velocity vectors obtained from PIV images at a
point 2w = 34 μm upstream of the tip of Beam 1 (�) versus Weissenberg number. (b) Amplitude of Beam 1 (�) and Beam 2 (�) tip oscillations versus
Weissenberg number. The inset is a plot of the mean deflection (x̄) observed during oscillations versus Weissenberg number.

that for Beam 1, i.e. Wi = 4. Accompanying the vortex shedding
was the onset of periodic oscillations of Beam 2. The increased
flexibility of Beam 2 was observed to have a significant impact
on the beam oscillations as the agreement in the critical Weis-
senberg numbers between the two beams was only possible if the
experimentally measured blockage ratio was used to calculate the
effective shear rate between the tip of the beam and the bottom
wall of the channel. Similar to Beam 1, the frequency of Beam 2
oscillations was observed to increase monotonically before reach-
ing a plateau. For Beam 2, the plateau was observed at a much
lower Weissenberg number of Wi = 12 (seen in Fig. 4(a) inset).
Similar to Beam 1, this plateau in the frequency of oscillations
was also found to represent a transition from a coherent vortex
shedding to 3D vortex shedding.

The mechanism of the instability driving the beam oscillations
differed slightly in this case of Beam 2 due to its increased flex-
ibility. Unlike the vortex shedding pattern observed for Beam 1,
the vortex upstream of Beam 2 was not observed to shed around
the tip of the beam en masse. Two streakline images of the flow
field upstream of Beam 2 in Fig. 5 show the complex flow con-
ditions occurring during the beam oscillations (Wi = 8). The two
instances occur at a time interval of Δt = 2.5 ms. In Fig. 5(a), a
large re-circulating vortex can be observed upstream of Beam 2.
Due to the increased beam length, the large vortex is observed
to split in two with separate vortices appearing at the tip and
the base. The two separate vortices were significantly smaller
than the single vortex with some of the fluid shedding around
the tip and some flowing through the 4 μm gap around the top
and bottom of the beam. This alternate vortex shedding pattern
was observed during the Beam 2 oscillations upto a Weissenberg
number of Wi = 12. The appearance of a smaller vortex near the
tip of Beam 2 is similar to the lip vortices observed in studies of
axisymmetric contraction-expansion flows with rounded corners
where rounding of the corner led to a reduction in the contraction
ratio and extensional stresses developed in the contraction55,56.

The amplitude of oscillations of Beam 2 was found to be signif-
icantly larger than that of Beam 1, reaching a maximum ampli-
tude of A = 44 μm at Wi = 8, but then decaying with increasing
Weissenberg number. Due to the increased flexibility of Beam 2,
the beam underwent a significant beam deflection with increas-
ing flow velocity. The progression of Beam 2 oscillations with
increasing Weissenberg number is presented in Fig. 6. The vortex
previously observed near the tip of Beam 2 is completely swept
off of the beam at these high flow velocities as the beam cur-
vature is unable to support the growth of vortices upstream of
the beam and instead, the shear flow along the length of the
beam sweeps them off along the beam. The large beam deflec-
tion and beam curvature observed in Figs. 5 and 6 are analogous
to the curvature of re-entrant corners into planar and axisymmet-
ric contractions55–57. As with the rounded re-entrant corners,
the beam deflection and curvature resulted in a smoothing out of
the streamlines leading to a reduction in the local Weissenberg
number55–57. This further leads to a reduction of the local ex-
tension rate and extensional strain experienced by the polymer
solution58. The elastic stress of the fluid passing between the tip
of the beam and the opposite channel wall will thus be reduced
leading to a decrease in the size of the expected re-circulation
zone upstream of the beam and additionally, the amplitude of the
beam oscillations. In Fig. 6, the displacement of the beam’s tip
can be seen as a broadening of the beam cross-section in the long
time exposure images. Several traces of the flow path of the light-
reflective particles are visible in these images. Traces of particles
can be observed approaching the upstream face of the flexible
beam, and then moving alongside the length of the flexible beam
to slip off the beam edge into the flow. There are also traces of
particles visible that move over and under the beam through the
small gap between the beam and top and bottom walls.

The differences in the oscillation amplitudes between the two
beams arise from the increased flexibility and the resulting larger
mean beam deflection of Beam 2. For a cantilevered beam un-
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Fig. 5 Dark field streakline image of flow fluctuations occurring in the upstream region of Beam 2 at Wi = 8 for a time interval of 2.5 ms. The flow is
from left to right.

Fig. 6 Bright field streakline image of viscoelastic flow past Beam 2 at varying Weissenberg numbers. (a) Wi = 5, (b)Wi = 8 and (c) Wi = 12. The flow
is from left to right.

der a uniformly distributed load, the maximum tip deflection is
given by δmax = qL4/8EI, where q=F/L is a uniformly distributed
load59, that stems from the viscous and pressure forces of the vis-
cous flow44,60. The exact pre-factors depend on the specific flow
geometry and have been evaluated for the cantilevered beam and
the confined geometry43. For constant channel and fiber geom-
etry, blockage ratio, elastic and viscous properties, this equation
can be simplified to, δmax ∼ L3. The Beam 2 deflection will be
theoretically scaled by (l2/l1)3 = 21, where l1 and l2 are the beam
lengths of Beam 1 and Beam 2 respectively. This simplification
agrees closely with the mean beam deflection during Beam 2 os-
cillations observed in the experiments.

4 Conclusions

We report the results of our viscoelastic-fluid structure interaction
study of a microscale cantilevered beam subjected to the flow of a
polymer solution. The interaction of the elastic flow instabilities
with the cantilevered beam was studied on beams with varying
flexibility. The flexibility of the beams was modified by increas-
ing the beam length while maintaining the same channel block-
age ratio. The critical Weissenberg number at the onset of the
spatio-temporal variation of the re-circulation zone upstream of
the beam was found to decrease with increasing beam flexibil-
ity. The resulting oscillations of the flexible cantilevered beams,
triggered by the shedding of the unstable vortex, were observed
to display two distinct regimes. The first regime in which the

amplitude and frequency of beam oscillations increased with the
Weissenberg number was characterized by the shedding of either
a single vortex for a less flexible beam or the splitting and then
shedding of the upstream vortex as the beam flexibility increased.
A second regime was observed where the frequency of oscilla-
tions plateaued with increasing Weissenberg number. The onset
of this regime occurred much earlier for the more flexible beam
case. This second regime of beam oscillations was characterized
by 3D instabilities and the absence of a clear upstream vortex.
The evolution of the upstream recirculating zone was found to be
coupled with the flow-induced deformation and flexibility of the
beam. We have shown that the mechanism of vortex shedding
across a flexible structure is heavily influenced by the structural
properties such as beam length and flexibility. The critical on-
set, frequency and amplitude of structural oscillations are a result
of the strong coupling between the elastic flow instability and
the intrinsic structural flexibility. These conclusions illustrate the
complex nature of VFSI and the future possibilities of tuning of
the microfluidic flow and/or geometric parameters.
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203âĂŞ218.

32 R. Attia, D. C. Pregibon, P. S. Doyle, J.-L. Viovy and D. Bartolo,
Lab on a Chip, 2009, 9, 1213–1218.

33 M. S. Cheri, H. Latifi, J. Sadeghi, M. S. Moghaddam,
H. Shahraki and H. Hajghassem, Analyst, 2014, 139, 431–
438.

34 W. Li, G. Huang, J. Wang, Y. Yu, X. Wu, X. Cui and Y. Mei, Lab
on a Chip, 2012, 12, 2322–2328.

35 J. T. Pham, A. Morozov, A. J. Crosby, A. Lindner and
O. du Roure, Phys. Rev. E, 2015, 92, 011004.

36 H. Elahi, M. Eugeni and P. Gaudenzi, Energies, 2018, 11,
1850.

37 H. C. Fu, C. W. Wolgemuth and T. R. Powers, Physics of Fluids,
2009, 21, 033102.

38 J. Kongthon, J.-H. Chung, J. Riley and S. Devasia, Journal
of Dynamic Systems, Measurement, and Control, 2011, 133,
051012.

39 S. Sareh, J. Rossiter, A. Conn, K. Drescher and R. E. Goldstein,
Journal of the Royal Society Interface, 2013, 10, 20120666.

40 J. Alvarado, J. Comtet, E. De Langre and A. E. Hosoi, Nature
Physics, 2017, 13, 1014–1019.

41 D. Dendukuri, S. S. Gu, D. C. Pregibon, T. A. Hatton and P. S.
Doyle, Lab Chip, 2007, 7, 818–828.

42 H. Berthet, O. du Roure and A. Lindner, Applied Sciences,
2016, 6, 385.

43 J. S. Wexler, P. H. Trinh, H. Berthet, N. Quennouz,
O. du Roure, H. E. Huppert, A. Lindner and H. A. Stone, Jour-
nal of fluid mechanics, 2013, 720, 517–544.

44 J. Cappello, M. Bechert, C. Duprat, O. du Roure, F. m. c. Gal-
laire and A. Lindner, Phys. Rev. Fluids, 2019, 4, 034202.

45 N. Quennouz, M. Shelley, O. Du Roure and A. Lindner, Journal
of Fluid Mechanics, 2015, 769, 387–402.

46 W. Weaver Jr, S. P. Timoshenko and D. H. Young, Vibration
problems in engineering, John Wiley & Sons, 1990.

47 S. Sur and J. Rothstein, Journal of Rheology, 2018, 62, 1245–
1259.

48 L. E. Rodd, D. Lee, K. H. Ahn and J. J. Cooper-White, Journal
of Non-Newtonian Fluid Mechanics, 2010, 165, 1189 – 1203.

49 M. Y. Hwang, H. Mohammadigoushki and S. J. Muller, Physi-
cal Review Fluids, 2017, 2, 043303.

50 X. Shi, S. Kenney, G. Chapagain and G. F. Christopher, Rheo-

8 | 1–9



logica Acta, 2015, 54, 805–815.
51 S. J. Haward, Biomicrofluidics, 2016, 10, 043401–043401.
52 A. Groisman and V. Steinberg, Nature, 2000, 405, 53–55.
53 A. Groisman and V. Steinberg, New Journal of Physics, 2004,

6, 29.
54 P. Sousa, F. Pinho and M. Alves, Soft matter, 2018, 14, 1344–

1354.
55 D. Boger and R. Binnington, Journal of Rheology, 1994, 38,

333–349.

56 J. P. Rothstein and G. H. McKinley, Journal of non-newtonian
fluid mechanics, 2001, 98, 33–63.

57 R. Evans and K. Walters, Journal of Non-Newtonian Fluid Me-
chanics, 1989, 32, 95 – 105.

58 J. P. Rothstein and G. H. McKinley, Journal of Non-Newtonian
Fluid Mechanics, 1999, 86, 61 – 88.

59 F. P. Beer, E. R. Johnston Jr, J. T. Dewolf and D. Mazurek,
Mechanics of Materials, McGraw-Hill Education, 2014.

60 C. Duprat, H. Berthet, J. S. Wexler, O. du Roure and A. Lind-
ner, Lab on a chip, 2014, 15, 244–52.

1–9 | 9


