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It is well known that when a flexible or flexibly-mounted structure is placed perpendicular
to the flow of a Newtonian fluid, it can oscillate due to the shedding of separated vortices.
Here we show for the first time that fluid-structure interactions can also be observed when
the fluid is viscoelastic. For viscoelastic fluids, a flexible structure can become unstable
in the absence of fluid inertia, at infinitesimal Reynolds numbers, due to the onset of a
purely elastic flow instability. Nonlinear periodic oscillations of the flexible structure are
observed and found to be coupled to the time-dependent growth and decay of viscoelastic
stresses in the wake of the structure.

1. Introduction

Several Fluid-Structure Interactions (FSI) studies have been performed with New-
tonian fluids, however, to date, no viscoelasticity-induced FSI studies of non-Newtonian
fluids have been performed. A fundamental understanding of how these viscoelastic fluids
interact with flexible structures has the potential to have a significant influence on a
number of very different applications ranging from polymer processing of composites
(Ambrosi & Preziosi (2000)) to health care of the inner ear (Takeuchi et al. (1990)) and
bio-locomotion (Lauga (2009)). When a flexible or flexibly-mounted body is placed in
Newtonian flows, the mean and/or fluctuating flow forces that act on the structure can
drive the motion of the structure. Several phenomena such as vortex-induced vibration,
wake-induced vibration, galloping, and flutter, to name a few, can be observed in such
systems. These phenomena have been studied extensively in the past decades and
have been collected in the form of several books and review papers (e.g. Bearman
(1984); Blevins (1990); Päıdoussis (1998, 2004); Päıdoussis et al. (2011); Sarpkaya (2004);
Williamson & Govardhan (2004)). If the same flexible or flexibly-mounted structure is
placed in non-Newtonian flows, however, the structure’s response is unknown. Unlike
Newtonian fluids, the flow of viscoelastic fluids can become unstable at infinitesimal
Reynolds numbers in the absence of nonlinear effects of fluid inertia. For non-Newtonian
flows, the combination of streamline curvature and fluid elasticity has been found to lead
to purely-elastic flow instabilities in a host of different flow geometries (Shaqfeh (1996);
McKinley et al. (1996); Larson (1992); Groisman & Steinberg (2000)). In the present
work, we show how the fluctuating flow forces resulting from this purely elastic fluid
instability interact with a neighboring flexible structure.

2. Experimental Setup

In order to observe viscoelastic FSI, a thin flexible rubber sheet was mounted within a
rectangular flow cell and exposed to a crossflow of a viscoelastic wormlike micelle solution.
The flow cell was made of acrylic so it would be transparent and had an internal cross
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Figure 1. Schematic diagram of the setup.

section of 50 mm × 50 mm and a length of 450 mm. A positive displacement pump
controlled by a linear motor was used to drive the fluid. As shown by Moss & Rothstein
(2010), this resulted in minimal pressure and velocity fluctuations. The flow cell was
designed to ensure that the flow had a fully-developed velocity and elastic stress profile
before it reached the flexible sheet. The flow velocity was calculated from the known
values of piston displacement rate and the cross-sectional area of the piston and the
flow cell. The thin flexible rectangular sheet was made from natural rubber with an
elastic modulus of E = 101 kPa and a length of 50 mm, width of 5 mm, and thickness
of 0.3 mm. The flexible sheet was pinned at its two ends to the walls by gluing it to
the flattened ends of two nylon screws inserted through and subsequently flush-mounted
to the sidewalls of the flow cell so that they did not protrude into the flow as shown
schematically in Fig. 1. The sheet was placed at the center of the rectangular channel
and aligned perpendicular to the flow direction. The natural frequency of the sheet was
measured to be fN = 0.15 Hz from pluck tests of the mounted sheet in air. The tension
in the flexible sheet was maintained by using a sheet length equal to the flow cell width.
The viscoelastic wormlike micelle solution used here was composed of 50 mM of a cationic
surfactant cetyltrimethyl ammonium bromide (CTAB) and 25 mM of sodium salicylate
(NaSal) in deionized distilled water.
A complete set of steady and dynamic shear rheology as well as transient extensional

rheology data for this wormlike micelle solution exists (Rothstein (2003)). The linear
viscoelastic response of this and other wormlike micelle solutions is well fit by the
predictions of a single mode Maxwell fluid (Rothstein (2003)). The solution used here has
a zero shear-rate viscosity of η0 = 200 Pa-s, a relaxation time of λ = 48 s and is heavily
shear thinning indicating, the possible onset of shear banding although, no evidence
of shear banding was observed in any of the experiments we discuss later. Filament
stretching extensional rheology (FiSER) measurements performed on this solution showed
a strong strain hardening of the extensional viscosity, ηE >> η, for extension rates, ξ̇ , at
which the Weissenberg number, Wi = λξ̇, is greater than one, Wi >1. The Weissenberg
number is a measure of the relative importance of elastic to viscous stresses in a flow.
For the fluid used here, an extensional viscosity of ηext = 1000 Pa-s, which corresponds
to a Trouton ratio of Tr = ηE/ηshear = 14, 000, was measured at a Weissenberg number
of Wi = 370. At similar shear rates, the ratio of first normal stress to shear stress was
found to be N1/τ = 10, demonstrating the importance of extensional rheology in this
complex flow. In the filament stretching experiments (Rothstein (2003); Bhardwaj et al.
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(2007)), the micelle solutions were found to undergo an elastic flow instability during the
stretch which resulted in the rupture of the fluid filaments near its axial midplane. It
was hypothesized that the observed filament failure was the result of a breakdown of the
wormlike micelles under a large tensile stress (Rothstein (2003)). This hypothesis was
recently confirmed through molecular dynamics simulations of wormlike micelles under
extensional flows (Dhakal & Sureshkumar (2016)). For this micelle solution, extensional
rheology measurements showed that a maximum tensile stress of τrupt = 7 kPa could
be supported by the filament before the stretched and deformed micelles in solution
would fail. The dynamics of the filament rupture are presented in Bhardwaj et al.
(2007). The breakdown of wormlike micelle solutions in the homogeneous extensional
flows similar to that developed during filament stretching have also been shown to
lead to elastic flow instabilities in complex flows containing regions of both shear and
extensional flows. Examples include the flow past a falling sphere and the flow past one or
more circular cylinders. In each case, a strong extensional flow has been shown through
velocity profile measurements to develop in the wake downstream of the immersed object
(Gladden & Belmonte (2007); Handzy & Belmonte (2004); Jayaraman & Belmonte
(2003); Chen & Rothstein (2004); Moss & Rothstein (2010); Mohammadigoushki &
Muller (2016)). In these experiments, once the flow strength was increased to the point
where the micelles were stretched beyond their maximum tensile strength, a time-
dependent, periodic breakdown and recovery of the wormlike micelles in the wake of
the immersed object was found to develop even in the absence of fluid inertia. In this
paper, we will show that these elastic flow instabilities can have a significant effect on
flow past a flexible structure resulting in the first recorded example of viscoelastic FSI.
The response of the flexible sheet under cross-flow was recorded using a high speed

camera (Phantom V4.2) at 100 frames/sec with a resolution of 144 pixels×304 pixels and
the time history of the sheet displacement was obtained using image tracking software
(Tracker). Here we will only present data for the midsection deflection as measurements
across the flexible sheet were all found to be in phase and at the same oscillation
frequency. Full-field flow-induced birefringence (FIB) measurements were made to qual-
itatively visualize the state of viscoelastic stress within the flowing wormlike micelle
solution (Moss & Rothstein (2010); Fuller (1995)). For the FIB measurements, linear
polarizers were installed before and after the flow cell at 45◦ and 135◦ to the flow direction
and back-lit using a white light. In this orientation, micelle deformation/stress in the flow
direction becomes visible thereby emphasizing areas of extensional stress in the wake of
the flexible sheet. Using the stress-optical rule, the intensity of the birefringence signal
can be converted directly to stress in the fluid (Fuller (1995)).

3. Results and Discussion

3.1. A flexible sheet perpendicular to the flow

A series of measurements were made over a range of Reynolds number up to Re =
3.5 × 10−4 (defined as Re = ρUw/η0 where ρ is the density of the fluid, U is the flow
velocity, w is the width of the sheet, and η0 is the zero shear rate viscosity). As a result,
these experiments were in the Stokes flow regime and the inertial flow effects can be
neglected. At zero flow velocity, the sheet was undisturbed and aligned perpendicular to
the flow direction as seen in Fig. 2(a). As the cross flow was applied, the sheet was bent
in the flow direction (second and third images in Fig. 2(a)). Note that in addition to
the induced curvature along the length of the sheet that can be observed from the front
view in Fig. 2(a), the low flexural rigidity of the sheet resulted in a secondary curvature
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Figure 2. (a) The centerline deflection of the flexible sheet versus flow velocity, and the time
histories of the centerline deflection of the sheet at (b) U = 4.3 mm/s, (c) U = 7.15 mm/s, and
(d) U = 11.44 mm/s. The critical onset condition, U = 1.4 mm/s, corresponds to Wicrit = 13.

across the sheet that can be observed from the side view in Fig. 2(a). The resulting cross-
sectional profile was ‘C’ shaped. At low flow velocities, where the Weissenberg number was
small, the flow of the wormlike micelle solution remained stable and the static deflection
of the sheet grew with increasing flow velocity. As the flow velocity was increased beyond a
critical velocity and a corresponding critical Weissenberg number (Wicrit = 13), the flow
of the wormlike micelle solution became unstable with periodic fluctuations in the velocity
and stress fields around the sheet, observed by tracking particle motion and FIB in the
fluid. As was the case for the flow of wormlike micelle solutions past circular cylinders
and spheres (Chen & Rothstein (2004); Moss & Rothstein (2010); Mohammadigoushki
& Muller (2016)), the flow instability originated as a slow growth and fast decay of
extensional stress in the wake of the flexible sheet. This can be observed in Fig. 3 from
the time-dependent extension and retraction of the birefringent tail in the wake of the
sheet.
The FIB measurements in Fig. 3 were taken through crossed polarizers to emphasize

the intensity of the elastic extensional stress in the fluid. It is difficult to deconvolute
these FIB measurements directly into a quantitative value of viscoelastic stress in the
fluid for a number of reasons. FIB is a line-of-sight technique which, integrates the
birefringence contribution from all fluid elements along the light path. Because the flow
is three dimensional, it is not possible to accurately use these FIB measurements to
determine the stress. Additionally, at these birefringence levels, the stress optical rule has
been shown to break down for this fluid (Rothstein (2003)) and any stresses calculated
using it would dramatically under-predict the true state of stress in the fluid. The FIB
measurements are still a valuable tool for qualitatively observing the growth in the
viscoelastic stress and its time-dependent fluctuations. As seen in Fig. 3, a narrow region
of micelle deformation, known as a birefringent tail, formed in the strong extensional flow
region just downstream of the stagnation point. In the wake, the fluid must accelerate
from rest along the trailing edge of the sheet to the maximum flow velocity, Umax,
over a short distance downstream of the flexible sheet. This extensional flow resulted in
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strong micelle alignment and deformation as seen in Fig. 3(b). As the flow velocity was
increased, a stable birefringent tail grew both in length and intensity until the onset of the
viscoelastic flow instability. After the onset of the flow instability, the maximum extent of
the birefringent tail approached an asymptotic limit. A series of dashed lines have been
added to Fig. 3 to graphically illustrate the magnitude and direction of the changes to
the birefringence pattern with time during one oscillation cycle. These lines are placed
in the wake of the sheet at a location corresponding to a fixed value of flow induced
birefringence or elastic stress in the fluid. A similar set of lines have been added to show
the deflection of the sheet in the bright-field images to the left of the FIB. At the start
of an oscillation (Fig. 3(b)), the wormlike micelle solution already exhibited a significant
amount of elastic stress in the wake. The birefringent tail in the fluid grew in length and
intensity with time (Fig. 3(c)) resulting in still further stretching of the flexible sheet. At
its maximum extent (Fig. 3(d)), the birefringence grew by approximately 30% beyond its
minimum extent (Fig. 3(b)) to nearly 10w downstream, while the deflection of the sheet
increased by roughly 12% from 8.5 mm to 10 mm. When the displacement of the sheet
reached 10 mm, an abrupt breakdown of the wormlike micelles in the high stress wake was
observed resulting in a rapid loss of elastic stress in the wake. This can be seen in Fig. 3(e)
as a significant reduction in the length and extent of the birefringent tail in the fluid.
The next oscillatory cycle begins with the flow of fresh unruptured wormlike micelles
from upstream of the flexible sheet into its wake, where with time, elastic stress is once
again built up in the fluid in the sheet’s wake as the sheet is stretched and deformed back
towards its maximum deformation. The result of the cyclical tensile loading and failure
of the viscoelastic fluid is the observed periodic motion of the flexible sheet. Similar time-
dependent FIB patterns were observed at all flow velocities where the flow of wormlike
micelle solution became unstable.
The presence of this viscoelastic flow instability caused the flexible sheet to oscillate

around a mean stretched position. As seen in Fig. 3, the stress growth/decay and the
sheet deflection were directly correlated. For this fluid and sheet, the critical velocity for
the onset of oscillations was found to be Ucrit = 1.4 mm/s (Fig. 2(a)), corresponding to
a critical Weissenberg number of Wicrit = 13. Unlike several cases of inertia-driven flow-
induced instabilities of flexible structures (e.g, VIV of a flexible (Bourguet et al. (2011))
or a flexibly-mounted structure (Williamson & Govardhan (2004)), or the response of
a flexible cylinder in axial flow (Päıdoussis (2004); Modarres-Sadeghi et al. (2011)), the
displacement of the sheet over time was not sinusoidal. The saw-toothed pattern of
the time histories (Fig. 2(b-d)) show that these oscillations were highly nonlinear. At
a cross-flow velocity of U = 4.3 mm/s (Fig. 2(b)), the structure was found to oscillate
with a dominant frequency of f= 0.11 Hz. Under these flow conditions, the flexible
sheet stretched slowly at a rate of 0.17 mm/s until a critical breakdown of the wormlike
micelles, and the subsequent loss of the viscoelastic stress in the wake of the sheet caused
the flexible sheet to recoil abruptly. The recoil rate was found to be considerably faster
at 1.5 mm/s. As the flow velocity was increased to U = 7.15 mm/s (Fig. 2(c)), the
frequency of oscillations increased to f = 0.2 Hz. The frequency of the flexible sheet’s
oscillations increased roughly linearly with increasing flow rate seen later in Fig. 6(c). As
will be discussed in further detail later, this increase in overall frequency of oscillations
was accompanied with an increase in both the deformation rate of the sheet during the
growth phase of the deformation cycle and a slightly slower increase in the recoil rate of
the sheet during the decay phase of the deformation cycle. These rates will be presented
as a function of flow velocity alongside a plot of their relative magnitude, later in Fig. 7.
At velocities of U = 11.44 mm/s and beyond, higher harmonics began to emerge in the
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Figure 3. (a) Time history of the centerline deflection of the sheet for one period of oscillation,
together with bright field images of deformed sheet (left), and the extensional birefringent
patterns (right) at U = 4.3 mm/s and for (b) t1 = 0, (c) t2 = 3.45 s, (d) t3 = 7.2 s, and (e) t4
= 7.95 s. The dashed lines highlight the change in the birefringence patterns and deformations
of the sheet between each time interval. The FIB images are viewed perpendicular to the flow
direction while the real bright field images are taken from an angle to the flow direction in order
to show the entire length of the flexible sheet.

oscillations of the flexible sheet. These can be observed in Fig. 2(d) and are quite clear
from the FFT analysis of the data (not shown).
The maximum and minimum deformations of the flexible sheet versus flow velocity are

shown in Fig. 2(a). For each time history, a minimum of 10 cycles and 180 seconds of data
were used. Below Ucrit = 1.4 mm/s, the flow was stable and the structure underwent
a static deflection but did not oscillate. Above Ucrit, a periodic response was observed.
Just beyond this point, the maximum displacement of the flexible sheet increased linearly
with flow velocity until a velocity of U = 6 mm/s, beyond which, the maximum sheet
deflection reached a plateau and remained more or less unchanged for all flow velocities
tested. On the other hand, the amplitude of the sheet oscillations increased linearly until
it reached a maximum at U = 4 mm/s. Thereafter, with increasing flow velocity, the
oscillation amplitude began to decay.
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Figure 4. A schematic diagram of the in-line and cross-flow deformation of the flexible sheet

Two observations can be gleamed from Fig. 2. First, there are two types of sheet
deformations: one is the in-flow bending and stretching of the sheet span and the other is
the bending of the cross section of the sheet into a semicircular ‘C’. A simplified diagram
of these two types of flexible sheet deformation is shown in Fig. 4. During the experiments,
the flexible sheet deformation remained within the material elastic limits. Therefore, the
stress needed for the cross-flow bending of the sheet from a straight profile into a ‘C’
profile can be approximated from Hooke’s law, σcrossflow = Eε, where σcrossflow is the
bending stress at a layer above/below the neutral axis, E = 101 kPa is the known elastic
modulus of the flexible sheet and ε is the strain which is the ratio of the distance from the
neutral axis and the radius of curvature to the neutral surface. The result is a maximum
bending stress of approximately 8 kPa. The stress needed for the in-line bending of the
sheet span length to the maximum deflection seen in Fig. 2(a) was calculated using beam
theory (Beer & Johnston Jr (1992)). The force acting on the sheet was approximated by
using the equation of a simply supported beam, p = −384EIymax/5L

4, where p is the
force per unit length acting on the sheet, E is the elastic modulus, I = 0.4 mm4 is the
moment of inertia for the deformed shape as a C-channel, ymax is the maximum deflection
measured from Fig. 2(a), and L is the flexible sheet length. The resulting in-line bending
stress, σinline = p/w with w being the sheet width, was found to be significantly smaller,
in the range of only 10 Pa. In addition to bending, there is a tensile stress which results
from the sheet stretching from its initial un-deformed state to its deformed elongated
contour length at maximum deflection. By calculating the strain, ε, from the images
of the deformed sheets, this stress was found to be approximately σtensile = Eε = 13
kPa. From filament stretching extensional rheology measurements, the wormlike micelle
solution was found to rupture and fail at an extensional stress of 7 kPa. Thus, these
calculations appear to confirm that the viscoelastic fluidic stresses needed to deform the
sheet are large enough to result in the breakdown of viscoelastic wormlike micelles in
the wake of the sheet resulting in a time-dependent flow field which in turn drives the
observed time-dependent oscillations of the sheet. Secondly, as mentioned before, the
deformation rate of the sheet during the oscillations was found to grow linearly with
increasing velocity and change more dramatically with increasing flow velocity than the
recoil rate. As a result, at low velocities, when the recoil rate was much faster than the
growth in the sheet deflection or the deformation rate, the sheet was able to fully recoil
before any significant extensional stress could be rebuilt in the micelle solution in the
wake of the sheet. As the flow velocity was increased, the deformation and recoil rate
of the sheet became more comparable moving from a 20:1 to a 5:1 ratio between the
deformation and recoil rates as discussed later. As a result, the sheet was not able to
fully recoil before new elastic stresses began building in its wake. At the same time, the
breakdown of micelles transitions from a global to a local phenomenon. The wormlike
micelle solution became unstable at multiple isolated locations in the wake of the sheet
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Figure 5. Flow-induced birefringence snapshots corresponding to the sequence of fluid rupture
in the wake of the flexible sheet for a velocity of U = 10 mm/s. In (a), an FIB image is shown at
the onset of sheet recoil, time t = 0, in (b), t = 0.25 s, while in (c), t = 0.60 s which corresponds
to the end of the recoil phase in the oscillation cycle. The bright regions highlight areas of large
micelle deformation and large elastic stresses in the fluid while the darker regions show the
locations where the micelles have broken down and the elastic stress in the fluid has been lost.

rather than failing simultaneously across the entire downstream edge. The result was
that a complete recoil of the sheet could not be achieved because all of the fluid did not
yield simultaneously. Such an instance of local regions of elastic stress in the fluid in the
wake along the length of the flexible sheet is illustrated in the time series of FIB images
in Fig. 5. In those images, a patchwork of bright irregular regions of high elastic stress in
the fluid was found to fluctuate in space and time during the sheet oscillations observed
at a constant flow velocity of U = 10 mm/s. The consequence of these spatial fluctuations
was the appearance and growth of higher harmonics in the data and a reduction in the
oscillation amplitude with increasing velocity beyond U = 8 mm/s. At lower velocities,
the birefringence was found to be constant along the span of the sheet and vary uniformly
across the span with the onset of the viscoelastic flow instability and the resulting sheet
oscillations. The spatial fluctuations of the FIB within the high stress regions (Fig. 5)
and feather-like structures (Fig. 3) are reminiscent of the Taylor-Gortler vortex structures
observed downstream of a circular cylinder in cross flow of a viscoelastic polymer solution
(McKinley et al. (1993); Shiang et al. (2000)). In their work, three-dimensional stationary
roll cells were observed to be spaced periodically along the axis of the cylinder.

3.2. Modifying flexible sheet inclination

An additional set of experiments was conducted over the same range of Reynolds
numbers for cases wherein the flexible sheet was placed at 0◦, 20◦ and 45◦ to the flow
direction. The desired inclination of the flexible sheet was achieved through external
rotation of the fixtures holding the flexible sheet inside the flow cell. The 0◦ orientation
did not oscillate for the range of flow rates tested and, as a result, discussion of the 0◦

case will not be included in the subsequent text. The centerline deflection of the flexible
sheet for three different inclination angles tested is shown in Fig. 6(a). For completeness
and ease of comparison, the data for the 90◦ case has been included in all subsequent
figures. The side views of the complex deformation that the flexible sheet underwent for
each inclination angle are shown in inset images in Fig. 6. As the flow began, the 45◦

flexible sheet was deformed into the flow direction with its cross-section forming a ‘C’
shape that was significantly less deformed than that of the 90◦ case. Unlike the 90◦ case,
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Figure 6. (a) Centerline displacement of the flexible sheet for 20◦(�), 45◦(�) and 90◦(�)
inclinations. The filled and hollow symbols are used for the maximum and minimum flexible
sheet displacements respectively during oscillations at each flow velocity. The inset contains the
side views of the cross-flow deformation of the flexible sheet. (b, c) Amplitude and frequency of
oscillations of the flexible sheet over the range of flow velocities tested. The error margin for the
amplitude of oscillations is less than 10% for flow velocities below 4mm/s and less then 5% for
higher flow velocities. The error margin is less than 5% for the frequency plots.

the ‘C’ shape remained open for all the flow velocities tested and did not completely bend
back onto itself. At a critical flow velocity of U = 2.8 mm/s, the wormlike micelle solution
became unstable, and periodic oscillations of the flexible sheet started in the same manner
previously observed for the 90◦ case. The centerline deflection of the 45◦ flexible sheet
increased linearly with flow velocity up to a maximum value which was smaller than
that observed for the 90◦ case. After reaching this maximum value at U = 5.7 mm/s,
the centerline deflection decreased and approached a plateau at the higher flow velocities
tested. For the 20◦ inclination, the flexible sheet began from a position aligned almost
completely with the flow and the resulting cross section profile of the sheet had a much
smaller curvature (Fig. 6(a)). The centerline deflection of the sheet was much smaller
than the 45◦ and 90◦ cases with a maximum deflection of 5 mm compared to nearly 11
mm for the 90◦ case. For flow velocities larger than U = 4.8 mm/s, the 20◦ flexible sheet
did not continue to hold the stretched deformation seen in Fig. 6(a), but instead rotated
off the centerline where it remained in an asymmetric position closer to one of the side
walls for the rest of the flow velocities tested and exhibited no further large-amplitude
fluctuations. Data for the 20◦ case beyond U = 4.8 mm/s are therefore not presented
in Fig. 6 or any subsequent plot. The amplitude and frequency of oscillations from the
centerline deflection time histories are mapped out in Fig. 6(b) and (c) respectively. The
amplitude of oscillations initially increased roughly linearly with increasing flow velocity
for all three inclinations tested and reached a maximum. Beyond this maximum, the
amplitudes of all three angles began to decay with increasing flow velocity. The oscillation
frequency increased with flow velocity for all three inclinations.
From the sawtooth waveform of the centerline deflection time histories, it was clear that

the flexible sheet stretches slowly before recoiling rapidly during each oscillation cycle.
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Figure 7. (a) The deformation rate (open symbols) and recoil rate (filled symbols) during an
oscillation cycle for the flexible sheet aligned at a 20◦(�), 45◦(�) and 90◦(�) inclination to the
flow direction as a function of flow velocity. (b) The ratio of deformation and recoil rates of the
flexible sheet as a function of flow velocity for the three flexible sheet inclination angles.

In Fig. 7(a), the deformation and recoil velocities of the flexible sheet during oscillations
are presented as a function of flow velocity for all three inclinations. It can be observed
that the deformation velocity curve followed a similar trend for all three inclinations
over the range of flow velocities tested. The recoil velocities, on the other hand, were
very different for the three inclination angles. The 90◦ inclination curve had the largest
recoil velocity by almost a factor of three. This can likely be attributed to the flexible
sheet recoil velocity being dependent on the elastic stress built up within the sheet which
is clearly at a maximum within the 90◦ sheet due to the increased sheet deformation
at any given flow velocity. Conversely, the deformation velocity of the sheet is strongly
dependent on the flow conditions as it is coupled to the convection of fluid from upstream
of the sheet to rebuild elastic stress in the wake of the sheet after a fluid rupture event. As
a result, as seen in Fig. 7(a), the deformation velocity is not strongly coupled to the sheet
orientation. A plot of the ratio of deformation and recoil velocities of the flexible sheet
over varying flow velocities is shown in Fig. 7(b). For the 45◦ and 90◦ inclination angles,
the ratio of the deformation rate to recoil rate was found to start quite small at a value
of less than 0.1 and then to increase with flow velocity to reach a plateau beyond U = 8
mm/s. This plateau of the ratio of deformation and recoil velocity corresponds to the
point at which higher harmonics appear in the oscillations and the amplitude begins to
decay. For the case of the 90◦ sheet, the ratios of deformation rate to recoil rate reached
a plateau of just over 0.2. As such the dynamics of oscillation were dominated by the
fast recoil of the sheet after fluid rupture. Conversely, this rate approached 0.6 for the
45◦ sheet resulting in a more symmetric oscillation cycle and a growth in deformation
that nearly matched its decay. Although the 20◦ did not reach a plateau before twisting
from the centerline, breaking symmetry and ceasing to oscillate, its behavior appears to
be closer to that of the 45◦ sheet than the 90◦ sheet.
Finally, we concentrate on the results presented in the previous sections with the

objective of combining the dimensional results from the different flexible sheet inclinations
into a cohesive set of results using a single non-dimensional parameter. In order to
collapse the data for all three inclination angles, a non-dimensional flow velocity, U∗,
a non-dimensional oscillation amplitude, A∗, and a non-dimensional frequency, f∗, were
considered. The non-dimensional velocity that best collapsed the data both in terms
of the critical onset conditions and the flow velocity corresponding to the maximum
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Figure 8. The dimensionless (a) amplitude and (b) frequency of oscillations as a function of the
dimensionless flow velocity for flexible sheet inclination angles of 20◦(�), 45◦(�) and 90◦(�).
The inset in (b) contains the dimensionless product, λfθ, as a function of inclination angle.

oscillation amplitude was found to be U∗ = U/(w sin(θ)fθ). Here U is the flow velocity,
w is the width of the flexible sheet, θ is the inclination angle of the sheet, w sin(θ) is the
equivalent surface area of the flexible sheet exposed to the flow, and fθ is the frequency
of oscillations at the critical flow velocity which depends on the inclination angle of the
flexible sheet. As seen in Fig. 8(a), using this dimensionless velocity, both the onset
condition and the maximum of the oscillation amplitude collapse to the values of U∗ ≈ 7
and U∗ ≈ 42, respectively. It is expected that the appropriate dimensionless velocity
should also contain some information about the viscoelastic fluid properties, specifically,
the relaxation time of the fluid, λ. However, because in this study only a single fluid
composition was used, this hypothesis could not be fully tested. As seen in the inset
in Fig. 8(b), a renormalization of the critical oscillation frequency with the relaxation
time to form a modified Weissenberg number, Wif = λfθ, appears to be a promising
first step towards incorporating rheological information into our analysis as the value
approaches Wif ∼ 1. Future studies will focus on how changes in fluid rheology affects
the observed viscoelastic fluid-structure interactions. The appropriate non-dimensional
amplitude and frequency were found to be A∗ = A/w sin(θ) and f∗ = f/fθ, where A and
f are the dimensional amplitude and frequency of flexible sheet oscillations, respectively.
Using these dimensionless parameters, the data from the three inclination angles are
collapsed onto a master curve as seen in Fig. 8(a) and (b). The slight variations in the
data are likely the result of the complex deformation of the flexible sheet under flow. The
deviation of scaling for higher flow velocities could be due to the higher harmonics that
become dominant during oscillations.

4. Conclusion

We have shown, for the very first time, that purely elastic flow instabilities occurring in
a viscoelastic fluid flow can drive the motion of a flexible structure placed in its path. The
oscillations of the flexible structure, which develop at infinitesimal Reynolds numbers and
in the absence of vortex shedding, have been presented for three inclinations of a flexible
sheet. The measurements of the structural deformation velocity profiles and flow-induced
birefringence have been used to quantify the time variation of the flow field and the state
of stress in the fluid during the oscillations. These results have been further classified using
a set of proposed non-dimensional parameters. These observations open up an entirely
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new field of study. To fully understand this new phenomenon, there are several questions
that still need to be answered including: what is the role of the structure’s geometry,
modulus, bending stiffness and natural frequency; how does changing fluid properties
affect the oscillations; and is this phenomenon universal to all viscoelastic fluids including
polymer solutions and if so what are the dimensionless groups that properly describe the
physics over this broad space? Many of these studies are ongoing and we hope to be
reporting on them in the near future.
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