SCIENCE CHINA
Information Sciences

@ CrossMar
Elick for update:

« LETTER -

December 2020, Vol. 63 229101:1-229101:3
https://doi.org/10.1007/s11432-019-2807-4

Demystifying graph processing frameworks and
benchmarks

Junyong DENG"2"| Qinzhe WU?", Xiaoyan WU?, Shuang SONG?,
Joseph DEAN? & Lizy Kurian JOHN?

LSchool of Electronic Engineering, Xi’an University of Posts and Telecommunications, Xi’an 710121, China;
2Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin 78712, USA;
3School of Software Engineering, Xi’an Jiaotong University, Xi’an 710049, China

Received 13 August 2019/Revised 23 November 2019/Accepted 16 February 2020/Published online 30 June 2020

Citation Deng J Y, Wu Q Z, Wu X Y, et al. Demystifying graph processing frameworks and benchmarks. Sci
China Inf Sci, 2020, 63(12): 229101, https://doi.org/10.1007/s11432-019-2807-4

Dear editor,

Graph algorithms have become important be-
cause of the increasing need to extract informa-
tion from big data [1]. Due to huge volumes of
data and irregular communication patterns [2], it
is a challenging task to apply graph algorithms ef-
ficiently. Considerable efforts have been made to
improve the performance of graph processing us-
ing novel hardware designs and to facilitate ap-
plication development by implementing various
frameworks. Introduction of such frameworks has
led to the fact that many applications are imple-
mented through different existing versions. For
instance, within the four frameworks/benchmark
suites (i.e., GraphMat, Graph Algorithm Platform
(GAP), GraphBIG, and Graph500) investigated in
the study, there are already six implementations
of the breadth first search (BFS), six implementa-
tions of the single source shortest path (SSSP) al-
gorithm, five implementations of triangle counting
(TC), four implementations of PageRank (PR),
and many other applications in common. Gener-
ally, the characteristics of various implementations
are not always completely clear to the research and
design community.

From the hardware perspective, benchmarks are
of great importance for evaluation of various pro-
posed architectures. However, different implemen-
tations of a single graph algorithm can vary signif-

* Corresponding author (email: djy@xupt.edu.cn)

icantly in terms of scalability, computational op-
erations, data movement, energy consumption and
so on. Such variations increase the difficulty asso-
ciated with defining benchmarks for these appli-
cations, which is required for the future architec-
ture design. Therefore, it is critically important
for hardware researchers to have detailed informa-
tion about the characteristics of various implemen-
tations corresponding to the particular graph ap-
plications. To address this problem, we evaluate
the mainstream graph applications such as BFS,
SSSP, PR, and TC with respect to the four graph
processing frameworks/benchmarks.

Methodology. This study is conducted using the
servers of the Texas Advanced Computing Center
(TACC) equipped with Intel Xeon Platinum 8160
(Skylake) processors.

The graph datasets used for the analysis are the
six real world graphs and one synthetic graph in-
cluding two broad categories: meshes and social
networks with power-law distribution.

We utilize the profiling tool perf to obtain the
architectural statistics. The compiler configura-
tions are provided together with the source code or
suggested by the technical documents of the con-
sidered graph frameworks/benchmarks.

In this study, we define several performance
metrics to conduct the comparison between dif-
ferent frameworks, including data movement per

1 Junyong DENG and Qinzhe WU have the same contribution to this work.

(© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

info.scichina.com link.springer.com

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-019-2807-4&domain=pdf&date_stamp=2020-6-30
https://doi.org/10.1007/s11432-019-2807-4
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-019-2807-4
https://doi.org/10.1007/s11432-019-2807-4

Deng J Y, et al.

edge, IPC (instructions per cycle), MPKI (misses
per Kilo instructions), computation per edge, exe-
cution time, and energy consumption per edge.
Appendix A presents details about conducting
the experiments and corresponding setups.
Observations. Based on comparison of the four
frameworks/benchmarks, we present the observa-
tions from multiple perspectives aiming to provide
insights to identify appropriate benchmarks.
With respect to micro-architecture met-
rics, architects have developed efficient micro-
architecture techniques and achieved great ad-
vancement in this field. The results of the con-
ducted experiments on a wide range of graph pro-
cessing frameworks/benchmarks and applications
indicate that metrics such as IPC and MPKI may
be misleading in particular cases. Kiviat diagrams
presented in Figures S2(20) and S2(18) in Ap-
pendix display the eight metrics (execution yime
per ddge, computation per edge, data movement
per edge, IPC, L1D MPKI, L2 MPKI, .3 MPKI,
and energy consumption per edge) from the top
in clockwise order by the normalized values pre-
sented in the logarithmic scale. The performance
of GraphBIG, as represented in Figure S2(20), is
related with the understanding that the largest
cache MPKIs and smallest IPC lead to the longest
execution time per edge. Figure S2(20) represents
the intuitive observation that with a decrease in
data movement, energy consumption declines as
well. Among the three implementations of TC,
GAP demonstrates the best performance that is
partially owing to its IPC and cache MPKIs. In
turn, GraphMat is characterized with competitive
IPC and even lower cache MPKIs; however, it
takes around 60x execution time compared with
GAP, as GAP has only 0.28% data movement per
edge and therefore, saves considerable resources
with respect to computation per edge as well.
Figure S2(18) outlines the significance of consider-
ing data movement per edge in graph workloads.
The ranking of the three frameworks/benchmark
suites is reversed in SSSP. It should be noted that
execution time is correlated with data movement
per edge. Although GraphMat attains much larger
IPC and much smaller cache MPKIs, it is not as
fast as GraphBIG, as GraphMat stores graphs in
the form of matrices, and uses considerably larger
instructions count to accomplish the same task.
Scalability is considered as a significant prop-
erty of graph processing systems, as (1) a graph
might be too large for a single CPU core to
process; (2) most of the capability improve-
ments become possible owing to increasing core
counts; and (3) there exists considerable po-
tential parallelism in graph analytics workloads

Sci China Inf Sci

December 2020 Vol. 63 229101:2

that needs to be explored. We run the graph
frameworks/benchmarks using different number of
threads (namely, 1, 4, 8, 24, 48), and extract the
information useful for developing scalable parallel
graph processing systems.

Figures 1(a)—(d) represent the four selected test
cases in two types of setup corresponding to the ex-
ecution time on the different number of cores. One
type of setup implies using cross-socket communi-
cation, and the other one does not. Figure 1(a)
and (b) represent execution time of BFS on OK.
It can be clearly seen that GraphBIG has the in-
flection point on 24-core setup in Figure 1(a), but
not in Figure 1(b). However, the values of the
absolute execution times corresponding to Graph-
BIG’s BFS on OK (Orkut) in 4-core, 8-core, and
24-core setups, as can be observed in Figure 1(a),
are much smaller than that of the same setup pre-
sented in Figure 1(b). There might be other types
of overhead, such as those caused by creating and
synchronizing more threads; however, cross-socket
communication is associated with the main cost
from the hardware perspective. Therefore, we can
conclude that the execution time can be decreased
further using a larger number of cores, but with
overhead caused by cross-socket communication.
Nevertheless, it is possible to overcome this neg-
ative effect and benefit from adding more cores.
The matrix representation used in GraphMat to
construct graphs allows GraphMat being less af-
fected by overheads. This reveals the importance
of memory layout.

Another observation is that regardless of the
setup, GAP BFS demonstrates the shortest exe-
cution time. However, as shown in Figures 1(c)
and (d), the performance of GAP SSSP deterio-
rates as the number of threads increases, specif-
ically on road networks. This is because the 6-
stepping algorithm in GAP SSSP relies on the
diversity of vertices. By contrast, it should be
noted that the shortest execution time observed
in Figures 1(c) and (d) corresponds to GraphBIG
on the 1-core setup, meaning that a single-thread
execution surpasses all other multi-thread execu-
tions. By inspecting the GraphBIG’s source code,
we have found that GraphBIG actually has a ded-
icated code path for its single-thread execution.
That is also the reason why we do not draw a line
between 1-core and 4-core setups of GraphBIG.
Considering the limited parallelism in low-degree
mesh graphs, the code exclusively optimized for
the single-thread execution may demonstrate the
superior performance compared to multi-core im-
plementations.

The data movement per edge indicates the fol-
lowing three reasons of differences: applications,

Deng J Y, et al.

10 ; ® - GraphMat
g -.m- GraphMat ~—e—GAP g —e—GAP
£ A—4—GraphBIG - -Graph500 2 |k —&—GraphBIG
£ 10 5 — Graph500
2 3
»..
o0 g 10w &
K N ‘..
RS E e -
£ S~ 10 - -
5N, N
el el <$—
~ellt~-- b ~a
10 (a) I3 -3 10 (b) =s$—3
1 4 16 64 1 4 16 64

Thread

Thread

Sci China Inf Sci

Normalized excution time

December 2020 Vol. 63 229101:3

10° 10*
- GraphMat g ® - GraphMat
—e—GAP FaE —e—GAP
—a—GraphBIG , £ 10" . s GraphBIG e
10° » ERE _/
e 50 \: . il
. - 2 10 -
- & A .
£ 100 \\\
z ‘.
10 @
1 4 16 64

Thread

Thread

Figure 1 (Color online) (a) and (b), (c¢) and (d) are the values of execution time. (a) BFS OK (w/o cross-socket com-
munication); (b) BFS OK (with cross-socket communication); (¢) SSSP CA (w/o cross-socket communication); (d) SSSP

CA (with cross-socket communication).
graphs, and frameworks/benchmark suites. We
explain them in more detail below.

e Applications. Similarly as in the most sim-
plified applications, as well as the “skeleton” for
many other graph applications, on average, BFS
is associated with significantly less data move-
ment compared with the other three considered
algorithms. In turn, PR is characterized with
the least variation among implementations/inputs
compared to the other three applications. The bar
group of PR shows relatively greater flatness com-
pared with others. This can be partially explained
by the fact that PR always accesses all vertices
in each iteration, while other applications have a
frontier, which varies from iteration to iteration.

e Graphs. It is evident that graph topology
affects data movement. CA (RoadCA) and TX
(RoadTX) are two mesh networks with the low
degree and high diameter compared to other con-
sidered graphs. This leads to deeper traversal in
SSSP and BFS. It is more likely for CA and TX to
move the large amount of data in BFS and SSSP.
This does not hold for TC, as it does not necessi-
tate such traversal scheme.

e Frameworks/benchmark suites. In the
data movement chart, all groups of bars cor-
respond to implementations of different frame-
works/benchmarks for a given task. In general,
there are considerable differences in results among
the considered frameworks. The differences are
highest in TC on road network.

It should be noted that the variations between
different frameworks/benchmarks become larger
with a greater extent of the variations between
different applications or graphs. There are several
cases in which different implementations have dif-
ference in crossing two grids (100x), and it is seen
that GraphMat requires even 358 more move-
ments than GAP to complete the same task. Hard-
ware and software designers may consider this ob-
servation in different ways. For architects, it is
not recommended to implement graph processing
applications as benchmarks by themselves; other-
wise it is difficult to identify whether an improve-

ment comes from a new hardware architecture or
from an implementation difference. For program-
mers, it is recommended to be aware of how eas-
ily redundant data movement can be introduced.
Therefore, it is important to manage the memory
efficiently and exploit the locality.

Based on the aforementioned analysis results,
we propose several recommendations on defining
graph workloads as benchmarks, as presented in
Appendix G; moreover, we provide the experimen-
tal data to derive the conclusion.

Conclusion. At present, there are various frame-
works and benchmark suites designed for graph
processing. In this study, we observe that dif-
ferent available and widely used implementations
of the same graph application can have distinct
performance characteristics even within the same
graph data set. We consider that the derived ob-
servations, as well as the obtained data statistics
(including Kiviat diagrams and scalability charts)
provided in Appendix contribute to the knowledge
on graph processing benchmarks, by enabling both
system and hardware researchers to select appro-
priate benchmarks in future design evaluations.

Acknowledgements This work was supported by Na-
tional Natural Science Foundation of China (Grant Nos.
61602377, 61834005), National Natural Science Foundation
of USA (Grant Nos. 1745813, 1725743), and International
Science and Technology Cooperation Program of Shaanxi

(Grant No. 2018K'W-006).

Supporting information Appendixes A-G. The sup-
porting information is available online at info.scichina.com
and link.springer.com. The supporting materials are pub-
lished as submitted, without typesetting or editing. The
responsibility for scientific accuracy and content remains

entirely with the authors.

References

1 Gui CY, Zheng L, He B, et al. A survey on graph
processing accelerators: challenges and opportunities.
J Comput Sci Technol, 2019, 34: 339-371

2 Song S, Liu X, Wu Q Z, et al. Start late or finish
early: a distributed graph processing system with re-
dundancy reduction. Proc VLDB Endow, 2018, 12:
154-168

info.scichina.com
link.springer.com
https://doi.org/10.1007/s11390-019-1914-z
https://doi.org/10.14778/3282495.3282501

