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Abstract—The growing popularity of virtual and augmented
reality communications and 360◦ video streaming is moving
video communication systems into much more dynamic and
resource-limited operating settings. The enormous data volume
of 360◦ videos requires an efficient use of network bandwidth to
maintain the desired quality of experience for the end user. To this
end, we propose a framework for viewport-driven rate-distortion
optimized 360◦ video streaming that integrates the user view
navigation pattern and the spatiotemporal rate-distortion charac-
teristics of the 360◦ video content to maximize the delivered user
quality of experience for the given network/system resources. The
framework comprises a methodology for constructing dynamic
heat maps that capture the likelihood of navigating different
spatial segments of a 360◦ video over time by the user, an
analysis and characterization of its spatiotemporal rate-distortion
characteristics that leverage preprocessed spatial tilling of the
360◦ view sphere, and an optimization problem formulation
that characterizes the delivered user quality of experience given
the user navigation patterns, 360◦ video encoding decisions,
and the available system/network resources. Our experimental
results demonstrate the advantages of our framework over the
conventional approach of streaming a monolithic uniformly-
encoded 360◦ video and a state-of-the-art reference method.
Considerable video quality gains of 4 - 5 dB are demonstrated
in the case of two popular 4K 360◦ videos.

I. INTRODUCTION

Emerging virtual and augmented reality (VR/AR) technolo-

gies are helping introduce novel immersive digital experiences.

It is anticipated that VR/AR technologies will represent a

$108 billion market in the near future [1]. Gaming, entertain-

ment, education and training, and 360◦ video are the main

application domains of VR/AR technologies at present, with a

broader set of societal applications spanning remote sensing,

the environmental and weather sciences, disaster relief, and

transportation anticipated in the future [2].

Fig. 1: 360◦ streaming: Viewport Vi on the 360◦ sphere.

360◦ video is an emerging video format captured by an

omnidirectional camera that records incoming light rays from

every direction. It enables a 360◦ look-around of the sur-

rounding scene for a remote user, virtually placed at the

camera location, on his VR device, as illustrated in Fig-

ure 1. Presently, the entire monolithic 360◦ view panorama
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is streamed to the user, who, however, can only experience

a small portion of it denoted as viewport Vi, at any time,

as also illustrated in Figure 1. However, this results in a

huge network overhead/bottleneck and unnecessary computa-

tional/bandwidth loading of the device, which, in turn, con-

siderably penalize the user quality of experience. Moreover,

to apply conventional video coding, the 360◦ view sphere is

first mapped to a planar shape: equirectangle, pyramid, cube,

or dodecahedron. The latter three have been considered since

around 30% pixel replication is introduced when the sphere is

mapped to an equirectangle [3, 4]. However, they have their

own deficiencies, e.g., introduction of projection distortions

around the planar shape’s edges. Here, we only consider the

equirectangular mapping, as the most widely used.

The growing popularity of VR/AR technologies stimulates

an equivalent increasing demand for 360◦ video content, which

today can be accessed through over-the-top online providers

such as YouTube/Facebook 360 [5, 6]. However, present 360◦

streaming practices necessitate excessive data rates that even

anticipated broadband network access technologies would not

be able to support [7, 8], due to the heuristic design short-

comings of the former outlined above. Thus, a broader/faster

adoption of emerging 360◦ technologies that can eventually

dominate the market is precluded. On the other hand, de-

livering the entire 360◦ view sphere is necessary to avoid

simulator/motion sickness [9] that would degrade the quality

of experience, as the intuitive approach of sending only Vi

using traditional server-client delivery architectures, where the

server responds to client updates, would preclude application

interactivity, due to the inherent network round-trip latency.

To overcome this apparent impasse between 360◦ applica-

tion requirements and technology capabilities/design, which

essentially stems from the direct application to the 360◦

domain of existing video coding/streaming technologies that

treat 360◦ content as conventional videos, recent studies have

considered uneven spatial quality encoding of 360◦ videos, to

minimize the data rate assigned to 360◦ regions not navigated

by the user presently, thereby considerably reducing the in-

duced network overhead. This is the strategy we also follow,

making the following contributions in this context.

We formulate a framework for viewport-driven rate opti-

mized 360◦ video streaming that integrates the user view nav-

igation pattern and the spatiotemporal rate-distortion character-

istics of the 360◦ video content to maximize the delivered user

quality of experience for the given network/system resources.

It comprises (i) a methodology for constructing dynamic heat

maps that capture the user likelihood of navigating different

spatial segments of a 360◦ video over time, (ii) analysis and

characterization of its spatiotemporal rate-distortion character-

istics that leverage a preprocessed spatial tilling of the 360◦

view sphere, and (iii) an optimization problem formulation that



characterizes the delivered user quality of experience given the

user navigation patterns, 360◦ video encoding decisions, and

the available system/network resources.

The rest of the paper is organized as follows. In Section II,

we first review related work. Subsequently, we present the

building components of our system framework in Section III.

The problem formulation that aims to maximize the delivered

360◦ user quality of experience given the user navigation

patterns, 360◦ video encoding decisions, and the available

system/network resources, is presented in Section IV. Exper-

imental analysis of the performance of our framework and

validation of our system models is carried out in Section V.

Finally, concluding remarks and a summary of envisioned

future work are provided in Section VI.

II. RELATED WORK

Due to the emerging nature of 360◦ technologies, only a

small body of related work has appeared to date. The study in

[10] carried out an empirical characterization of 360◦ videos

highlighting their main features, e.g., their lower temporal rate

variability compared to conventional videos. A small number

of studies have considered splitting the 360◦ video into spatial

tiles as part of the encoding process, leveraging the tilling

feature of the latest High Efficiency Video Coding (HEVC)

standard [11]. The encoding data rate of each tile can then

be controlled independently to reduce the overall bandwidth

usage [12–15]. Transmission aspects of 360◦ HTTP streaming

have been explored in [16, 17]. Applications of scalable video

coding to 360◦ streaming have been studied in [18, 19]. Head

movement prediction and the impact of navigation uncertainty

have been investigated in [3, 14]. The former study also carries

out an empirical analysis of the performance efficiency of the

four sphere-to-planar shape projections and investigates the

benefits of streaming adaptively multiple 360◦ representations

featuring different quality-emphasized spatial regions [3].

In contrast to the few studies cited above that consider

HEVC 360◦ tiling, we employ preprocessed spatial tiles of the

360◦ view panorama, which has several advantages in the form

of lower complexity at multiple critical aspects of a server-

client 360◦ streaming architecture [3]. Moreover, a formal

analysis of the spatiotemporal rate-distortion characteristics

of 360◦ tiling that integrates the user navigation patterns and

the available network/system resources has not been carried

out towards optimal selection of 360◦ encoding and streaming

decisions. The framework of our paper aims to fill this gap.

III. SYSTEM MODELS
A. Overview

Our 360◦ networked system architecture comprises several

major component blocs that were introduced earlier and is

illustrated in Figure 2. We describe each one in detail here.

Fig. 2: 360◦ networked system architecture.

B. Tiling preprocessing

We partition a 360◦ video into a set of N × M spatial

tiles. In particular, we partition the raw 360◦ video frames into

spatial tiles and consider the collection of thereby constructed

(smaller) video frames for each tile as separate videos. The

tiles are then separately encoded and streamed to the user,

according to our analysis and optimization. As explained

earlier, carrying out tiling as a preprocessing step has several

advantages over tiling the video as part of the encoding

process, as enabled by the tiling feature of the latest video

coding standard HEVC. In our experiments, we used two

popular 4K 360◦ videos [20, 21] that we preprocessed into

6 × 4 spatial times, as illustrated in Figure 3, where the first

and second dimension refer to the horizontal and vertical pixel

resolution of the video. Each tile is indexed in a raster fashion,

top-to-bottom and left-to-right.

Fig. 3: 360◦ video panorama 6× 4 spatial tiling.

We selected this specific tiling based on empirical analysis,

as a reasonable choice between the complexity and compres-

sion efficiency introduced by a given tiling. In a follow-up

study, we plan to integrate the selection of tiling as part of the

360◦ end-to-end analysis and optimization.

C. 360◦ VR head movement data

We collected head-movement data that describes how a user

navigates a 360◦ video over time. In particular, a VR device

outputs the direction of the current viewpoint of the user Vi

on the 360◦ view sphere up to 250 times per second, with the

user considered to be placed at the sphere center, as described

earlier. Precisely, this is the surface normal of Vi on the 360◦

sphere that is uniquely described by the spherical coordinates

azimuth and polar angles ϕ ∈ [0◦, 360◦] and θ ∈ [0◦, 180◦]
it spans on the sphere, in a spherical coordinate system with

the 360◦ sphere center as its origin, as illustrated in Figure 4

(right). These two angles are equivalently denoted as yaw and

pitch in the VR community, captured as rotation angles around

the Z and Y axes, as denoted in Figure 4 (left). We collected

the pairs (ϕj , θj) that coincided with the discrete temporal

instances tj of subsequent 360◦ video frames j displayed to

the user as he navigates the content. They are the navigation

data points relevant for our analysis.

D. Navigation likelihoods
For various head-mounted displays (HMD) used in VR

applications, the viewport size experienced by the user varies.



Fig. 4: 360◦ head movement navigation data of current viewport Vi. Left:
Rotation angles yaw, pitch, and roll around the three coordinate axis. Right:
Azimuthal and polar angles (ϕ, θ) in spherical coordinates.

In this paper, we assume a viewport of 110◦ horizontal and 90◦

vertical fields of view. For every navigation trace for a given

360◦ video, we compute the fraction of the surface area of tile

k occupied by the user viewport Vi at time instance j, denoted

as wk,j . To account for the unequal surface area occupied by

different viewports, when mapped to a 2D rectangle used to

encode the data, depending on their latitude (polar angle θ)

on the 360◦ view sphere, each tile k is assigned a normalized

weight w̄k,j , computed as w̄k,j = wk,j/
∑

k wk,j . We can

then aggregate these weights over different time durations,

to compute the likelihoods of navigating different tiles of

the respective 360◦ video during those time periods. In our

analysis, we are interested in exploiting these navigation

likelihoods over the duration of individual Groups Of Pictures

(GOPs) comprising the encoded 360◦ content.

For illustration, Figure 5 shows the average (over the entire

video) navigation likelihoods of different tiles comprising the

selected 6× 4 tiling applied to the 360◦ video Roller Coaster

used in our experiments. We can see that corner tiles appear

rarely in a viewport navigated by the user, as their navigation

likelihoods are close to zero. Conversely, it appears that the

user often navigated through tiles 9, 10, 15, and 16, for

instance, as they have much higher navigation likelihoods.

Fig. 5: Navigation likelihoods of tiles for Roller Coaster.

Figure 6 shows the corresponding tile navigation likelihoods

for the second 360◦ video, Wingsuit, used in our experiments.

It appears that in this case the viewport navigated by the user

is mostly closer to the south pole, as the corresponding tiles

have much higher likelihoods now, due to the specific nature of

this video (more interesting content is spatially located there).

Fig. 6: Navigation likelihoods of tiles for Wingsuit.

A visualization of two representative viewports is shown in

Figures 7 and 8. Since mapping a 3D shape (sphere) to 2D

causes distortion, the shape of a viewport also changes. In

equatorial regions, a viewport is smaller and more compact

(Figure 7) while in polar regions a viewport is spread over all

polar tiles (Figure 8). Figure 3 can be referenced to understand

the spatial locations of these two viewports relative to the

underlying tiling of the respective 360◦ video.

Fig. 7: Viewport at (ϕ, θ) = (0◦, 0◦).

Fig. 8: Viewport at (ϕ, θ) = (120◦,−60◦).

E. Rate-Distortion models

Changing the quality of tiles is a useful method to control

the bitrate of a 360◦ video. The quantization parameter QP

employed by the HEVC (H.265) codec is a convenient tool

for tile quality adaptation. We explore two prospective char-

acterizations of the dependency between the parameter QP

and the resulting bitrate R of the encoded tile. That is, we



investigate modeling R = f(QP) via an exponential or power

law function for f as follows

R = a1e
−b1 QP or R = a2QPb2 . (1)

We will validate these relationships by comparing the bitrate

and QP for en encoded 360◦ tile in Section V-B. Since we have

a function between the bitrate and QP, we can define bounds

for our optimization problem with the highest and lowest QP

values that can be selected. And after calculating the optimal

bandwidth, going back to QP value and encoding the tiles

accordingly can be done easily in the server side.

Similarly, we investigate two prospective characterizations

of the dependency between the encoded tile bitrate R and the

induced reconstruction error or distortion D for a tile, where

the latter can be calculated as the mean-square error (MSE)

between the encoded tile video data and the corresponding

raw video data for the tile. In essence, the distortion D
captures the average deviation of encoded tile pixels from their

raw data counterparts. In a raw 360◦ YUV 4:2:0 video, for

every pixel sample of the color (chrominance) components

U and V there are 4 pixel samples of the (monochromatic)

intensity (luminance) component Y . Thus, the luminance

distortion dominates the encoding distortion for the two color

components. Therefore, we used the luminance component

distortion as the representative of the encoding distortion D
for a tile, measured for every 360◦ tile luminance video frame.

We investigate modeling the dependency D = f(R) via an

exponential or power law function for f as follows

D = c1e
−d1R or D = c2R

d2 . (2)

We validate these relationships by comparing the encoding

bitrate and distortion for a encoded 360◦ tile in Section V-B.

The characterizations R = f1(QP) and D = f2(R) will allow

us to formulate the aggregate 360◦ video encoding quality and

pursue related optimizations, as explained next.

IV. OPTIMIZATION FRAMEWORK

Given the analytical modeling of the relevant problem

variables, we now set out to find the optimal bitrate for each

tile. There are constraints that we integrate into the problem

formulation. These are the aggregate available network band-

width C and the allowed QP range per tile.

A. Problem Setup

Given the limited network bandwidth, tiles should be trans-

mitted at data rates according to their navigation likelihoods

and rate-distortion characteristics such that we can maximize

the delivered aggregate quality of the respective 360◦ video.

Let Ri(QPi) denote the bitrate of the ith tile where QP is the

encoding quantization parameter, as introduced earlier. This

gives us the following inequality to maintain:∑
i

Ri(QPi) ≤ C, i = 1, . . . ,M ×N. (3)

For practical reasons, for every tile i we set a range of QP

values that can be considered, defined by the upper and lower

bounds QPmin and QPmax. This therefore induces constraints

on the minimum and maximum data rates that can be assigned

to a tile, given the monotonic relationship between QP and

Ri, as captured by the function Ri(QP). Formally, these two

constraints can be written as

Ri(QPmax) ≤ Ri(QPi) ≤ Ri(QPmin). (4)

Finally, we formulate the expected 360◦ quality of expe-

rience that a user observes while navigating the scene, as

the navigation likelihood weighted sum of video qualities of

all tiles comprising the 360◦ video content streamed to the

user. This can be formally written as
∑

i p(i|v)Di(Ri), where

p(i|v) denotes the navigation likelihood of tile i given that

viewport v is requested initially. To be precise, note that we

formulated our objective as the expected 360◦ video distortion,

due to the one-to-one correspondence between video quality

and reconstruction error (distortion). Therefore, we aim to

minimize our objective function, as it will lead to the same

goal (maximum 360◦ quality of experience).

B. Optimization Formulation

Leveraging the problem setup described earlier, we can now

formulate the optimization problem of interest as

min
{Ri}

∑
i

p(i|v)Di(Ri), (5)

subject to:
∑
i

Ri(QPi) ≤ C, i = 1, . . . ,M ×N,

Ri(QPmax) ≤ Ri(QPi) ≤ Ri(QPmin), ∀i.

Note that (5) represents a convex optimization problem, due

to the nature of the constraints involved and the objective

function under consideration. Therefore, it can be efficiently

solved using fast convex optimization methods [22]. In our

experiments, we carry out the optimization in (5) for every

GOP, facilitating the dynamic weight assignment described in

Section III-D to compute the navigation likelihoods p(i|v).
In particular, after the optimization completes, the QP vs. R
dependency for each tile i in a GOP is used to obtain the

explicit optimal QPi value that corresponds to the optimal

data rate R∗
i produced by (5). Note that for illustration we

included the average navigation likelihoods p(i|v) across the

applied 360◦ video tilling for the duration of the entire video in

Figures 5 and 6, for the 360◦ content used in our experiments.

We recall that the analytical dependencies between R and

D, and between R and QP are not explicitly denoted in

(5). As explained earlier, we explore two models for each

dependency D = f(R) and R = f(QP), an exponential one

and a power-law one. And the parameters that comprise each

model are extracted uniquely for each tile, before we carry out

the optimization in (5). In our experiments, we first validate

each of these models, for each dependency, and select the one

that is more accurate, to carry out the remaining performance

evaluation analysis.



V. EXPERIMENTATION

A. System Setup

We used two popular 4K 360◦ videos from Youtube, Roller

Coaster [20] and Wingsuit [21], to evaluate the performance

of our framework. VR users watched these videos with HMD

devices and their head movements have been tracked using

the OpenTrack software [23]. For performance evaluation, we

have used one head movement trace per user per video. Based

on the collected traces, the navigation likelihoods of each tile

in a GOP are calculated, as discussed in Section III-D.

Each 360◦ video is preprocessed into 6×4 tiles, as explained

in Section III-B. Each tile is encoded into Groups of Pictures

(GOPs) of size 32 frames using HEVC. There are 60 GOPs in

each tile video, corresponding to 1920 frames and 64 seconds

of duration of time, assuming a frame rate of 30 fps. Each GOP

is encoded using 5 QP values (22, 27, 32, 37, 42). Using the

encoded tiles of those QP values, R−D and QP-R parameters

are extracted for all tiles and GOPs, to explore the proposed

rate-distortion modeling from Section III-E.

Two reference methods are examined to compare against.

First, an entire monolithic 360◦ video is encoded using the

following 5 QP values (32, 34, 36, 39, 42). In each case, the

induced average data rates for every GOP are used as the

network bandwidth constraint C in our own optimization in

Section IV-A. Similarly, we also implemented a state-of-the-

art method proposed by Petrangeli et al. [13]. It predicts future

viewports accessed by the user, based on the speed and the

position of the HMD. Tiles within the current/future predicted

viewports in a GOP are encoded with the highest possible

QP value. The remaining tiles are encoded with the lowest

possible QP value given the remaining bandwidth budget.

B. Rate-distortion model validation

We formulated two prospective models for the dependencies

D = f(R) and R = f(QP), described in Section III-E. Here,

we explore their accuracy in characterizing the encoded 360◦

video content we considered in our experiments.

Examination of the employed QP versus induced bitrate

relationship for different tiles shows that exponential model fits

better the actual data points. In Figure 9, we examine these

data points, shown as markers, and the fitted analytical de-

pendencies according to the two formulated models, for three

representative tiles, with diverse rate-distortion characteristics,

from the Roller Coaster video. Referencing the tile indexing

from Figure 3, we can see that while tiles 3 and 16 show lower

bitrate requirements due to their relatively static nature, tile 11

requires a higher bitrate as it corresponds to a more dynamic

360◦ region.

Figure 10 shows the advantage of the power law model in

describing the observed D versus R dependency, denoted with

markers, across the 360◦ video tiles. In particular, for lower

bitrates, the impact of higher distortion dominates for tiles with

more dynamic content (Tile 11), while for higher bitrates the

difference across differen tiles in this regard becomes smaller,

as seen from Figure 10.

(a) QP vs. bitrate dependency us-
ing an exponential model.

(b) QP vs. bitrate dependency us-
ing a power law model.

Fig. 9: QP vs. bitrate dependency for different tiles. Actual data points shown
as markers.

(a) Bitrate vs. distortion depen-
dency using a power law model.

(b) Bitrate vs. distortion depen-
dency using an exponential model.

Fig. 10: Bitrate vs. distortion dependency for different tiles. Actual data points
shown as markers.

C. Optimal tile QP and data rates vs. available bandwidth

We examine how the optimal data rates Ri and the cor-

responding QPi values, produced by the optimization in (5)

for every tile i, vary, as the available network bandwidth C is

varied. Figure 11a shows the optimal rates produced by (5) for

three tiles from the Roller Coaster video, for the GOP number

57 in the 360◦ video, selected as a representative example.

For this GOP, tile 3 has a small navigation likelihood, while

tile 16 has the highest among the three tiles considered. Still,

it is interesting to note that although tile 16 has a higher

navigation likelihood relative to tile 11 and is assigned a

smaller QP earlier (as seen from Figure 11b right), encoding

tile 11 leads to a higher data rate in the second half of the

graph in Figure 11a, due to its more dynamic content, which

makes encoding it more challenging.

(a) Tile rate vs. bandwidth. (b) Tile QP vs. bandwidth.

Fig. 11: Optimal tile rate/QP values vs. network bandwidth C.

Figure 12 shows the temporal evolution of the optimal

QP and bitrate values for these three tiles over the GOPs

comprising the 360◦ content. We can see that tile 16 typically

has a lower QP value relative to the other two tiles, due to

its frequently accessed spatial location, while tile 3 is often



navigated only for a brief period of time towards the end of

the video. Discontinuities in Figure 12a indicate that a tile

has not been assigned any rate (skip encoding mode) by the

optimization in (5), as indicated by the corresponding graphs

in Figure 12b.

(a) Tile QP vs. time. (b) Tile rate vs. time.

Fig. 12: Optimal tile rate/QP values vs. GOP index.

D. Expected 360◦ video quality

In the analysis here, Proposed denotes our optimization

framework, while Speed-based and Monolithic denote the two

references methods introduced earlier. For all three 360◦ video

streaming systems under comparison, we measured the video

quality per viewport experienced by a user navigating the 360◦

content, as the luminance PSNR of the MSE of the pixels dis-

played in that viewport. Figure 13 shows the viewport PSNR

Fig. 13: 360◦ viewport video quality: Roller Coaster.

over time for the three competing systems in the case of the

Roller Coaster video. Here, we encoded the monolithic 360◦

video (Monolithic) with a fixed QP value of 36 and recorded

the resulting data rate per GOP to use it as the corresponding

rate constraint in (5) for our optimization (Proposed) and

similarly for the other reference method (Speed-based). We

can see from Figure 13 that all three systems exhibit the same

temporal pattern in viewport PSNR variations, as the dynamic

360◦ content evolves, with our framework outperforming the

two reference methods consistently and considerably. We also

observed that Speed-based offers an improved performance

over Monolithic, when viewport prediction succeeds. Though

there are minor variations for some frames, we observed that

on average Proposed provides a 5 dB gain over Monolithic
and a 3 dB gain over Speed-based.

Fig. 14: 360◦ viewport video quality: Wingsuit.

We observe a different viewport PSNR pattern for the

Wingsuit video, as seen from Figure 14. As noted in Figure 6

earlier, the navigation likelihoods over the applied tiling are

more uniform in this case, which means the user viewport

varies more over time. This negatively impacts the perfor-

mance of Speed-based, which now appears closer to that of

Monolithic. Still, due to its rate-distortion foundation Proposed
outperforms again these two reference methods, enabling an

average gain of 3 dB and 4 dB relative to Speed-based and

Monolithic, respectively.

Fig. 15: Average 360◦ viewport video quality: Roller Coaster.

Next, we examine the average (over time) viewport 360◦

video quality (Y-PSNR) delivered by the three competing

systems, as the available network bandwidth C is varied.

Figure 15 show these results in the case of Roller Coaster,

together with the corresponding video quality standard devia-

tion exhibited by each system. We can see that again Proposed
outperforms Speed-based and Monolithic, with a consistent

gain of up to 4-5 dB, across the entire range of values

examined for C. As expected, Proposed and Speed-based
exhibit a somewhat higher viewport video quality standard

deviation relative to Monolithic, since the latter encodes all

tiles with a uniform QP value (thus video quality). On the

other hand, the reconstruction error can vary more spatially

across pixels in viewports delivered by Proposed and Speed-



based, due to the applied tiling, especially as the number of

tiles that comprise a viewport increases.

Fig. 16: Average 360◦ viewport video quality: Wingsuit.

This phenomenon is emphasized even more in the case

of Wingsuit, as indicated by the corresponding results in

Figure 16, since the navigation likelihoods for tiles closer

to the south pole are higher for this 360◦ video content

(see Figure 6), which in turn causes viewports to more often

comprise a higher number of tiles.

We measured in our experiments that our framework leads

to 42% rate savings relative to the conventional approach

Monolithic, which is very encouraging.

VI. CONCLUSION

We have formulated a framework for viewport-driven rate

optimized 360◦ video streaming that integrates the user view

navigation pattern and the spatiotemporal rate-distortion char-

acteristics of the 360◦ video content to maximize the delivered

user quality of experience for the given network/system re-

sources. It comprises a methodology for constructing dynamic

heat maps that capture the user likelihood of navigating

different spatial segments of a 360◦ video over time, anal-

ysis and characterization of its spatiotemporal rate-distortion

characteristics that leverages preprocessed spatial tilling of the

360◦ view sphere, and optimization problem formulation that

characterizes the delivered user quality of experience given

the user navigation patterns, 360◦ video encoding decisions,

and the available system/network resources. Our experimental

results demonstrate the advantages of our framework over the

conventional approach of streaming a monolithic uniformly-

encoded 360◦ video and a state-of-the-art reference method,

enabling considerable video quality of gains of 4 - 5 dB in

the case of two popular 4K 360◦ videos.

There are multiple directions of future work that we con-

sider. In the present framework, we used a given tiling of the

360◦ view panorama. How the end-to-end performance effi-

ciency varies with the employed 360◦ tiling is one question we

plan to answer. Similarly, will variable-size 360◦ tiling provide

additional gains, and at what cost, is another question we will

aim to investigate. Finally, we plan to explore adaptive scalable

360◦ tiling representations that will account for client and

network heterogeneity intrinsically. Leveraging them towards

the design of effective 360◦ network multicast techniques is

another study we plan to carry out in this context.
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