Viewport-Driven Rate-Distortion Optimized
Scalable Live 360° Video Network Multicast

Ridvan Aksu
The University of Alabama
Tuscaloosa, AL 35487

Abstract—Virtual Reality (VR) technologies enable remote
scene 360° video immersion experiences. The growing popularity
of VR increases the demand for 360° video delivery over
the Internet. Compared to regular videos, 360° videos are
characterized by an enormous data volume and spatial user
navigation. User interactivity is activated by head movements
and changes the spatial portion of a video viewed by the user,
hence making only a small portion of the video essential at a
time. Therefore, streaming the full video at high quality causes
suboptimal use of the bandwidth. The above properties of 360°
videos require novel streaming techniques in order to maintain
high Quality of Experience (QoE). Live 360° multicast has not
being studied yet, due to the emerging nature of 360° video, and
it represents one of the most promising applications. Relative to
on-demand single user 360° video streaming, it presents new
challenges such as handling the interactions of multiple users
simultaneously, while dynamically encoding the live 360° video
on the fly.

We propose a novel scalable multicast live 360° video stream-
ing framework. It comprises a rate-distortion analysis that cap-
tures the fidelity-rate trade-offs of 360° videos, an optimization
formulation to assign data rates to spatial video regions, and a
scalable 360° video data representation. A 2-3 dB of quality gain
for lower bandwidth classes and 3-4 dB for higher bandwidth
classes are observed over a conventional method that streams the
monolithic content at uniform quality. Our work shows that for
live 360° multicast achieving quality levels close to on-demand
streaming is possible despite the lack of information about future
content and user navigation actions.

I. INTRODUCTION

Developments in VR display and omnidirectional capture
technologies enabled the 360° video format. Omnidirectional
cameras or camera rigs can capture 360° videos that provide a
360° look around of the surrounding scene and Head Mounted
Display (HMD) allows a remote users to experience them.
However, streaming a 360° video using state-of-art standards
has numerous challenges.

For any given video frame, HMD displays a viewport,
which represents only a small portion of the entire 360°
video panorama, while the rest of it is not viewed. Using
traditional video streaming techniques results in a bandwidth
waste since a viewport comprises of less than 1/6 of the entire
360°. In addition, most broadband networks are not capable of
streaming a 360° video in a good quality. Several studies have
been carried out on improving 360° video delivery. Although
these studies improve streaming on-demand 360° video, new
challenges arise in the case of live 360° multicast.
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Recently, CNN started its VR news service [1] and live
streamed the 2017 total solar eclipse. For widespread com-
mercial live 360° multicast applications, there are additional
obstacles to overcome. First, there are no pre-encoded 360°
video regions in different qualities to send users with various
demands as in the case of on-demand video. Additionally,
there is no prior history of user navigation actions that can
be used for viewport prediction, given that the video is being
streamed for the first time. To overcome these challenges, we
propose a novel scalable live 360° multicast framework.
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Fig. 1: Multicast 360° live streaming: N layers are streamed.

" ®

In this study, we use equirectangular tiling to partition a
360° video into smaller spatial tiles so that the viewport can
be processed individually from the rest of the video. We
analyze the rate-distortion characteristics of the partitioned
video tiles as introduced in our recent work [2], to develop an
analytical model that captures the effect of tile data rates on
the reconstructed 360° video quality. Moreover, two methods
for tile navigation likelihood prediction are explored based on
the user head movements: (I) a neural network, trained on the
different video frames and head traces, (II) and a pyramidal
prediction method. Based on their network bandwidth, users
are distributed into different multicast classes. Predicted tile
navigation likelihoods of class users and rate-distortion char-
acteristics of tiles are used to assign video qualities to every
tile such that the aggregate 360° video quality is delivered
to each class. The assigned qualities are then used to encode
the tiles in a scalable fashion such that every scalable layer
captures the network bandwidth difference between classes. A
user in class k receives the tiles in scalable layers up to Lj
from the N streamed layers as illustrated in Figure 1.

The rest of the paper is organized as follows. We review
related work in Section II. In Section III, the components
of the proposed system framework are discussed. Section IV
develops a problem formulation that finds the optimal tile qual-
ities that result in maximizing the aggregate expected viewport
360° quality across all classes. Section V demonstrates the
performance of our framework. Finally, Section VI discusses
future work and concludes the paper



II. RELATED WORK

360° video streaming has various challenges due to its om-
nidirectional nature. According to De Simone et al. challenges
through the omnidirectional video communication chain are
distortions during the capture, projection distortion, rendering
the viewport, and losses during the encoding and streaming
[3]. In terms of projection, equirectangular projection (ERP) is
a popular approach [2, 4, 5] due to its simpler implementation.
Other types of projections are also investigated e.g. cubemap
[6], non-uniform [7], and resolution-defined [8].

Probabilistic prediction of the viewport is proposed in
several works [4, 5]. Qian et al. and Nasrabadi et al. use linear
regression to predict the viewport [9, 10]. We used navigation
action history of previous users to predict the viewport in our
recent work [2].

Another approach for maintaining high viewport quality is
using Scalable Video Coding (SVC) [11]. Nasrabadi et al.
proposed using SVC in 360° videos and stream all video
tiles in base layer quality while viewport tiles in enhancement
layers [10]. According to He et al. SHVC causes only a
negligible loss in quality compared to HEVC while reducing
the bit stream size around 87% [12]. Multicasting of 360°
videos are studied by Ahmadi et al. [4].

There are various implementations in terms of QoE as-
sessment. According the Chen et al. planar PSNR calculation
causes distortion and can be addressed with various imple-
mentations [13]. However, De Simone et al. states that there
are still limitations of proposed QoE assessment methods [3].

Despite the recent popularity and potential of 360° videos
there is not an agreed standard on live 360° multicast. We
propose an analytical and scalable solution to multicast the
live 360° videos to fill this gap.

III. SYSTEM MODELS

Fig. 2: System model.
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Users’ viewports change over time in accordance with user
head movements. To achieve a satisfactory QoE at the user
end, pixels within the viewport should be in high quality. Also,
delivering all the pixels outside the viewport in high quality
limits the network bandwidth and redundant. However, two
challenges arise in the case of solely viewport transmission.
Firstly, encoding pixels in irregular shapes is not a suitable
approach in state-of-art encoding technologies, so residual
pixels outside the viewport are unavoidable. Additionally,
precisely determining the viewport is not trivial since the
server cannot receive the precise viewport location at all times.
If a portion of the viewport is failed to be transmitted, that
results in a sudden drop of QoE and causes VR sickness.

The proposed system is composed of the following steps:
First, recorded video frames are partitioned into equirectan-
gular tiles. Then, rate-distortion characteristics of tiles are

analyzed. Meanwhile, user navigation actions are used to
assign tile likelihoods of being in viewport. Using these
characteristics and likelihoods optimal tile bitrates are assigned
for each scalable user class. Finally, calculated bitrates are
assigned to the tiles as quality enhancements in scalable
fashion (Figure 2).

B. Video Tiling

A 360° video panorama is between 4-8 times of a user view-
port. Partitioning a 360° video into N x M equirectangular
tiles allows treating each video tile as individual video blocks.
Individual blocks help to isolate the viewport and achieve an
overall non-uniform video quality. Once determined, viewport
tiles can be encoded in high quality and the rest are encoded
in low quality, allowing an efficient usage of bandwidth.

We partitioned our videos into medium sized 6 x 4 tiles.
Larger tiles would benefit less in terms of bandwidth gains and
smaller tiles would generate larger manifest files and decreases
the encoding gain which are out of scope of this paper. Figure
3 shows the video tiling in a video panorama.

Fig. 3: Tiling of 360° video.
C. Tile Likelihoods

Position of the viewport is strictly controlled by the user’s
head movements. Receiving the viewport position by using
real-time head trace data is not feasible as discussed by Qian
et al [9]. In order to achieve a high QoE, viewport should be
predicted in advance.

User QoE depends on the quality of the tiles that are within
the actual viewport. Presence of a tile in the viewport can vary.
Spatially, tiles with larger area in the viewport should receive
higher quality. Temporally, a tile can be present in the viewport
only a few consecutive frames. Since consecutive frames are
encoded together for efficiency, for a Group of Picture (GOP)
presence of tiles can change. So, each tile should be encoded
in a quality that is proportional to its fraction of the likelihood
of presence during the GOP. Let wy, ; denote the surface area
of the viewport occupied by the tile £ at frame j. Distorted
nature of the ERP stretches the area of the tiles closer to the
poles. Normalized likelihood in each frame is calculated using
Wy,j = Wkj/ > Wk,; to account for this distortion. Finally,
we sum these normalized likelihoods for all the frames in a
GOP.

Although using non-uniform quality across the viewport
might result in undesirable quality variance, determining tile



qualities with respect to rate-distortion characteristics helps
smoothening it. Also, tiles with very small portion in the
viewport do not considerably affect the quality variance.

D. Likelihood Prediction

1) Pyramidal Approach: Since determining the actual
viewport is not possible for each frame, we can use the initial
tile of a GOP as a basis for viewport prediction. [14] states
that users stay within 1 orthodomic distance (i.e. the angular
distance from the center) from viewport center 90% of time in
one second. This shows us that in 90% of the time, viewport
stays around the tiles surrounding the center tile.

Since a viewport is expected to be around the center tile
for the following GOP, we can assign likelihood of being
in the viewport to the tiles symmetrically. We implemented
pyramidal approach introduced by Ahmadi et al [4]. In this
approach, tile likelihoods decrease gradually from the center
tile to outwards linearly like a pyramid. So, the quality of the
possible viewport tiles is kept high.

2) Neural Network Approach: Compared to the static na-
ture of the pyramidal approach, a neural network can actively
predict the tile likelihoods for the GOP ¢; given the head
trace of the user in the GOP ¢;_;. The network generates a
curve fitting from the head navigation trace of a time chunk
to the tile likelihoods of the next chunk. Although contents of
different videos can be unrelated, given the chunks are small,
it is very likely that similar head movements observed in the
time chunks #;,_; lead to similar tile likelihoods for the time
chunk ¢;.

The prediction works as follows: The neural network reads
the yaw and pitch data of the viewport center for all frames
in the GOP t;_; as the input. Then it outputs the likelihood
of tiles in the GOP ¢;. Since fitting is a non-linear operation,
some tiles are assigned with negative or very small likelihoods.
We set the likelihoods smaller than a threshold to 0. Threshold
is defined as 5% of the total likelihood in a GOP. This helps
saving the bandwidth by ignoring the tiles that are unlikely to
end up in the viewport.

The neural network consists of 15 hidden layers. There are
64 inputs (32 sets of yaw and pitch, per frame) and 24 outputs
(likelihood of 6 x 4 tiles) for the network (Figure 4). The
network is trained using Bayesian regularization.
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Fig. 4: Neural network to predict viewport likelihoods.

Figure 5 shows the comparison of tile likelihoods generated
by the neural network (5a) and actual likelihoods (5b) for a
random GOP. Actual likelihoods are calculated using the actual
head traces, and are used to train the network. Compared to
actual likelihood map, neural network assigns excess likeli-
hood to some extra tiles. Although these extra tiles use the
bandwidth, majority of the weight is in the actual viewport
tiles with a smoother distribution.
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Fig. 5: Comparison of tile likelihoods.
E. Rate-Distortion Analysis

We employed Quantization Parameter (QP) of the codec
to alter the video quality. Analytical dependency between QP
and the bitrate of a given tile helps using the QP parameter
to decide the video size. Similarly, an analytical dependency
between video bitrate and distortion allows us to determine the
video quality given the bitrate of the said video. Using these
two relationships we can determine the expected distortion
using the QP variable in the optimization function in section
IV-B.

In our previous work we have investigated the rate-distortion
(R-D) and QP-bitrate (QP-R) relationships for the videos
we have used [2]. In the study, we have shown that both
characteristics can be interpolated as power law or exponential
functions as in equations 1 and 2.

R=a1e " ® or R=ay,QP™. (1)

D =cie ™R or D=cR%. 2)

In the paper, we investigated the videos and showed that the
QP-R relationship is an exponential function R = a;e~?* @
and the R-D relationship is a power law function D = ¢y R,
Although these relationships can vary for the video, analyzing
the video characteristics results the correct form for each
particular case. Determining the R-D and QP-R relationships
for each video tile in real time is out of this paper’s scope.

F. Scalable Video

Multicast allows one copy of the video data to be sent to
many users simultaneously to save bandwidth on the server
side and the Internet pipelines. In case of the 360° video,
users are expected to have distinct viewports. Considering the
various network bandwidth levels of the users, each user has
a distinct optimal tile quality set. Using traditional approach
results in one of two scenarios: Either users with higher
bandwidth will receive lower quality tiles than their network
bandwidth is capable of or users with limited bandwidth will
try to stream high quality content and result in buffer.

For multicast, we classify the users based on their band-
widths to solve this problem. For each user class there is a
scalable video level to increase the quality. Each level is com-
prised of tile qualities that are optimal for the corresponding
user class. The base layer video has the optimal tile qualities
that serves the minimum distortion for the lowest class users.
Each enhancement layer has enhancement tiles for existing
tiles and new tiles, based on the video quality. Thus, each



user class receives video layers for the corresponding class
and lower layers. This allows the server to send copies of the
video limited to the number of scalable layers instead of one
copy for each user.

Quality of the tiles in each class is calculated using the
optimization discussed in section IV. Since optimality of each
class is dependent on the viewport of that class users, each
layer serves for a minimum total distortion for the mentioned
class.

IV. OPTIMIZATION
A. Problem Setup

Given the variables that have been discussed so far, we
can derive the problem of optimal bitrates for each layer.
Constraints of the problem are the class bandwidth limits and
the minimum and maximum QP levels.

Users are divided into classes based on their bandwidths.
Class of a user determines the total number of scalable levels
that user receives. Given the bandwidth requirements of each
user class, bitrates of the tiles should be allocated to ensure
the minimum aggregate distortion. Let there are K classes with
increasing bandwidths Cy, Cy,...,Cx_1. Cy being the base
layer bandwidth, each user is assigned to class k where the
user’s bandwidth is in between Cj_; and C}). So, for each
class k, the following inequality should hold:

ZRt,k(QPt7k) <Cp t=1,...,Nx M, Yk. (3)
t

Here R, 1 (QP, ) stands for the bitrate of tile ¢ of class k
for the corresponding QP value. Since we use scalable levels,
Ry 1, stands for the cumulative rate of tile ¢ for class k. Which
means each R, ;, inherits the bitrate of the lower class I ;.

The non-linear relationship of QP-R limits the available QP
values. So, we introduce upper and lower bounds for QP in
our optimization function.

Rt,k(QPmaw) < Rt,k < Rt,k(QPmin)a Vﬁ; k. (4)

Our aim is to maximize the total quality of all users’
viewports. In order to achieve that, we can minimize the
aggregate distortion of the expected viewport of all users. p; ;
is the likelihood of tile ¢ for user i as discussed in section
III-C. Using the likelihoods of all users results in an aggregate
distortion of all user viewports.

Distortion of a tile D; ; can be expressed as a function of bi-
trate R;; and bitrate of a tile 7 used in class k can be expressed
as a function of the QP value ()P, j as discussed in section
III-E. So, our target is to minimize ), >, Dy (R ;)pe,; that
will result in maximum aggregate viewport quality.

B. Optimization Formulation

Now that we have the constraints and the system model, we
can formulate the optimization problem as follows:

{%ﬁn} Z Z Dy i(Rei)pe,i, ®)
ok - p

K2

subject to: ZRtyk(QPM) < C, Vi, k.
t

Rt,k(QPmaw) S Rt,k S Rt,k(QPmin)7 Vta k.

In the objective function, i represents the user and k repre-
sents the class of users. So, since each user is in one of these
classes, there are ;) values for each tile of each class and
Ry ; corresponds to the bitrate of that user’s class.

Since this is a convex optimization problem, it can be solved
efficiently. Solving this optimization for each time chunk
returns optimal tile bitrates for each class. Using the QP-R
model, we can encode each level and generate a continuous
QP value for each level. Then tiles are encoded in the nearest
integer QP value and streamed accordingly.

V. EXPERIMENTS

A. System Setup

We have tested our architecture using three popular 4K
360° videos from YouTube namely Coaster [15], Wingsuit
[16], and Dolphin [17]. Using an Oculus Rift HMD device
and OpenTrack software [18] we recorded a total of 111 head
movement traces including yaw, pitch, and roll angles of the
HMD direction with a time stamp for 3 videos. The frame rate
of the HMD is 250 trace per second. We considered one trace
data per video frame.

Videos are partitioned into 6 x 4 spatial tiles as discussed in
section III-B and temporally composed of 1920 frames and 60
GOPs. We have shown the R-D and QP-R models of the videos
in our previous study as power law and exponential functions
respectively [2]. The process of generating the model is as
follows: Tiles are encoded in 5 QP levels (22, 27, 32, 37, 42).
Then bitrate and distortion of each tile are measured and R-D
and QP-R relationships are extracted using Matlab.

User tile likelihoods are predicted using the pyramidal
approach in Section III-D1 for Pyr and the neural network
discussed in Section III-D2 for NN. For each video, the corre-
sponding neural network is trained using the traces of the other
two videos. Networks are trained using a windowed fashion
where position vectors (yaw and pitch) of each consecutive
32 frames are used as the input (64 elements) and the tile
likelihoods during the next 32 frames are used as the output
(24 elements). Networks are trained using more than 172,000
samples per video. For the Pyramidal approach initial tile of
each GOP is assigned with 0.25, adjacent 4 tiles are assigned
with 0.125, and the diagonal 4 tiles are assigned with 0.0625
likelihood.

Two scalable layers and two corresponding user classes are
used for our architecture: a base layer (Base class) and an
enhancement layer (Enhanced class) with three and two users
respectively. In a real scenario users can dynamically move
between classes and total number of users can change however
we decided to follow static user allocation for the sake of
simplicity. We mimic scalable structure using High Efficiency
Video Codec (HEVC) for this study. The tiles are encoded
in different QP levels using x265 [19], a fast application of
HEVC.

Finding the optimal tile qualities using NN and Pyr is as
follows: First, R-D and QP-R relationship model is generated
using 5 QP values as discussed earlier. Tile likelihoods of each



user is predicted using the corresponding method. Optimiza-
tion constraints are then determined: 42 is chosen as the upper
bound and 22 as the lower bound of QP. The final constraints
are the class network bandwidths. For a fair comparison, the
bitrate of the monolithic videos discussed below are used
as bandwidth limits of classes. Finally, using optimization
function, predicted likelihoods and calculated bandwidths are
used the find minimum aggregate distortion.

We implemented Monolithic as our reference architecture
which is based on streaming a monolithic 360° video encoded
in constant QP value. For two user classes, we have selected
QP values that result in 2-3 dB differences in viewport Y-
PSNR. For each scenario, the bitrate of each video (Base
class and Enhanced class) is calculated per GOP. And for the
corresponding GOP, these bitrates are used as the bandwidth
constraint of the respective class in our proposed architecture.

Finally, for the QoE assessment we used normalized Y-
PSNR values. According to [13] regular 2D PSNR calculation
introduces distortion due to 3D to 2D projection. So, we
calculated the MSE of Y values for each viewport pixel
and normalized it with the viewport size since it changes
depending on the pitch angle and calculated the normalized
Y-PSNR from there.

B. Optimal Tiles

Optimal R; ;. for each class k and tile ¢ is calculated using
the equation 5 for each GOP. Using the QP-R relationship,
optimal )P, j values are calculated. Figure 6 compares the
two classes of the Coaster video in terms of the QP values
of tiles 8, 10, and 16 from figure 3. Overall QP in the
Enhanced class is lower by 3-5 units than the Base class for
the majority of the video. However, in some GOPs, the Base
class and the Enhanced class are appointed with the same
QP values. Between GOPs 20 and 40, tile 8 has the same
trend in both cases indicating that increasing its quality in
the enhanced class does not further improve the total quality
without affecting other tiles or it is not a popular tile among
the Enhanced class users. Tile 16 is assigned the minimum
QP value in general for the Enhanced class. This shows that
tile 16 is more likely to be in the viewport of Enhanced class
users. Tile 10 becomes more popular in both cases and shows
a 3 QP difference in between after GOP 25.
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Fig. 6: Optimal QP of various tiles over time
C. Evaluation Results
The trend of PSNR over time is shown in figure 7 for the
Coaster and Wingsuit videos. Here, NN indicates the neural

network predicted optimal results, and Mono is the monolithic
case. E and B are for the Enhanced class and Base class
respectively. Mono case shows a smoother trend in the first
half of the Coaster video as a result of temporally less varying
bitrate than the second half. Overall, the base class of the NN
is similar to the enhanced class of the Mono. In the Wingsuit
video, in worse frames NN and Mono has very close results,
but in better frames the difference increases above 4 dB. Mono
in the Wingsuit video shows overall a smoother trend than
the Coaster video, indicating a temporally smoother bitrate
variation.

Video Quality over Time Video Quality over Time

—NNE

3
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Frame
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Fig. 7: 360° viewport video quality

Figure 8 and 9 compares the change of the average PSNR
values of the viewport while the average bandwidth changing
in Coaster video and the Wingsuit video respectively. NNE is
the Enhanced class of our proposed architecture, and NNB
is the Base class. PyrE and PyrB are the enhanced and
the base class results of the pyramidal likelihood assignment
respectively. Finally, MonoE and MonoB are for the monolithic
case discussed in section V-A. Enhanced class here indicates
the average of the 2 users in that class, and Base class is for
the average of the 3 users of the Base class. Lines represent
the average value PSNR value over the whole video for the
average bandwidth of the scenario. In the x-axis, the first value
is the average bandwidth allocated for the Enhanced class, and
the value in the parenthesis is the average bandwidth of the
Base class.

Video Quality vs. Network Bandwidth
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Fig. 8: Average video quality - Coaster
Enhanced and base classes of the Monolithic case shows
2-3.5 dB difference in average, showing an example of two
different scalable levels. Difference between PSNR of two



Video Quality vs. Network Bandwidth
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Fig. 9: Average video quality - Wingsuit

NN classes show a steady difference of 3-4 dB in higher
bandwidths. This difference increases in lower bandwidth
levels as lower bandwidths are only capable of streaming the
lowest quality.

Gain of the NN from the Mono is around 3.5-4 dB in
Enhanced class for the Coaster video and 2.5-3.5 dB in
the Wingsuit video. In Base class, this gain is slightly less.
Respectively 2-3 dB and 1-1.5 dB differences in higher band-
width scenarios decays to 0 at lower bandwidth scenarios. So,
proposed architecture leads to gains in both classes in regular
network speeds while maintaining the needs of the multicast
streaming.

The neural network slightly outperforms the pyramidal
approach in both classes until it reaches the high bandwidth
cap. A 0.5 dB difference is observed overall in two methods
in the Coaster video and 1 dB in the Wingsuit video. This
shows the overall advantage of the neural network.

Compared with the 4-5 dB gain of our previous work [2],
a 3.5-4 dB gain in Enhanced class and a 2-3 dB gain in Base
class shows that streaming live 360° video can be very close
to the regular streaming considering the losses of scalable
streaming.

VI. CONCLUSION

360° video delivery is an emerging topic in video commu-
nication. Live 360° multicast is one of the most promising
application of it with additional challenges. In this work,
we investigated live multicast considering its popularity in
regular video communications. We predicted users’ navigation
actions with two prospective methods, analysed rate-distortion
characteristics of video spatiotemporal video segments, and
employed a scalable representation to deliver the 360° video
regions in various quality levels. As a result, same content can
be multicast to many users that are grouped by their network
bandwidth constraints with a quality gain of 3 dB for low
network bandwidth class users and 3.5-4 dB for high network
bandwidth class users.

Correctly predicting user navigation actions is one of the
challenges in 360° video communications. Considering the

black-box nature of neural networks, further prediction im-
provements can be achieved. Using video content itself or
exploiting the saliency conditions of the video [20] can lead
to a better prediction method.

Using very small tiles can decrease the quality variance
within the user viewport and increase the network bandwidth
gain further by limiting the excessive high quality area outside
the viewport. Commercial applications of very small tiles show
that it can be possible to use very small tile without losing
encoding efficieny [21].
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