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Abstract—Virtual Reality (VR) technologies enable remote
scene 360◦ video immersion experiences. The growing popularity
of VR increases the demand for 360◦ video delivery over
the Internet. Compared to regular videos, 360◦ videos are
characterized by an enormous data volume and spatial user
navigation. User interactivity is activated by head movements
and changes the spatial portion of a video viewed by the user,
hence making only a small portion of the video essential at a
time. Therefore, streaming the full video at high quality causes
suboptimal use of the bandwidth. The above properties of 360◦

videos require novel streaming techniques in order to maintain
high Quality of Experience (QoE). Live 360◦ multicast has not
being studied yet, due to the emerging nature of 360◦ video, and
it represents one of the most promising applications. Relative to
on-demand single user 360◦ video streaming, it presents new
challenges such as handling the interactions of multiple users
simultaneously, while dynamically encoding the live 360◦ video
on the fly.

We propose a novel scalable multicast live 360◦ video stream-
ing framework. It comprises a rate-distortion analysis that cap-
tures the fidelity-rate trade-offs of 360◦ videos, an optimization
formulation to assign data rates to spatial video regions, and a
scalable 360◦ video data representation. A 2-3 dB of quality gain
for lower bandwidth classes and 3-4 dB for higher bandwidth
classes are observed over a conventional method that streams the
monolithic content at uniform quality. Our work shows that for
live 360◦ multicast achieving quality levels close to on-demand
streaming is possible despite the lack of information about future
content and user navigation actions.

I. INTRODUCTION

Developments in VR display and omnidirectional capture

technologies enabled the 360◦ video format. Omnidirectional

cameras or camera rigs can capture 360◦ videos that provide a

360◦ look around of the surrounding scene and Head Mounted

Display (HMD) allows a remote users to experience them.

However, streaming a 360◦ video using state-of-art standards

has numerous challenges.

For any given video frame, HMD displays a viewport,

which represents only a small portion of the entire 360◦

video panorama, while the rest of it is not viewed. Using

traditional video streaming techniques results in a bandwidth

waste since a viewport comprises of less than 1/6 of the entire

360◦. In addition, most broadband networks are not capable of

streaming a 360◦ video in a good quality. Several studies have

been carried out on improving 360◦ video delivery. Although

these studies improve streaming on-demand 360◦ video, new

challenges arise in the case of live 360◦ multicast.
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Recently, CNN started its VR news service [1] and live

streamed the 2017 total solar eclipse. For widespread com-

mercial live 360◦ multicast applications, there are additional

obstacles to overcome. First, there are no pre-encoded 360◦

video regions in different qualities to send users with various

demands as in the case of on-demand video. Additionally,

there is no prior history of user navigation actions that can

be used for viewport prediction, given that the video is being

streamed for the first time. To overcome these challenges, we

propose a novel scalable live 360◦ multicast framework.

Fig. 1: Multicast 360◦ live streaming: N layers are streamed.

In this study, we use equirectangular tiling to partition a

360◦ video into smaller spatial tiles so that the viewport can

be processed individually from the rest of the video. We

analyze the rate-distortion characteristics of the partitioned

video tiles as introduced in our recent work [2], to develop an

analytical model that captures the effect of tile data rates on

the reconstructed 360◦ video quality. Moreover, two methods

for tile navigation likelihood prediction are explored based on

the user head movements: (I) a neural network, trained on the

different video frames and head traces, (II) and a pyramidal

prediction method. Based on their network bandwidth, users

are distributed into different multicast classes. Predicted tile

navigation likelihoods of class users and rate-distortion char-

acteristics of tiles are used to assign video qualities to every

tile such that the aggregate 360◦ video quality is delivered

to each class. The assigned qualities are then used to encode

the tiles in a scalable fashion such that every scalable layer

captures the network bandwidth difference between classes. A

user in class k receives the tiles in scalable layers up to Lk

from the N streamed layers as illustrated in Figure 1.

The rest of the paper is organized as follows. We review

related work in Section II. In Section III, the components

of the proposed system framework are discussed. Section IV

develops a problem formulation that finds the optimal tile qual-

ities that result in maximizing the aggregate expected viewport

360◦ quality across all classes. Section V demonstrates the

performance of our framework. Finally, Section VI discusses

future work and concludes the paper978-1-5386-1737-3/18/$31.00 c©2018 IEEE



II. RELATED WORK

360◦ video streaming has various challenges due to its om-

nidirectional nature. According to De Simone et al. challenges

through the omnidirectional video communication chain are

distortions during the capture, projection distortion, rendering

the viewport, and losses during the encoding and streaming

[3]. In terms of projection, equirectangular projection (ERP) is

a popular approach [2, 4, 5] due to its simpler implementation.

Other types of projections are also investigated e.g. cubemap

[6], non-uniform [7], and resolution-defined [8].

Probabilistic prediction of the viewport is proposed in

several works [4, 5]. Qian et al. and Nasrabadi et al. use linear

regression to predict the viewport [9, 10]. We used navigation

action history of previous users to predict the viewport in our

recent work [2].

Another approach for maintaining high viewport quality is

using Scalable Video Coding (SVC) [11]. Nasrabadi et al.

proposed using SVC in 360◦ videos and stream all video

tiles in base layer quality while viewport tiles in enhancement

layers [10]. According to He et al. SHVC causes only a

negligible loss in quality compared to HEVC while reducing

the bit stream size around 87% [12]. Multicasting of 360◦

videos are studied by Ahmadi et al. [4].

There are various implementations in terms of QoE as-

sessment. According the Chen et al. planar PSNR calculation

causes distortion and can be addressed with various imple-

mentations [13]. However, De Simone et al. states that there

are still limitations of proposed QoE assessment methods [3].

Despite the recent popularity and potential of 360◦ videos

there is not an agreed standard on live 360◦ multicast. We

propose an analytical and scalable solution to multicast the

live 360◦ videos to fill this gap.

III. SYSTEM MODELS

Fig. 2: System model.

A. Overview

Users’ viewports change over time in accordance with user

head movements. To achieve a satisfactory QoE at the user

end, pixels within the viewport should be in high quality. Also,

delivering all the pixels outside the viewport in high quality

limits the network bandwidth and redundant. However, two

challenges arise in the case of solely viewport transmission.

Firstly, encoding pixels in irregular shapes is not a suitable

approach in state-of-art encoding technologies, so residual

pixels outside the viewport are unavoidable. Additionally,

precisely determining the viewport is not trivial since the

server cannot receive the precise viewport location at all times.

If a portion of the viewport is failed to be transmitted, that

results in a sudden drop of QoE and causes VR sickness.

The proposed system is composed of the following steps:

First, recorded video frames are partitioned into equirectan-

gular tiles. Then, rate-distortion characteristics of tiles are

analyzed. Meanwhile, user navigation actions are used to

assign tile likelihoods of being in viewport. Using these

characteristics and likelihoods optimal tile bitrates are assigned

for each scalable user class. Finally, calculated bitrates are

assigned to the tiles as quality enhancements in scalable

fashion (Figure 2).

B. Video Tiling

A 360◦ video panorama is between 4-8 times of a user view-

port. Partitioning a 360◦ video into N × M equirectangular

tiles allows treating each video tile as individual video blocks.

Individual blocks help to isolate the viewport and achieve an

overall non-uniform video quality. Once determined, viewport

tiles can be encoded in high quality and the rest are encoded

in low quality, allowing an efficient usage of bandwidth.

We partitioned our videos into medium sized 6 × 4 tiles.

Larger tiles would benefit less in terms of bandwidth gains and

smaller tiles would generate larger manifest files and decreases

the encoding gain which are out of scope of this paper. Figure

3 shows the video tiling in a video panorama.

Fig. 3: Tiling of 360◦ video.

C. Tile Likelihoods

Position of the viewport is strictly controlled by the user’s

head movements. Receiving the viewport position by using

real-time head trace data is not feasible as discussed by Qian

et al [9]. In order to achieve a high QoE, viewport should be

predicted in advance.

User QoE depends on the quality of the tiles that are within

the actual viewport. Presence of a tile in the viewport can vary.

Spatially, tiles with larger area in the viewport should receive

higher quality. Temporally, a tile can be present in the viewport

only a few consecutive frames. Since consecutive frames are

encoded together for efficiency, for a Group of Picture (GOP)

presence of tiles can change. So, each tile should be encoded

in a quality that is proportional to its fraction of the likelihood

of presence during the GOP. Let wk,j denote the surface area

of the viewport occupied by the tile k at frame j. Distorted

nature of the ERP stretches the area of the tiles closer to the

poles. Normalized likelihood in each frame is calculated using

w̄k,j = wk,j/
∑

k wk,j to account for this distortion. Finally,

we sum these normalized likelihoods for all the frames in a

GOP.

Although using non-uniform quality across the viewport

might result in undesirable quality variance, determining tile



qualities with respect to rate-distortion characteristics helps

smoothening it. Also, tiles with very small portion in the

viewport do not considerably affect the quality variance.

D. Likelihood Prediction
1) Pyramidal Approach: Since determining the actual

viewport is not possible for each frame, we can use the initial

tile of a GOP as a basis for viewport prediction. [14] states

that users stay within 1 orthodomic distance (i.e. the angular

distance from the center) from viewport center 90% of time in

one second. This shows us that in 90% of the time, viewport

stays around the tiles surrounding the center tile.
Since a viewport is expected to be around the center tile

for the following GOP, we can assign likelihood of being

in the viewport to the tiles symmetrically. We implemented

pyramidal approach introduced by Ahmadi et al [4]. In this

approach, tile likelihoods decrease gradually from the center

tile to outwards linearly like a pyramid. So, the quality of the

possible viewport tiles is kept high.
2) Neural Network Approach: Compared to the static na-

ture of the pyramidal approach, a neural network can actively

predict the tile likelihoods for the GOP ti given the head

trace of the user in the GOP ti−1. The network generates a

curve fitting from the head navigation trace of a time chunk

to the tile likelihoods of the next chunk. Although contents of

different videos can be unrelated, given the chunks are small,

it is very likely that similar head movements observed in the

time chunks ti−1 lead to similar tile likelihoods for the time

chunk ti.
The prediction works as follows: The neural network reads

the yaw and pitch data of the viewport center for all frames

in the GOP ti−1 as the input. Then it outputs the likelihood

of tiles in the GOP ti. Since fitting is a non-linear operation,

some tiles are assigned with negative or very small likelihoods.

We set the likelihoods smaller than a threshold to 0. Threshold

is defined as 5% of the total likelihood in a GOP. This helps

saving the bandwidth by ignoring the tiles that are unlikely to

end up in the viewport.
The neural network consists of 15 hidden layers. There are

64 inputs (32 sets of yaw and pitch, per frame) and 24 outputs

(likelihood of 6 × 4 tiles) for the network (Figure 4). The

network is trained using Bayesian regularization.

Fig. 4: Neural network to predict viewport likelihoods.

Figure 5 shows the comparison of tile likelihoods generated

by the neural network (5a) and actual likelihoods (5b) for a

random GOP. Actual likelihoods are calculated using the actual

head traces, and are used to train the network. Compared to

actual likelihood map, neural network assigns excess likeli-

hood to some extra tiles. Although these extra tiles use the

bandwidth, majority of the weight is in the actual viewport

tiles with a smoother distribution.

(a) Likelihoods by Network (b) Actual Tile Likelihoods

Fig. 5: Comparison of tile likelihoods.

E. Rate-Distortion Analysis

We employed Quantization Parameter (QP) of the codec

to alter the video quality. Analytical dependency between QP

and the bitrate of a given tile helps using the QP parameter

to decide the video size. Similarly, an analytical dependency

between video bitrate and distortion allows us to determine the

video quality given the bitrate of the said video. Using these

two relationships we can determine the expected distortion

using the QP variable in the optimization function in section

IV-B.

In our previous work we have investigated the rate-distortion

(R-D) and QP-bitrate (QP-R) relationships for the videos

we have used [2]. In the study, we have shown that both

characteristics can be interpolated as power law or exponential

functions as in equations 1 and 2.

R = a1e
−b1 QP or R = a2QPb2 . (1)

D = c1e
−d1R or D = c2R

d2 . (2)

In the paper, we investigated the videos and showed that the

QP-R relationship is an exponential function R = a1e
−b1 QP

and the R-D relationship is a power law function D = c2R
d2 .

Although these relationships can vary for the video, analyzing

the video characteristics results the correct form for each

particular case. Determining the R-D and QP-R relationships

for each video tile in real time is out of this paper’s scope.

F. Scalable Video

Multicast allows one copy of the video data to be sent to

many users simultaneously to save bandwidth on the server

side and the Internet pipelines. In case of the 360◦ video,

users are expected to have distinct viewports. Considering the

various network bandwidth levels of the users, each user has

a distinct optimal tile quality set. Using traditional approach

results in one of two scenarios: Either users with higher

bandwidth will receive lower quality tiles than their network

bandwidth is capable of or users with limited bandwidth will

try to stream high quality content and result in buffer.

For multicast, we classify the users based on their band-

widths to solve this problem. For each user class there is a

scalable video level to increase the quality. Each level is com-

prised of tile qualities that are optimal for the corresponding

user class. The base layer video has the optimal tile qualities

that serves the minimum distortion for the lowest class users.

Each enhancement layer has enhancement tiles for existing

tiles and new tiles, based on the video quality. Thus, each



user class receives video layers for the corresponding class

and lower layers. This allows the server to send copies of the

video limited to the number of scalable layers instead of one

copy for each user.

Quality of the tiles in each class is calculated using the

optimization discussed in section IV. Since optimality of each

class is dependent on the viewport of that class users, each

layer serves for a minimum total distortion for the mentioned

class.
IV. OPTIMIZATION

A. Problem Setup

Given the variables that have been discussed so far, we

can derive the problem of optimal bitrates for each layer.

Constraints of the problem are the class bandwidth limits and

the minimum and maximum QP levels.

Users are divided into classes based on their bandwidths.

Class of a user determines the total number of scalable levels

that user receives. Given the bandwidth requirements of each

user class, bitrates of the tiles should be allocated to ensure

the minimum aggregate distortion. Let there are K classes with

increasing bandwidths C0, C1, . . . , Ck−1. C0 being the base

layer bandwidth, each user is assigned to class k where the

user’s bandwidth is in between Ck−1 and Ck. So, for each

class k, the following inequality should hold:∑

t

Rt,k(QPt,k) ≤ Ck, t = 1, . . . , N ×M, ∀k. (3)

Here Rt,k(QPt,k) stands for the bitrate of tile t of class k
for the corresponding QP value. Since we use scalable levels,

Rt,k stands for the cumulative rate of tile t for class k. Which

means each Rt,k inherits the bitrate of the lower class Rt,k−1.

The non-linear relationship of QP-R limits the available QP

values. So, we introduce upper and lower bounds for QP in

our optimization function.

Rt,k(QPmax) ≤ Rt,k ≤ Rt,k(QPmin), ∀t, k. (4)

Our aim is to maximize the total quality of all users’

viewports. In order to achieve that, we can minimize the

aggregate distortion of the expected viewport of all users. pt,i
is the likelihood of tile t for user i as discussed in section

III-C. Using the likelihoods of all users results in an aggregate

distortion of all user viewports.

Distortion of a tile Di,t can be expressed as a function of bi-

trate Ri,t and bitrate of a tile t used in class k can be expressed

as a function of the QP value QPt,k as discussed in section

III-E. So, our target is to minimize
∑

i

∑
t Dt,i(Rt,i)pt,i that

will result in maximum aggregate viewport quality.

B. Optimization Formulation

Now that we have the constraints and the system model, we

can formulate the optimization problem as follows:

min
{Rt,k}

∑

i

∑

t

Dt,i(Rt,i)pt,i, (5)

subject to:
∑

t

Rt,k(QPt,k) ≤ Ck, ∀t, k.

Rt,k(QPmax) ≤ Rt,k ≤ Rt,k(QPmin), ∀t, k.

In the objective function, i represents the user and k repre-

sents the class of users. So, since each user is in one of these

classes, there are Rt,k values for each tile of each class and

Rt,i corresponds to the bitrate of that user’s class.

Since this is a convex optimization problem, it can be solved

efficiently. Solving this optimization for each time chunk

returns optimal tile bitrates for each class. Using the QP-R

model, we can encode each level and generate a continuous

QP value for each level. Then tiles are encoded in the nearest

integer QP value and streamed accordingly.

V. EXPERIMENTS

A. System Setup

We have tested our architecture using three popular 4K

360◦ videos from YouTube namely Coaster [15], Wingsuit

[16], and Dolphin [17]. Using an Oculus Rift HMD device

and OpenTrack software [18] we recorded a total of 111 head

movement traces including yaw, pitch, and roll angles of the

HMD direction with a time stamp for 3 videos. The frame rate

of the HMD is 250 trace per second. We considered one trace

data per video frame.

Videos are partitioned into 6×4 spatial tiles as discussed in

section III-B and temporally composed of 1920 frames and 60

GOPs. We have shown the R-D and QP-R models of the videos

in our previous study as power law and exponential functions

respectively [2]. The process of generating the model is as

follows: Tiles are encoded in 5 QP levels (22, 27, 32, 37, 42).

Then bitrate and distortion of each tile are measured and R-D

and QP-R relationships are extracted using Matlab.

User tile likelihoods are predicted using the pyramidal

approach in Section III-D1 for Pyr and the neural network

discussed in Section III-D2 for NN. For each video, the corre-

sponding neural network is trained using the traces of the other

two videos. Networks are trained using a windowed fashion

where position vectors (yaw and pitch) of each consecutive

32 frames are used as the input (64 elements) and the tile

likelihoods during the next 32 frames are used as the output

(24 elements). Networks are trained using more than 172,000

samples per video. For the Pyramidal approach initial tile of

each GOP is assigned with 0.25, adjacent 4 tiles are assigned

with 0.125, and the diagonal 4 tiles are assigned with 0.0625

likelihood.

Two scalable layers and two corresponding user classes are

used for our architecture: a base layer (Base class) and an

enhancement layer (Enhanced class) with three and two users

respectively. In a real scenario users can dynamically move

between classes and total number of users can change however

we decided to follow static user allocation for the sake of

simplicity. We mimic scalable structure using High Efficiency

Video Codec (HEVC) for this study. The tiles are encoded

in different QP levels using x265 [19], a fast application of

HEVC.

Finding the optimal tile qualities using NN and Pyr is as

follows: First, R-D and QP-R relationship model is generated

using 5 QP values as discussed earlier. Tile likelihoods of each



user is predicted using the corresponding method. Optimiza-

tion constraints are then determined: 42 is chosen as the upper

bound and 22 as the lower bound of QP. The final constraints

are the class network bandwidths. For a fair comparison, the

bitrate of the monolithic videos discussed below are used

as bandwidth limits of classes. Finally, using optimization

function, predicted likelihoods and calculated bandwidths are

used the find minimum aggregate distortion.
We implemented Monolithic as our reference architecture

which is based on streaming a monolithic 360◦ video encoded

in constant QP value. For two user classes, we have selected

QP values that result in 2-3 dB differences in viewport Y-

PSNR. For each scenario, the bitrate of each video (Base
class and Enhanced class) is calculated per GOP. And for the

corresponding GOP, these bitrates are used as the bandwidth

constraint of the respective class in our proposed architecture.
Finally, for the QoE assessment we used normalized Y-

PSNR values. According to [13] regular 2D PSNR calculation

introduces distortion due to 3D to 2D projection. So, we

calculated the MSE of Y values for each viewport pixel

and normalized it with the viewport size since it changes

depending on the pitch angle and calculated the normalized

Y-PSNR from there.

B. Optimal Tiles
Optimal Rt,k for each class k and tile t is calculated using

the equation 5 for each GOP. Using the QP-R relationship,

optimal QPt,k values are calculated. Figure 6 compares the

two classes of the Coaster video in terms of the QP values

of tiles 8, 10, and 16 from figure 3. Overall QP in the

Enhanced class is lower by 3-5 units than the Base class for

the majority of the video. However, in some GOPs, the Base
class and the Enhanced class are appointed with the same

QP values. Between GOPs 20 and 40, tile 8 has the same

trend in both cases indicating that increasing its quality in

the enhanced class does not further improve the total quality

without affecting other tiles or it is not a popular tile among

the Enhanced class users. Tile 16 is assigned the minimum

QP value in general for the Enhanced class. This shows that

tile 16 is more likely to be in the viewport of Enhanced class
users. Tile 10 becomes more popular in both cases and shows

a 3 QP difference in between after GOP 25.
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Fig. 6: Optimal QP of various tiles over time

C. Evaluation Results
The trend of PSNR over time is shown in figure 7 for the

Coaster and Wingsuit videos. Here, NN indicates the neural

network predicted optimal results, and Mono is the monolithic

case. E and B are for the Enhanced class and Base class
respectively. Mono case shows a smoother trend in the first

half of the Coaster video as a result of temporally less varying

bitrate than the second half. Overall, the base class of the NN
is similar to the enhanced class of the Mono. In the Wingsuit

video, in worse frames NN and Mono has very close results,

but in better frames the difference increases above 4 dB. Mono
in the Wingsuit video shows overall a smoother trend than

the Coaster video, indicating a temporally smoother bitrate

variation.
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Fig. 7: 360◦ viewport video quality

Figure 8 and 9 compares the change of the average PSNR

values of the viewport while the average bandwidth changing

in Coaster video and the Wingsuit video respectively. NNE is

the Enhanced class of our proposed architecture, and NNB
is the Base class. PyrE and PyrB are the enhanced and

the base class results of the pyramidal likelihood assignment

respectively. Finally, MonoE and MonoB are for the monolithic

case discussed in section V-A. Enhanced class here indicates

the average of the 2 users in that class, and Base class is for

the average of the 3 users of the Base class. Lines represent

the average value PSNR value over the whole video for the

average bandwidth of the scenario. In the x-axis, the first value

is the average bandwidth allocated for the Enhanced class, and

the value in the parenthesis is the average bandwidth of the

Base class.
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Fig. 8: Average video quality - Coaster

Enhanced and base classes of the Monolithic case shows

2-3.5 dB difference in average, showing an example of two

different scalable levels. Difference between PSNR of two
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Fig. 9: Average video quality - Wingsuit

NN classes show a steady difference of 3-4 dB in higher

bandwidths. This difference increases in lower bandwidth

levels as lower bandwidths are only capable of streaming the

lowest quality.

Gain of the NN from the Mono is around 3.5-4 dB in

Enhanced class for the Coaster video and 2.5-3.5 dB in

the Wingsuit video. In Base class, this gain is slightly less.

Respectively 2-3 dB and 1-1.5 dB differences in higher band-

width scenarios decays to 0 at lower bandwidth scenarios. So,

proposed architecture leads to gains in both classes in regular

network speeds while maintaining the needs of the multicast

streaming.

The neural network slightly outperforms the pyramidal

approach in both classes until it reaches the high bandwidth

cap. A 0.5 dB difference is observed overall in two methods

in the Coaster video and 1 dB in the Wingsuit video. This

shows the overall advantage of the neural network.

Compared with the 4-5 dB gain of our previous work [2],

a 3.5-4 dB gain in Enhanced class and a 2-3 dB gain in Base
class shows that streaming live 360◦ video can be very close

to the regular streaming considering the losses of scalable

streaming.
VI. CONCLUSION

360◦ video delivery is an emerging topic in video commu-

nication. Live 360◦ multicast is one of the most promising

application of it with additional challenges. In this work,

we investigated live multicast considering its popularity in

regular video communications. We predicted users’ navigation

actions with two prospective methods, analysed rate-distortion

characteristics of video spatiotemporal video segments, and

employed a scalable representation to deliver the 360◦ video

regions in various quality levels. As a result, same content can

be multicast to many users that are grouped by their network

bandwidth constraints with a quality gain of 3 dB for low

network bandwidth class users and 3.5-4 dB for high network

bandwidth class users.

Correctly predicting user navigation actions is one of the

challenges in 360◦ video communications. Considering the

black-box nature of neural networks, further prediction im-

provements can be achieved. Using video content itself or

exploiting the saliency conditions of the video [20] can lead

to a better prediction method.

Using very small tiles can decrease the quality variance

within the user viewport and increase the network bandwidth

gain further by limiting the excessive high quality area outside

the viewport. Commercial applications of very small tiles show

that it can be possible to use very small tile without losing

encoding efficieny [21].
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