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Abstract

We propose the Heterogeneous Thurstone Model (HTM) for aggregating ranked data, which
can take the accuracy levels of different users into account. By allowing different noise distri-
butions, the proposed HTM model maintains the generality of Thurstone’s original framework,
and as such, also extends the Bradley-Terry-Luce (BTL) model for pairwise comparisons to
heterogeneous populations of users. Under this framework, we also propose a rank aggregation
algorithm based on alternating gradient descent to estimate the underlying item scores and accu-
racy levels of different users simultaneously from noisy pairwise comparisons. We theoretically
prove that the proposed algorithm converges linearly up to a statistical error which matches
that of the state-of-the-art method for the single-user BTL model. We evaluate the proposed
HTM model and algorithm on both synthetic and real data, demonstrating that it outperforms
existing methods.

1 Introduction

Rank aggregation refers to the task of recovering the order of a set of objects given pairwise

comparisons, partial rankings, or full rankings obtained from a set of users or experts. Compared

to rating items, comparison is a more natural task for humans which can provide more consistent

results, in part because it does not rely on arbitrary scales. Furthermore, ranked data can be

obtained not only by explicitly querying users, but also through passive data collection, i.e., by

observing user behavior, for example product purchases, clicks on search engine results, choice of

movies in streaming services, etc. As a result, rank aggregation has a wide range of applications,

from classical social choice applications (de Borda, 1781) to information retrieval (Dwork et al.,

2001), recommendation systems (Baltrunas et al., 2010), and bioinformatics (Aerts et al., 2006; Kim

et al., 2015).
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In aggregating rankings, the raw data is often noisy and inconsistent. One approach to arrive

at a single ranking is to assume a generative model for the data whose parameters include a true

score for each of the items. In particular, Thurstone’s preference model (Thurstone, 1927) assumes

that comparisons or partial rankings result from comparing versions of the true scores corrupted by

additive noise. Special cases of Thurstone’s model include the popular Bradley-Terry-Luce (BTL)

model for pairwise comparisons and the Placket-Luce (PL) model for partial rankings. In these

settings, estimating the true scores from data will allow us to identify the true ranking of the items.

Various estimation and aggregation algorithms have been developed for Thurstone’s preference

model and its special cases, including (Hunter, 2004; Guiver and Snelson, 2009; Hajek et al., 2014;

Chen and Suh, 2015; Vojnovic and Yun, 2016; Negahban et al., 2017).

Conventional models of ranked data and aggregation algorithms that rely on them make the

assumption that the data is either produced by a single user1 or from a set of users that are similar.

In real-world datasets, however, users that provide the raw data are usually diverse with different

levels of familiarity with the objects of interest, thus providing data that is not uniformly reliable and

should not have equal influence on the final result. This is of particular importance in applications

such as aggregating expert opinions for decision-making and aggregating annotations provided by

workers in crowd sourcing settings.

In this paper, we study the problem of rank aggregation for heterogeneous populations of users.

We present a generalization of Thurstone’s model, called the heterogeneous Thurstone model (HTM),

which allows users with different noise levels, as well as a certain class of adversarial users. Unlike

previous efforts on rank aggregation for heterogeneous populations such as Chen et al. (2013);

Kumar and Lease (2011), the proposed model maintains the generality of Thurstone’s framework

and thus also extends its special cases such as BTL and PL models. We evaluate the performance

of the method using simulated data for different noise distributions. We also demonstrate that

the proposed aggregation algorithm outperforms the state-of-the-art method for real datasets on

evaluating the difficulty of English text and comparing the population of a set of countries.

Our Contributions: Our main contributions are summarized as follows

• We propose a general model called the heterogeneous Thurstone model (HTM) for producing

ranked data based on heterogeneous sources, which reduces to the heterogeneous BTL (HBTL)

model when the noise follows the Gumbel distribution and to the heterogeneous Thurstone

Case V (HTCV) model when the noise follows the normal distribution respectively.

• We develop an efficient algorithm for aggregating pairwise comparisons and estimating user

accuracy levels for a wide class of noise distributions based on minimizing the negative

log-likelihood loss via alternating gradient descent.

• We theoretically show that the proposed algorithm converges to the unknown score vector and

the accuracy vector at a locally linear rate up to a tight statistical error under mild conditions.

• For models with specific noise distributions such as the HBTL and HTCV, we prove that the

proposed algorithm converges linearly to the unknown score vector and accuracy vector up to

statistical errors in the order of O(n2 log(mn2)/(mk)), where k is sample size, n is the number

1We use the term user to refer to any entity that provides ranked data. In specific applications other terms may be
more appropriate, such as voter, expert, judge, worker, and annotator.
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of items and m is the number of users. When m = 1, the statistical error matches the error

bound in the state-of-the-art work for single user BTL model (Negahban et al., 2017).

• We conduct thorough experiments on both synthetic and real world data to validate our

theoretical results and demonstrate the superiority of our proposed model and algorithm.

The reminder of this paper is organized as follows. In Section 2, we review the most related

work in the literature. In Section 3, we propose a family of heterogeneous Thurstone models. In

Section 4, we propose an efficient algorithm for learning the ranking from pairwise comparisons. We

theoretically analyze the convergence of the proposed algorithm in Section 5. Thorough experimental

results are presented in Section 6 and Section 7 concludes the paper.

2 Additional Related Work

The problem of rank aggregation has a long history, dating back to the works of de Borda (1781)

and de Condorcet (1785) in the 18th century, where the problems of social choice and voting were

discussed. More recently, the problem of aggregating pairwise comparisons, where comparisons are

incorrect with a given probability p, was studied by Braverman and Mossel (2008) and Wauthier

et al. (2013). Instead of assuming the same probability for all comparisons to be incorrect, it is

natural to assume that the comparison of similar items is more likely to be noisy than those items

that are distinctly different. This intuition is reflected in the random utility model (RUM), also

known as Thurstone’s model (Thurstone, 1927), where each item has a true score, and users provide

rankings of subsets of items by comparing approximate version of these scores corrupted by additive

noise.

When restricted to comparing pairs of items, Thurstone’s model reduces to the BTL model

(Zermelo, 1929; Bradley and Terry, 1952; Luce, 1959; Hunter, 2004) if the noise follows the Gumbel

distribution, and to the Thurstone Case V (TCV) model (Thurstone, 1927) if the noise is normally

distributed. Recently, Negahban et al. (2012) proposed Rank Centrality, an iterative method with a

random walk interpretation and showed that it performs as well as the maximum likelihood (ML)

solution (Zermelo, 1929; Hunter, 2004) for BTL models and provided non asymptotic performance

guarantees. Chen and Suh (2015) studied identifying the top-K candidates under the BTL model

and its sample complexity.

Thurstone’s model can also be used to describe data from comparisons of multiple items. Hajek

et al. (2014) provided an upper bound on the error of the ML estimator and studied its optimality

when data consists of partial rankings (as opposed to pairwise comparisons) under the PL model.

Yu (2000) studied order statistics under the normal noise distribution with consideration of item

confusion covariance and user perception shift in a Bayesian model. Weng and Lin (2011) proposed

a Bayesian approximation method for game player ranking with results from two-team matches.

Guiver and Snelson (2009) studied the ranking aggregation problem with partial ranking (PL model)

in a Bayesian framework. However, due to the nature of Bayesian method, above mentioned work

provided few theoretical analysis. Vojnovic and Yun (2016) studied the parameter estimation

problem for Thurstone models where first choices among a set of alternatives are observed. Raman

and Joachims (2014, 2015) proposed the peer grading methods for solving a similar problem as ours,

while the generative models to aggregate partial rankings and pairwise comparisons are completely
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different. Very recently, Zhao et al. (2018) proposed the k-RUM model which assumes that the rank

distribution has a mixture of k RUM components. They also provided the analyses of identifiability

and efficiency of this model.

Almost all aforementioned works assume that all the data is provided by a single user or that

all users have the same accuracy. However, this assumption is rarely satisfied in real-world datasets.

The accuracy levels of different users are considered in Kumar and Lease (2011), which assumes

that each user is correct with a certain probability and studies the problem via simulation methods

such as naive Bayes and majority voting. In their pioneering work, Chen et al. (2013) studied rank

aggregation in a crowd-sourcing environment for pairwise comparisons, modeled via the BTL or

TCV model, where noisy BTL comparisons are assumed to be further corrupted. They are flipped

with a probability that depends on the identity of the worker. The k-RUM model proposed by Zhao

et al. (2018) considered a mixture of ranking distributions, without using extra information on who

contributed the comparison, it may suffer from common mixture model issues.

3 Modeling Heterogeneous Ranked Data

Before introducing our Heterogeneous Thurstone Model, we start by providing some preliminaries

of Thurstone’s preference model in further detail. Consider a set of n items. The score vector

for the items is denoted by s = (s1, . . . , sn)>. These items/objects are evaluated by a set of m

independent users. Each user may be asked to express their preference concerning a subset of items

{i1, . . . , ih} ⊆ [n], where 2 ≤ h ≤ n. For each item i, the user first estimates an empirical score for

it as

zi = si + εi, (3.1)

where εi is a random noise introduced by this evaluation process. This coarse estimate of score zi is

still implicit and cannot be queried or observed by the ranking algorithm. Instead, the user only

produces a ranking of these h items by sorting the scores zi. We thus have

Pr (π1 � π2 � · · · � πh) = Pr (zπ1 > zπ2 > · · · > zπh) , (3.2)

where i � j indicates that i is preferred to j by this user and {π1, . . . , πh} is a permutation of

{i1, . . . , ih}. Each time item i is compared with other items, a new score estimate zi is produced

by the user for are commonly assumed to be i.i.d. (Braverman and Mossel, 2008; Negahban et al.,

2012; Wauthier et al., 2013).

3.1 The Heterogeneous Thurstone Model

In real-world applications, users often have different levels of expertise and some may even be

adversarial. Therefore, it is natural for us to propose an extension of the Thurstone’s model

presented above, referred to as the Heterogeneous Thurstone Model (HTM), which has the flexibility

to reflect the different levels of expertise of different users. Specifically, we assume that each user

has a different level of making mistakes in evaluating items, i.e., the evaluation noise of user u is
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controlled by a scaling factor γu > 0. The proposed model is then represented as follows:

zui = si + εi/γu. (3.3)

Based on the estimated scores of each user for each item, the probability of a certain ranking of

h items provided by user u is again given by (3.2). While this extension actually applies to both

pairwise comparisons and multi-item orderings, we mainly focus on pairwise comparisons in this

paper.

When two items i and j are compared by user u, we denote by Y u
ij the random variable

representing the result,

Y u
ij =

{
1 if i � j;
0 if i ≺ j.

(3.4)

Let F denote the CDF of εj − εi, where εi and εj are two i.i.d. random variables. For the result Y u
ij

of comparison of i and j by user u, we have

Pr(Y u
ij = 1; si, sj , γu) = Pr(εj − εi < γu(si − sj)) = F (γu(si − sj)) . (3.5)

It is clear that the larger the value of γu, the more accurate the user is, since large γu > 0 increases

the probability of preferring an item with higher score to one with lower score.

We now consider several special cases arising from specific noise distributions. First, if εi follows a

Gumbel distribution with mean 0 and scale parameter 1, then we obtain the following Heterogeneous

BTL (HBTL) model:

log Pr(Y u
ij = 1; si, sj , γu) = log

eγusi

eγusi + eγusj
= − log(1 + exp(−γu(si − sj))), (3.6)

which follows from the fact that the difference between two independent Gumbel random variables has

the logistic distribution. We note that setting γu = 1 recovers the traditional BTL model (Bradley

and Terry, 1952).
If εi follows the standard normal distribution, we obtain the following Heterogeneous Thurstone

Case V (HTCV) model:

log Pr(Y u
ij = 1; si, sj , γu) = log Φ

(
γu(si − sj)√

2

)
, (3.7)

where Φ is the CDF of the standard normal distribution. Again, when γu = 1, this reduces to

Thurstone’s Case V (TCV) model for pairwise comparisons (Thurstone, 1927).

Adversarial users: Under our heterogeneous framework, we can also model a certain class of

adversarial users, whose goal is to make the estimated ranking be the opposite of the true ranking,

so that, for example, an inferior item is ranked higher than the alternatives. We assume for

adversarial users, the score of item i is C − si, for some constant C. Changing si to C − si in (3.5)

is equivalent to assuming the user has a negative accuracy γu. In this way, the accuracy of the user

is determined by the magnitude |γu| and its trustworthiness by sign(γu), as illustrated in Figure 1.

When adversarial users are present, this will facilitate optimizing the loss function, since instead of
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Figure 1: The effect of γu on the probability of error for a BTL comparison in which items have
scores 0 and 1. In particular, for large negative values of γu, the user is accurate (with a high level
of expertise) but adversarial.

solving the combinatorial optimization problem of deciding which users are adversarial, we simply

optimize the value of γu for each user.

One relevant work to ours is the CrowdBT algorithm proposed by Chen et al. (2013), where

they also explored the accuracy level of different users in learning a global ranking. In particular,

they assume that each user has a probability ηu of making mistakes in comparing items i and j:

Pr(Y u
ij = 1; si, sj , ηu) = ηu Pr(i � j) + (1− ηu) Pr(j � i), (3.8)

where Pr(i � j) and Pr(j � i) follow the BTL model. This translates to introducing a parameter in

the likelihood function to quantify the reliability of each pairwise comparison. This parameterization,

however, deviates from the additive noise in Thurstonian models defined as in (3.1) such as BTL

and Thurstone’s Case V. Specifically, the Thurstonian model explains the noise observed in pairwise

comparisons as resulting from the additive noise in estimating the latent item scores. Therefore, the

natural extension of Thurstonian models to a heterogeneous population of users is to allow different

noise levels for different users, as was done in (3.3). As a result, CrowdBT cannot be easily extended

to settings where more than two items are compared at a time. In contrast, the model proposed

here is capable to describe such generalizations of Thurstonian models, such as the PL model.

4 Optimization and Rank Aggregation

In this section, we define the pairwise comparison loss function for the population of users and

propose an efficient and effective optimization algorithm to minimize it. We denote by Y u the

matrix containing all pairwise comparisons Y u
ij of user u on items i and j. The entries of Y u are

0/1/?, where ? indicates that the pair was not compared by the user. Furthermore, let Du denote

the set of all pairs (i, j) compared by user u. We define the loss function for each user u as

Lu (s, γu;Y u) = − 1

ku

∑
(i,j)∈Du

log Pr(Y u
ij = 1|si, sj , γu)

= − 1

ku

∑
(i,j)∈Du

logF (γu(si − sj)) ,
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where ku = |Du| is the number of comparisons by user u. Then, the total loss function for m users is

L (s,γ;Y ) =
1

m

m∑
u=1

Lu (s, γu;Y u) , (4.1)

where γ = (γ1, . . . , γm)> and Y = (Y 1, . . . ,Y m). We denote the unknown true score vector as

s∗ and the true accuracy vector as γ∗. Given observation Y , our goal is to recover s∗ and γ∗ via

minimizing the loss function in (4.1). To ensure the identifiability of s∗, we follow Negahban et al.

(2017) to assume that 1>s∗ =
∑n

i=1 s
∗
i = 0, where 1 ∈ Rn is the all one vector. The following

proposition shows that the loss function L is convex in s and in γ separately if the PDF of εi is

log-concave.

Proposition 4.1. If the distribution of the noise εi in (3.3) is log-concave, then the loss function

L(s,γ;Y ) given in (4.1) is convex in s, and in γ respectively.

The log-concave family includes many well-known distributions such as normal, exponential,

Gumbel, gamma and beta distributions. In particular, the noise distributions used in BTL and

Thurstone’s Case V (TCV) models fall into this category. Although the loss function L is non convex

with respect to the joint variable (s,γ), Proposition 4.1 inspires us to perform alternating gradient

descent (Jain et al., 2013) on s and γ to minimize the loss function. As is shown in Algorithm 1,

we alternating perform gradient descent update on s (or γ) while fixing γ (or s) at each iteration.

In addition to the alternating gradient descent steps, we shift s(t) in Line 4 of Algorithm 1 such

that 1>s(t) = 0 to avoid the aforementioned identifiability issue of s∗. After T iterations, given the

output s(T ), the estimated ranking of the items is obtained by sorting {s(T )1 , . . . , s
(T )
n } in descending

order (item with the highest score in s(T ) is the most preferred).

Algorithm 1 HTMs with Alternating Gradient Descent

1: input: learning rates η1, η2 > 0, initial points s(0) and γ(0) satisfying ‖s(0)−s∗‖22+‖γ(0)−γ∗‖22 ≤
r, number of iteration T , comparison results by users Y .

2: for t = 0, . . . , T − 1 do
3: s̃(t+1) = s(t) − η1∇sL

(
s(t),γ(t);Y

)
4: s(t+1) = (I− 11>/n)s̃(t+1)

5: γ(t+1) = γ(t) − η2∇γL
(
s(t),γ(t);Y

)
6: end for
7: output: s(T ), γ(T ).

As we will show in the next section, the convergence of Algorithm 1 to the optimal points s∗ and

γ∗ is guaranteed if an initialization such that s(0) and γ(0) are close to the unknown parameters

is available. In practice, to initialize s, we can use the solution provided by the rank centrality

algorithm (Negahban et al., 2012) or start from uniform or random scores. In this paper, we initialize

s and γ, as s(0) = 1 and γ(0) = 1. We note that multiplying s or γ by a negative constant does not

alter the loss but reverses the estimated ranking. Implicit in our initialization is the assumption

that the majority of the users are trustworthy and thus have positive γ. When data is sparse, there
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may be subsets of items that are not compared directly or indirectly. In such cases, regularization

may be necessary, which is discussed in further detail in Section 6.

5 Theoretical Analysis of the Proposed Algorithm

In this section, we provide the convergence analysis of Algorithm 1 for the general loss function

defined in (4.1). Without loss of generality, we assume the number of observations ku = k for all users

u ∈ [m] throughout our analysis. Since there’s no specific requirement on the noise distributions in

the general HTM model, to derive the linear convergence rate, we need the following conditions on

the loss function L, which are standard in the literature of alternating minimization (Jain et al.,

2013; Zhu et al., 2017; Xu et al., 2017b,a; Zhang et al., 2018; Chen et al., 2018). Note that all these

conditions can actually be verified once we specify the noise distribution in specific models. We

provide the justifications of these conditions in the appendix.

Condition 5.1 (Strong Convexity). L is µ1-strongly convex with respect to s ∈ Rn and µ2-strongly

convex with respect to γ ∈ Rm. In particular, there is a constant µ1 > 0 such that for all s, s′ ∈ Rn,

L(s,γ) ≥ L(s′,γ) + 〈∇sL(s′,γ), s− s′〉+ µ1/2‖s− s′‖22.

And there is a constant µ2 > 0 such that for all γ,γ ′ ∈ Rm, it holds

L(s,γ) ≥ L(s,γ ′) + 〈∇γL(s,γ ′),γ − γ ′〉+ µ2/2‖γ − γ ′‖22.

Condition 5.2 (Smoothness). L is L1-smooth with respect to s ∈ Rn and L2-smooth with respect

to γ ∈ Rm. In particular, there is a constant L1 > 0 such that for all s, s′ ∈ Rn, it holds

L(s,γ) ≤ L(s′,γ) + 〈∇sL(s′,γ), s− s′〉+ L1/2‖s− s′‖22.

And there is a constant L2 > 0 such that for all γ,γ ′ ∈ Rm, it holds

L(s,γ) ≤ L(s,γ ′) + 〈∇γL(s,γ ′),γ − γ ′〉+ L2/2‖γ − γ ′‖22.

The next condition is a variant of the usual Lipschitz gradient condition. It is worth noting that

the gradient is derived with respect to s (or γ), while the upper bound is the difference of γ (or

s). This condition is commonly imposed and verified in the analysis of expectation-maximization

algorithms (Wang et al., 2015) and alternating minimization (Jain et al., 2013).

Condition 5.3 (First-order Stability). There are constants M1,M2 > 0 such that L satisfies

‖∇sL(s,γ)−∇sL(s,γ ′)‖2 ≤M1‖γ − γ ′‖2,
‖∇γL(s,γ)−∇γL(s′,γ)‖2 ≤M2‖s− s′‖2,

for all s, s′ ∈ Rn and γ,γ ′ ∈ Rm.

Note that the loss function in (4.1) is defined based on finitely many samples of observations.

The next condition shows how close the gradient of the sample loss function is to the expected loss

function.
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Condition 5.4. Denote L̄ as the expected loss, where the expectation of L is taken over the random

choice of the comparison pairs and the observation Y . With probability at least 1− 1/n, we have

‖∇sL(s,γ)−∇sL̄(s,γ)‖2 ≤ ε1(k, n),

‖∇γL(s,γ)−∇γL̄(s,γ)‖2 ≤ ε2(k, n),

where n is the number of items and k is the number of observations for each user. In addition,

ε1(k, n) and ε2(k, n) will go to zero when sample size k goes to infinity.

ε1(k, n) and ε2(k, n) in Condition 5.4 are also called the statistical errors (Wang et al., 2015; Xu

et al., 2017a) between the sample version gradient and the expected (population) gradient.

Now we deliver our main theory on the linear convergence of Algorithm 1 for general HTM

models. Full proofs can be found in the appendix.

Theorem 5.5. For a general HTM model, assume Conditions 5.1, 5.2, 5.3 and 5.4 hold and that

M1,M2 ≤
√
µ1µ2/4. Denote that ‖s∗‖∞ = smax and ‖γ∗‖∞ = γmax. Suppose the initialization

guarantees that ‖s(0) − s∗‖22 + ‖γ(0) − γ∗‖22 ≤ r2,where r = min{µ1/(2M1), µ2/(2M2)}. If we

set the step size η1 = η2 = µ/(12(L2 + M2)), where L = max{L1, L2}, µ = min{µ1, µ2} and

M = max{M1,M2}, then the output of Algorithm 1 satisfies

‖s(T ) − s∗‖22 + ‖γ(T ) − γ∗‖22 ≤ r2ρT +
ε1(k, n)2 + ε2(k, n)2

µ2

with probability at least 1− 1/n, where the contraction parameter is ρ = 1− µ2/(48(L2 +M2)).

Remark 5.6. Theorem 5.5 establishes the linear convergence of Algorithm 1 when the initial points

are close to the unknown parameters. The first term on the right-hand side is called the optimization

error, which goes to zero as iteration number t goes to infinity. The second term is called the

statistical error of the HTM model, which goes to zero when sample size mk goes to infinity. Hence,

the estimation error of our proposed algorithm converges to the order of O((ε1(k, n)2 + ε2(k, n)2)/µ2)

after t = O(log((ε1(k, n)2 + ε2(k, n)2)/µ2r2)/ log ρ) iterations.

Note that the results in Theorem 5.5 hold for any general HTM models with Algorithm 1 as a

solver. In particular, if we run the alternating gradient descent algorithm on the HBTL and HTCV

models proposed in Section 3, we will also obtain linear convergence rate to the true parameters

up to a statistical error in the order of O(n2 log(mn2)/(mk)), which matches the state-of-the-art

statistical error for such models (Negahban et al., 2017). We provide the implications of Theorem

5.5 on specific models in the supplementary material.

6 Experiments

In this section, we present experimental results to show the performance of the proposed algorithm

on heterogeneous populations of users. The experiments are conducted on both synthetic and real

data with both benign users and adversarial users. We use the Kendall’s tau correlation Kendall

(1948) between the estimated and true rankings to measure the similarity between rankings, which
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is defined as τ = 2(c−d)
n(n−1) , where c and d are the number of pairs on which the two rankings agree and

disagree, respectively. Pairs that are tied in at least one of the rankings are not counted in c or d.

Baseline methods: In Gumbel noise setting, we compare Algorithm 1 based on our proposed

HBTL model with (i) the BTL model that can be optimized through iterative maximum-likelihood

methods (Negahban et al., 2012) or spectral methods such as Rank Centrality (Negahban et al.,

2017); and (ii) the CrowdBT algorithm (Chen et al., 2013), which is a variation of BTL that allows

users with different levels of accuracy. In the normal noise setting, we compare Algorithm 1 based on

our proposed HTCV model with TCV model. We also implemented a TCV equivalent of CrowdBT

and report its performance as CrowdTCV.

6.1 Experimental Results on Synthetic Data

We set number of items n = 20, number of users m = 9 and set the ground truth score vector s to

be uniformly distributed in [0, 1]. The m users are divided into groups A and B, consisting of 3 and

6 users respectively. These two groups of users generate heterogeneous data in the sense that users

in group A are more accurate than those in group B. We vary γA in the range of {2.5, 5, 10} and

γB in the range of {0.25, 1, 2.5}, which leads to in total 9 configurations of data generation. For

each configuration, we conduct the experiment under the following two settings:

(1) Benign: γ1, . . . , γ3 = γA (Group A); γ4, . . . , γ9 = γB (Group B).

(2) Adversarial: γ1 = −γA, γ2, γ3 = γA (Group A); γ4, γ5 = −γB, γ6, . . . , γ9 = γB (Group B).

We also test on various densities of compared pairs, which effectively controls the sample size. In

particular, we choose 4 sets of α, which denote the portion of all possible pairs that are compared.

The larger the value, the more pairs are compared by each user. The simulation process is as

follows: we first generate n(n− 1) ordered pairs of items, where n is the number of items. This is

equivalent to comparing each unique pair of items twice. Then for each pair of items, response from

every annotator had a probability of α to be recorded and used for training the model. And α is

chosen from {0.2, 0.4, 0.6, 0.8} to make up for four runs. Each experiment is repeated 100 times

with different random seeds.

Under setting (1), we plot the estimation error of Algorithm 1 v.s. number of iterations for HBTL

and HTCV model in Figures 2(a)-2(b) and 2(c)-2(d) respectively. In all settings, our algorithm

enjoys a linear convergence rate to the true parameters up to statistical errors, which is well aligned

with the theoretical results in Theorem 5.5.
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Figure 2: Evolution of estimation errors vs. number of iterations t for HBTL model. (c)-(d):
Evolution of estimation errors vs. number of iterations t for HTCV model.
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When there is no adversarial users in the system, the ranking results for Gumbel noises under

different configurations of γA and γB are shown in Table 1 and the ranking results for normal

noises under different configurations of γA and γB are shown in Table 2. In both tables, each

cell presents the Kendall’s tau correlation between the aggregated ranking and the ground truth,

averaged over 100 trials. For each experimental setting, we use the bold text to denote the method

which achieved highest performance. We also underline the highest score whenever there is a tie. It

can be observed that in almost all cases, HBTL provides much more accurate rankings than BTL

and HTCV significantly outperforms TCV as well. In particular, the larger the difference between

γA and γB is, the more significant the improvement is. The only exception is when γA = γB = 2.5,

in which case the data is not heterogeneous and our HTM model has no advantage. Nevertheless,

our method still achieve comparable performance as BTL for non-heterogeneous data. It can also be

observed that HBTL generally outperforms CrowdBT. But the advantage is not large, as CrowdBT

also includes the different accuracy levels of different users. Importantly, however, as discussed in

Section 3.1, CrowdBT is not compatible with the additive noise in Thurstonian models and cannot

be extended in a natural way to ranked data other than pairwise comparison. In addition, unlike

CrowdBT, our method enjoys strong theoretical guarantees while maintaining a good performance.

Tables 1 and 2 also illustrate an important fact: If there are users with high accuracy, the presence

of low quality data does not significantly impact the performance of Algorithm 1.

When there are a portion of adversarial users as stated in setting (2), we consider adversarial

users whose accuracy level γu may take negative values as discussed above. The results for Gumbel

and normal noises under setting (2) are shown in Table 3 and Table 4 respectively. It can be seen

that in this case, the difference between the methods is even more pronounced.

6.2 Experimental Results on Real-World Data

We evaluate our method on two real-world datasets. The first one named “Reading Level” (Chen

et al., 2013) contains English text excerpts whose reading difficulty level is compared by workers.

624 workers annotated 490 excerpts which resulting in a total of 12, 728 pairwise comparisons.

We also used Mechanical Turk to collect another dataset named “Country Population”. In this

crowdsourcing task, we asked workers to compare the population between two countries and pick

the one which has more population. Since the population ranking of countries has a universal

consensus, which can be obtained by looking up demographic data, it is a better choice than those

movie rankings which subjects to personal preferences. There were 15 countries as shown in Table

5 which made up to 105 pairwise comparisons. The values were collected according to the latest

demography statistics on Wikipedia for each country as of March 2019. Each user was asked 16

pairs randomly selected from all those 105 pairs. A total of 199 workers provided response to this

task through Mechanical Turk. These two datasets were both collected in online crowdsourcing

environments so that we can expect varying worker accuracy where effectiveness of our approach

can be demonstrated.

In real-world datasets, it may happen that two items from two subsets are never compared with

each other, directly or indirectly. In such cases, the ranking will not be unique. Furthermore, if
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Table 1: Kendall’s tau correlation for different method under Gumbel noise. Group A users all have
the accuracy level γA and Group B users all have the accuracy level γB. α represents the portion
of all possible pairwise comparisons each annotator labeled in the simulation. The bold number
highlights the highest performance and the underlined number indicates a tie.

Observ.
Ratio γB Methods

γA

2.5 5 10

α = 0.8

0.25
BTL 0.767±0.055 0.836±0.043 0.879±0.032

CrowdBT 0.847±0.042 0.928±0.023 0.962±0.016
HBTL 0.850±0.041 0.930±0.024 0.964±0.015

1.0
BTL 0.863±0.036 0.896±0.028 0.923±0.026

CrowdBT 0.875±0.033 0.930±0.024 0.967±0.018
HBTL 0.875±0.033 0.930±0.024 0.969±0.017

2.5
BTL 0.933±0.022 0.946±0.019 0.959±0.018

CrowdBT 0.931±0.024 0.947±0.019 0.967±0.017
HBTL 0.931±0.025 0.948±0.021 0.972±0.015

α = 0.6

0.25
BTL 0.743±0.064 0.814±0.048 0.853±0.037

CrowdBT 0.823±0.050 0.909±0.034 0.954±0.018
HBTL 0.824±0.051 0.908±0.033 0.955±0.018

1.0
BTL 0.837±0.036 0.872±0.033 0.903±0.033

CrowdBT 0.853±0.035 0.911±0.031 0.955±0.018
HBTL 0.851±0.033 0.913±0.028 0.958±0.017

2.5
BTL 0.913±0.032 0.931±0.024 0.948±0.021

CrowdBT 0.910±0.028 0.935±0.020 0.961±0.016
HBTL 0.912±0.029 0.936±0.022 0.967±0.017

α = 0.4

0.25
BTL 0.671±0.062 0.761±0.053 0.812±0.048

CrowdBT 0.764±0.065 0.872±0.037 0.933±0.024
HBTL 0.769±0.061 0.873±0.034 0.934±0.022

1.0
BTL 0.791±0.051 0.844±0.043 0.866±0.035

CrowdBT 0.798±0.050 0.889±0.029 0.934±0.027
HBTL 0.806±0.051 0.891±0.031 0.936±0.026

2.5
BTL 0.882±0.034 0.910±0.030 0.919±0.027

CrowdBT 0.879±0.034 0.912±0.026 0.943±0.022
HBTL 0.880±0.032 0.916±0.028 0.945±0.020

α = 0.2

0.25
BTL 0.575±0.095 0.663±0.078 0.712±0.069

CrowdBT 0.644±0.094 0.798±0.055 0.884±0.035
HBTL 0.665±0.090 0.805±0.051 0.882±0.034

1.0
BTL 0.708±0.073 0.768±0.057 0.804±0.039

CrowdBT 0.696±0.081 0.813±0.052 0.876±0.034
HBTL 0.702±0.079 0.819±0.052 0.882±0.034

2.5
BTL 0.820±0.044 0.861±0.043 0.883±0.033

CrowdBT 0.803±0.048 0.857±0.037 0.898±0.030
HBTL 0.807±0.049 0.861±0.038 0.904±0.029
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Table 2: Kendall’s tau correlation for different methods under noise from the normal distribution.
Group A users all have the accuracy level γA and Group B users all have the accuracy level γB. α
represents the portion of all possible pairwise comparisons each annotator labeled in the simulation.
The bold number highlights the highest performance and the underlined number indicates a tie.

Observ.
Ratio γB Methods

γA

2.5 5 10

α = 0.8

0.25
TCV 0.811±0.048 0.860±0.040 0.885±0.036

CrowdTCV 0.881±0.032 0.943±0.021 0.971±0.014
HTCV 0.882±0.030 0.943±0.021 0.971±0.015

1.0
TCV 0.885±0.036 0.910±0.027 0.925±0.029

CrowdTCV 0.897±0.030 0.944±0.020 0.973±0.015
HTCV 0.897±0.033 0.944±0.020 0.975±0.013

2.5
TCV 0.945±0.021 0.956±0.018 0.965±0.018

CrowdTCV 0.945±0.021 0.954±0.019 0.976±0.014
HTCV 0.944±0.021 0.959±0.017 0.981±0.014

α = 0.6

0.25
TCV 0.763±0.059 0.830±0.043 0.850±0.041

CrowdTCV 0.845±0.038 0.926±0.023 0.961±0.020
HTCV 0.846±0.040 0.925±0.025 0.961±0.020

1.0
TCV 0.862±0.038 0.892±0.034 0.912±0.025

CrowdTCV 0.870±0.035 0.930±0.028 0.962±0.019
HTCV 0.875±0.033 0.932±0.027 0.963±0.018

2.5
TCV 0.927±0.027 0.943±0.021 0.955±0.019

CrowdTCV 0.925±0.027 0.946±0.026 0.968±0.015
HTCV 0.925±0.027 0.952±0.022 0.974±0.013

α = 0.4

0.25
TCV 0.691±0.073 0.790±0.047 0.809±0.048

CrowdTCV 0.804±0.050 0.901±0.028 0.946±0.022
HTCV 0.808±0.049 0.904±0.028 0.945±0.022

1.0
TCV 0.821±0.047 0.859±0.036 0.875±0.036

CrowdTCV 0.832±0.044 0.900±0.035 0.946±0.020
HTCV 0.836±0.043 0.904±0.032 0.947±0.020

2.5
TCV 0.901±0.027 0.921±0.029 0.935±0.026

CrowdTCV 0.895±0.031 0.923±0.028 0.950±0.019
HTCV 0.895±0.030 0.926±0.025 0.957±0.018

α = 0.2

0.25
TCV 0.599±0.088 0.688±0.077 0.738±0.060

CrowdTCV 0.689±0.080 0.826±0.046 0.899±0.031
HTCV 0.693±0.082 0.828±0.049 0.898±0.034

1.0
TCV 0.733±0.070 0.791±0.055 0.815±0.041

CrowdTCV 0.729±0.074 0.836±0.043 0.904±0.033
HTCV 0.740±0.072 0.841±0.038 0.901±0.031

2.5
TCV 0.856±0.041 0.878±0.036 0.888±0.032

CrowdTCV 0.844±0.048 0.873±0.035 0.905±0.027
HTCV 0.848±0.041 0.881±0.036 0.913±0.026
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Table 3: Kendall’s tau correlation for different methods under noise from the Gumbel distribution
when a third of the users are adversarial. The bold number highlights the highest performance and
the underlined number indicates a tie.

Observ.
Ratio γB Methods

γA

2.5 5 10

α = 0.8

0.25
BTL 0.443±0.107 0.569±0.096 0.614±0.085

CrowdBT 0.852±0.044 0.925±0.023 0.967±0.017
HBTL 0.852±0.045 0.926±0.023 0.966±0.017

1.0
BTL 0.575±0.089 0.663±0.071 0.710±0.074

CrowdBT 0.873±0.037 0.931±0.023 0.967±0.014
HBTL 0.875±0.037 0.932±0.024 0.966±0.017

2.5
BTL 0.725±0.057 0.780±0.046 0.798±0.047

CrowdBT 0.931±0.025 0.948±0.019 0.966±0.016
HBTL 0.931±0.025 0.951±0.019 0.973±0.015

α = 0.6

0.25
BTL 0.384±0.122 0.491±0.107 0.557±0.095

CrowdBT 0.822±0.046 0.908±0.030 0.953±0.019
HBTL 0.824±0.044 0.910±0.028 0.954±0.018

1.0
BTL 0.546±0.097 0.627±0.078 0.670±0.080

CrowdBT 0.852±0.037 0.911±0.029 0.954±0.018
HBTL 0.854±0.037 0.914±0.028 0.956±0.019

2.5
BTL 0.684±0.078 0.736±0.064 0.755±0.062

CrowdBT 0.910±0.028 0.934±0.025 0.960±0.016
HBTL 0.912±0.029 0.936±0.024 0.965±0.017

α = 0.4

0.25
BTL 0.323±0.130 0.405±0.132 0.485±0.109

CrowdBT 0.742±0.169 0.877±0.033 0.934±0.025
HBTL 0.766±0.059 0.877±0.035 0.933±0.024

1.0
BTL 0.448±0.118 0.544±0.096 0.583±0.094

CrowdBT 0.810±0.044 0.886±0.031 0.934±0.026
HBTL 0.819±0.045 0.891±0.031 0.934±0.029

2.5
BTL 0.627±0.087 0.660±0.075 0.698±0.063

CrowdBT 0.879±0.034 0.913±0.027 0.939±0.023
HBTL 0.880±0.032 0.914±0.029 0.948±0.022

α = 0.2

0.25
BTL 0.246±0.145 0.305±0.151 0.361±0.143

CrowdBT 0.613±0.235 0.712±0.356 0.848±0.256
HBTL 0.614±0.263 0.709±0.380 0.848±0.249

1.0
BTL 0.336±0.154 0.407±0.127 0.452±0.132

CrowdBT 0.644±0.282 0.795±0.176 0.878±0.038
HBTL 0.650±0.281 0.807±0.172 0.888±0.040

2.5
BTL 0.498±0.106 0.548±0.103 0.571±0.098

CrowdBT 0.803±0.049 0.858±0.039 0.897±0.032
HBTL 0.807±0.049 0.865±0.039 0.900±0.029
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Table 4: Kendall tau correlation for different methods under noise from the normal distribution
when a third of the users are adversarial. The bold number highlights the highest performance and
the underlined number indicates a tie.

Observ.
Ratio γB Methods

γA

2.5 5 10

α = 0.8

0.25
TCV 0.471±0.105 0.590±0.095 0.640±0.075

CrowdTCV 0.882±0.034 0.938±0.023 0.972±0.017
HTCV 0.882±0.033 0.937±0.023 0.973±0.016

1.0
TCV 0.642±0.083 0.694±0.068 0.722±0.064

CrowdTCV 0.893±0.030 0.945±0.020 0.973±0.016
HTCV 0.895±0.031 0.947±0.019 0.975±0.017

2.5
TCV 0.772±0.055 0.804±0.045 0.821±0.050

CrowdTCV 0.945±0.021 0.956±0.019 0.978±0.014
HTCV 0.944±0.021 0.960±0.019 0.982±0.013

α = 0.6

0.25
TCV 0.416±0.129 0.527±0.107 0.552±0.099

CrowdTCV 0.847±0.039 0.924±0.025 0.960±0.020
HTCV 0.847±0.039 0.925±0.023 0.960±0.020

1.0
TCV 0.569±0.086 0.648±0.066 0.686±0.080

CrowdTCV 0.866±0.036 0.930±0.024 0.966±0.018
HTCV 0.870±0.036 0.932±0.025 0.966±0.018

2.5
TCV 0.718±0.060 0.762±0.045 0.786±0.055

CrowdTCV 0.926±0.027 0.949±0.023 0.969±0.014
HTCV 0.925±0.027 0.952±0.020 0.972±0.014

α = 0.4

0.25
TCV 0.359±0.119 0.472±0.116 0.514±0.103

CrowdTCV 0.797±0.053 0.893±0.034 0.942±0.022
HTCV 0.799±0.048 0.896±0.031 0.938±0.022

1.0
TCV 0.487±0.116 0.577±0.088 0.587±0.088

CrowdTCV 0.842±0.049 0.898±0.029 0.945±0.021
HTCV 0.843±0.046 0.902±0.027 0.944±0.022

2.5
TCV 0.648±0.073 0.704±0.071 0.718±0.066

CrowdTCV 0.895±0.031 0.925±0.031 0.951±0.021
HTCV 0.895±0.030 0.929±0.028 0.957±0.018

α = 0.2

0.25
TCV 0.259±0.147 0.349±0.135 0.382±0.133

CrowdTCV 0.600±0.340 0.826±0.044 0.895±0.038
HTCV 0.636±0.282 0.828±0.044 0.893±0.036

1.0
TCV 0.397±0.119 0.436±0.115 0.469±0.100

CrowdTCV 0.721±0.065 0.834±0.043 0.901±0.033
HTCV 0.736±0.066 0.832±0.046 0.905±0.032

2.5
TCV 0.518±0.102 0.577±0.098 0.600±0.077

CrowdTCV 0.843±0.049 0.873±0.037 0.908±0.030
HTCV 0.848±0.041 0.880±0.036 0.917±0.028
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data is sparse, the estimates may suffer from overfitting. To address these issues, regularization is

often used. While this can be done in a variety of ways, for the sake of comparison with CrowdBT,

we use virtual node regularization (Chen et al., 2013). Specifically, it is assumed that there is a

virtual item of utility s0 = 0 which is compared to all other items by a virtual user. This leads to

the loss function L+ λ0L0, where L0 = −
∑

i∈[n] logF (s0 − si)−
∑

i∈[n] logF (si − s0) and λ0 ≥ 0

is a tuning parameter.

We evaluate the performance of the methods for λ0 = 0, 1, 5, 10. For different values of λ0,

HBTL performs best more often than any other method and, in particular, it performs best for

λ0 = 0. Table 6 reports the best performance of each method across different regularization values

for the two real-world data experiment. It can be observed that HBTL and HTCV outperform their

counterparts, CrowdBT and CrowdTCV, as well as the uniform models, BTL and TCV.

Table 5: Ground truth for “Country Population” dataset.

Country Population (million)

China 1410
India 1340

United States 324
Indonesia 264

Brazil 209
Pakistan 197
Nigeria 191

Bangladesh 165
Russia 144
Mexico 129
Japan 127

Ethiopia 105
Philippines 104.9

Egypt 97.6
Vietnam 95.5

Table 6: Performance of ranking algorithms on real-world dataset. The bold number highlights the
highest performance.

Dataset BTL TCV CrowdBT CrowdTCV HBTL HTCV

Reading Level 0.3472 0.3452 0.3737 0.3672 0.3763 0.3729
Country Population 0.7524 0.7524 0.7714 0.7714 0.7905 0.7714
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Table 7: Performance of ranking algorithms for the “Reading Level” dataset with different regular-
ization parameters. The bold number highlights the highest performance.

λ0 = 0 λ0 = 1 λ0 = 5 λ0 = 10

BTL 0.3299 0.3433 0.3472 0.3402
TCV 0.3294 0.3423 0.3452 0.3375

CrowdBT 0.3490 0.3737 0.3648 0.3535
CrowdTCV 0.3512 0.3672 0.3511 0.3388

HBTL 0.3608 0.3660 0.3719 0.3763
HTCV 0.3578 0.3696 0.3729 0.3680

Table 8: Performance of ranking algorithms for the “Country Population” dataset with different
regularization parameters. The bold number highlights the highest performance.

λ0 = 0 λ0 = 1 λ0 = 5 λ0 = 10

BTL 0.7524 0.7524 0.7524 0.7524
TCV 0.7524 0.7524 0.7524 0.7524

CrowdBT 0.7714 0.7714 0.7714 0.7524
CrowdTCV 0.7714 0.7714 0.7714 0.7524

HBTL 0.7905 0.7905 0.7524 0.7524
HTCV 0.7714 0.7714 0.7524 0.7524

6.3 Analysis on regularization effects

Detailed result with various regularization settings can be found in Table 7 and Table 8. The

reported values are Kendall’s tau correlation. It shows that without regularization our method

outperforms other methods. And with virtual node trick, it shows relative amount of improvement

in the final ranking result, yet not essential. However, this method needs to tune another parameter

λ0. If no gold/ground-truth comparison is given, there will be no validation standard to tune

this parameter. Furthermore, the performance of the proposed methods is less dependent on the

regularization parameter, which facilitates their application to real data. It is also interesting to see

that our method is less prone to be affected by the regularization parameter.

7 Conclusions and Future Work

In this paper, we propose the heterogeneous Thurstone model for pairwise comparisons and partial

rankings when data is produced by a population of users with diverse levels of expertise, as is often

the case in real-world applications. The proposed model maintains the generality of Thurstone’s

framework and thus also extends common models such as Bradley-Terry-Luce, Thurstone’s Case V,
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and Plackett-Luce. We also developed an alternating gradient descent algorithm to estimate the

score vector and expertise level vector simultaneously. We prove the local linear convergence of our

algorithm for general HTM models satisfying mild conditions. We also prove the convergence of

our algorithm for the two most common noise distributions, which leads to the HBTL and HTCV

models. Experiments on both synthetic and real data show that our proposed model and algorithm

generally outperforms the competing methods, sometimes by a significant margin.

There are several interesting future directions that could be explored. First, it would be of

great importance to devise a provable initialization algorithm since our current analysis relies on

certain initialization methods that are guaranteed to be close to the true values. Another direction

is extending the algorithm and analysis to the case of partial ranking such as the Plackett-Luce

model. Finally, lower bounds on the estimation error would enable better evaluating algorithms for

rank aggregation in heterogeneous Thurstone models.

A Implications of Specific Models

Our Theorem 5.5 is for general HTM models that satisfy Conditions 5.1, 5.2, 5.3 and 5.4. In this

subsection, we will show that the linear convergence rate of Algorithm 1 can also be attained for

specific models without assuming theses conditions when the random noise εi in (3.3) follows the

Gumbel distribution and the Gaussian distribution respectively.

A.1 Heterogeneous BTL model

We first consider the model with Gumbel noise. Specifically, {εi}i=1,...,n follow the Gumbel distribu-

tion with mean 0 and scale parameter 1. Then we obtain the HBTL model defined in (3.6). The

following corollary states the convergence result of Algorithm 1 for HBTL models.

Corollary A.1. Consider the HBTL model in (3.6) and assume the sample size k ≥ n2 log(mn)/m2.

Let ‖s∗‖∞ = smax, maxu |γ∗u| = γmax and minu |γ∗u| = γmin. Assume γmaxsmax = C0 for a constant

C0 ≥ 1/2 and

smax ≤
√
m‖s∗‖2
n

· γmine
5C0

32
√

2γmax(1 + e5C0)2
.

Suppose the initialization points s(0) and γ(0) satisfy that ‖s(0) − s∗‖22 + ‖γ(0) − γ∗‖22 ≤ r2, where

r = min{‖s∗‖2/2, γmin/2, smax,
√
γmaxsmax}. If we set the step size small enough such that

η1 = η2 <
mne5C0Γ2

1

6(1 + e5C0)2(mΓ4
2 + 32n2C2

0 )
,

where Γ1 = min{γmin/2, ‖s∗‖2} and Γ2 = max{2γmax, 2‖s∗‖2}, then the output of Algorithm 1

satisfies

‖s(T ) − s∗‖22 + ‖γ(T ) − γ∗‖22 ≤ r2ρT +
Λn2 log(4mn2)

mk
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with probability at least 1− 1/n, where ρ = 1− η(µ− 6η(Γ4
2/n

2 + 32C2
0/m))/2 and Λ is a constant

which only which depends on C0, γmax and Γ1.

Remark A.2. According to Corollary A.1, when the initial points s(0) and γ(0) lie in a small

neighborhood of the unknown parameter s∗,γ∗, the proposed algorithm converges linearly fast

to a term in the order of O(n2 log(mn2)/(mk)), which is called the statistical error of the HBTL

model. Note that when m = 1, the statistical error reduces to O(n2 log(n)/k), which matches the

state-of-the-art estimation error bound for single user BTL model (Negahban et al., 2017). In

addition, we assumed that ‖s∗‖∞ . O(
√
m/n‖s∗‖2) in order to derive the linear convergence of

Algorithm 1. When m is in the same order of n, the requirement reduces to ‖s∗‖∞ . O(‖s∗‖2/
√
n).

This assumption is similar to the spikiness assumption in Agarwal et al. (2012); Negahban and

Wainwright (2012), which ensures that there are not too many items that have zero or nearly zero

scores.

A.2 Heterogeneous Thurstone Case V model

Now we consider the HTM model with Gaussian noise. Assume that {εi}i=1,...,n are i.i.d. from

N(0, 1). Then the general HTM model becomes HTCV model defined in (3.7), which generalizes

the single user TCV model (Thurstone, 1927). Before we present the convergence results of

Algorithm 1 for this model, we first remark some notations of the normal distribution to simplify

the presentation. In particular, let Φ(x) be the CDF of standard normal distribution. We define

H(x) = (Φ′(x)2−Φ(x)Φ′′(x))/Φ(x)2, which can be verified to be a monotonically decreasing function.

Corollary A.3. Consider the HTCV model in (3.7) and assume the sample size k ≥ n2 log(mn)/m2.

smax, γmax, γmin and C0 are defined the same as in Corollary A.1. Assume smax satisfies

smax ≤
√
m‖s∗‖2
n

· γminH(5C0)

30γmax(Φ(−5C0)−1 +H(−5C0))
.

Suppose the initialization points s(0) and γ(0) satisfy that ‖s(0) − s∗‖22 + ‖γ(0) − γ∗‖22 ≤ r2, where

r = min{‖s∗‖2/2, γmin/2, smax,
√
γmaxsmax}. If we set the step size

η1 = η2 <
mnΓ2

1H(5C0)

6(mΓ4
2 + 50n2C2

0 )H(−5C0)2
,

where Γ1 = min{γmin/2, ‖s∗‖2} and Γ2 = max{2γmax, 2‖s∗‖2}, then the output of Algorithm 1

satisfies

‖s(T ) − s∗‖22 + ‖γ(T ) − γ∗‖22 ≤ r2ρT +
Λ′n2 log(4mn2)

mk

with probability at least 1− 1/n, where ρ = 1− η(µ− 6η(Γ4
2/n

2 + 32C2
0/m))/2 and Λ′ is a constant

which only depends on C0, γmax and Γ1.

Remark A.4. Corollary A.3 suggests that under suitable initialization, Algorithm 1 enjoys a linear

convergence rate when the random noise follows the standard normal distribution. The statistical

error for the HTCV model is in the order of O(n2 log(mn2)/(mk)). We again need the ‘spikiness’
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assumption on the unknown score vector s∗ in order to ensure the algorithm to find the true

parameter. The results are almost the same as those of the HBTL model presented in Corollary

A.1 except that the constants in the HTCV model depends on the normal CDF Φ and its first and

second derivatives.

B Proof of the Generic Model

In this section, we provide the proof of Theorem 5.5 for general heterogeneous Thurstone models.

Proof of Theorem 5.5. According to the update in Algorithm 1 and the fact that 1>s∗ = 0, we have

‖s(t+1) − s∗‖22 = ‖(I− 11>/n)(s̃(t+1) − s∗)‖22
≤ ‖s̃(t+1) − s∗‖22
= ‖s(t) − s∗‖22 + η21‖∇sL(s(t),γ(t))‖22 − 2η1〈∇sL(s(t),γ(t)), s(t) − s∗〉,

where the inequality comes from the fact that ‖I− 11>/n‖2 ≤ 1. We first bound the second term

on the right hand side above

‖∇sL(s(t),γ(t))‖22 ≤ 3‖∇sL(s(t),γ(t))−∇sL(s(t),γ∗)‖22 + 3‖∇sL(s(t),γ∗)−∇sL(s∗,γ∗)‖22
+ 3‖∇sL(s∗,γ∗)−∇sL̄(s∗,γ∗)‖22

≤ 3M2
1 ‖γ(t) − γ∗‖22 + 3L2

1‖s(t) − s∗‖22 + 3ε1(k, n)2,

where the first inequality is due to ∇sL̄(s∗,γ∗) = 0 and the second inequality is due to Conditions

5.2, 5.3, and 5.4. Now we bound the inner product term. Note that

〈∇sL(s(t),γ(t)), s(t) − s∗〉

= 〈∇sL(s(t),γ(t))−∇sL(s∗,γ(t)), s(t) − s∗〉+ 〈∇sL(s∗,γ(t))−∇sL(s∗,γ∗), s(t) − s∗〉

+ 〈∇sL(s∗,γ∗)−∇sL̄(s∗,γ∗), s(t) − s∗〉.

By strong convexity (Condition 5.1) of L we have

〈∇sL(s(t),γ(t))−∇sL(s∗,γ(t)), s(t) − s∗〉 ≥ µ1‖s(t) − s∗‖22. (B.1)

Applying Young’s inequality and Condition 5.3, we obtain

|〈∇sL(s∗,γ(t))−∇sL(s∗,γ∗), s(t) − s∗〉| ≤ ‖∇sL(s∗,γ(t))−∇sL(s∗,γ∗)‖2 · ‖s(t) − s∗‖2

≤ αM2
1

2
‖γ(t) − γ∗‖22 +

1

2α
‖s(t) − s∗‖22, (B.2)

where α > 0 is an arbitrarily chosen constant. In addition, by Condition 5.4 and Young’s inequality

we have

|〈∇sL(s∗,γ∗)−∇sL̄(s∗,γ∗), s(t) − s∗〉| ≤ ‖∇sL(s∗,γ∗)−∇sL̄(s∗,γ∗)‖2 · ‖s(t) − s∗‖2
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≤ 1

2µ1
ε1(k, n)2 +

µ1
2
‖s(t) − s∗‖22. (B.3)

Combining (B.1), (B.2) and (B.3), we have

〈∇sL(s(t),γ(t)), s(t) − s∗〉 ≥ µ1α− 1

2α
‖s(t) − s∗‖22 −

αM2
1

2
‖γ(t) − γ∗‖22 −

1

2µ1
ε1(k, n)2.

Therefore, we have

‖s(t+1) − s∗‖22 ≤
(

1 + 3L2
1η

2
1 − η1

(
µ1 −

1

α

))
‖s(t) − s∗‖22 +M2

1 (3η21 + αη1)‖γ(t) − γ∗‖22

+ (3η21 + η1/µ1)ε1(k, n)2. (B.4)

Similarly, we can bound ‖γ(t+1) − γ∗‖22 as follows

‖γ(t+1) − γ∗‖22 ≤
(

1 + 3L2
2η

2
2 − η2

(
µ2 −

1

β

))
‖γ(t) − γ∗‖22 +M2

2 (3η22 + βη2)‖s(t) − s∗‖22

+ (3η22 + η2/µ2)ε2(k, n)2, (B.5)

where β > 0 are arbitrarily chosen constants. In particular, set α = µ2/(4M
2
1 ), β = µ1/(4M

2
2 ) and

η1 = η2 = η. When M1,M2 ≤
√
µ1µ2/4, we have

‖s(t+1) − s∗‖22 + ‖γ(t+1) − γ∗‖22 ≤ (1 + 3(L2
1 +M2

2 )η2 − µ1η/2)‖s(t) − s∗‖22
+ (1 + 3(L2

2 +M2
1 )η22 − µ2η/2)‖γ(t) − γ∗‖22

+ (3η2 + η/µ1)ε1(k, n)2 + (3η2 + η/µ2)ε2(k, n)2

≤ (1 + 3(L2 +M2)η2 − µη/2)(‖s(t) − s∗‖22 + ‖γ(t) − γ∗‖22)
+ (3η2 + η/µ)(ε1(k, n)2 + ε2(k, n)2), (B.6)

where L = max{L1, L2}, M = max{M1,M2} and µ = min{µ1, µ2}. Note that we have ‖s0 − s∗‖22 +

‖γ0 − γ∗‖22 ≤ r2 by some initialization process. We can prove that ‖s(t) − s∗‖22 + ‖γ(t) − γ∗‖22 ≤ r2
for all t ≥ 0 by induction. Specifically, assume it holds for t, then it suffices to ensure

(3η + 1/µ)(ε1(k, n)2 + ε2(k, n)2) ≤ r2(µ/2− 3(L2 +M2)η), (B.7)

which holds when k is sufficiently large. Choosing η to be sufficiently small, we can ensure that

1 + 3(L2 +M2)η2 − µη/2 ≤ 1. In particular, we can set η = µ/(12(L2 +M2)), which implies

‖s(t+1) − s∗‖22 + ‖γ(t+1) − γ∗‖22 ≤ ρ
(
‖s(t) − s∗‖22 + ‖γ(t) − γ∗‖22

)
+ (3η2 + η/µ)(ε1(k, n)2 + ε2(k, n)2),

with ρ = 1− µ2/(48(L2 +M2)). Therefore, we have

‖s(t) − s∗‖22 + ‖γ(t) − γ∗‖22 ≤ ρt
(
‖s0 − s∗‖22 + ‖γ0 − γ∗‖22

)
+

3η2 + η/µ

1− ρ
(ε1(k, n)2 + ε2(k, n)2)
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≤ r2ρt +
ε1(k, n)2 + ε2(k, n)2

µ2
,

which completes the proof.

C Proofs of Specific Examples

In this section, we will provide the convergence analysis of Algorithm 1 for two specific examples

with different noise distributions. In particular, we will show that Conditions 5.1 and 5.2 can be

verified under these specific distributions. Recall the log-likelihood function

L (s,γ;Y ) = − 1

mk

m∑
u=1

∑
(i,j)∈Du

logF
(
γu(si − sj);Y u

ij

)
. (C.1)

For the ease of presentation, we will omit Y in the rest of the proof and assume that the observation

set Du is parametrized by k = |Du| and vectors al,u ∈ Rn for l = 1, . . . , k, where each al,u = eil − ejl
for some pair of items (il, jl) that is compared by user u and ei is the natural basis. Then, we can

rewrite the loss function in terms of vector s as follows

L (s,γ) = − 1

mk

m∑
u=1

k∑
l=1

logF
(
γua

>
l,us;Y

u
iljl

)
. (C.2)

Denote g(x) = − logF (x) for x ∈ R. Then we can calculate the gradient of loss function L with

respect to s and γ.

∇sL(s,γ) =
1

mk

m∑
u=1

k∑
l=1

g′
(
γua

>
l,us
)
γual,u,

∇γL(s,γ) =
1

mk



∑k
l=1 g

′
(
γ1a
>
l,1s
)

a>l,1s

...∑k
l=1 g

′
(
γua

>
l,us
)

a>l,us

...

 .
(C.3)

And the Hessian matrix can be calculated as

∇2
sL(s,γ) =

1

mk

m∑
u=1

k∑
l=1

g′′
(
γua

>
l,us
)

(γu)2al,ua
>
l,u,

∇2
γL(s,γ) =

1

mk
diag



∑k
l=1 g

′′
(
γ1a
>
l,1s
)

a>l,1sa
>
l,1s

...∑k
l=1 g

′′
(
γua

>
l,us
)

a>l,usa
>
l,us

...

 ,
(C.4)
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where diag(x) is the diagonal matrix with diagonal entries given by x.

C.1 Proof of Heterogeneous BTL model

Recall the definition in (4.1). The loss function can be written as

L (s,γ) =
1

mk

m∑
u=1

k∑
l=1

g
(
γua

>
l,us;Y

u
iljl

)
, (C.5)

where g(·) is defined as

g(x;Y u
iljl

) = − log
exp(Y u

iljl
x)

1 + exp(x)
. (C.6)

Therefore, the loss function of the HBTL model can be rewritten as follows:

L (s,γ) =
1

mk

m∑
u=1

k∑
l=1

log
(

1 + exp(γua
>
l,us)

)
− Y u

iljl
γua

>
l,us. (C.7)

Recall the gradients and Hessian matrices calculated in (C.3) and (C.4). We need to calculate g′(·)
and g′′(·). In particular, we have

g′(x;Y ) =
−Y + (1− Y ) exp(x)

1 + exp(x)
, g′′(x;Y ) =

exp(x)

(1 + exp(x))2
. (C.8)

It is easy to verify that g′(x) is monotonically increasing on R. For any |x| ≤ θ, we have

−1

1 + e−θ
≤ g′(x;Y = 1) ≤ −1

1 + eθ
,

e−θ

1 + e−θ
≤ g′(x;Y = 0) ≤ eθ

1 + eθ
. (C.9)

Furthermore, g′′(x) = g′′(−x), g′′(x) is increasing on (−∞, 0] and decreasing on [0,∞). Hence, for

all |x| ≤ θ, we have

eθ/(1 + eθ)2 ≤ g′′(x) ≤ g′′(0) = 1/4. (C.10)

We can further show that the following lemmas hold, which validates Conditions 5.1, 5.2, 5.3 and

5.4 used in the convergence analysis.

The first two lemmas verify the strong convexity and smoothness of L with respect to s and γ

respectively.

Lemma C.1. Suppose the noise ε follows the Gumbel distribution and the sample size mk ≥
64(γmax + r)2/(γmin − r)2n log n. Let r ≤ min{smax,

√
γmaxsmax}, for all s, s′ ∈ Rn,γ ∈ Rm such

that ‖s− s∗‖2 ≤ r, ‖s′ − s∗‖2 ≤ r and ‖γ − γ∗‖2 ≤ r, we have

L(s,γ) ≥ L(s′,γ) + 〈∇sL(s′,γ), s− s′〉+
µ1
2
‖s− s′‖22,

L(s,γ) ≤ L(s′,γ) + 〈∇sL(s′,γ), s− s′〉+
L1

2
‖s− s′‖22,
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where the coefficients are defined as

µ1 =
(γmin − r)2e5γmaxsmax

n(1 + e5γmaxsmax)2
, L1 =

(γmax + r)2

n
.

Lemma C.2. Suppose the noise ε follows the Gumbel distribution and the sample size satisfies k ≥
18(smax+r)4n2/(m2(‖s∗‖2+r)4) log(mn). Let r ≤ min{smax,

√
γmaxsmax}, for all s ∈ Rn,γ,γ ′ ∈ Rm

such that ‖s− s∗‖2 ≤ r, s>1 = 0, and ‖γ − γ∗‖2 ≤ r, ‖γ ′ − γ∗‖2 ≤ r, we have with probability at

least 1− 1/n that

L(s,γ) ≥ L(s,γ ′) + 〈∇γL(s,γ ′),γ − γ ′〉+
µ2
2
‖γ − γ ′‖22,

L(s,γ) ≤ L(s,γ ′) + 〈∇γL(s,γ ′),γ − γ ′〉+
L2

2
‖γ − γ ′‖22,

where the coefficients are defined as

µ2 =
(‖s∗‖2 + r)2e5γmaxsmax

n(1 + e5γmaxsmax)2
, L2 =

(‖s∗‖2 + r)2

n
.

Lemma C.3. Let r ≤ min{smax,
√
γmaxsmax}, for all s ∈ Rn,γ ∈ Rm such that ‖s − s∗‖2 ≤

r, ‖s′ − s∗‖2 ≤ r and ‖γ − γ∗‖2 ≤ r, ‖γ ′ − γ∗‖2 ≤ r, we have

‖∇sL(s,γ)−∇sL(s,γ ′)‖2 ≤
√

2(1 + 2γmaxsmax)√
m

‖γ − γ ′‖2,

‖∇γL(s,γ)−∇γL(s′,γ)‖2 ≤
√

2(1 + 2γmaxsmax)√
m

‖s− s′‖2.

Lemma C.4. Let r ≤ min{smax,
√
γmaxsmax}, for all s ∈ Rn,γ ∈ Rm such that ‖s− s∗‖2 ≤ r and

‖γ − γ∗‖2 ≤ r. Denote L̄ as the expected loss which takes expectation of L over the random choice

of comparison pair. We have

‖∇sL(s,γ)−∇sL̄(s,γ)‖2 ≤ ε1(k, n) :=
2(γmax + r)

1 + e−5γmaxsmax

√
2 log(2n)

mk
,

‖∇γL(s,γ)−∇γL̄(s,γ)‖2 ≤ ε2(k, n) :=
10γmaxsmax

1 + e5γmaxsmax

√
2 log(2mn)

mk
,

holds with probability at least 1− 1/n.

Proof of Corollary A.1. Now we prove the convergence of Algorithm 1 for Gumbel noise. Our proof

will be similar to that of Theorem 5.5. In particular, we only need to verify that Conditions 5.1, 5.2,

5.3 and 5.4 hold when the noise follows a Gumbel distribution. According to Lemmas C.1 and C.2,

we know that L(s,γ) is µ1-strongly convex and L1-smooth with respect to s, and is µ2-strongly

convex and L2-smooth with respect to γ. More specifically, when mk ≥ 64n log(n), we have

µ1 ≥ (γmin − r)2e5C0/(n(1 + e5C0)2), L1 ≤ (γmax + r)2/n, (C.11)

where we use the fact that γmaxsmax = C0. In addition, note that smax ≤
√
m/n‖s∗‖s and
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‖s(t) − s∗‖ ≤ r. Hence if mk ≥ 18 log(mn), we have

µ2 ≥ (‖s∗‖2 + r)2e5C0/(n(1 + e5C0)2), L2 ≤ (‖s∗‖2 + r)2/n (C.12)

By Lemma C.3 and the assumption that C0 ≥ 1/2, we know that L satisfies the first-order stability

(Condition 5.3) with M1 = M2 = 4
√

2γmaxsmax/
√
m. Note that by assumption, we have

smax ≤
γmine

2C0

16
√

2γmax(1 + e2C0)2

√
m‖s∗‖2
n

.

This immediately implies that M = M1 = M2 ≤
√
µ1µ2/4. Therefore, by similar arguments as

in the proof of Theorem 5.5, we need to set step sizes η1 = η2 = η < µ/(6(L2 + M2)), where

µ = min{µ1, µ2}, L = max{L1, L2}. In fact, it suffices to set

η <
mne5C0Γ2

1

6(1 + e5C0)2(mΓ4
2 + 32n2C2

0 )
,

with Γ1 = min{γmin/2, ‖s∗‖2} and Γ2 = max{2γmax, 2‖s∗‖2}. We thus obtain

‖s(t) − s∗‖22 + ‖γ(t) − γ∗‖22 ≤ r2ρt +
ε1(k, n)2 + ε2(k, n)2

µ2
≤ r2ρt +

Λn2 log(4mn2)

mk
,

where ρ = 1− η(µ− 6η(Γ4
2/n

2 + 32C2
0/m))/2 and the last inequality comes from Lemma C.4 with

the constant Λ defined as follows:

Λ = max

{
200C2

0 (1 + e5C0)2

Γ4
1e

10C0
,
8(γmax + r)2(1 + e5C0)4

Γ4
1(1 + e−5C0)2

}
.

This completes the proof.

C.2 Proof of Heterogeneous Thurstone Case V model

In this subsection, we provide the analysis of our algorithm when the noise εi follows a Gaussian

distribution, which results in the Thurstone model. The log-likelihood function can be written as

L
(
s,γ;Y

)
=

1

mk

m∑
u=1

k∑
l=1

g(γua
>
l,us;Y

u
iljl

). (C.13)

with g(·) defined as g(x) = − log Φ(x) with Φ(·) be the CDF of the standard normal distribution.

Note that Pr(Y u
iljl

= 1) = Φ(γua
>
l,us) and Pr(Y u

iljl
= 0) = 1− Φ(γua

>
l,us) = Φ(−γua>l,us). Thus we

can write g(·) as g(γua
>
l,us;Y

u
iljl

) = − log Φ((2Y u
iljl
− 1)γua

>
l,us). Note that (2Y − 1)2 = 1, we have

g′(x;Y ) = −(2Y − 1)Φ′(x)

Φ(x)
, g′′(x;Y ) =

Φ′(x)2 − Φ(x)Φ′′(x)

Φ(x)2
.
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In order to bound g′(x) and g′′(x), we first calculate the derivatives of Φ(x) as follows:

Φ(x) =

∫ x

−∞

1√
2π
e−

z2

2 dz, Φ′(x) =
1√
2π
e−

x2

2 , Φ′′(x) =
−x√
2π
e−

x2

2 . (C.14)

For any θ > 0 such that |x| ≤ θ, we have

e−θ
2/2

√
2πΦ(θ)

≤ |g′(x)| ≤ 1√
2πΦ(−θ)

.

We can verify that g′′(x) is monotonically decreasing on Rd and g′′(x) > 0 also always hold. Thus

for all |x| ≤ θ, we have g′′(θ) ≤ g′′(x) ≤ g′′(−θ).

Proof of Corollary A.3. Recall the derivation of the gradient in (C.3) and the Hessian in (C.4) of

the loss function L. In order to verify Conditions 5.1, 5.2, 5.3 and 5.4, we only need the upper

and lower bounds of g′(γua
>
l,us;Y

u
iljl

) for all u = 1, . . . ,m and l = 1, . . . , k. Therefore, using exactly

the same proof techniques as in Section C.1, we can also establish strong convexity, smoothness,

first-order stability and the statistical error bound for sample loss function L when the noise ε

follows the standard normal distribution. We omit the proof since it is the same as that of the

Gumbel case. We can verify that L is µ1-strongly convex and L1-smooth with respect to s, and

is µ2-strongly convex and L2-smooth with respect to γ. The coefficient parameters are defined

as µ1 = (γmin − r)2H(5C0)/n, L1 = (γmax + r)2H(−5C0)/n, µ2 = (‖s∗‖2 + r)2H(5C0)/n and

L2 = (‖s∗‖2 + r)2H(−5C0)/n. Note that H(x) is a function defined based on the normal CDF Φ(·):

H(x) = [Φ′(x)2 − Φ(x)Φ′′(x)]/Φ(x)2,

where Φ,Φ′,Φ′′ are defined in (C.14). The loss function L also satisfies Condition 5.3 with M = M1 =

M2 = (1/Φ(−5C0)+5
√

2πH(−5C0)γmaxsmax)/
√
mπ. In order to make sure that M ≤ √µ1µ2/4, we

only need smax ≤
√
πγminH(5C0)/[4γmax(2/Φ(−5C0)) + 5

√
2πH(−5C0)] ·

√
m‖s∗‖2/n. Therefore,

by Theorem 5.5, if we choose step sizes η1 = η2 = η such that

η <
mnΓ2

1H(5C0)

6(mΓ4
2 + 50n2C2

0 )H(−5C0)2
,

with Γ2 = min{γmin/2, ‖s∗‖2}, Γ2 = max{2γmax, 2‖s∗‖2},

then we are able to obtain the following convergence result:

‖s(t) − s∗‖22 + ‖γ(t) − γ∗‖22 ≤ r2ρt +
ε1(k, n)2 + ε2(k, n)2

µ2
, (C.15)

where µ = Γ2
1H(5C0)/n, ρ = 1 − η(µ − 6η(Γ4

2/n
2 + 32C2

0/m))/2 and ε1(k, n), ε2(k, n) are the

statistical error bounds. Similar to the proof of Lemma C.4, we know that ε1(k, n) = (γmax +

r)/(
√
πΦ(−5C0))

√
2 log(2n)/(mk) and ε2(k, n) = 10γmaxsmax/(

√
πΦ(−5C0))

√
log(2mn)/(mk). Plug-

ging these two bounds into (C.15) yields

‖s(t) − s∗‖22 + ‖γ(t) − γ∗‖22 ≤ r2ρt +
Λ′n2 log(4mn2)

mk
,
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which holds with probability at least 1− 1/n, where Λ′ is a constant defines as follows.

Λ′ =
2 max{(γmax + r)2, 50C2

0}
πΓ4

1H(5C0)2Φ(−5C0)2
.

This completes the proof.

D Proofs of Technical Lemmas

In this section, we provide the proofs of technical lemmas used in the previous section.

D.1 Proof of Lemma C.1

We first lay down the following useful lemma.

Lemma D.1. (Tropp, 2012) Consider a sequence of i.i.d. random matrices {Xk} in Rd×d with

E[Xk] = 0 and ‖Xk‖2 ≤ R. Then for all t ≥ 0

Pr

(∥∥∥∥∑
k

Xk

∥∥∥∥ ≥ t) ≤ d exp

(
− t2

2σ2 + 2Rt/3

)
,

where σ2 = ‖
∑

k E[X2
k]‖2.

Proof of Lemma C.1. Using Taylor expansion, we have

L(s,γ) = L(s′,γ) + 〈∇sL(s′,γ), s− s′〉+
1

2
(s− s′)>∇2

sL(s̃,γ)(s− s′),

where s̃ = s+θ(s′−s) for some θ ∈ (0, 1). In order to show the strong convexity and smoothness of L,

we need to bound the minimal and maximum eigenvalues of ∇2
sL(s,γ). Note that s,γ lie in a neigh-

borhood with radius r of the true parameters s∗,γ∗ respectively. When r ≤ min{smax,
√
γmaxsmax},

we have

|γua>l,us| ≤ |(γu − γ∗u)a>l,u(s− s∗)|+ |γ∗ua>l,u(s− s∗)|+ |γ∗ua>l,us∗| ≤ 5γmaxsmax. (D.1)

For any ∆ ∈ Rn, we have

1

mk

m∑
u=1

k∑
l=1

(γu)2 exp(5γmaxsmax)

(1 + exp(5γmaxsmax))2
∆>al,ua

>
l,u∆ ≤∆>∇2

sL(s,γ)∆

=
1

mk

m∑
u=1

k∑
l=1

g′′
(
γua

>
l,us
)

(γu)2∆>al,ua
>
l,u∆

≤ 1

4mk

m∑
u=1

k∑
l=1

(γu)2∆>al,ua
>
l,u∆,
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where we used the monotonicity of g′′. Since al,u = eil − ejl and il, jl are uniformly distributed, we

have E[al,ua
>
l,u] = E[eile

>
il

+ ejle
>
jl
− eile

>
jl
− ejle

>
il

] = 2/nI− 2/n(11>/n). We define

Xl,u = (γu)2
[
al,ua

>
l,u −

2(I− 11>/n)

n

]
, L =

2(I− 11>/n)

n
. (D.2)

Thus we have E[Xl,u] = 0. Furthermore, we have ‖Xl,u‖2 ≤ 2(γmax + r)2 and E[X2
l,u] ≤ 4(γmax +

r)4(n− 1)/n2(I− 11>/n). Applying Lemma D.1 yields

Pr

(∥∥∥∥ 1

mk

m∑
u=1

k∑
l=1

Xl,u

∥∥∥∥
2

≥ t
)
≤ 2n exp

(
−t2

8(γmax + r)4(n− 1)/(n2mk) + 4t(γmax + r)2/(3mk)

)
≤ 2n exp

(
−t2

8(γmax + r)4/(nmk) + 4t(γmax + r)2/(3mk)

)
,

which implies that∥∥∥∥ 1

mk

m∑
u=1

k∑
l=1

Xl,u

∥∥∥∥
2

≤ 8(γmax + r)2 log n

3mk
+ 4(γmax + r)2

√
log n

nmk

≤ 8(γmax + r)2
√

log n

nmk

holds with probability at least 1 − 1/n, where the last inequality holds when mk ≥ 4/9n log n.

Therefore, we have

‖∇2
sL(s,γ)‖2 ≤ (γmax + r)2

(
1

2n
+ 2

√
log n

nmk

)
≤ (γmax + r)2

n
.

On the other hand, for any ∆ ∈ Rn such that ∆>1 = 0, we have

1

mk

m∑
u=1

k∑
l=1

∆>Xl,u∆ ≥ −8γ2max

√
log n

nmk
‖∆‖22,

which implies

∆>∇2
sL(s,γ)∆ ≥

(
2(γmin − r)2

n
− 8(γmax + r)2

√
log

nmk

)
‖∆‖22.

Therefore, when k is sufficiently large such that mk ≥ 64(γmax + r)2/(γmin − r)2n log n, we have

λmin

(
∇2
sL(s,γ)

)
≥ (γmax − r)2e5γmaxsmax

n(1 + e5γmaxsmax)2
.

This completes the proof.
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D.2 Proof of Lemma C.2

Proof. Using Taylor expansion, we get

L(s,γ) = L(s,γ ′) + 〈∇γL(s,γ ′),γ − γ ′〉+
1

2
(γ − γ ′)>∇2

γL(s, γ̃)(γ − γ ′), (D.3)

where γ̃ = γ + θ(γ ′ − γ) for some θ ∈ (0, 1). Recall the Hessian matrix with respect to γ:

∇2
γL(s,γ) =

1

mk
diag



∑k
l=1 g

′′
(
γ1a
>
l,1s
)

a>l,1sa
>
l,1s

...∑k
l=1 g

′′
(
γua

>
l,us
)

a>l,usa
>
l,us

...

 .

For any fixed u, we denote Xl,u = a>l,usa
>
l,us − s>Ls, where L is defined as in (D.2). Recall the

calculation of g′′ in (C.8),(C.10) and that |γua>l,us| ≤ 5γmaxsmax by (D.1), we have

e5γmaxsmax

(1 + e5γmaxsmax)2
≤ g′′

(
γua

>
l,us
)

=
exp(γua

>
l,us)(

1 + exp(γua>l,us)
)2 ≤ 1

4
.

Since ∇2
γL(s,γ) is a diagonal matrix, the eigenvalues of ∇2

γL(s,γ) can be bounded by

e5γmaxsmax

(1 + e5γmaxsmax)2
min
u

1

mk

k∑
l=1

(
a>l,us

)2 ≤ λmin(∇2
γL(,γ))

≤ λmax(∇2
γL(,γ))

≤ 1

4
max
u

1

mk

k∑
l=1

(
a>l,us

)2
. (D.4)

Since s>1 = 0, it is easy to verify E[Xl,u] = E[s>(al,ua
>
l,u − L)s] = 0 and |Xl,u| ≤ 6(smax + r)2. For

any fixed u, applying Hoeffding’s inequality yields

Pr

(
− 1

mk

k∑
l=1

Xl,u ≥ t
)

= Pr

(
1

mk

k∑
l=1

Xl,u ≥ t
)
≤ exp

(
− m2t2k

18(smax + r)4

)
.

Further applying union bound, we have

Pr

(
max
u

1

mk

k∑
l=1

Xl,u ≥ t
)
≤
∑
u

Pr

(
1

k

k∑
l=1

Xl,u ≥ mt
)
≤ m exp

(
− m2t2k

18(smax + r)4

)
,
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which immediately implies that

λmax(∇2
γL(s,γ)) ≤ 1

4
max
u

1

mk

k∑
l=1

a>l,usa
>
l,us

≤ (‖s∗‖2 + r)2

2n
+

3(smax + r)2

4m

√
2 log(mn)

k

≤ (‖s∗‖2 + r)2

n
(D.5)

holds with probability at least 1 − 1/n, where the last inequality is true when the sample size

satisfies k ≥ 5(smax + r)4n2/(m2(‖s∗‖2 + r)4) log(mn). On the other hand, we also have

Pr

(
max
u
− 1

mk

k∑
l=1

Xl,u ≥ t
)
≤
∑
u

Pr

(
− 1

k

k∑
l=1

Xl,u ≥ mt
)
≤ m exp

(
− m2t2k

18(smax + r)4

)
,

which leads to the conclusion that

λmin(∇2
γL(s,γ)) ≥ e5γmaxsmax

(1 + e5γmaxsmax)2
max
u

1

mk

k∑
l=1

a>l,usa
>
l,us

≥ e5γmaxsmax

(1 + e5γmaxsmax)2

(
2(‖s∗‖2 + r)2

n
− 3(smax + r)2

m

√
2 log(mn)

k

)
≥ (‖s∗‖2 + r)2e5γmaxsmax

n(1 + e5γmaxsmax)2
(D.6)

holds with probability at least 1 − 1/n, where the last inequality is due to k ≥ 18(smax +

r)4n2/(m2(‖s∗‖2 + r)4) log(mn).

D.3 Proof of Lemma C.3

Proof. Recall the gradient of L with respect to s in (C.3). It holds that

‖∇sL(s,γ)−∇sL(s,γ ′)‖2 =

∥∥∥∥ 1

mk

m∑
u=1

k∑
l=1

(
g′
(
γua

>
l,us
)
γu − g′

(
γ′ua

>
l,us
)
γ′u
)
al,u

∥∥∥∥
2

≤ 1

mk

m∑
u=1

k∑
l=1

[∣∣g′ (γua>l,us) (γu − γ′u)
∣∣

+
∣∣(g′ (γua>l,us)− g′ (γ′ua>l,us) )γ′u∣∣]‖al,u‖2.

Note that we have |g′(γua>l,us)| ≤ 1 and ‖al,u‖2 =
√

2. In addition, by the mean value theorem we

have

g′
(
γua

>
l,us
)
− g′

(
γ′ua

>
l,us
)

= g′′(x)(γu − γ′u)a>l,us,
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where x = tγua
>
l,us + (1 − t)γ′ua>l,us for some t ∈ (0, 1). By plugging the range of γu and s, we

have |x| ≤ 5γmaxsmax by (D.1) and hence |g′′(x)| = |ex/(1 + ex)2| ≤ 1/4. Now we can bound

‖∇sL(s,γ)−∇sL(s,γ ′)‖2 as follows:

‖∇sL(s,γ)−∇sL(s,γ ′)‖2 ≤
1

mk

m∑
u=1

k∑
l=1

√
2(1 + 2γmaxsmax)|γu − γ′u|

≤
√

2(1 + 2γmaxsmax)√
m

‖γ − γ ′‖2.

Now we prove the upper bound of ‖∇γL(s,γ)−∇γL(s′,γ)‖2. First, we have by (C.3) that

∇γL(s,γ)−∇γL(s′,γ) =
1

mk


∑k

l=1 a>l,1
(
g′
(
γ1a
>
l,1s
)
s− g′

(
γ1a
>
l,1s
′)s′)

...∑k
l=1 a>l,u

(
g′
(
γua

>
l,us
)
s− g′

(
γua

>
l,us
′)s′)

...

 .

Note that for each u, we have

a>l,u
(
g′
(
γua

>
l,us
)
s− g′

(
γua

>
l,us
′)s′)

= a>l,u
[
g′
(
γua

>
l,us
)
(s− s′) +

(
g′
(
γua

>
l,us
)
− g′

(
γua

>
l,us
′))s′]. (D.7)

For the first term in (D.7), we have∣∣a>l,ug′(γua>l,us)(s− s′)∣∣ ≤ √2‖s− s′‖2.

For the second term in (D.7), applying the mean value theorem yields

∣∣a>l,u(g′(γua>l,us)− g′(γua>l,us′))s′∣∣ =
∣∣g′′(x)γua

>
l,u

(
s− s′

)
a>l,us

′∣∣ ≤ 5
√

2γmaxsmax

4
‖s− s′‖2,

where x = tγua
>
l,us+ (1− t)γua>l,us′ for some t ∈ (0, 1). Therefore, we have

‖∇γL(s,γ)−∇γL(s′,γ)‖2 ≤
√

2(1 + 2γmaxsmax)√
m

‖s− s′‖2,

which completes our proof.

D.4 Proof of Lemma C.4

Proof. According to (C.3), the gradient of L with respect to s is

∇sL(s,γ) =
1

mk

∑
u

∑
l

(
− Y + (1− Y ) exp(γua

>
l,us)

)
γual,u

1 + exp(γua>l,us)
.
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By assumption we have |γu| ≤ (γmax + r) and |γua>l,us| ≤ 5γmaxsmax by (D.1). In addition, we have

‖γual,u/(1 + exp(γual,us))‖2 ≤
√

2(γmax + r)/(1 + e−5γmaxsmax). Applying Hoeffding’s inequality, we

have

Pr
(
‖∇sL(s,γ)−∇sL̄(s,γ)‖2 ≥ t

)
≤ 2 exp

(
−(1 + e−5γmaxsmax)2mkt2

8(γmax + r)2

)
,

which implies that

‖∇sL(s,γ)−∇sL̄(s,γ)‖2 ≤
2(γmax + r)

1 + e−5γmaxsmax

√
2 log(2n)

mk

holds with probability at least 1 − 1/n. Recall the calculation in (C.3), the gradient of L with

respect to γ is

∇γL(s,γ) =
1

mk



∑k
l=1 g

′
(
γ1a
>
l,1s
)

a>l,1s

...∑k
l=1 g

′
(
γua

>
l,us
)

a>l,us

...

 .

The squared statistical error is

‖∇γL(s,γ)−∇γL̄(s,γ)‖2 =
1

mk

√√√√∑
u

[∑
l

(
g′(γua>l,us)al,u − E[g′(γua>l,us)al,u]

)>
s

]2
,

which implies for all t ≥ 0

Pr
(
‖∇γL(s,γ)−∇γL̄(s,γ)‖2 ≥ t

)
≤ Pr

(
max
u

1

k

∑
l

(
g′(γua

>
l,us)al,u − E[g′(γua

>
l,us)al,u]

)>
s ≥
√
mt

)
≤
∑
u

Pr

(
1

k

∑
l

(
g′(γua

>
l,us)al,u − E[g′(γua

>
l,us)al,u]

)>
s ≥
√
mt

)
,

where the last inequality is due to union bound. For each user u, we have

|(g′(γua>l,us)al,u − E[g′(γua
>
l,us)al,u])>s| ≤ 10γmaxsmax

1 + e−5γmaxsmax
.

Applying Hoeffding’s inequality yields

Pr
(
‖∇γL(s,γ)−∇γL̄(s,γ)‖2 ≥ t

)
≤ 2m exp

(
−(1 + e−5γmaxsmax)2t2mk

100γ2maxs
2
max

)
,
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which immediately leads to the conclusion that

‖∇γL(s,γ)−∇γL̄(s,γ)‖2 ≤
10γmaxsmax

1 + e−5γmaxsmax

√
2 log(2mn)

mk

holds with probability at least 1− 1/n. This completes the proof.

D.5 Proof of Proposition 4.1

Proof. Since the PDF g of the noise terms εi is log-concave, and because the convolution of log-

concave functions is log-concave Merkle (1998), the CDF F of εj − εi for any pair i, j is also

log-concave. Hence h(x) = − logF (x) is convex. The loss function is the sum of terms of the form

hiju = h(γu(si − sj)). Fix i, j, and u. We have

∇2
shiju = h′′(γu(si − sj))(γu)2(ei − ej)(ei − ej)

>,

where ei is the standard unit vector for coordinate i in Rn. By the convexity of h and the fact that

(ei − ej)(ei − ej)
> is positive-definite, the loss function is convex in s. Similarly, it is easy to show

that it is convex in γ.
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