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Abstract

We propose the Heterogeneous Thurstone Model (HTM) for aggregating ranked data, which
can take the accuracy levels of different users into account. By allowing different noise distri-
butions, the proposed HTM model maintains the generality of Thurstone’s original framework,
and as such, also extends the Bradley-Terry-Luce (BTL) model for pairwise comparisons to
heterogeneous populations of users. Under this framework, we also propose a rank aggregation
algorithm based on alternating gradient descent to estimate the underlying item scores and accu-
racy levels of different users simultaneously from noisy pairwise comparisons. We theoretically
prove that the proposed algorithm converges linearly up to a statistical error which matches
that of the state-of-the-art method for the single-user BTL model. We evaluate the proposed
HTM model and algorithm on both synthetic and real data, demonstrating that it outperforms
existing methods.

1 Introduction

Rank aggregation refers to the task of recovering the order of a set of objects given pairwise
comparisons, partial rankings, or full rankings obtained from a set of users or experts. Compared
to rating items, comparison is a more natural task for humans which can provide more consistent
results, in part because it does not rely on arbitrary scales. Furthermore, ranked data can be
obtained not only by explicitly querying users, but also through passive data collection, i.e., by
observing user behavior, for example product purchases, clicks on search engine results, choice of
movies in streaming services, etc. As a result, rank aggregation has a wide range of applications,
from classical social choice applications (de Borda, 1781) to information retrieval (Dwork et al.,
2001), recommendation systems (Baltrunas et al., 2010), and bioinformatics (Aerts et al., 2006; Kim
et al., 2015).

*Department of Computer Science, University of Virginia, Charlottesville, VA 22904; e-mail: taoj@virginia.edu

TDepartment of Computer Science, University of California, Los Angeles, Los Angeles, CA 90095; e-mail:
panxu@cs.ucla.edu

tEqual contribution

$Department of Computer Science, University of California, Los Angeles, Los Angeles, CA 90095; e-mail:
qgu@cs.ucla.edu

TDepartment of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904; e-mail:
farzad@virginia.edu

I Co-corresponding authors.



In aggregating rankings, the raw data is often noisy and inconsistent. One approach to arrive
at a single ranking is to assume a generative model for the data whose parameters include a true
score for each of the items. In particular, Thurstone’s preference model (Thurstone, 1927) assumes
that comparisons or partial rankings result from comparing versions of the true scores corrupted by
additive noise. Special cases of Thurstone’s model include the popular Bradley-Terry-Luce (BTL)
model for pairwise comparisons and the Placket-Luce (PL) model for partial rankings. In these
settings, estimating the true scores from data will allow us to identify the true ranking of the items.
Various estimation and aggregation algorithms have been developed for Thurstone’s preference
model and its special cases, including (Hunter, 2004; Guiver and Snelson, 2009; Hajek et al., 2014;
Chen and Suh, 2015; Vojnovic and Yun, 2016; Negahban et al., 2017).

Conventional models of ranked data and aggregation algorithms that rely on them make the
assumption that the data is either produced by a single user' or from a set of users that are similar.
In real-world datasets, however, users that provide the raw data are usually diverse with different
levels of familiarity with the objects of interest, thus providing data that is not uniformly reliable and
should not have equal influence on the final result. This is of particular importance in applications
such as aggregating expert opinions for decision-making and aggregating annotations provided by
workers in crowd sourcing settings.

In this paper, we study the problem of rank aggregation for heterogeneous populations of users.
We present a generalization of Thurstone’s model, called the heterogeneous Thurstone model (HTM),
which allows users with different noise levels, as well as a certain class of adversarial users. Unlike
previous efforts on rank aggregation for heterogeneous populations such as Chen et al. (2013);
Kumar and Lease (2011), the proposed model maintains the generality of Thurstone’s framework
and thus also extends its special cases such as BTL and PL models. We evaluate the performance
of the method using simulated data for different noise distributions. We also demonstrate that
the proposed aggregation algorithm outperforms the state-of-the-art method for real datasets on
evaluating the difficulty of English text and comparing the population of a set of countries.

Our Contributions: Our main contributions are summarized as follows

e We propose a general model called the heterogeneous Thurstone model (HTM) for producing
ranked data based on heterogeneous sources, which reduces to the heterogeneous BTL (HBTL)
model when the noise follows the Gumbel distribution and to the heterogeneous Thurstone
Case V (HTCV) model when the noise follows the normal distribution respectively.

e We develop an efficient algorithm for aggregating pairwise comparisons and estimating user
accuracy levels for a wide class of noise distributions based on minimizing the negative
log-likelihood loss via alternating gradient descent.

e We theoretically show that the proposed algorithm converges to the unknown score vector and
the accuracy vector at a locally linear rate up to a tight statistical error under mild conditions.

e For models with specific noise distributions such as the HBTL and HTCV, we prove that the
proposed algorithm converges linearly to the unknown score vector and accuracy vector up to
statistical errors in the order of O(n?log(mn?)/(mk)), where k is sample size, n is the number

We use the term user to refer to any entity that provides ranked data. In specific applications other terms may be
more appropriate, such as voter, expert, judge, worker, and annotator.



of items and m is the number of users. When m = 1, the statistical error matches the error
bound in the state-of-the-art work for single user BTL model (Negahban et al., 2017).

e We conduct thorough experiments on both synthetic and real world data to validate our
theoretical results and demonstrate the superiority of our proposed model and algorithm.

The reminder of this paper is organized as follows. In Section 2, we review the most related
work in the literature. In Section 3, we propose a family of heterogeneous Thurstone models. In
Section 4, we propose an efficient algorithm for learning the ranking from pairwise comparisons. We
theoretically analyze the convergence of the proposed algorithm in Section 5. Thorough experimental
results are presented in Section 6 and Section 7 concludes the paper.

2 Additional Related Work

The problem of rank aggregation has a long history, dating back to the works of de Borda (1781)
and de Condorcet (1785) in the 18th century, where the problems of social choice and voting were
discussed. More recently, the problem of aggregating pairwise comparisons, where comparisons are
incorrect with a given probability p, was studied by Braverman and Mossel (2008) and Wauthier
et al. (2013). Instead of assuming the same probability for all comparisons to be incorrect, it is
natural to assume that the comparison of similar items is more likely to be noisy than those items
that are distinctly different. This intuition is reflected in the random utility model (RUM), also
known as Thurstone’s model (Thurstone, 1927), where each item has a true score, and users provide
rankings of subsets of items by comparing approximate version of these scores corrupted by additive
noise.

When restricted to comparing pairs of items, Thurstone’s model reduces to the BTL model
(Zermelo, 1929; Bradley and Terry, 1952; Luce, 1959; Hunter, 2004) if the noise follows the Gumbel
distribution, and to the Thurstone Case V (TCV) model (Thurstone, 1927) if the noise is normally
distributed. Recently, Negahban et al. (2012) proposed Rank Centrality, an iterative method with a
random walk interpretation and showed that it performs as well as the maximum likelihood (ML)
solution (Zermelo, 1929; Hunter, 2004) for BTL models and provided non asymptotic performance
guarantees. Chen and Suh (2015) studied identifying the top-K candidates under the BTL model
and its sample complexity.

Thurstone’s model can also be used to describe data from comparisons of multiple items. Hajek
et al. (2014) provided an upper bound on the error of the ML estimator and studied its optimality
when data consists of partial rankings (as opposed to pairwise comparisons) under the PL model.
Yu (2000) studied order statistics under the normal noise distribution with consideration of item
confusion covariance and user perception shift in a Bayesian model. Weng and Lin (2011) proposed
a Bayesian approximation method for game player ranking with results from two-team matches.
Guiver and Snelson (2009) studied the ranking aggregation problem with partial ranking (PL model)
in a Bayesian framework. However, due to the nature of Bayesian method, above mentioned work
provided few theoretical analysis. Vojnovic and Yun (2016) studied the parameter estimation
problem for Thurstone models where first choices among a set of alternatives are observed. Raman
and Joachims (2014, 2015) proposed the peer grading methods for solving a similar problem as ours,
while the generative models to aggregate partial rankings and pairwise comparisons are completely



different. Very recently, Zhao et al. (2018) proposed the k-RUM model which assumes that the rank
distribution has a mixture of kK RUM components. They also provided the analyses of identifiability
and efficiency of this model.

Almost all aforementioned works assume that all the data is provided by a single user or that
all users have the same accuracy. However, this assumption is rarely satisfied in real-world datasets.
The accuracy levels of different users are considered in Kumar and Lease (2011), which assumes
that each user is correct with a certain probability and studies the problem via simulation methods
such as naive Bayes and majority voting. In their pioneering work, Chen et al. (2013) studied rank
aggregation in a crowd-sourcing environment for pairwise comparisons, modeled via the BTL or
TCV model, where noisy BTL comparisons are assumed to be further corrupted. They are flipped
with a probability that depends on the identity of the worker. The k-RUM model proposed by Zhao
et al. (2018) considered a mixture of ranking distributions, without using extra information on who
contributed the comparison, it may suffer from common mixture model issues.

3 Modeling Heterogeneous Ranked Data

Before introducing our Heterogeneous Thurstone Model, we start by providing some preliminaries
of Thurstone’s preference model in further detail. Consider a set of n items. The score vector
for the items is denoted by s = (s1,...,s,) . These items/objects are evaluated by a set of m
independent users. Each user may be asked to express their preference concerning a subset of items
{#1,...,in} C [n], where 2 < h < n. For each item i, the user first estimates an empirical score for
it as

Z2i = S; + €4, (31)

where ¢; is a random noise introduced by this evaluation process. This coarse estimate of score z; is
still implicit and cannot be queried or observed by the ranking algorithm. Instead, the user only
produces a ranking of these h items by sorting the scores z;. We thus have

Pr(my >=mg > >mp) =Pr(2z > 25, > -+ > 2g,), (3.2)
where ¢ > j indicates that ¢ is preferred to j by this user and {1,...,m,} is a permutation of
{i1,...,in}. Each time item i is compared with other items, a new score estimate z; is produced

by the user for are commonly assumed to be i.i.d. (Braverman and Mossel, 2008; Negahban et al.,
2012; Wauthier et al., 2013).

3.1 The Heterogeneous Thurstone Model

In real-world applications, users often have different levels of expertise and some may even be
adversarial. Therefore, it is natural for us to propose an extension of the Thurstone’s model
presented above, referred to as the Heterogeneous Thurstone Model (HTM), which has the flexibility
to reflect the different levels of expertise of different users. Specifically, we assume that each user
has a different level of making mistakes in evaluating items, i.e., the evaluation noise of user w is



controlled by a scaling factor =, > 0. The proposed model is then represented as follows:
2z = 8i + € /Y- (3.3)

Based on the estimated scores of each user for each item, the probability of a certain ranking of
h items provided by user u is again given by (3.2). While this extension actually applies to both
pairwise comparisons and multi-item orderings, we mainly focus on pairwise comparisons in this
paper.

When two items ¢ and j are compared by user u, we denote by Y5 the random variable

Ui
W:{ s (3.4)

representing the result,

“ 0 ifi<j.
Let F' denote the CDF of €¢; — ¢;, where ¢; and ¢; are two i.i.d. random variables. For the result Y;qj
of comparison of ¢ and j by user u, we have

Pr(Y;j = 158,85, vu) = Pr(ej — & < vu(si — 55)) = F (yu(si — 55)) - (3.5)

It is clear that the larger the value of =, the more accurate the user is, since large v, > 0 increases
the probability of preferring an item with higher score to one with lower score.

We now consider several special cases arising from specific noise distributions. First, if ¢; follows a
Gumbel distribution with mean 0 and scale parameter 1, then we obtain the following Heterogeneous
BTL (HBTL) model:

eTusi
log Pr(Y;j = 1; 54, 55, 7) = log s L eres; log(1 + exp(—vu(si — 55))), (3.6)
which follows from the fact that the difference between two independent Gumbel random variables has
the logistic distribution. We note that setting v,, = 1 recovers the traditional BTL model (Bradley
and Terry, 1952).

If ¢; follows the standard normal distribution, we obtain the following Heterogeneous Thurstone
Case V (HTCV) model:

log Pr(Y;j = 1554, 85, ) = log<I>(’yu(S\i[;Sj))7 (3.7
where & is the CDF of the standard normal distribution. Again, when v, = 1, this reduces to
Thurstone’s Case V (TCV) model for pairwise comparisons (Thurstone, 1927).

Adversarial users: Under our heterogeneous framework, we can also model a certain class of
adversarial users, whose goal is to make the estimated ranking be the opposite of the true ranking,
so that, for example, an inferior item is ranked higher than the alternatives. We assume for
adversarial users, the score of item i is C' — s;, for some constant C'. Changing s; to C' — s; in (3.5)
is equivalent to assuming the user has a negative accuracy -y,. In this way, the accuracy of the user
is determined by the magnitude |7, | and its trustworthiness by sign(v,), as illustrated in Figure 1.
When adversarial users are present, this will facilitate optimizing the loss function, since instead of
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Figure 1: The effect of v, on the probability of error for a BTL comparison in which items have
scores 0 and 1. In particular, for large negative values of =, the user is accurate (with a high level
of expertise) but adversarial.

solving the combinatorial optimization problem of deciding which users are adversarial, we simply
optimize the value of =, for each user.

One relevant work to ours is the CrowdBT algorithm proposed by Chen et al. (2013), where
they also explored the accuracy level of different users in learning a global ranking. In particular,
they assume that each user has a probability 7, of making mistakes in comparing items ¢ and j:

Pr(Yif = 1 si,85,mu) = nu Pr(i = j) + (1 = nu) Pr(j > i), (3-8)

where Pr(i > j) and Pr(j > i) follow the BTL model. This translates to introducing a parameter in
the likelihood function to quantify the reliability of each pairwise comparison. This parameterization,
however, deviates from the additive noise in Thurstonian models defined as in (3.1) such as BTL
and Thurstone’s Case V. Specifically, the Thurstonian model explains the noise observed in pairwise
comparisons as resulting from the additive noise in estimating the latent item scores. Therefore, the
natural extension of Thurstonian models to a heterogeneous population of users is to allow different
noise levels for different users, as was done in (3.3). As a result, CrowdBT cannot be easily extended
to settings where more than two items are compared at a time. In contrast, the model proposed
here is capable to describe such generalizations of Thurstonian models, such as the PL. model.

4 Optimization and Rank Aggregation

In this section, we define the pairwise comparison loss function for the population of users and
propose an efficient and effective optimization algorithm to minimize it. We denote by Y* the
matrix containing all pairwise comparisons Y7 of user u on items i and j. The entries of Y* are
0/1/?7, where ? indicates that the pair was not compared by the user. Furthermore, let D,, denote
the set of all pairs (7, j) compared by user u. We define the loss function for each user u as

1
Ly (37'7u;Yu) = _? Z IOgPr(ifij = 1|S’i7 Sjalyu)
Y (i,4)€D

:_ki > log F (yulsi — ;)

“ (4,5)E€Dy



where k, = |D,| is the number of comparisons by user w. Then, the total loss function for m users is

m

1
L(5,7:Y)=—> Lul(s,7:Y"), (4.1)
u=1
where v = (v1,...,7m) and Y = (Y'!,...,Y™). We denote the unknown true score vector as

s* and the true accuracy vector as v*. Given observation Y, our goal is to recover s* and v* via
minimizing the loss function in (4.1). To ensure the identifiability of s*, we follow Negahban et al.
(2017) to assume that 17s* = 3" | s¥ = 0, where 1 € R" is the all one vector. The following
proposition shows that the loss function £ is convex in s and in = separately if the PDF of ¢; is
log-concave.

Proposition 4.1. If the distribution of the noise ¢; in (3.3) is log-concave, then the loss function
L(s,v;Y) given in (4.1) is convex in s, and in 7 respectively.

The log-concave family includes many well-known distributions such as normal, exponential,
Gumbel, gamma and beta distributions. In particular, the noise distributions used in BTL and
Thurstone’s Case V (TCV) models fall into this category. Although the loss function £ is non convex
with respect to the joint variable (s,-y), Proposition 4.1 inspires us to perform alternating gradient
descent (Jain et al., 2013) on s and ~ to minimize the loss function. As is shown in Algorithm 1,
we alternating perform gradient descent update on s (or ) while fixing «y (or s) at each iteration.
In addition to the alternating gradient descent steps, we shift s® in Line 4 of Algorithm 1 such
that 17s(®) = 0 to avoid the aforementioned identifiability issue of s*. After T iterations, given the
output 0, the estimated ranking of the items is obtained by sorting {ng), cees s,(lT)} in descending
order (item with the highest score in sT) is the most preferred).

Algorithm 1 HTMs with Alternating Gradient Descent

1: input: learning rates 771,79 > 0, initial points s(9) and () satistying ||s(®) —s*||34||v(© —~v*||3 <
r, number of iteration 7', comparison results by users Y .

2: fort=0,...,7—1do

3. g+l — (t) _ mvsﬁ(s(t),’y(t); Y)

4 s = (1 —117 /n)30t+D)

5. AUt =40 n2v75(3<t>,7<t>; Y)

6: end for

7: output: S(T), *y(T).

As we will show in the next section, the convergence of Algorithm 1 to the optimal points s* and
~* is guaranteed if an initialization such that s(9) and v(© are close to the unknown parameters
is available. In practice, to initialize s, we can use the solution provided by the rank centrality
algorithm (Negahban et al., 2012) or start from uniform or random scores. In this paper, we initialize
s and =, as s(® =1 and 7(0) = 1. We note that multiplying s or v by a negative constant does not
alter the loss but reverses the estimated ranking. Implicit in our initialization is the assumption

that the majority of the users are trustworthy and thus have positive v. When data is sparse, there



may be subsets of items that are not compared directly or indirectly. In such cases, regularization
may be necessary, which is discussed in further detail in Section 6.

5 Theoretical Analysis of the Proposed Algorithm

In this section, we provide the convergence analysis of Algorithm 1 for the general loss function
defined in (4.1). Without loss of generality, we assume the number of observations k,, = k for all users
u € [m] throughout our analysis. Since there’s no specific requirement on the noise distributions in
the general HTM model, to derive the linear convergence rate, we need the following conditions on
the loss function £, which are standard in the literature of alternating minimization (Jain et al.,
2013; Zhu et al., 2017; Xu et al., 2017b,a; Zhang et al., 2018; Chen et al., 2018). Note that all these
conditions can actually be verified once we specify the noise distribution in specific models. We
provide the justifications of these conditions in the appendix.

Condition 5.1 (Strong Convexity). L is u1-strongly convex with respect to s € R™ and pus-strongly
convex with respect to 4 € R™. In particular, there is a constant p; > 0 such that for all s, s’ € R",

L(s,7) > L(s',7) +(VsL(s',7),8 = &) + p1/2]|s — &5
And there is a constant o > 0 such that for all v,~" € R™, it holds
L(s,7) > L(5,7) + (V4 L(s,7), v =) + 12/2lv =73

Condition 5.2 (Smoothness). £ is Li-smooth with respect to s € R” and Lg-smooth with respect
to v € R™. In particular, there is a constant L; > 0 such that for all s,s’ € R", it holds

L(s,7) < L(s',7) +(VsL(s',7), 8 — &) + L1/2]|s — &3
And there is a constant Ly > 0 such that for all 4,4’ € R™, it holds

L(s,7) < L(8,7) + (V4 L(5,7).v =) + La/2|v — ¥'|3.

The next condition is a variant of the usual Lipschitz gradient condition. It is worth noting that
the gradient is derived with respect to s (or ), while the upper bound is the difference of ~ (or
s). This condition is commonly imposed and verified in the analysis of expectation-maximization
algorithms (Wang et al., 2015) and alternating minimization (Jain et al., 2013).

Condition 5.3 (First-order Stability). There are constants M, My > 0 such that £ satisfies
IVsL(5,7) = VsL(s,7)l2 < Milly =+,
IVAL(8,7) = V4 L(s',7)|l2 < Ma||s — &2,

for all 5,8’ € R" and ~v,v" € R™.

Note that the loss function in (4.1) is defined based on finitely many samples of observations.
The next condition shows how close the gradient of the sample loss function is to the expected loss
function.



Condition 5.4. Denote £ as the expected loss, where the expectation of £ is taken over the random
choice of the comparison pairs and the observation Y. With probability at least 1 — 1/n, we have

IVsL(s,7) = VsL(s,7)ll2 < e1(k,n),
||v’7[’(87’7) - v7‘c_(s’7)||2 S 62(k7n)a

where n is the number of items and k is the number of observations for each user. In addition,
€1(k,n) and ez(k,n) will go to zero when sample size k goes to infinity.

€1(k,n) and ez(k,n) in Condition 5.4 are also called the statistical errors (Wang et al., 2015; Xu
et al., 2017a) between the sample version gradient and the expected (population) gradient.

Now we deliver our main theory on the linear convergence of Algorithm 1 for general HTM
models. Full proofs can be found in the appendix.

Theorem 5.5. For a general HT'M model, assume Conditions 5.1, 5.2, 5.3 and 5.4 hold and that
My, My < \/uipi2/4. Denote that ||8*|lcc = Smax and ||[¥*[|cc = Ymax- Suppose the initialization
guarantees that |[s(0) — s*||2 + [|[v(© — ~*||3 < 2, where r = min{u1/(2M;), ua/(2M3)}. If we
set the step size 1 = mo = pu/(12(L? + M?)), where L = max{Ly, Lo}, s = min{u1, 2} and
M = max{Mj, My}, then the output of Algorithm 1 satisfies

61(’167 n)2 + 62(k7 n)2
,u2

8@ — s*)13 + [|IvD — 4|12 < r2pT +

with probability at least 1 — 1/n, where the contraction parameter is p = 1 — p?/(48(L? + M?)).

Remark 5.6. Theorem 5.5 establishes the linear convergence of Algorithm 1 when the initial points
are close to the unknown parameters. The first term on the right-hand side is called the optimization
error, which goes to zero as iteration number ¢ goes to infinity. The second term is called the
statistical error of the HTM model, which goes to zero when sample size mk goes to infinity. Hence,
the estimation error of our proposed algorithm converges to the order of O((e1(k,n)? + ea(k,n)?)/pu?)
after t = O(log((e1(k,n)? + e2(k,n)?)/u?r?)/log p) iterations.

Note that the results in Theorem 5.5 hold for any general HTM models with Algorithm 1 as a
solver. In particular, if we run the alternating gradient descent algorithm on the HBTL and HTCV
models proposed in Section 3, we will also obtain linear convergence rate to the true parameters
up to a statistical error in the order of O(n?log(mn?)/(mk)), which matches the state-of-the-art
statistical error for such models (Negahban et al., 2017). We provide the implications of Theorem
5.5 on specific models in the supplementary material.

6 Experiments

In this section, we present experimental results to show the performance of the proposed algorithm
on heterogeneous populations of users. The experiments are conducted on both synthetic and real
data with both benign users and adversarial users. We use the Kendall’s tau correlation Kendall
(1948) between the estimated and true rankings to measure the similarity between rankings, which



2(c—d)
n(n—1)’
disagree, respectively. Pairs that are tied in at least one of the rankings are not counted in c or d.

Baseline methods: In Gumbel noise setting, we compare Algorithm 1 based on our proposed
HBTL model with (i) the BTL model that can be optimized through iterative maximum-likelihood
methods (Negahban et al., 2012) or spectral methods such as Rank Centrality (Negahban et al.,
2017); and (ii) the CrowdBT algorithm (Chen et al., 2013), which is a variation of BTL that allows
users with different levels of accuracy. In the normal noise setting, we compare Algorithm 1 based on
our proposed HTCV model with TCV model. We also implemented a TCV equivalent of CrowdBT
and report its performance as CrowdTCV.

is defined as 7 = where ¢ and d are the number of pairs on which the two rankings agree and

6.1 Experimental Results on Synthetic Data

We set number of items n = 20, number of users m = 9 and set the ground truth score vector s to
be uniformly distributed in [0, 1]. The m users are divided into groups A and B, consisting of 3 and
6 users respectively. These two groups of users generate heterogeneous data in the sense that users
in group A are more accurate than those in group B. We vary v4 in the range of {2.5,5,10} and
vp in the range of {0.25,1,2.5}, which leads to in total 9 configurations of data generation. For
each configuration, we conduct the experiment under the following two settings:

(1) Benign: v1,...,v3 =4 (Group A); v4,...,7 = v (Group B).

(2) Adversarial: y1 = —7y4, 72,73 = 7a (Group A); 74,7 = =B, %6, - - -, 79 = ¥B (Group B).
We also test on various densities of compared pairs, which effectively controls the sample size. In
particular, we choose 4 sets of «, which denote the portion of all possible pairs that are compared.
The larger the value, the more pairs are compared by each user. The simulation process is as
follows: we first generate n(n — 1) ordered pairs of items, where n is the number of items. This is
equivalent to comparing each unique pair of items twice. Then for each pair of items, response from
every annotator had a probability of o to be recorded and used for training the model. And « is
chosen from {0.2,0.4,0.6,0.8} to make up for four runs. Each experiment is repeated 100 times
with different random seeds.

Under setting (1), we plot the estimation error of Algorithm 1 v.s. number of iterations for HBTL
and HTCV model in Figures 2(a)-2(b) and 2(c)-2(d) respectively. In all settings, our algorithm
enjoys a linear convergence rate to the true parameters up to statistical errors, which is well aligned
with the theoretical results in Theorem 5.5.
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Figure 2: Evolution of estimation errors vs. number of iterations ¢ for HBTL model. (c)-(d):
Evolution of estimation errors vs. number of iterations ¢ for HTCV model.
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When there is no adversarial users in the system, the ranking results for Gumbel noises under
different configurations of v4 and ~p are shown in Table 1 and the ranking results for normal
noises under different configurations of y4 and g are shown in Table 2. In both tables, each
cell presents the Kendall’s tau correlation between the aggregated ranking and the ground truth,
averaged over 100 trials. For each experimental setting, we use the bold text to denote the method
which achieved highest performance. We also underline the highest score whenever there is a tie. It
can be observed that in almost all cases, HBTL provides much more accurate rankings than BTL
and HTCV significantly outperforms TCV as well. In particular, the larger the difference between
va and yp is, the more significant the improvement is. The only exception is when v4 = yp = 2.5,
in which case the data is not heterogeneous and our HTM model has no advantage. Nevertheless,
our method still achieve comparable performance as BTL for non-heterogeneous data. It can also be
observed that HBTL generally outperforms CrowdBT. But the advantage is not large, as CrowdBT
also includes the different accuracy levels of different users. Importantly, however, as discussed in
Section 3.1, CrowdBT is not compatible with the additive noise in Thurstonian models and cannot
be extended in a natural way to ranked data other than pairwise comparison. In addition, unlike
CrowdBT, our method enjoys strong theoretical guarantees while maintaining a good performance.
Tables 1 and 2 also illustrate an important fact: If there are users with high accuracy, the presence
of low quality data does not significantly impact the performance of Algorithm 1.

When there are a portion of adversarial users as stated in setting (2), we consider adversarial
users whose accuracy level 7, may take negative values as discussed above. The results for Gumbel
and normal noises under setting (2) are shown in Table 3 and Table 4 respectively. It can be seen
that in this case, the difference between the methods is even more pronounced.

6.2 Experimental Results on Real-World Data

We evaluate our method on two real-world datasets. The first one named “Reading Level” (Chen
et al., 2013) contains English text excerpts whose reading difficulty level is compared by workers.
624 workers annotated 490 excerpts which resulting in a total of 12,728 pairwise comparisons.
We also used Mechanical Turk to collect another dataset named “Country Population”. In this
crowdsourcing task, we asked workers to compare the population between two countries and pick
the one which has more population. Since the population ranking of countries has a universal
consensus, which can be obtained by looking up demographic data, it is a better choice than those
movie rankings which subjects to personal preferences. There were 15 countries as shown in Table
5 which made up to 105 pairwise comparisons. The values were collected according to the latest
demography statistics on Wikipedia for each country as of March 2019. Each user was asked 16
pairs randomly selected from all those 105 pairs. A total of 199 workers provided response to this
task through Mechanical Turk. These two datasets were both collected in online crowdsourcing
environments so that we can expect varying worker accuracy where effectiveness of our approach
can be demonstrated.

In real-world datasets, it may happen that two items from two subsets are never compared with
each other, directly or indirectly. In such cases, the ranking will not be unique. Furthermore, if

11



Table 1: Kendall’s tau correlation for different method under Gumbel noise. Group A users all have
the accuracy level v4 and Group B users all have the accuracy level vp. « represents the portion
of all possible pairwise comparisons each annotator labeled in the simulation. The bold number
highlights the highest performance and the underlined number indicates a tie.

Oﬁ):girg. B Methods A
2.5 5 10
BTL 0.767+0.055 0.8364+0.043  0.87940.032
0.25 CrowdBT 0.84740.042 0.9284+0.023  0.962+0.016
HBTL 0.8504+0.041 0.93040.024 0.9644+0.015
_ 08 BTL 0.863+0.036  0.896+0.028  0.92340.026
a="v 1.0 CrowdBT 0.875+0.033  0.930+0.024 0.967+0.018
HBTL 0.875+0.033  0.930+0.024 0.969+0.017
BTL 0.9334+0.022 0.946+0.019  0.959+0.018
2.5 CrowdBT 0.931+0.024 0.947+0.019  0.967+0.017
HBTL 0.9314+0.025 0.94840.021 0.97240.015
BTL 0.743+0.064  0.814+0.048  0.853+0.037
0.25 CrowdBT 0.8234+0.050 0.90940.034 0.954+0.018
HBTL 0.824+0.051 0.908+0.033 0.955+0.018
— 06 BTL 0.837+0.036  0.872+0.033  0.903£0.033
a="v 1.0 CrowdBT 0.853+0.035 0.9114+0.031  0.9554+0.018
HBTL 0.851+0.033 0.913+0.028 0.958+0.017
BTL 0.913+0.032 0.931+0.024 0.948+0.021
2.5  CrowdBT 0.910+0.028 0.935+0.020 0.961+0.016
HBTL 0.91240.029 0.93640.022 0.967+0.017
BTL 0.671+£0.062  0.761£0.053  0.81240.048
0.25 CrowdBT 0.7644+0.065 0.872+0.037  0.933+0.024
HBTL 0.769+0.061 0.873+0.034 0.934+0.022
04 BTL 0.791+£0.051  0.844+0.043  0.866+0.035
a="v 1.0 CrowdBT 0.798+£0.050 0.889+0.029  0.93440.027
HBTL 0.806+0.051 0.891+0.031 0.936+0.026
BTL 0.882+0.034 0.910+0.030  0.919+0.027
2.5 CrowdBT 0.87940.034 0.91240.026  0.94340.022
HBTL 0.8804+0.032 0.91640.028 0.94540.020
BTL 0.575+0.095  0.663£0.078  0.71240.069
0.25 CrowdBT 0.64440.094 0.79840.055 0.884+40.035
HBTL 0.665+0.090 0.805+0.051 0.882+0.034
02 BTL 0.708+0.073 0.768+0.057  0.804+0.039
a="v 1.0 CrowdBT 0.696+£0.081 0.813%0.052 0.87640.034
HBTL 0.702+0.079  0.819+0.052 0.882+0.034
BTL 0.820+0.044 0.861+0.043  0.883+0.033
2.5  CrowdBT 0.803+0.048 0.857+0.037  0.898+0.030
HBTL 0.8074+0.049  0.86140.038  0.904+0.029
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Table 2: Kendall’s tau correlation for different methods under noise from the normal distribution.
Group A users all have the accuracy level v4 and Group B users all have the accuracy level vp. «
represents the portion of all possible pairwise comparisons each annotator labeled in the simulation.
The bold number highlights the highest performance and the underlined number indicates a tie.

Ollfzgfg " B Methods A
2.5 5 10
TCV 0.8114+0.048  0.8604+0.040  0.88540.036
0.25 CrowdTCV 0.881+0.032  0.943+0.021 0.9714+0.014
HTCV 0.882+0.030 0.943+0.021  0.971+0.015
— 08 TCV 0.885+0.036  0.910£0.027  0.92540.029
a="u 1.0 CrowdTCV 0.897+0.030 0.944+0.020 0.973+0.015
HTCV 0.897+0.033  0.944+0.020 0.975+0.013
TCV 0.945+0.021  0.956+0.018  0.96540.018
2.5  CrowdTCV  0.945+0.021 0.95440.019 0.9764+0.014
HTCV 0.94440.021 0.9594+0.017 0.981+0.014
TCV 0.763+£0.059  0.830+£0.043  0.850+0.041
0.25 CrowdTCV  0.845+0.038 0.926+0.023 0.961+40.020
HTCV 0.846+0.040 0.925+0.025  0.961+0.020
— 06 TCV 0.862+0.038  0.892+0.034  0.91240.025
a=>u 1.0 CrowdTCV 0.870+0.035 0.930+0.028 0.962+0.019
HTCV 0.8754+0.033 0.932+0.027 0.963+0.018
TCV 0.9274+0.027 0.943+0.021  0.955+0.019
2.5  CrowdTCV 0.92540.027 0.9464+0.026  0.9684+0.015
HTCV 0.9254+0.027 0.95240.022 0.97440.013
TCV 0.691+0.073  0.790+£0.047  0.80940.048
0.25 CrowdTCV  0.804+0.050 0.901+0.028 0.946-+0.022
HTCV 0.808+0.049 0.904+0.028 0.945+0.022
04 TCV 0.821+0.047  0.859+0.036  0.875%0.036
a=>u 1.0 CrowdTCV 0.8324+0.044 0.90040.035  0.94640.020
HTCV 0.8364+0.043 0.904+0.032 0.947+0.020
TCV 0.901+0.027 0.921+0.029  0.935+0.026
2.5 CrowdTCV 0.8954+0.031 0.92340.028  0.95040.019
HTCV 0.8954+0.030 0.92640.025 0.957+0.018
TCV 0.599+0.088  0.688+0.077  0.7384+0.060
0.25 CrowdTCV 0.689+0.080 0.826+0.046 0.899+0.031
HTCV 0.693+0.082 0.828+0.049 0.898+0.034
— 02 TCV 0.733+£0.070  0.791+0.055  0.815£0.041
a=>u 1.0 CrowdTCV 0.72940.074 0.83640.043 0.904+0.033
HTCV 0.7404+0.072 0.841+0.038 0.901+0.031
TCV 0.856+0.041 0.878+0.036  0.888+0.032
2.5  CrowdTCV 0.844+0.048 0.873£0.035  0.90540.027
HTCV 0.8484+0.041 0.881+0.036 0.913=+0.026
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Table 3: Kendall’s tau correlation for different methods under noise from the Gumbel distribution
when a third of the users are adversarial. The bold number highlights the highest performance and

the underlined number indicates a tie.

O}l{o:gir (;] " B Methods A
2.5 5 10
BTL 0.443£0.107  0.56940.096  0.614+0.085
0.25 CrowdBT 0.852+0.044  0.925+£0.023 0.967=+0.017
HBTL 0.8524+0.045 0.926+0.023 0.966+0.017
— 08 BTL 0.575£0.089  0.663+0.071  0.710+£0.074
o= 1.0  CrowdBT 0.873+0.037 0.931£0.023 0.967+0.014
HBTL 0.875+0.037 0.932+0.024 0.966+0.017
BTL 0.725£0.057  0.780+0.046  0.798+£0.047
2.5 CrowdBT 0.9314+0.025  0.9484+0.019  0.966+0.016
HBTL 0.931+0.025 0.951+0.019 0.973£0.015
BTL 0.384+0.122  0.4914+0.107  0.557+0.095
0.25 CrowdBT 0.822+0.046  0.908£0.030  0.953+0.019
HBTL 0.824+0.044 0.910+£0.028 0.954+0.018
06 BTL 0.546+£0.097  0.627+0.078  0.670+0.080
o= 1.0  CrowdBT 0.8524+0.037 0.911+£0.029  0.954£0.018
HBTL 0.854+0.037 0.914+0.028 0.956=£0.019
BTL 0.684+0.078  0.736+0.064  0.755%0.062
2.5  CrowdBT 0.910£0.028  0.9344+0.025 0.960+0.016
HBTL 0.912+0.029 0.936£0.024 0.965+0.017
BTL 0.323+0.130  0.4054+0.132  0.485+0.109
0.25 CrowdBT 0.742+0.169  0.877£0.033 0.934=£0.025
HBTL 0.766+0.059 0.877+0.035  0.933+0.024
— o4 BTL 0.448+0.118  0.54440.096  0.583+£0.094
a="0 1.0  CrowdBT 0.8104+0.044 0.886+0.031  0.934+0.026
HBTL 0.819+0.045 0.891+0.031  0.93440.029
BTL 0.627£0.087  0.660+0.075  0.698+0.063
2.5  CrowdBT 0.879£0.034  0.913+0.027  0.939+0.023
HBTL 0.880+0.032 0.914+0.029 0.948+£0.022
BTL 0.246+0.145  0.3054+0.151  0.361£0.143
0.25 CrowdBT 0.613+0.235 0.712+0.356  0.848+40.256
HBTL 0.614+0.263 0.709+0.380  0.848+0.249
0.2 BTL 0.336+0.154  0.407+0.127  0.452£0.132
a=u 1.0  CrowdBT 0.64440.282  0.795+0.176  0.878£0.038
HBTL 0.650+0.281 0.807+0.172 0.888=+0.040
BTL 0.498+0.106  0.5484+0.103  0.571+0.098
2.5 CrowdBT 0.803+0.049  0.8584+0.039  0.89740.032
HBTL 0.807£0.049 0.865+0.039 0.900-+£0.029
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Table 4: Kendall tau correlation for different methods under noise from the normal distribution
when a third of the users are adversarial. The bold number highlights the highest performance and

the underlined number indicates a tie.

O]_;E) ;(Eir OV " 4B Methods A
2.5 5 10
TCV 0.4714+0.105  0.59040.095  0.640£0.075
0.25 CrowdTCV 0.882+0.034 0.938+0.023 0.972+0.017
HTCV 0.882+0.033  0.9374+0.023 0.973+0.016
— 08 TCV 0.6424+0.083  0.6944+0.068  0.72240.064
a="u 1.0  CrowdTCV  0.893£0.030  0.945+0.020  0.973+£0.016
HTCV 0.895+0.031 0.947+0.019 0.975+0.017
TCV 0.77240.055  0.8044+0.045  0.821£0.050
2.5  CrowdTCV 0.9454+0.021 0.956+0.019  0.97840.014
HTCV 0.9444+0.021  0.960+0.019 0.982+0.013
TCV 0.416+0.129  0.5274+0.107  0.552£0.099
0.25 CrowdTCV  0.8474+0.039  0.924+0.025  0.960+0.020
HTCV 0.8474+0.039  0.925+0.023  0.960+0.020
— 06 TCV 0.5694+0.086  0.6484+0.066  0.686+0.080
a="u 1.0  CrowdTCV  0.866£0.036  0.930+£0.024  0.966+0.018
HTCV 0.870+0.036 0.93240.025 0.966+0.018
TCV 0.71840.060  0.7624+0.045  0.786+0.055
2.5  CrowdTCV 0.9264+0.027 0.9494+0.023  0.969+0.014
HTCV 0.9254+0.027  0.9524+0.020 0.972+0.014
TCV 0.359+0.119  0.472+0.116  0.514+0.103
0.25 CrowdTCV  0.797£0.053  0.893+£0.034 0.942+0.022
HTCV 0.799+0.048 0.896+0.031 0.938+0.022
— o4 TCV 0.487+0.116  0.5774+0.088  0.587+0.088
a="u 1.0 CrowdTCV 0.842+0.049 0.898+0.029 0.94540.021
HTCV 0.843+0.046 0.902+0.027  0.944+0.022
TCV 0.648+0.073  0.7044+0.071  0.718+0.066
2.5  CrowdTCV 0.895+0.031  0.9254+0.031  0.95140.021
HTCV 0.895+0.030 0.929+0.028 0.957+0.018
TCV 0.2594+0.147  0.3494+0.135  0.382£0.133
0.25 CrowdTCV  0.600£0.340 0.826+£0.044 0.895+0.038
HTCV 0.636+0.282 0.828+0.044 0.893+0.036
02 TCV 0.397+0.119  0.4364+0.115  0.469+0.100
a="u 1.0 CrowdTCV 0.721+£0.065 0.834+0.043 0.901+0.033
HTCV 0.736+£0.066 0.832+0.046 0.905+0.032
TCV 0.51840.102  0.5774+0.098  0.600+0.077
2.5 CrowdTCV 0.843+0.049  0.873+0.037  0.90840.030
HTCV 0.848+0.041 0.880+0.036 0.917+0.028
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data is sparse, the estimates may suffer from overfitting. To address these issues, regularization is
often used. While this can be done in a variety of ways, for the sake of comparison with CrowdBT,
we use virtual node regularization (Chen et al., 2013). Specifically, it is assumed that there is a
virtual item of utility sg = 0 which is compared to all other items by a virtual user. This leads to
the loss function £ + A\gLy, where Lo = — Zie[n] log F' (sg — si) — Zie[n] log F' (s; — sg) and A\g > 0
is a tuning parameter.

We evaluate the performance of the methods for A\g = 0,1,5,10. For different values of Ay,
HBTL performs best more often than any other method and, in particular, it performs best for
Ao = 0. Table 6 reports the best performance of each method across different regularization values
for the two real-world data experiment. It can be observed that HBTL and HTCV outperform their
counterparts, CrowdBT and CrowdTCV, as well as the uniform models, BTL and TCV.

Table 5: Ground truth for “Country Population” dataset.

Country Population (million)
China 1410
India 1340

United States 324

Indonesia 264
Brazil 209

Pakistan 197

Nigeria 191

Bangladesh 165
Russia 144

Mexico 129
Japan 127

Ethiopia 105

Philippines 104.9
Egypt 97.6
Vietnam 95.5

Table 6: Performance of ranking algorithms on real-world dataset. The bold number highlights the
highest performance.

Dataset BTL TCV  CrowdBT CrowdTCV HBTL HTCV
Reading Level 0.3472 0.3452 0.3737 0.3672 0.3763 0.3729
Country Population 0.7524 0.7524 0.7714 0.7714 0.7905 0.7714
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Table 7: Performance of ranking algorithms for the “Reading Level” dataset with different regular-
ization parameters. The bold number highlights the highest performance.

AMA=0 X=1 X=5 M=10

BTL 0.3299  0.3433  0.3472  0.3402
TCV 0.3294 0.3423  0.3452  0.3375
CrowdBT  0.3490 0.3737 0.3648  0.3535
CrowdTCV 0.3512 0.3672 0.3511  0.3388
HBTL 0.3608 0.3660 0.3719 0.3763
HTCV 0.3578  0.3696 0.3729  0.3680

Table 8: Performance of ranking algorithms for the “Country Population” dataset with different
regularization parameters. The bold number highlights the highest performance.

AMA=0 X=1 X=5 M=10

BTL 0.7524  0.7524  0.7524  0.7524
TCV 0.7524  0.7524  0.7524  0.7524
CrowdBT  0.7714 0.7714 0.7714 0.7524
CrowdTCV 0.7714 0.7714 0.7714 0.7524
HBTL 0.7905 0.7905 0.7524  0.7524
HTCV 0.7714  0.7714  0.7524  0.7524

6.3 Analysis on regularization effects

Detailed result with various regularization settings can be found in Table 7 and Table 8. The
reported values are Kendall’s tau correlation. It shows that without regularization our method
outperforms other methods. And with virtual node trick, it shows relative amount of improvement
in the final ranking result, yet not essential. However, this method needs to tune another parameter
Ao- If no gold/ground-truth comparison is given, there will be no validation standard to tune
this parameter. Furthermore, the performance of the proposed methods is less dependent on the
regularization parameter, which facilitates their application to real data. It is also interesting to see
that our method is less prone to be affected by the regularization parameter.

7 Conclusions and Future Work

In this paper, we propose the heterogeneous Thurstone model for pairwise comparisons and partial
rankings when data is produced by a population of users with diverse levels of expertise, as is often
the case in real-world applications. The proposed model maintains the generality of Thurstone’s
framework and thus also extends common models such as Bradley-Terry-Luce, Thurstone’s Case V,
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and Plackett-Luce. We also developed an alternating gradient descent algorithm to estimate the
score vector and expertise level vector simultaneously. We prove the local linear convergence of our
algorithm for general HTM models satisfying mild conditions. We also prove the convergence of
our algorithm for the two most common noise distributions, which leads to the HBTL and HTCV
models. Experiments on both synthetic and real data show that our proposed model and algorithm
generally outperforms the competing methods, sometimes by a significant margin.

There are several interesting future directions that could be explored. First, it would be of
great importance to devise a provable initialization algorithm since our current analysis relies on
certain initialization methods that are guaranteed to be close to the true values. Another direction
is extending the algorithm and analysis to the case of partial ranking such as the Plackett-Luce
model. Finally, lower bounds on the estimation error would enable better evaluating algorithms for
rank aggregation in heterogeneous Thurstone models.

A Implications of Specific Models

Our Theorem 5.5 is for general HTM models that satisfy Conditions 5.1, 5.2, 5.3 and 5.4. In this
subsection, we will show that the linear convergence rate of Algorithm 1 can also be attained for
specific models without assuming theses conditions when the random noise ¢; in (3.3) follows the
Gumbel distribution and the Gaussian distribution respectively.

A.1 Heterogeneous BTL model

We first consider the model with Gumbel noise. Specifically, {€;}i=1,...n follow the Gumbel distribu-
tion with mean 0 and scale parameter 1. Then we obtain the HBTL model defined in (3.6). The
following corollary states the convergence result of Algorithm 1 for HBTL models.

Corollary A.1. Consider the HBTL model in (3.6) and assume the sample size k > n? log(mn)/m?.

Let ||8*|loo = Smax; maxy |7 = Ymax and miny, |[7**| = Ymin. Assume YmaxSmax = Co for a constant

Co>1/2 and

< \/MHS*HQ ) ’Ymine5co

e n 32\/§’Ymax(1 + 6500)2 .

Suppose the initialization points s(*) and () satisfy that ||s(© — s*[|3 4 ||7(*) — ~*||3 < 2, where
r = min{||s*||2/2, Ymin/2, Smax, \/TmaxSmax |- 1f we set the step size small enough such that

mne>“oT?
6(1 + €5C0)2(ml'3 + 32n2C3)’

m="mn2 <

where Ty = min{ymin/2, ||s*|]2} and T's = max{27ymax, 2||s*||2}, then the output of Algorithm 1
satisfies
An?log(4mn?)

(T) _ *2 (T) _ %12 < 2,7
s = 573 + Iy — |3 < 27 + =B
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with probability at least 1 — 1/n, where p = 1 — n(u — 61(I's/n? + 32C2/m))/2 and A is a constant
which only which depends on Cj, Ymax and I'y.

Remark A.2. According to Corollary A.1, when the initial points s(©) and () lie in a small
neighborhood of the unknown parameter s*,v*, the proposed algorithm converges linearly fast
to a term in the order of O(n?log(mn?)/(mk)), which is called the statistical error of the HBTL
model. Note that when m = 1, the statistical error reduces to O(n?log(n)/k), which matches the
state-of-the-art estimation error bound for single user BTL model (Negahban et al., 2017). In
addition, we assumed that ||s*|cc < O(v/m/n||s*||2) in order to derive the linear convergence of
Algorithm 1. When m is in the same order of n, the requirement reduces to ||s*||cc < O(||8*]|2/+v/7).
This assumption is similar to the spikiness assumption in Agarwal et al. (2012); Negahban and
Wainwright (2012), which ensures that there are not too many items that have zero or nearly zero
scores.

A.2 Heterogeneous Thurstone Case V model

Now we consider the HTM model with Gaussian noise. Assume that {¢;};=1, ., are i.i.d. from
N(0,1). Then the general HTM model becomes HTCV model defined in (3.7), which generalizes
the single user TCV model (Thurstone, 1927). Before we present the convergence results of
Algorithm 1 for this model, we first remark some notations of the normal distribution to simplify
the presentation. In particular, let ®(z) be the CDF of standard normal distribution. We define
H(z) = (®'(2)?>—®(x)®"(x))/®(x)?, which can be verified to be a monotonically decreasing function.

Corollary A.3. Consider the HTCV model in (3.7) and assume the sample size k > n? log(mn)/m?.
Smaxs Ymax, Ymin and Cp are defined the same as in Corollary A.1. Assume spyax satisfies

< vm|[s*|lz YminH (5Cp)
ax = n 307 max (®(—5Co) 1 + H(—5Cp))’

Suppose the initialization points s(*) and () satisfy that ||s© — s*||3 + ||7(*) — ~*||3 < 2, where
r = min{||s*||2/2, Ymin/2, Smax; \/VmaxSmax }- 1f we set the step size

mnI'2H (5C)
6(mI'§ 4+ 50n2C2)H (—5Ch)?’

m="mn2 <
where Ty = min{ymin/2, ||s*|]2} and T's = max{2ymax, 2||s*||2}, then the output of Algorithm 1
satisfies

A'n? log(4mn?)
mk

s = 515 + [T =713 < " +
with probability at least 1 — 1/n, where p = 1 — n(u — 6n(I'3/n% + 32C2/m))/2 and A’ is a constant
which only depends on Cp, Ymax and I';.

Remark A.4. Corollary A.3 suggests that under suitable initialization, Algorithm 1 enjoys a linear
convergence rate when the random noise follows the standard normal distribution. The statistical
error for the HTCV model is in the order of O(n?log(mn?)/(mk)). We again need the ‘spikiness’
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assumption on the unknown score vector s* in order to ensure the algorithm to find the true
parameter. The results are almost the same as those of the HBTL model presented in Corollary
A1 except that the constants in the HT'CV model depends on the normal CDF @ and its first and
second derivatives.

B Proof of the Generic Model

In this section, we provide the proof of Theorem 5.5 for general heterogeneous Thurstone models.
Proof of Theorem 5.5. According to the update in Algorithm 1 and the fact that 1T s* = 0, we have
) 573 = (T — 107 m) (34 — )
<[5 — 5713

=115 = 573 + [ VoL(s®, 73 = 2 (VoL (s, 40), 50 — 57),

where the inequality comes from the fact that |[I— 117 /n|s < 1. We first bound the second term
on the right hand side above

IVsL(sW, )3 < 3V £(sW,41D) = Vo £(sW, )15 + 3 Vs L£(5W,77) = VsL(s™, )13
+3[VsL(s*,7") = VsL(s", 7|3
< 3MF Y — |3+ 3L7 || — (13 + Bea (k. n)?,

where the first inequality is due to Vs£(s*,v4*) = 0 and the second inequality is due to Conditions
5.2, 5.3, and 5.4. Now we bound the inner product term. Note that

(VoL (sW, 411, s — s%)
= (Vo L(s, 41) = VoL (s*,41), 81 — 5) + (Vo L(s", 7)) = VoL(s*,77), s — s7)
+ (Vs L(s*,4%) — VsL(s*,7%), s) — s*).

By strong convexity (Condition 5.1) of £ we have
(VaL(sD,4W) = VoL(s*,41), ) — s%) > |5 — s*I3. (B.1)

Applying Young’s inequality and Condition 5.3, we obtain

A
V)
)
—~
Y2
*
2
=
~—
|
»
)
—~~
Y2
*
2
*
SN—
IH
W
>
N
|
V2]
_*
IH

(VsL(s* A1) = VsL(s™,77), s — s7)| <

* 1 *
IV =115 + 5[5 — 5713, (B.2)

where o > 0 is an arbitrarily chosen constant. In addition, by Condition 5.4 and Young’s inequality
we have

(VsL(s",7") = VsL(s,7"), 8 — 87| < | VsL(s™,77) = VL8, A2 |8 — 872
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1 M1 *
= Tmel(k,n)Z + ?Hs(t) - s*3: (B.3)
Combining (B.1), (B.2) and (B.3), we have

aM? 1
189 = %13 = =SV =13 = 5 ek, m)*.

2

-1
- 2

Therefore, we have

* 1 * *
1569 = a1 < (1432207 (s = ) )15 = o[+ M3307 + o)~ [
+ (307 +m/p)er(k,n)>. (B.4)

Similarly, we can bound |[y**1) — ~*||3 as follows

ES 1 ES *
D — 2 < (1 3L — e <u2 - ﬁ))uw) 34 M3 + A s — 52

+ (303 + n2/p2)ea(k,m)?, (B.5)

where 3 > 0 are arbitrarily chosen constants. In particular, set o = po/(4M3%), 8 = p1/(4M2) and
n =12 =n. When My, My < \/uijiz/4, we have

s — (13 + [T — 4713 < (14 3(LF + M3)n® — pan/2)||sY) — 5713
+ (14 3(L5 + M{)n3 — pan/2) |7 — |13
+(3n° +nfm)er(k,n)? + (30* + n/p2)ea(k, )
< (14 3(L% + M) — un/2) (|8 = 875+ 17" = +7*[3)
+ (307 +n/p) (€1 (k,n)? + ea(k, m)?), (B.6)
where I = max{Ly, Ly}, M = max{Mj, My} and p = min{yu1, uo}. Note that we have |sg — s*||3 +

7o — v*[|3 < 7% by some initialization process. We can prove that ||s) — s*||3 + [|[v®) — ~*||3 < 2
for all ¢t > 0 by induction. Specifically, assume it holds for ¢, then it suffices to ensure

(80 + 1/ ) (e (k, ) + ea(k, n)?) < (/2 — 3(L? + M2)n), (B.7)

which holds when k is sufficiently large. Choosing 7 to be sufficiently small, we can ensure that
1+3(L% + M?*)n? — un/2 < 1. In particular, we can set = u/(12(L? + M?)), which implies

s = &[5 + 7D = (15 < p(lls) = s*5 + [ = ~73)
+(3n* +n/p)(er(k,n)? + e2(k,n)?),
with p =1 — u?/(48(L? + M?)). Therefore, we have
‘ N ' ' 30* +n/p
I = 571+ 90 =271 < (0 = 5" + [0 = 7' I3) + 222 ca b )? + ol )

21



k‘, 2_|_ k, 2
2yt 4 €1l + )
o

which completes the proof. O

C Proofs of Specific Examples

In this section, we will provide the convergence analysis of Algorithm 1 for two specific examples
with different noise distributions. In particular, we will show that Conditions 5.1 and 5.2 can be
verified under these specific distributions. Recall the log-likelihood function

Llsm¥) =3 S lowF (s — ) V). ©1)

u=1 (Z,])EDu

For the ease of presentation, we will omit Y in the rest of the proof and assume that the observation
set D, is parametrized by k = |D,| and vectors a;, € R" for [ = 1,...,k, where each a;, = e;, — ¢,
for some pair of items (i, j;) that is compared by user v and e; is the natural basis. Then, we can
rewrite the loss function in terms of vector s as follows

m k
L (s, mi ZZ log F ('yualus YZTZ‘JZ) . (C.2)

Denote g(z) = —log F(z) for z € R. Then we can calculate the gradient of loss function £ with
respect to s and ~.

k
1 m
V ﬂ Z Z g/ (VUaITuS> 7ual,u7

u=1 [=1

-Z g (71a ) al s
=1 1,15 ) &1 (C.3)
] .
V’Y‘C(s/-)/) = .
mk Zl 1 g <7ual u ) alT,uS
And the Hessian matrix can be calculated as
1 m k
i) = 35 () Pl
u=1 =1
SF g (71aT s) a' sal s
=1 l',l 1,158 1 (C.4)

1
V2L(s,~) = —diag i
R ladSdl k ’
mk kg (val,s) al,sa),s
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where diag(x) is the diagonal matrix with diagonal entries given by x.

C.1 Proof of Heterogeneous BTL model

Recall the definition in (4.1). The loss function can be written as

m k
#Zzg (’Yﬂal usvy;,?jl> ’ (05)

u=1 [=1

where g(-) is defined as

g(2; V%) = —log m (C.6)
Therefore, the loss function of the HBTL model can be rewritten as follows:
|k
L(s,v) = — Z Z log (1 + exp(%azus)> le%alTu (C.7)

u=1 [=1

Recall the gradients and Hessian matrices calculated in (C.3) and (C.4). We need to calculate ¢/(+)
and ¢”(-). In particular, we have

Y 4+ (1 -Y)exp(z) exp(x)
N2:Y) = : Mz V) = — 2P C.8
9 ) 1+ exp(x) g ) (14 exp(x))? (C8)
It is easy to verify that ¢’(x) is monotonically increasing on R. For any |z| < 6, we have
-1 -1 —0 0
<gd@Y=1)< C <@y =0< (C.9)

14+e? 1+e€f’ 14+e? 1+ef

Furthermore, ¢”(x) = ¢"(—x), ¢"(x) is increasing on (—o0,0] and decreasing on [0, c0). Hence, for
all |x| < 6, we have

/(14 < g'(2) < g(0) = 1/4. (C.10)

We can further show that the following lemmas hold, which validates Conditions 5.1, 5.2, 5.3 and
5.4 used in the convergence analysis.

The first two lemmas verify the strong convexity and smoothness of £ with respect to s and ~
respectively.

Lemma C.1. Suppose the noise € follows the Gumbel distribution and the sample size mk >
64(Ymax + )2/ (Ymin — 7)?nlogn. Let r < min{smax, \/YmaxSmax}, for all s,s" € R™ v € R™ such
that ||s — s*[|o < r,||s' — s*||]2 < r and ||y — 4*||2 < r, we have

L(s,7) 2 £(s',7) + (VoL(s',7) s — &) + Eh]ls = 5[,

L
L(s,7) < L(',7) + (VsL(s',7),8 — 8') + =-||s — /||,
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where the coefficients are defined as

(’Ymin _ 7,.)265'Ymax5max L _ (,ymax + ,,4)2
n(l —|— 65'Ymax5max)2 ’ 1 n :

p =

Lemma C.2. Suppose the noise € follows the Gumbel distribution and the sample size satisfies k >

18(smax+7)*n?/(m2(||s*|l2+7)*) log(mn). Let 7 < min{smax, \/YmaxSmax }, for all s € R? v, 4" € R™
such that [|s — 5% <7, s'1 =0, and ||y —v*|2 < 7, |7 — v*||2 < 7, we have with probability at
least 1 — 1/n that

£(3,7) = £(s,7) + (V4 L(s,7),y =) + Z v = 'l
L
E(S,’Y) < ,C(S,’Y/) + <V’Y‘C(S’7/)7’Y - ’7/> + ?ZH’Y - ’ylH%a

where the coefficients are defined as

(Hs* ||2 + r)2e5'\fmax$max

s*la 4+ 1)?
. (i

n(]_ + 65’Ymax5max)2 n

Lemma C.3. Let r < min{Smax, /TmaxSmax}, for all s € R™" v € R™ such that [|s — s*||a <
78" = s*la <7 and [y —y*[l2 <7 [[v = ¥*[l2 < 7, we have

\/5(1 + 2’YmaX5max) H _ /”
\/m Y =712

\/5(1 + 2’Ymax5max)
Jm

Lemma C.4. Let r < min{smax, \/YmaxSmax }, for all s € R” v € R™ such that ||s — s*||2 < r and
¥ —v*|l2 < 7. Denote L as the expected loss which takes expectation of £ over the random choice

IVsL(s,7) = VsL(5,7)[|2 <

IV4L(s,7) = V4 L(s', 7|2 < Is — 8.

of comparison pair. We have

2(Ymax + 1) [210g(2n)

Hvsﬁ(sv"Y) - vsﬁ(sv’Y)HZ < 61(k7n) = 1+ e~ YmaxSmax mk )

5 10YmaxSmax 2 1Og(2mn)
HV'YL(S”Y) - V'VE(S’ 7)H2 S 62(k7 n) = 1 + e5"/max5max mk ’

holds with probability at least 1 —1/n.

Proof of Corollary A.1. Now we prove the convergence of Algorithm 1 for Gumbel noise. Our proof
will be similar to that of Theorem 5.5. In particular, we only need to verify that Conditions 5.1, 5.2,
5.3 and 5.4 hold when the noise follows a Gumbel distribution. According to Lemmas C.1 and C.2,
we know that L£(s,7y) is pi-strongly convex and Li-smooth with respect to s, and is ua-strongly
convex and Lo-smooth with respect to 7. More specifically, when mk > 64nlog(n), we have

1 2 (Ymin = 7)2*C/(n(1+€>0)%), Ly < (ymax +7)%/n, (C.11)

where we use the fact that YmaxSmax = Co. In addition, note that spmax < /m/n|s*||s and
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|s® — s*|| < r. Hence if mk > 18log(mn), we have

p2 2 ([[8%]l2 + )%/ (n(1+*0)%), Ly < (|s*]|l2+7)*/n (C.12)

By Lemma C.3 and the assumption that Cy > 1/2, we know that £ satisfies the first-order stability
(Condition 5.3) with M; = My = 4v/29maxSmax/+/m. Note that by assumption, we have

7m1n620 \/MHS*HQ
16V 2max(1 +¢20)2  n

Smax <

This immediately implies that M = My = My < \/uipz/4. Therefore, by similar arguments as
in the proof of Theorem 5.5, we need to set step sizes n; = no = 1 < u/(6(L* + M?)), where
= min{py, po}, L = max{Ly, La}. In fact, it suffices to set

mne>“oT?

< s
TS 6(1 + €500)2 (I3 + 32n2C7)

with I'1 = min{ymin/2, ||s*||2} and T's = max{2ymax, 2||s*[|2}. We thus obtain

e1(k,n)? + ea(k,n)? L An?log(4mn?)

) _ 12 o [l < An” log(4mn”)
”S S ||2+ ||7 - ||2 T p + ,LL2 = mk 9

where p =1 —n(u — 6n(T'3/n? + 32C2/m))/2 and the last inequality comes from Lemma C.4 with
the constant A defined as follows:

A — ma 200C2(1 + €°90)2 8(ymax + 7)2(1 + €5C0)*
= max 41000 T T+ e 5002

This completes the proof. O

C.2 Proof of Heterogeneous Thurstone Case V model
In this subsection, we provide the analysis of our algorithm when the noise ¢; follows a Gaussian

distribution, which results in the Thurstone model. The log-likelihood function can be written as

1 m
E(Sa’ya - TZZQ Yudy u37}/z§31) (013)

m
u=1 =1

with ¢(-) defined as g(z) = —log ®(x) with ®(-) be the CDF of the standard normal distribution.

Note that Pr(Y;, =1) = @(yuafu ) and Pr(Y;;, =0) = @(VualTu ) = @(—vuazus). Thus we
can write g(-) as g(%al WS Ye) = —log @((2Y;) — )’yual .S)- Note that (2Y —1)? = 1, we have

(2Y — 1)9'(z)

?'(2)? — @(2)2"(x)
() ’ '

9"(x;Y) = B(0)?

g (z;Y) =~
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In order to bound ¢'(z) and ¢”(x), we first calculate the derivatives of ®(x) as follows:

z 1 z2 ]. 502 —X ac2
O(x) = ~ 7 de, ' (z) = 7, " (z) = 7, C.14
“)./m —e s (1) = ——¢ () = = (C.14)

For any 6 > 0 such that |z| < 6, we have
e=0°/2 1

T2 OIS e

We can verify that ¢”(z) is monotonically decreasing on R? and ¢”(z) > 0 also always hold. Thus
for all |z| < 6, we have ¢"(0) < ¢"(z) < ¢"(—96).

Proof of Corollary A.3. Recall the derivation of the gradient in (C.3) and the Hessian in (C.4) of
the loss function £. In order to verify Conditions 5.1, 5.2, 5.3 and 5.4, we only need the upper
and lower bounds of ¢/ (%azus; Y
the same proof techniques as in Section C.1, we can also establish strong convexity, smoothness,

Yforallu=1,...,mand [ = 1,... k. Therefore, using exactly

first-order stability and the statistical error bound for sample loss function £ when the noise ¢
follows the standard normal distribution. We omit the proof since it is the same as that of the
Gumbel case. We can verify that £ is pui-strongly convex and Li-smooth with respect to s, and
is po-strongly convex and Ls-smooth with respect to «v. The coeflicient parameters are defined
as 1 = (Ymin — 7)2H(5C0)/n, L1 = (Ymax + 7)?2H(=5Co)/n, pa = (||s*|l2 + r)2H(5Cy)/n and
Ly = (||s*]|2 +7)2H(—5Cp) /n. Note that H(z) is a function defined based on the normal CDF ®(-):

H(z) = [@'(2)* - ®(x)@" (x)]/®(x)?,

where ®, ', & are defined in (C.14). The loss function £ also satisfies Condition 5.3 with M = M; =
My = (1/®(—5C0) +5v21 H(—5C0) YmaxSmax)/v/m7. In order to make sure that M < Vi iz /4, we
only need smax < VT YminH (5C0)/[4Ymax(2/®(—5C0)) + 521 H(—5C))] - v/m)||s*||2/n. Therefore,
by Theorem 5.5, if we choose step sizes 171 = 172 = 1 such that

mnI?H (5Cp)
6(mI'3 + 50n2C3)H (—5Cy)?’
with Ty = min{ymin/2, ||s*[l2}, T2 = max{2ymax, 2[/s*||2},

n <

then we are able to obtain the following convergence result:

61(k7 7’L)2 + 62(k7 ’I’L)2

s = s7[13 + 17 = ¥*[13 < r*p" + 2 :

(C.15)

where = T2H(5Co)/n, p = 1 — n(p — 6n(I'3/n? + 32C2/m))/2 and €;1(k,n), e2(k,n) are the
statistical error bounds. Similar to the proof of Lemma C.4, we know that e1(k,n) = (Ymax +

r)/(vV7T®(—5Cp))/2log(2n)/(mk) and €z(k,n) = 107maxSmax/(v7TP®(—5Cp))/log(2mn)/(mk). Plug-
ging these two bounds into (C.15) yields

A'n?log(4mn?
I — 5713 + [ — |3 < 52t 4 2T IOBU)

I
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which holds with probability at least 1 — 1/n, where A’ is a constant defines as follows.

A 2 max{(Ymax + 7)2, 50C3}
7l H (5C))2®(—5C))?

This completes the proof. ]

D Proofs of Technical Lemmas

In this section, we provide the proofs of technical lemmas used in the previous section.

D.1 Proof of Lemma C.1

We first lay down the following useful lemma.

Lemma D.1. (Tropp, 2012) Consider a sequence of i.i.d. random matrices {Xj} in R¥? with
E[Xk] = 0 and || X|l2 < R. Then for all t > 0

2
Pr <‘ ZXk 2t> §dexp<—202+2Rt/3>,
k

where o2 = || ¥, E[XZ] 2.

Proof of Lemma C.1. Using Taylor expansion, we have
1 ~
£(S7’)’) = £<8/77) + <VS£(S,7’Y)7 s = S/> + 5(8 - S/)TVi£(87’y)(8 - S/>7

where 8§ = s+6(s’—s) for some 6 € (0,1). In order to show the strong convexity and smoothness of L,
we need to bound the minimal and maximum eigenvalues of V2£(s,~). Note that s, lie in a neigh-
borhood with radius r of the true parameters s*, v* respectively. When r < min{smax, v/7maxSmax }»
we have

"Yual—,rusl < |(7u - ’)/Z)alT,u(s - 8*)‘ + "Yzal—,ru(s - 8*)’ + ”Y;al—,rusﬂ < 57maxsmax- (Dl)

For any A € R", we have

m k
1 (’7u)2 eXp(E)’YmaXSmax) T T Tw2
- ATaal A<A A
mk Z Z (1 + eXp(E)'YmaxSmax))Q VR RTE VS,C(S ’Y)

1
mk

NE
M?r

g” <'Yual—7ru3> (’Yu)2ATal,ual—|:uA

Il
—

=1

k
Z(’Vu)2ATal,ual—|:uAa
1i=1

u
1

<
— 4dmk

NE

W

u
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where we used the monotonicity of ¢”. Since a;,, = e;, — €, and ¢, j; are uniformly distributed, we
have E[amazu] = E[eileiTl + ejlejTl - eile; ej, n] 2/nI —2/n(117 /n). We define

21—11"/n
Xl,u = (7u)2 [al,ualT,u _ (/):| , L=

n

2(I-117/n)

(D.2)

Thus we have E[X;,] = 0. Furthermore, we have ||X; ,|l2 < 2(Ymax + 7)? and E[X?u] < 4(Ymax +
r)*(n —1)/n?(I—11"/n). Applying Lemma D.1 yields

H(ES

u=1 [=1

—t2
> t) < 2nexp <8(7max + )4 (n — 1)/ (n2mk) + 4t(Ymax + r)z/(?ﬂnk‘))

—12
< 2nexp <8('Ymax + r)4/(nmk) + 4t('Ymax + T)2/(3mk> )7

which implies that

1 max 2] 1
H § E X1 = 8(max + 1) 98T | A(ymax + )2 2
mk == 3mk nmk
logn
< ===
< 8(Ymax +7) nmk

holds with probability at least 1 — 1/n, where the last inequality holds when mk > 4/9nlogn.
Therefore, we have

1 logn (Ymax + 7’)2
2 2

ViL < (Ymax 2 =< ’
IVEL(s; V)2 < (¥ r) <2n nmk) n

On the other hand, for any A € R” such that AT1 = 0, we have

m k
1 1
72 :E ATX A > 892 OgnHAIIw
m

u=1 =1

which implies

2 min — 7T 2 lo
N L e e I

Therefore, when k is sufficiently large such that mk > 64(Ymax + r)2 / (Ymin — r)znlog n, we have

(')’max _ r’o)265"/maxsmax
n(l + 657max3max)2

Amin (Vgﬁ(s,'y)) >

This completes the proof. O
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D.2 Proof of Lemma C.2
Proof. Using Taylor expansion, we get

1

£(377) = E(Sv '7/) + <V~/£(S,")’,), Y- 7/> + 5(’7 - FY/)TV?\/E(‘S?ﬁ)(FY - 7,)7 (D.S)

where 4 = v + 0(y' — «) for some 6 € (0,1). Recall the Hessian matrix with respect to ~:

[k n T T oanT
=19 (7131,13) ;154,18

1
V2L(s,~v) = —diag i
Sl k
mk lel g// (Vual—,rus> al—l,—usal—l,—us

For any fixed u, we denote X;, = alTusalTus — s'Ls, where L is defined as in (D.2). Recall the

calculation of ¢” in (C.8),(C.10) and that |v,a, 8| < 5YmaxSmax by (D.1), we have

65'Ymax5max

L) - exp(1ua],5)

1
<g" (v ay <.
e 1+ exp(’yual—rus))2 4

(1 _|_ 65’7max5max)2 -

Since V%E(s, ~) is a diagonal matrix, the eigenvalues of V?Y,C(S, ~) can be bounded by

eS'Ymaxsmax . 1

5
1 1 g p
< 7 max — Z (azus) . (D.4)

Since sT1 = 0, it is easy to verify E[X,] = E[ST(alyuaZu —L)s] =0 and |X},| < 6(Smax + )% For
any fixed u, applying Hoeffding’s inequality yields

1 k 1 k m2t’k
P - — E X, >t =Pr| — E X, >t) < - .
' < mk b = > ' <mk =1 e ) =P ( 18(5max + 7“)4)

Further applying union bound, we have

1 k 1 k m2t2k
L >t < — > < T 18(5m )
Pr <m3x - ;Xl,u = t) < zu:Pr <k ;Xl,u > mt) < mexp < 18(Sma +7,)4>’
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which immediately implies that

k
1 1
)\max(V?YE(S, 7)) < Z IIlleX % Z alT,usaIus
=1
(HS*H2 + 7")2 3(Smax + 'f')z 2 log(mn)
< +
B 2n dm k

(D.5)

holds with probability at least 1 — 1/n, where the last inequality is true when the sample size
satisfies k > 5(smax + 7)*n2/(m?(||s*||2 + 7)*) log(mn). On the other hand, we also have

1 k 1 k m2t2k3
P _ Xu>t < P - = X’U,Z t] < T YRS Y A
r<mﬁ‘x ik 2 2 )‘Z r< P m> mexp( 18<smax+r>4>

which leads to the conclusion that

5'Ymax5max 1 k T T
max —— al usal us
mka ) ;

/\mln(v L(s,7v)) > BymanS 2
(T ey "2 i £

el 2(|Is*ll2 +7)*  3(Smax +7)* [2log(mn)
- (1 + 65’Ymaxsttlax)2 n m k
* 2 ,5YmaxSmax
_ (sl +7)%e (0.6)

n(l + 65'Ymax5max)2

holds with probability at least 1 — 1/n, where the last inequality is due to k > 18(Smax +
r)*n?/(m?(||s*||2 + r)*) log(mn). O

D.3 Proof of Lemma C.3

Proof. Recall the gradient of £ with respect to s in (C.3). It holds that

2

m k
|VsL(s,7) — VsL(s,7)|2 = Hyi ZZ ('7ualu )% —q (%ZaIuS) 'y;)al,u
—1

+| g’ (o' (vaius) = o (vial,s) )]

Note that we have |¢’(1.a;,8)| < 1 and |la; /|2 = v/2. In addition, by the mean value theorem we
have

q (vuaZUS) —yg (%’LazT uS ) = ¢"() (v — V)2l s,
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where = = ty,a;, s + (1 — t)y,a/ s for some ¢t € (0,1). By plugging the range of v, and s, we
have |z| < 5YmaxSmax by (D.1) and hence |¢”(z)| = |e®/(1 + €%)?| < 1/4. Now we can bound
|IVsL(s,v) — VsL(s,v)||2 as follows:

m k
1
Hvsﬁ(sa '7) - vs£(37 '7/)H2 < ﬁ Z Z \@(1 + 2'Ymax3max)|’7u - 7;‘
u=1 [=1
> \/m .

Now we prove the upper bound of ||V4L(s,y) — V4 L(s',7)||2. First, we have by (C.3) that

Zf:l alT,l (9, (71alT,1 3) s—¢ (713213/) 3’)
) .

J— / - — .
Vablem) = VAl ) = Dh Ik ol (o (uals)s — o () )

Note that for each u, we have

alTu (g’ (%alTuS)S —d ('yuazus') s')
- aZu [g’ (yualTus) (s —s')+ (g’ (’yuazus) —q (’yualT,us’))s’}. (D.7)

For the first term in (D.7), we have
a9’ (vuaus) (s = 8))| < V2[ls = &'l
For the second term in (D.7), applying the mean value theorem yields

) \@'Ymax Smax
4

T

|, (' (wal,s) — o' (el ,8))s| = |9 (@)ral, (s — §')a/, 8| < |s — '||2,

where = = ty,a, s + (1 — t)y*a/ s’ for some t € (0,1). Therefore, we have

\/5(1 + 2’Ymax5max)
Jm

which completes our proof. O

IVL(s,7) = VAL(s',7)]2 < Is = s'l|2,

D.4 Proof of Lemma C.4

Proof. According to (C.3), the gradient of £ with respect to s is

1 ( -Y+(1-Y) exp(%alTus))yual,u
Vit = LY 1 2] |
el + exp(’yuams)

31



By assumption we have |v,| < (Ymax + 7) and |7ual—rus\ < 5YmaxSmax by (D.1). In addition, we have

Yuaru/(1+ exp(yuaus))|l2 < \@(’ymax +7)/(1 4 e~ P maxsmax) - Applying Hoeffding’s inequality, we
have

_(1 + 6_5"/maxsmax)2mkt2 >

Pr([[VoL(s,7) — VaL(s,7)|l2 > t) < 2exp ( 8(Ymax + 1)

which implies that

2(Ymax + 1) [2log(2n)

||Vs£(87'7) - V,SL(S77)H2 — 1 + 675"/max5max mk‘

holds with probability at least 1 — 1/n. Recall the calculation in (C.3), the gradient of £ with
respect to 7 is

[k / T T
=19 (7131,13> 18

Vo L(5,7) = — ‘
v mk Zle J (’YuaZUS) alTus

The squared statistical error is

2
IV L(5.%) — VL5 )2 = Z[Z a3 am—E[gf(vuazu@az,u]fs},

l

which implies for all £ > 0
Pr ([[V4L(8,7) = V4L(s,7)|]2 > t)
1
<Pr (max S (0 (als)ar — Elg' (v, s)aa]) s > mt)

l

1 T T T
< %:Pr (k: Zl: (9 (v y8)aru — Elg' (rua),8)as.]) s > \/ﬁt>,
where the last inequality is due to union bound. For each user u, we have
/ T / T T 10¥maxSmax
(9" (vuayy8)aru — Elg' (vuay, s)aul]) 8| < 1+ o tmaxSmar

Applying Hoeffding’s inequality yields

_ _ 1 —5"{max8max 2t2 k
Pr (|[V4L(s,7) = V4 L(s,7)]2 > t) < Qmexp< (I+e )22m >

1007r2naxsgnax
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which immediately leads to the conclusion that

10YmaxSmax 2log(2mn)
+ 675'Ymax3max mk;

IV L(5,7) = Vo L(s, )2 < 7
holds with probability at least 1 — 1/n. This completes the proof. ]

D.5 Proof of Proposition 4.1

Proof. Since the PDF g of the noise terms ¢; is log-concave, and because the convolution of log-
concave functions is log-concave Merkle (1998), the CDF F' of €; — ¢; for any pair 4,7 is also
log-concave. Hence h(x) = —log F'(z) is convex. The loss function is the sum of terms of the form
hiju = h(vu(si — s5)). Fix i, j, and u. We have

Vihiju =W (vu(si — 55)) (7u)? (e — €;)(e; — €;) T,

where e; is the standard unit vector for coordinate 7 in R™. By the convexity of h and the fact that
(e; —ej)(e; —e;) " is positive-definite, the loss function is convex in s. Similarly, it is easy to show
that it is convex in ~. O
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