ON THE INEVITABILITY OF THE CONSISTENCY OPERATOR

ANTONIO MONTALBAN AND JAMES WALSH

ABSTRACT. We examine recursive monotonic functions on the Lindenbaum
algebra of EA. We prove that no such function sends every consistent ¢ to
a sentence with deductive strength strictly between ¢ and (¢ A Con(p)). We
generalize this result to iterates of consistency into the effective transfinite. We
then prove that for any recursive monotonic function f, if there is an iterate of
Con that bounds f everywhere, then f must be somewhere equal to an iterate
of Con.

1. INTRODUCTION

It is a well-known empirical phenomenon that natural axiomatic theories are well-
ordered by their consistency strength. However, without a precise mathematical
definition of “natural,” it is difficult to explain this observation in a strictly math-
ematical way. One expression of this phenomenon comes from ordinal analysis, a
research program whereby recursive ordinals are assigned to theories as a measure-
ment of their consistency strength. One method for calculating the proof-theoretic
ordinal of a theory T involves demonstrating that T can be approximated over a
weak base theory by a class of formulas that are well understood. In particular, the
I fragments of natural theories are often proof-theoretically equivalent to iterated
consistency statements over a weak base theory, making these theories amenable to
ordinal analysis. For discussion, see, e.g., Beklemishev [4, 5] and Joosten [10].

Why are the II{ fragments of natural theories proof-theoretically equivalent to
iterated consistency statements? Our approach to this question is inspired by Mar-
tin’s approach to another famous question from mathematical logic: why are natu-
ral Turing degrees well-ordered by Turing reducibility? Martin conjectured that (i)
the non-constant degree invariant functions meeting a certain simplicity condition
(f € L(R))! are pre-well-ordered by the relation “f(a) <7 g(a) on a cone in the
Turing degrees” and (ii) the successor for this well-ordering is induced by the Tur-
ing jump. Martin’s conjecture is meant to capture the idea that the Turing jump
and its iterates into the transfinite are the only natural non-trivial degree invariant
functions.

In this paper we investigate analogous hypotheses concerning jumps on consistent
axiomatic theories, namely, consistency statements. We fix elementary arithmetic
EA as our base theory. EA is a subsystem of PA that is often used as a base theory
in ordinal analysis and in which standard approaches to arithmetization of syntax
can be carried out without substantial changes; see [6] for details. We write [¢] to
denote the equivalence class of ¢ modulo EA-provable equivalence. We write ¢ — 9

Thanks to Matthew Harrison-Trainor for simplifying the proof of Lemma 7.1. We extend spe-
cial thanks to V. Yu. Shavrukov and Albert Visser for their extensive and very helpful comments
and suggestions.

IMartin’s Conjecture is stated under the hypothesis ZF + AD + DC, which is satisfied by L(R)
assuming that there are w many Woodin cardinals with a measurable above them all.
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if EA - ¢ — v and say that ¢ implies ¥. If ¢ I 1 but ¥ ¥ ¢ we say that ¢
strictly implies 1. The Lindenbaum algebra of EA is the set of equivalence classes
of sentences ordered by . We focus on recursive functions f that are monotonic,
ie.,

if o =, then f(p) = f(1).

We note that (i) a function f is monotonic just in case f preserves implication over
EA and (ii) all monotonic functions induce functions on the Lindenbaum algebra
of EA. We adopt the convention that all functions named “f” in this paper are
recursive.

Our goal is to demonstrate that ¢ — (¢ A Con(p)) and its iterates into the
transfinite are canonical among monotonic functions. Our first theorem to this end
is the following.

Theorem 1.1. Let f be monotonic. Suppose that for all consistent o,

(i) o ~ Con(yp) implies f(p) and

(ii) f(p) strictly implies .

Then for every true o, there is a true v such that ¢ = ¢ and [f(¢)] = [¢ A Con())].

Corollary 1.2. There is no monotonic function f such that for all consistent p,
(i) o ~ Con(yp) strictly implies f(p) and
(ii) f(p) strictly implies .

We note that this result depends essentially on the condition of monotonicity.
Shavrukov and Visser [13] studied recursive functions f that are extensional over
the Lindenbaum algebra of PA, i.e.,

if PA = (¢ < ¢), then PA = (f(¢) < f(¥)),

and proved the following theorem.

Theorem 1.3. (Shavrukov-Visser) There is a recursive extensional function f
such that for all consistent p,
(i) o A Con(yp) strictly implies f(p) and
(ii) f(p) strictly implies .
In particular, Shavrukov and Visser proved that for any consistent ¢, the sentence
©* = A Vz(Con(IX, + @) — Con(IS, + ¢ + Con(I; + ¢)))

has deductive strength strictly between ¢ and ¢ A Con(yp), and that the map ¢ — ¢*
is extensional. By a theorem of Kripke and Pour-El [11], the Lindenbaum algebras of
PA and EA are effectively isomorphic, whence Theorem 1.3 also applies to EA. Thus,
Corollary 1.2 cannot be strengthened by weakening the hypothesis of monotonicity
to the hypothesis of extensionality.

We also note that Friedman, Rathjen, and Weiermann [8] introduced a notion
of slow consistency with which they produced a II{ sentence SlowCon(PA) with
deductive strength strictly between PA and PA+Con(PA). In general, the statement
SlowCon(¢) has the form

Va(Fe,(x) | Con(IX, + ¢))

where F¢, is a standard representation of a recursive function that is not provably
total in PA. This is not in conflict with Corollary 1.2, however, since ¢ A Con(¢p)
and ¢ A SlowCon(p) are provably equivalent for all ¢ such that ¢ — VaF, (z) |.
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On the other hand, changing the definition of the SlowCon(p) so that the function
in the antecedent varies with the input ¢ results in a map that is not monotonic.

Theorem 1.1 generalizes to the iterates of Con into the effective transfinite. For
an elementary presentation « of a recursive well-ordering (see Definition 3.1) and
a sentence p, we define sentences Con” () for every § < a.

Con’(¢) :=T
Con” () :=Con(gp A Con”(y))
Con* (i) :=VB < A(Con’(y))

For a precise definition using Gédel’s fixed point lemma, see Definition 3.2. Note
that for every ¢, [Con'(¢)] = [Con(p)].

Remark 1.4. We warn the reader that there is some discrepancy between our no-
tation and the notation used by other authors. Our iteration scheme Con®*!(y) =
Con(p A Con®(y)) is sometimes denoted Con((EA + ¢),), e.g., [2]. Moreoever, the
notation Con®*!(¢p) is sometimes used to denote Con(Con®(¢)), e.g., [3].

With each predicate Con® we associate a function

@ = (p A Con®()).

Theorem 1.1 then generalizes into the effective transfinite as follows.

Theorem 1.5. Let f be monotonic. Suppose that for all ¢,

(i) ¢ A Con® () implies f(p),

(ii) if [f(@)] # [L], then f(y) strictly implies o A Con® () for all B < a.

Then for every true v, there is a true 1 such that v — ¢ and [f(¢)] = [¢bACon®(¥))].

Corollary 1.6. There is no monotonic f such that for all v, if [pACon®(p)] # [L],
then both

(i) o A Con® () strictly implies f(v) and

(ii) f(g) strictly implies o A Con®(p) for all B < a.

Thus, if the range of a monotonic function f is sufficiently constrained, then for
some ¢ and some «,

[f(2)] = [¢ A Con®(p)] # [L].

This property still holds even when these constraints on the range of f are relaxed
considerably. More precisely, if a monotonic function is everywhere bounded by a
finite iterate of Con, then it must be somewhere equivalent to an iterate of Con.

Theorem 1.7. Let f be a monotonic function such that for every ¢,
(i) © A Con™ () implies f(p) and

(ii) f(p) implies .

Then for some @ and some k < n, [f(¢)] = [¢ A Con®(p)] # [L].

To generalize this result into the effective transfinite, we focus on a particular
class of monotonic functions that we call IIY.

Definition 1.8. A function f is ITY if f(¢) € 119 for all .

Our main theorem is the following: if a monotonic function is everywhere bounded
by a transfinite iterate of Con, then it must be somewhere equivalent to an iterate
of Con. This to say that the iterates of the consistency operator are inevitable; no
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monotonic function that is everywhere bounded by some iterate of Con can avoid
all of the iterates of Con.

Theorem 1.9. Let ¢ — f(¢p) be a monotonic 11 function Then either

(i) for some B < a and some @, [¢ A f(©)] = [¢ A Con®(p)] # [L] or
(ii) for some i, (¢ A Con®(¢)) ¥ f ().

The main theorem bears a striking similarity to the following theorem of Slaman
and Steel [14].

Theorem 1.10. (Slaman-Steel) Suppose [ : 2 — 2% is Borel, order-preserving
with respect to <, and increasing on a cone. Then for any o < wy either

(i) for some B < o, f(x) =7 2P cofinally or

(ii) (') <7 f(x)) cofinally.

There are two notable disanalogies between Theorem 1.9 and Theorem 1.10.
First, Theorem 1.9 guarantees only that sufficiently constrained functions are some-
where equivalent to an iterate of Con, whereas Theorem 1.10 guarantees cofinal
equivalence with an iterate of the Turing jump. Second, by assuming AD, Slaman
and Steel inferred that this behavior happens not only cofinally but also on a cone
in the Turing degrees. There is no obvious analogue of AD from which one can infer
that if cofinally many Lindenbaum degrees have a property then every element in
some non-trivial ideal of Lindenbaum degrees has that property.

We then turn our attention to a generalization of consistency, namely, 1-consistency.
Recall that a theory T is I-consistent if T is consistent with the true II9 the-
ory of arithmetic. Just as the IIY fragments of natural theories are often proof-
theoretically equivalent to iterated consistency statements over a weak base theory,
the TI9 fragments of natural theories are often proof-theoretically equivalent to it-
erated 1-consistency statements over a weak base theory

Conservativity theorems relating 1-consistency and iterated consistency play an
important role in the proof-theoretic analysis of arithmetic theories. For instance,
it is a consequence of Beklemshev’s reduction principle [6] that for any II1{ ¢,

EA + 1Con(EA) + ¢ if and only if EA + {Con®(EA) : k < w} - ¢.

This fact plays an integral role in Beklemishev’s [5] consistency proof of PA. We
show that this conservativity result is drastically violated in the limit. For functions
f and g, we say that f majorizes g if there is a consistent ¢ such that for all ¢, if
¥ ¢ then f(¢) - g(v); if in addition ¢ is true then we say that f majorizes g on
a true ideal.

Proposition 1.11. For any elementary presentation o of a recursive well-ordering,
1Con majorizes Con® on a true ideal.

It is tempting to conjecture on the basis of this result that 1Con is the weakest
monotonic function majorizing each Con® for « a recursive well-ordering. We prove
that this is not the case.

Theorem 1.12. There are infinitely many monotonic functions f such that for
every recursive ordinal o, there is an elementary presentation a of o such that f
majorizes Con® on a true ideal but also 1Con majorizes f on a true ideal.

Theorem 1.1 demonstrates that for any monotonic f with a sufficiently con-
strained range, f must agree cofinally with Con. We would like to strengthen
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cofinally to on a true ideal. One strategy for establishing this claim would be to
show that every set that is closed under EA provable equivalence and that contains
cofinally many true sentences also contains every sentence in some true ideal. We
show that this strategy fails.

Proposition 1.13. There is a recursively enumerable set A that contains arbitrar-
ily strong true sentences and that is closed under EA provable equivalence but does
not contain any true ideals.

It is not clear whether Theorem 1.1 can be strengthened in the desired manner.

2. NO MONOTONIC FUNCTION IS STRICTLY BETWEEN THE IDENTITY AND Con

In this section we prove that no monotonic function sends every consistent ¢ to
a sentence with deductive strength strictly between ¢ and (¢ A Con(p)). Most of
the work is contained in the proof of the following lemma.

Lemma 2.1. Let f be a monotonic function such that for all consistent ¢, f(¢)

strictly implies . Then for every true sentence p there is a true sentence 6 such
that 0 — ¢ and f(6) - (8 A Con(6)).

Proof. Let f be as in the statement of the theorem. By assumption the following
statement is true.

x = ¥¢(Con(¢) — (¢ # £(C)))

Let ¢ be a true sentence. Then the sentence 1 := ¢ A x is true. Let
6:= (4 A (f() — Con(¥))-
Note that 6 - ¢.
Claim. f(0) - (0 A f(¥)).
Clearly 6 - . So f(0) + f(v) since f is monotonic. Also f(f) - 6 by assump-

tion.

Claim. (6 A f(¥)) F (¢ A Con(2))).
Immediate from the definition of 6.
Claim. (¢p A Con(¢)) - (6 A Con(0)).
Clearly (0 A Con(v)) 6. Tt suffices to show that
(¥ A Con(v))) - Con(6).
We reason as follows.
(¢ A Con(w)) k- ¥¢(Con(¢) — (¢ £ £(¢))) by choice of .
F Con(¢p) — (¥ 1~ f(v)) by instantiation.
= (¢ £ (1)) by logic.

= Con(y A = f(¥)).
F Con(6) by the definition of 6.

It is immediate from the preceding claims that f(6) -~ (6 A Con(9)). Qa

A number of results follow immediately from the lemma.
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Theorem 2.2. Let f be monotonic. Suppose that for all consistent o,

(i) ¢ A Con(yp) implies f(p) and

(ii) f(p) strictly implies .

Then for every true o, there is a true v such that ¢ — ¢ and [f(¢)] = [¢ A Con())].

Proof. By the lemma, for every true ¢ there is a true 1 such that ¢ — ¢ and
f(@) = (¥ A Con(v))). Since we are assuming that (¢ A Con(9)) + f(v), it follows
that [f(¢)] = [ A Con(¥)]. Q

We note that this theorem applies to a number of previously studied operators.
For instance, the theorem applies to the notion of cut-free consistency, i.e., con-
sistency with respect to cut-free proofs. EA does not prove the cut-elimination
theorem, which is equivalent to the totality of super-exponentiation (over EA), and
does not prove the equivalence of cut-free consistency and consistency. Another
such operator is the Friedman-Rathjen-Weiermann slow consistency operator dis-
cussed in §1. Theorem 2.2 implies that these operators exhibit the same behavior
as the consistency operator “in the limit.” Indeed, for any ¢ such that ¢ proves the
cut-elimination theorem, ¢ A Con(p) and ¢ A Concg(p) are EA-provably equivalent.
Likewise, for any ¢ that proves the totality of Fy,, ¢ A Con(y) and ¢ A SlowCon(¢p)
are EA-provably equivalent.

As a corollary of Theorem 2.2 we note that no monotonic function reliably pro-
duces sentences strictly between those produced by the identity and by Con.

Corollary 2.3. There is no monotonic function f such that for all consistent o,
(i) o A Con(y) strictly implies f(p) and
(ii) f(p) strictly implies .

Shavrukov and Visser [13] studied functions over Lindenbaum algberas and dis-
covered a recursive extensional uniform density function g for the Lindenbaum
algebra of EA, i.e., (i) for any ¢ and v such that ¢ strictly implies ¢, g({p,¥)) is a
sentence with deductive strength strictly between ¢ and 9 and (ii) if EA - (¢ < )
then, for any 0, [g((p,0))] = [9((¥,8))] and [g(<0,¥))] = [9(¢0,))]. They asked
whether this result could be strengthened by exhibiting a recursive uniform density
function that is monotonic in both its coordinates. As a corollary of our theorem
we answer their question negatively.

Corollary 2.4. There is no monotonic uniform density function for the Linden-
baum algebra of EA.

Proof. Suppose there were such a function g over the Lindenbaum algebra of EA.
Then given any input of the form (¢, (¢ ACon())), g would produce a sentence with
deductive strength strictly between ¢ and (¢ A Con(p)). We then note that f : ¢ —
g({p, (pACon(ip)))) is monotonic, but that for every consistent ¢, ¢ ACon(yp) strictly
implies f(¢) and f(y) strictly implies ¢, contradicting the previous theorem. QO

Our negative answer to the question raised by Shavrukov and Visser makes use of
a 119 sentence V¢ (Con(¢) — (¢ 1~ f(€))). Shavrukov and Visser raised the following

question in private communication.

Question 2.5. Is there a recursive uniform density function for the lattice of 119
sentences over EA that is monotonic in both its coordinates?
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Remark 2.6. It is clear from the proof of the lemma that any monotonic f meeting
the hypotheses of the theorem is not only cofinally equivalent to Con; for every true
© that implies

X = Y¢(Con(¢) = (C 1 f(C))),
there is a true ¢ such that ¢ - ¢ and [¢ A Con(p)] = [0 A Con(¥)] = [f(¥)].

This observation points the way toward a corollary of our theorem; namely that
any monotonic function strictly meeting the hypotheses of the theorem must have
the same range as ¢ — (@ A Con(y)) in the limit. To prove this, we first prove a
version of jump inversion—Con inversion—for Lindenbaum algebras. This is to say
that the range of Con contains a true ideal in the Lindenbaum algebra. A similar
result is established for true II3 sentences in [1].

Proposition 2.7. Suppose ¢ - Con(T). Then for some ¢, [¢] = [(¢» A Con(¥))].
Proof. Let ¢ := Con(T) — ¢.
Claim. ¢ (¢ A Con(v))).

Trivially, ¢ . Since ¢  Con(T), it follows that from the formalized second
incompleteness theorem, i.e., Con(T) - Con(—Con(T)), that ¢ + Con(—Con(T)).
But —Con(T) is the first disjunct of ¥, so ¢  Con(¢)).

Claim. (¢ A Con(v)) - .

Note that Con(t)) - Con(T). The claim then follows since clearly () A Con(T))
©. a

Corollary 2.8. Let f be monotonic. Suppose that for all consistent p,

(i) ¢ ~ Con(p) implies f(p) and

(ii) f(p) strictly implies .

Then the intersection of the ranges of f and Con in the Lindenbaum algebra contains
a true ideal.

Proof. Let ¢ be a sentence such that ¢ - Con(T) and
= V((Con(C) — (¢ # £(C)))-

Note that both of these sentences are true, and hence ¢ is in an element of a true
ideal. By the previous theorem, there is a 1 such that [¢) A Con(¥))] = [¢]. By
Remark 2.6 there is a 6 such that [f(8)] = [ A Con(¥))] = [0 A Con(8)]. a

3. ITERATING Con INTO THE TRANSFINITE

By analogy with Martin’s Conjecture, we would like to show that there is a
natural well-ordered hierarchy of monotonic functions and that the successor for
this well-ordering is induced by Con. Thus, we define the iterates of Con along
elementary presentations of well-orderings.

Definition 3.1. By an elementary presentation of a recursive well-ordering we
mean a pair (D, <) of elementary formulas, such that (i) the relation < well-orders
D in the standard model of arithmetic and (ii) EA proves that < linearly orders
the elements satisfying D, and (iii) it is elementarily calculable whether an element
represents zero or a successor or a limit.



8 ANTONIO MONTALBAN AND JAMES WALSH

Definition 3.2. Given an elementary presentation {(a, <) of a recursive well-
ordering and a sentence @, we use Godel’s fixed point lemma to define sentences
Con*(p, ) for 8 < « as follows.

EA  Con* (¢, ) < Vv < 3, Con(p A Con*(p,7)).
We use the notation Con”(y) for Con*(¢p, ).

Remark 3.3. Note that, since it is elementarily calculable whether a number repre-
sents zero or a successor or a limit, the following clauses are provable in EA.

o Con’(p) > T
e Con" () <> Con(p A Con?(p))
e Con™(p) < ¥y < A, Con”(¢p) for A a limit.

Note that this hierarchy is proper for true ¢ by Goédel’s second incompleteness
theorem. We need to prove that for transfinite o, Con® is monotonic over the
Lindenbaum algebra of EA. Before proving this claim we recall Schmerl’s [12]
technique of reflexive transfinite induction. Note that “Pr(¢)” means that ¢ is
provable in EA.

Proposition 3.4. (Schmerl) Suppose that < is an elementary linear order and that
EA - Va(Pr(V5 < a, A(B)) — A(a)). Then EA - YaA(a).

Proof. From EA - Va(Pr(Vj5 < a, A(B)) — A(a)) we infer
EA - Pr(VaA(a)) — VaPr(V8 < a, A(B))
— YoA(a).

Lob’s theorem, i.e.,
if EA+ Pr(¢) — ¢, then EA + ¢,

then yields EA - YaA(a). Qa
Proposition 3.5. If ¢ - ¢, then Con®(p) - Con®(¢)).

Proof. Let A(B) denote the claim that Con”(¢) - Con” ().
We want to prove that A(«), without placing any restrictions on a. We prove
the equivalent claim that EA - A(«). By Proposition 3.4, it suffices to show that

EA - Va(Pr(vs < «, A(B)) — A(w)).

Reason within EA. Suppose that Pr(V5 < «, A(f)), which is to say that
Pr(¥3 < a, (Con” () - Con” (1))).
Since Con®(y) contains EA, we infer that
Con (i) 1= V8 < a(Con”(¢) = Con” (1)),
which is just to say that
Con®(p) - (V8 < a, EA I (Con” () — Con”(1)))).

Since Con®(¢p) proves that for all 8 < a, EA I~ —=Con” () we infer that

Con®(¢) - ¥ < a(EA £ —Con®(¥)).

EA proves its own XY completeness, i.e., EA proves that if EA does not prove a %9
statement ¢, then ( is false. Thus,

Con®(¢) - ¥ < a(Con®(¥)).
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This concludes the proof of the proposition. Q

Thus, for each predicate Con® the function

@ = (¢ A Con%(¢))

is monotonic over the Lindenbaum algebra of EA.

In this section we show that the functions given by iterated consistency are
minimal with respect to each other. We fix an elementary presentation « of a
recursive well-ordering. We assume that f is a monotonic function such that for
every consistent ¢, f(¢) strictly implies ¢ A Con”(¢p) for all 8 < a. We would like
to relativize the proof of Lemma 2.1 to Con”. However, the proof of Lemma 2.1
relied on the truth of the principle

V¢(Con(¢) — (C 1 f(Q))), i-e.,

V¢(Con(¢) — Con(C A —£(C)))-

It is not in general clear that Con®(y) implies Con®(p A —f(¢)). To solve this
problem, we define a sequence of true sentences (63) g<q such that for every sentence
@, if ¢ - 05 then Con” () implies Con” (¢ A —f(¢)). Thus, we are able to relativize
the proof of Lemma 2.1 for Con” to sentences that imply 6g.

Definition 3.6. Given an elementary presentation « of a recursive well-ordering,
we use effective transfinite recursion to define a sequence of sentences (03)s<a-

01 := V¢(Con(¢) — Con(¢ A —f(¢)))
05 := Vv < B(Truers, (6,)) A VC((V'Y < B¢+ 07)) — (COnB(C) — COnﬁ(C A —f(())))

Remark 3.7. Note that every sentence in the sequence (63)s<a has complexity I13.
Note moreover that for a successor 8 + 1, 6341 is equivalent to

05 AYC((CH 05) — (Cont(C) — Con (¢ A —£(C))))-

Lemma 3.8. Let f be monotonic such that, for all ¢,

(i) ¢ ~ Con® () implies f(¢p),

(it) if [f(0)] # [L], then f(p) strictly implies o A Con” () for all B < .
Then for each B < o, the sentence 03 is true.

Proof. Let f be as in the statement of the lemma. We prove the claim by induction
on 8 < a. The base case =1 is trivial.

For the successor case we assume that § < « and that 6g is true; we want
to show that 6g41 is true. So let ¢ be a sentence such that ¢ - 63. We want to
show that Con”(¢) implies Con® (¢ A —f(¢)). We prove the contrapositive, that
ﬂConﬁH(C A = f(¢)) implies ﬁConBH(C). So suppose ﬁConﬁH(C A —=f(()), ie.,

(1) ¢ A=f(C) F =Con” (¢ A =f(C)).

We reason as follows.
Since ¢ 03, ( - Vv < B, Truer, (6,). From this we infer

(%) (= (¢ Vy < B, Truep, (65))
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by £Y completeness. Moreover, since ¢ + 03,
CHYo((Vy < Ble - 6,)) — (Conﬂ(go) — Con(p A —f(¢)))) by the definition of 5.
FVy < 5({ ~ Qw) — (Conﬂ(C) — Conﬁ(C A ﬂf(C))) by instantiation.
- Con?¢ — Con” (¢ A =(¢)) by ().
¢ A =f(¢) = —=Con” (¢ A =f(C) by (1).
l— ﬂConB(C) by logic.
¢+ Con”(¢) = £(¢) by logic.
Thus, (¢ A Con?(¢))  f(¢). Since f(p) always strictly implies ¢ A Con”(p), we

infer that
[¢ A Con” ()] = [L].
This is to say that —Con”*1(¢).

For the limit case we let 3 be a limit ordinal and assume that for every v < 3,
0., is true. We want to show that g is true. Let ¢ be a sentence such that for every
v < B, ¢ - 0,. We want to show that Con”(¢) implies Con® (¢ A —f(¢)). So assume
that Con?(¢), i.e., for every v < 3,Con”(¢). Let v < . Since 3 is a limit ordinal,
v+ 1 < B. So by the inductive hypothesis 0. is true. That is, by the definition
of 97+1,

Yo ((p = 0y) — (Con” () — Con”(p A = f())))-
By instantiation, we infer that

(¢ = 0y) = (Con™(¢) = Con™(C A =f(()))-

Since ¢ - 6., and Con”((), this means that Con”({ A —f(¢)). Since v was a generic
ordinal less than 8, we get that

Vy < B,Con™(¢ A —£(¢)),
i.e., Con” (¢). This completes the proof of the lemma. a

Theorem 3.9. Let f be monotonic. Suppose that for all ¢,

(i) ¢ ~ Con®(p) implies f(p),

(i) if [f(¢)] # [L], then f(y) strictly implies o A Con”(p) for all § < a.

Then for every true x, there is a true 1 such that ¥ - x and [f(¥)] = [ ACon®(¥))].

Proof. Let x be a true sentence. By the lemma, 6, is true. So
=X Al
is true. We let
¥ =@ A (f(p) = Con®(¢)).
Note that ¢ - x. We now show that [¢) A Con®(¢))] = [f(¥)].
Claim. f(¢) F (¥ A f(g)).

Since f is monotonic.
Claim. (¢ A f(¢)) - (¢ A Con®()).
By the definition of .
Claim. (¢ A Con®(¢)) F (¢ A Con®(v))).
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It is clear from the definition of ¥ that (o A Con®(p)) F . So it suffices to show
that (¢ A Con®(p)) - Con®(¥)).
@ A Con® () = VC((VB < a(¢ +05)) — (Con®(¢) — Con®(¢ A —£(C)))) by choice of ¢.
VB < ale - 65) — (Con®(¢) — Con®(p A —f(p))) by instantiation.
F VB <a(ek 83) = Con®(p A —f(p)) by logic.
Since Con®(p A —f(p)) F Con“(¢)), to prove the desired claim it suffices to show
that
¢ A Con®(p) =V < a(p - 0g).
We reason as follows.
¢ 6, by choice of .
F VB < a(Truer,03) by definition of 6.
F (¢ - VB < a(Truer,03)) by £9 completeness.
F V5 < a(e + Truer,0p)
FV8 <aler 6g)
It is immediate from the preceding claims that f (1) = ¥ ACon®(¢)). By assumption,
P + Con“(¢) - f(v), so it follows that [f(1))] = [0 A Con®(¥))]. a

Corollary 3.10. There is no monotonic f such that for all o, if [p A Con®(p)] #
[L], then both

(i) © A Con®(¢p) strictly implies f(p) and

(i) f(p) strictly implies ¢ A Con®(¢) for all B < a.

4. FINITE ITERATES OF Con ARE INEVITABLE

In this section and the next section we prove that the iterates of Con are, in a
sense, inevitable. First we show that, for every natural number n, if a monotonic
function f is always bounded by Con™, then it is somewhere equivalent to Con”
for some k < n. In §5, we turn to generalizations of this result into the effective
transfinite.

Theorem 4.1. Let f be a monotonic function such that for every o,
(i) ¢ A Con™ () implies f(p) and

(ii) f(p) implies .

Then for some ¢ and some k < n, [f(¢)] = [¢ A Con® ()] # [L].

Proof. We suppose, towards a contradiction, that there is no ¢ and no k& < n such
that [f(1)] = [ A Con® ()] # [L]. We then let ¢; be a true statement such that

1 - ¥¢(Con(¢) — Con(¢ A —£(C)))
@1 VEYC(Con* () — —Pr((¢ A Con®(¢)) « £(0)))-

The first condition is that o1 proves that for every consistent ¢, f(p) strictly
implies . The second condition is that 1 proves that f({) never coincides with
¢ A Con®(¢), unless [¢ A Con®(¢)] = [L].

We define a sequence of statements, starting with @1, as follows:

Prr1 = o A (f(or) — Con® ().
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Note that each sentence of the form ¢g. We will use our assumption to show
that, for all k, ¢r A Con®(pr) — Con®(pry1). From this we will deduce that
[f(ont1)] = [@n+1 A Con"(pn11)] # [L], contradicting the assumption that f and
Con™ never coincide. Most of the work is contained in the proof of the following
lemma.

Lemma 4.2. For all k, for all j =k, [px A Con®(¢x)] = [Con®(p;)].

Proof. We prove the claim by a double induction. The primary induction is on k.
For the base case k = 1, we prove the claim by induction on j. The base case j =1
follows trivially. For the inductive step we assume that [¢1 A Con(p1)] - [Con(p;)]
and show that [¢1 A Con(p1)] = [Con(pj+1)].

©1 A Con(p1) - V¢(Con(¢) — Con(¢ A —f(¢))) by choice of .
F Con(p;) — Con(p; A —f(p;)) by instantiation.
1 A Con(g1) F Con(p;) by the inductive hypothesis.

= Con(p; A —f(g;)) by logic.
F Con(p,+1) by definition of ¢, 1.
For the inductive step we assume that the claim is true of k — 1, i.e.,
Vizk— 1((‘/%—1 A COnk_l(gpk_l)) - (Conk_l(gpj))).

We prove the claim for k. Once again, we prove the claim by induction on j.
The base case j = k follows trivially. For the inductive step we assume that g A
Con® (1) - Con®(g;). We want to prove that @i A Con® (1) - Con®(@;11).

o A Con® (1) - VxVC(ConIH(C) — =Pr((¢ A Con®(¢)) « f(¢))) by choice of .
- Con®(g;) — —=Pr((¢; A Con™(p;)) < f(p;)) by instantiation.
o A Con® (1) - Con®(g;) by the inner inductive hypothesis.
= —Pr((¢j A Con""'(g))) < f(1;)) by logic.
Thus, @i A Con® () proves that one of the following cases holds.
(¢ A Con* M) ¥ f(2))

F(@5) # (5 A Con* 1ipj)
We now show that ¢y, A Con®(¢}) refutes the second option.

Claim. @), A Con™(0x) - (f(i05) = (95 A Con"tgpy)).
By the outer inductive hypothesis, EA proves the following conditional:

0 := ((¢j—1 A Con*'(p;_1)) = (Con*(i;))).
Thus, f(¢;) (which contains EA) also proves 6. We now show that f(p;)
Con™(g).

(@) F @i A flpj—1) since f is monotonic.
F (pj—1 A (f(pj—1) = Con’ " (p;_1))) A f(j—1) by the definition of ;.
;1 A Con? Y (p;_1) by logic.
- ¢j—1 A Con"!(p;_1) since j = k.

- Con"*(ip;) since f(p;) proves 6.
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By X completeness, (¢r A Conk(gok)) [ (f(gaj) — Conk_l(gpj)).

Claim. (¢, A Con® (1)) - Con®(pj41).
We reason as follows.

(¢ A Con®(pr)) - (05 A Con™ 1 (p;)) 1 f(#;)) by the previous claim.
= Con(ip; A =f(p;) A Con™ ().
- Con(pj11 A Con"(p;)) by the definition of p;1.
- Con(pj11 A Con" ! (p;11)) by the outer inductive hypothesis.
I— Conk(gpjﬂ) by definition of Con”.

This concludes the proof of the lemma. Q

As an instance of the lemma, we get that (¢, A Con™(¢,)) F Con™(p,41). We
reason as follows.

Flont1) E on A (f(en) — Con™(p,)) by the definition of ¢y, 1.
f(pn+1) E f(pn) since f is monotonic.

F Con" () by logic.

F Con"(¢n+1) by the lemma.

On the other hand, ¢, 11 A Con™(pn11) F f(@nt1) since f is everywhere bounded
by Con™. Thus, [f(¢n+1)] = [pn+1 A Con™(pnt1)], contradicting the assumption
that there is no ¢ and no k < n such that [f(¥)] = [¢» A Con® ()] # [L]. Q

5. TRANSFINITE ITERATES OF Con ARE INEVITABLE.

Generalizing the proof of Theorem 4.1 into the transfinite poses the following
difficulty. Recall that the proof of Theorem 4.1 makes use of a sequence of sentences
starting with ¢ where

err1 = o A (f(r) = Con® ().

It is not clear what the wth sentence in the sequence should be. A natural idea is
that for a limit ordinal A the corresponding “limit sentence” should quantify over
the sentences in the sequence beneath it and express, roughly,

Yy < )\(True(gov) A (True(f(py)) — Con”(gow))).

However, if the sentences in the sequence (¢)y<x have unbounded syntactic com-
plexity, then we are not guaranteed to have a truth-predicate with which we can
quantify over them.

Nevertheless, we show that Theorem 4.1 generalizes into the transfinite given
an additional assumption on complexity. Note that ¢ — (¢ A Con(p)) can be
factored into two functions—the identity and ¢ — Con(p)—the latter of which
always produces a II{ sentence. For the rest of this section, we will focus on
monotonic functions ¢ — ¢ A f(¢) where f is monotonic and also f(p) € IIY
for all ¢.

Definition 5.1. A function f is IT{ if f(¢) € II9 for all .
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For the next theorem we fix an elementary presentation I' of a recursive well-
ordering. In the statement of the theorem and throughout the proof «, 3, v, 9, etc.
are names of ordinals from the notation system I'.

Theorem 5.2. Let f be a monotonic I1Y function. Then either

(i) for some B < a and some @, [ A f(©)] = [¢ A Con’B(cp)] # [L1] or
(ii) for some ¢, (¢ A Con®(p)) ¥ f(¢p).

Proof. Let f be a monotonic I1{ function such that for every ¢,

(o A Con™(9)) = (¢ A f())-
We assume, for the sake of contradiction, that there is no sentence ¢ and no § < «

such that [¢ A Con”(¢)] = [¢ A f(¢)] # [L]. We then let ¢ be the conjunction of
the following four sentences.

V¢(Con(¢) = Con(C A —f(C)))

VB < a¥¢(Con’(¢) — V8 < B, —Pr((¢ a Con’()) « (¢ A F(C))))

vevn((C =) — (F(Q) = f(n))

Vx(Pr(TrueHg (z)) — Truepg( (z))

The first expresses that for every consistent ¢, f(y)

second sentence expresses that if § < «, then f({) and ¢ A ConB(C) never coincide,

unless [¢ A Con?(¢)] = [L] . The third sentence expresses the monotonicity of f.

The fourth sentence expresses the IT9 soundness of EA. Note that each of these

sentences is true, so their conjunction ¢ is also true. Each of the four sentences is
119, whence so is ¢.

We are interested in the following sequence (pg)s<r. Note that the sentences in

the sequence (pg)s<r all have complexity II3. Note moreover that since ¢y is true,
so is g for every g.

strictly implies ¢. The

P1 =P
@y 1= 1 A V8 < y(Truem, (f(gs)) — Con5(<p5)) for v > 1.

Remark 5.3. We may assume that the ordinal notation system I is provably linear
in EA. Thus, EA - V3 < o, Yy < B(Truem, (¢5) — Truem, (¢,))-

Our goal is to show that
[pat1 A Con®(pat1)] = [pat1 A f(Pat1)]

contradicting the assumption that f and Con® never coincide. The main lemmas
needed to prove this result are the following.

Lemma 5.4. EA - Vv < a((py A =f(94)) F ¢a)-
Lemma 5.5. EA - V3 < aVy < 8(¢s + Con” (ps) - Con” (v A —f(ps))).

Lemma 5.4 is needed to derive Lemma 5.5. We now show how we use Lemma
5.5 to derive Theorem 5.2. As an instance of Lemma 5.5, letting o = 8 = , we
infer that

EA (apa + Con®(¢a) F Con“(pq A —'f(gpa))).
From the soundness of EA, we infer that

(F) Yo + Con®(pa) = Con®(pa A = f(Pa))-
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‘We then reason as follows.

Yat1 F pa A (f(pa) = Con®(ps)) by the definition of wq1.
f(pa+1) F f(pa) since f is monotonic.
Pa+1 + [(Pa+1) F pa A Con®(pq) by logic.
= Con®(¢a+1) by F.

On the other hand, pq11 + Con®(pa+1) F f(@at1) since f is everywhere bounded
by Con®. Since ¢ is true, so t00 is @411, whence we infer that

[Pa+1 A Con®(pat1)] = [Pa+1 A f(Pas+1)] # [L];
contradicting the claim that there is no sentence ¢ and no § < « such that [( A

Con’(¢)] = [¢ A f(O)] # [L]. 0

It remains to prove Lemma 5.4 and Lemma 5.5. We devote one subsection to
each.

5.1. Proof of Lemma 5.4. In this subsection we prove Lemma 5.4. First we recall
the statement of the lemma.

Lemma 5.6. EA - Vy < a((py A =f(p4)) F ¢a).
Proof. We reason in EA. Let v < a. We assume that

(n) Truerr, (¢+) A —Truem, (f(4))-

We we want to derive ¢, i.e.

w1 A Vo < a(Truer, (f(ps)) = Con?(py)).

The first conjunct follows trivially from the assumption that Truer, (¢.). We now
prove the second conjunct of ¢, in two parts, first for all ¢ such that a > o > ~
and then for all o < 7.

a > ¢ = 7 : From the assumption that Trueng(apv) we infer that ¢;, whence
we infer that f is monotonic. Thus, for all § > v, f(ps) F f(ey), ie., EA -
(f(ps) = f(py)). From ¢ we also infer that EA is II sound, and so we infer
that for all & > ~, Truem, (f(yps)) — Truem, (f(¢,)). From the assumption that
—Truer, (f(py)) we then infer that for all 6 > v, —Truer, (f(¢s)), whence for all
8 =, Truen, (f(ps)) — Con’(ps).

o <~ : By Remark 5.3, n implies that

Vo < y(Truer, (f(ps)) — Con?(¢,)).
This completes the proof of Lemma 5.4. Q

5.2. Proof of Lemma 5.5. In this subsection we prove Lemma 5.5. We recall the
statement of Lemma 5.5.

Lemma 5.7. EA - V3 < aV¥y < 8(ps + Con” (ps) - Con” (¢ A —f(p8))).

The proof of this lemma is importantly different from the proof of Lemma 4.2.
In particular, to push the induction through limit stages we need to know not
only that the inductive hypothesis is true but also that it is provable in EA. We
resolve this issue by using Schmerl’s technique of reflexive transfinite induction (see
Proposition 3.4).
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In the proof of the lemma, we let C(y, ) abbreviate the claim that
s + Con”(ip5) = Con” (w5 A —f(ps))-
Proof. We want to show that
EA = V8 < a(Vy < B(C(7, 8)))-
By Proposition 3.4 it suffices to show that
EA - Va(Pr(VB < aVy < BC(v,B)) — ¥y < aC(v,a)).?

Thus, we reason in EA and fix . We assume that
() Pr(¥8 < a, ¥y < B,C(7, 8)).

We let v < a and we want to show that C(v, a).
Since ¢, - ¢ we infer that

() ¢a+Con"(pa) V8 <7, =Pr((pa A Con’(¢a)) < (pa A f(a)))-
We first note that both
©a F V8 < y(Truer, (f(ps)) — Con®(5)) by the definition of ¢, and also

Yo + flpa) F Y0 <v(f(¢a) F f(ps)) since 1 proves the monotonicity of f.

=¥ <Y(EAE (f(va) = f(9s)))-
V0 < v(f(pa) — Truem, (f(vs))) since ¢ proves the TT3 soundness of EA.

V8 <, Truem, (f(vs)) by logic.
Thus, we may reason as follows.
Pa + f(@a) - V8 <, Con’ (i95)
V& < 7, Con’ (05 A —f(ps))) since (A) delivers C(3, ).
- V8 < 7, Con’(¢q4) by Lemma 5.4.
Thus, by X¢ completeness,
EA - V6 < (pa A f(pa) F Con®(pa)).
Combined with (f), this delivers
pa + Con”(pa) - ¥6 < ¥(pa + Con’ (o) # f(pa))-
V8 < 7, Con(pa A —f(0a) A Con’(pa)).
V8 <7, Con(pa A —f(a) A Con®(pa A —f(pa))) since (A) delivers C(4, a).
= Con™(pa A —f(¥a))-
This completes the proof of Lemma 5.5. a

Theorem 5.2 shows the inevitability of the consistency operator. For a sufficiently
constrained monotonic function f, f and must coincide with an iterate of Con on
some non-trivial sentence. However, it is not clear from the proofs of Theorem 4.1
or Theorem 5.2 that f must coincide with Con on a true sentence.

2The reader might expect that we need to write “8 < «” instead of “8 < «a” in the an-
tecedent for this to match the statement of Proposition 3.4. However, it is clear from the proof of
Proposition 3.4 that this suffices.
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Question 5.8. Let f be a monotonic I function. Suppose that for every o,

(o A Con(p)) = f()-

Must there be some 8 < « and some true ¢ such that

[ A f(0)] = [ A Con(¢)]?

6. 1-CONSISTENCY AND ITERATED CONSISTENCY

Just as the I19 fragments of natural theories can often be approximated by it-
erated consistency statements, the 19 fragments of natural theories can often be
approximated by iterated l-consistency statements. A theory T is I-consistent if
T + Thyp (N) is consistent. The 1-consistency of EA + ¢ can be expressed by the

following I19 sentence, 1Con(¢):
Va(Truepo(z) — Con(p A Trueppo())).

In this section, we investigate the relationship between 1-consistency and iterated
consistency. First, we show that 1Con majorizes every iterate of Con®.

Proposition 6.1. For any elementary presentation « of a recursive well ordering,
there is a true sentence ¢ such that for every 1, if ¢ + ¢, then (b A 1Con(¢)))
implies (¢ A Con™(v)). Moreover, if [ A Con®(¢p)] # [L] then (¢ A 1Con(v)))
strictly implies (¢ A Con®(1))).

Proof. Let a be an elementary presentation of a recursive well-ordering. Let ¢ be a
true sentence such that ¢ Tlﬁ(l), i.e., ¢ implies the validity of transfinite induction

along « for I1Y predicates. We prove that

( A 1Con(¢)) k- Con®*(p).

Since ¢ A 1Con(y) Tlﬁ?, it suffices to show that:
Base case: (¢ A 1Con(y)) + Con(yp)
Successor case: (¢ A 1Con(p)) - V8 < a(Con” () — Con” 1 ()

Limit case: (¢ A 1Con(y)) V)\(lim()\) — ((¥8 < ACon”(y)) — cOnA(@)))

The base case and the limit case are both trivial. For the successor case we
first note that by the definition of 1Con(yp),

1Con(p) = Va(Trueo(z) — Con(p A Truepo(x))),
and so by substituting Con”(¢) in for z,
©®) 1Con(s) - Truens (Con® (1)) — Con(> A Truepso(Con® ().
Thus, we reason as follows.
1Con(¢) - Con”(ip) — Con(p A Truero(Con”(¢))) by (@).

— Con(ip A Con(p)).
— Conﬁﬂ(cp) by the definition of Con®*!.

It is clear that the implication ¢ A 1Con(p) F ¢ A Con®(¢p) is strict as long as
[ A Con®(¢)] # [L]. This completes the proof of the proposition. a



18 ANTONIO MONTALBAN AND JAMES WALSH

In light of the previous proposition, one might conjecture that 1Con is the weakest
monotonic function majorizing every function of the form Con® for some recursive
well-ordering o on true sentences. However, this is not so. To demonstrate this,
we use a recursive linear order that has no hyperarithmetic infinite descending
sequences. Harrison [9] introduced such an ordering with order-type w{¥ x (1+Q);
see also Feferman and Spector [7] who consider such orderings in the context of
iterated reflection principles. We use a variant H of Harrison’s ordering such that it
is elementarily calculable whether an element of H is zero or a successor or a limit.
We note that since H has no hyperarithmetic descending sequences, transfinite
induction along H for 1Y properties is valid. Our idea is to produce a function
stronger than each Con® but weaker than 1Con by iterating Con along the Harrison
linear order.

Theorem 6.2. There are infinitely many monotonic functions f such that for
every recursive ordinal o, there is an elementary presentation a of a such that f
majorizes Con® on a true ideal but also 1Con majorizes f on a true ideal.

Proof. In Definition 3.2, we used Godel’s fixed point lemma to produce iterates of
Con along an elementary well-ordering. We similarly use Godel’s fixed point lemma
to define sentences Con* (i, 8) for 8 € H as follows.

EA |- Con* (¢, 8) < ¥y <y ,Con(¢ A Con*(p,7)).

We use the notation Con”(¢) for Con* (¢, 8). Recall that we are assuming that it
is elementarily calculable whether an element of H is zero or a successor or a limit.
Thus, the following clauses are provable in EA.

o Con(p) & T
e Con”*! () <> Con(p A Con”(p))
e Con™(¢p) < ¥y <# A, Con”(p) for A a limit.

Claim. For v € H, the function ¢ — Con” (p) is monotonic.

This follows immediately from Proposition 3.5. Note that in the statement of
Lemma 3.4 we assume only that < is an elementary linear ordering, not a well-
ordering.

Claim. There are infinitely many monotonic functions f such that for every re-
cursive well-ordering «, there is an elementary presentation a of o such that f
majorizes Con® on true sentences.

If 2 <4 y then Con¥(¢p) strictly implies Con”(¢) for every ¢ such that Con” () #
[L]. Given the order type of H, this means that for infinitely many ~, for every
recursive well-ordering o, Con” majorizes Con® where a represents « in H.

Claim. 1Con majorizes Con® on true sentences for each a € H.

Since every I1{ definable subset of w has an H-least element, the sentence Tlgc;,
which expresses the validity of transfinite induction along H for I1{ predicates, is
true. But then if ¢ Tlg(lj, then for any v € H, (¢ A 1Con(p)) strictly implies
(o A Con”(¢p)) as long as [(¢ A Con”(¢))] # [L], as in Proposition 6.1. a
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7. AN UNBOUNDED RECURSIVELY ENUMERABLE SET THAT CONTAINS NO TRUE
IDEALS

In this section we prove a limitative result. Theorem 2.2 demonstrates that if
f is monotonic and that for all consistent ¢, (i) ¢ A Con(y) implies f(y) and (ii)
f(y) strictly implies ¢, then for cofinally many true ¢, [f(p)] = [¢ A Con(p)].
It is natural to conjecture that cofinal equivalence with Con be strengthened to
equivalence to Con in the limit, i.e., on a true ideal. One strategy to strengthen
Theorem 2.2 in this way would be to show that every recursively enumerable set
that contains arbitrarily strong true sentences and that is closed under provable
equivalence contains a true ideal.

We now show that the aforementioned strategy fails. To this end, we define a
recursively enumerable set A that contains arbitrarily strong true sentences and
that is closed under provable equivalence but does not contain any true ideals. We
are grateful to Matthew Harrison-Trainor for simplifying the proof of the following
proposition.

Proposition 7.1. There is a recursively enumerable set A that contains arbitrarily
strong true sentences and that is closed under EA provable equivalence but does not
contain any true ideals.

Proof. Let {po,®1,...} be an effective Godel numbering of the language of arith-
metic. We describe the construction of A in stages. During a stage n we may
activate a sentence 1, in which case we say that 1 is active until it is deactivated
at some later stage n + k. After describing the construction of A we verify that A
has the desired properties.

Stage 0: Numerate pg and —pq into A. Activate the sentences (¢g A Con(pg))
and (=g A Con(—¢p)).

Stage n+1: There are finitely many active sentences. For each such sentence 1,
numerate 0y := (Y A @p11) and 01 := (¥ A —pp41) into A. Deactivate the sentence
1 and activate the sentences (6p A Con(fy)) and (61 A Con(6;)).

We dovetail the construction with a search through EA proofs. If we ever see
that EA - ¢ < 4 for some ¢ that we have already numerated into A, then we
numerate 1 into A.

Now we check that A4 has the desired properties. It is clear that A is recursively
enumerable and that A is closed under EA provable equivalence.

Claim. A contains arbitrarily strong true sentences. That is, for each true sentence
@, there is a true sentence ¢ such that ¥ ¢ and i € A.

At any stage in the construction of A, there are finitely many active sentences,
Y, ..., Y. An easy induction shows that exactly one of )y, ..., ¥ is true. Indeed,
exactly one of ¢ or —yyq is true, and hence so is exactly one of ¢y A Con(pg) and
=@ A Con(—pq). And if 0 is true, then so is exactly one of (y := 0 A i and
(1 := 0 A —¢y, and hence so too is exactly one of (5 A Con(¢p) and ¢; A Con((y).

Let ¢ be a true sentence. At stage k in the construction of A there are only
finitely many active sentences vy, ..., %¥,. We have already seen that exactly one of
1; is true. But then @i A v is true, (¢x A ¥ - @), and (g A ;) is numerated
into A.

Claim. A contains no true ideals.
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An easy induction shows that if ¢y and v; are both active at the same stage,
then for any 0, if 6 implies both 1y and v then 6 € [L].

Let ¢ be a true sentence in A. By the previous remark, the only sentences in .4
that strictly imply ¢ are (i) EA refutable sentences and (ii) sentences that imply
¢ A Con(yp). Since the Lindenbaum algebra of EA is dense, this means there is some
1 such that (¢ A Con(yp)) strictly implies 1 strictly implies ¢ but ¢ ¢ A. a

The following questions remain.

Question 7.2. Is the relation of cofinal agreement on true sentences an equivalence
relation on recursive monotonic operators?

Question 7.3. Let f be monotonic. Suppose that for all consistent @,
(i) o ~ Con(yp) implies f(p) and

(ii) f(p) implies .

Must [ be equivalent to the identity or to Con on a true ideal?
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