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Abstract

We present algorithms for solving a large class of flow and regression problems on unit
weighted graphs to (1 + 1/poly(n)) accuracy in almost-linear time. These problems include
{,-norm minimizing flow for p large (p € [w(1),0(log??n)]), and their duals, £,-norm semi-
supervised learning for p close to 1.

As p tends to infinity, £,-norm flow and its dual tend to max-flow and min-cut respectively.
Using this connection and our algorithms, we give an alternate approach for approximating
undirected max-flow, and the first almost-linear time approximations of discretizations of total
variation minimization objectives.

This algorithm demonstrates that many tools previous viewed as limited to linear systems are
in fact applicable to a much wider range of convex objectives. It is based on the the routing-based
solver for Laplacian linear systems by Spielman and Teng (STOC ’04, SIMAX ’14), but require
several new tools: adaptive non-linear preconditioning, tree-routing based ultra-sparsification
for mixed ¢ and ¢, norm objectives, and decomposing graphs into uniform expanders.
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1 Introduction

Graphs are among the most ubiquitous representations of data, and efficiently computing on graphs
is a task central to operations research, machine learning, and network science. Among graph
algorithms, network flows have been extensively studied [EK72, Kar73, ET75, GT88, GR98, Sch02,
Hoc08, CKM*11, HO13, Orl13, GT14], and have wide ranges of applications [KBR07, LSBG13,
PZ713]. Over the past decade, the ‘Laplacian paradigm’ of designing graph algorithms spurred a
revolution in the best run-time upper bounds for many fundamental graph optimization problems.
Many of these new graph algorithms incorporated numerical primitives: even for the s-t shortest
path problem in graphs with negative edge weights, the current best running times [CMTV17] are
from invoking linear system solvers.

This incorporation of numerical routines [DS08, CKM™11] in turn led to a dependence on ¢, the
approximation accuracy. While maximum flow and transshipment problems on undirected graphs
can now be approximated in nearly-linear time [KLOS14, Shel3, BKKL17, Pen16, Shel7b, Shel7a]
(and the distributed setting has also been studied [GKK'15, BKKL17]), these algorithms are
low accuracy in that their running times have factors of 1/e or higher. This is in contrast to
high accuracy solvers for linear systems and convex programs, which with polylog(n) overhead
give 1/poly(n)-approximate solutions. Prior to our result, such high accuracy runtime bounds for
problems beyond linear systems all utilize second order methods [DS08, Mad13, LS14, CMTV17,
ALdOW17, BCLL18] from convex optimization.

The main contribution of this paper is giving almost-linear time, high accuracy solutions to
a significantly wider range of graph optimization problems that can be viewed as interpolations
between maximum flow, shortest paths, and graph-structured linear systems. Our unified formula-
tion of these problems is based on the following unified formulation of flow/path problems as norm
minimization over a demand vector b € RY:

flow f WIiItlﬁI}esidue b”fH@ (1)
In particular, when |||, is the £o-norm, this formulation is equivalent finding the flow of minimum
congestion, which is in turn equivalent to computing maximum flows and bipartite matchings in
unit capacitated graphs [Mad11]. Our main result is that for any p > 2, given weights r € Rgo, a

“gradient” g € R”, and a demand vector b € RV (with b'1= 0), we can solve

min Z gefe + refz + |fe|p7 (2)

flow f with residue b

... .. O(p3/2)  1+0(%) . .
to 1/poly(n) additive error in time 2 ®**)m vP’. We will formally state this result as Theorem 1.1
at the start of Section 1.1, and discuss several of its applications in flows, semi-supervised learning,
and total variation minimization.

We believe that our algorithm represents a new approach to designing high accuracy solvers
for graph-structured optimization problems. A brief survey of relevant works is in Section 1.2:
previous high accuracy algorithms treat linear systems as the separation between graph theoretic
and numerical components: the outer loop adjusts the numerics, while the inner loop quickly
solves the resulting linear systems using the underlying graph structures. Our result, in contrast,
directly invoke analogs of linear system solving primitives to the non-linear (but still convex)
objective functions, and no longer has this clear separation between graph theoretic and numerical
components.



We will overview key components of our approach, as well as how they are combined, in Sec-
tion 1.3. Discussions of possible avenues for addressing shortcomings of our result, namely the
exponential dependence on p, the restriction to unweighted graphs, and gap between £ Jlogn-orm
flow and /-, are in Section 1.4.

1.1 Main Results and Applications

The formal formulation of our problem relies on the following objects defined on a graph G = (V, E)
with n vertices and m edges:

1. edge-vertex incidence matrix B,

2. a vector b indicating the required residues on vertices (satisfying 175 = 0), and

3. a norm p as finding a flow f with demands b that minimize a specified norm || - ||.

The normed flow problem that we solve can then be formulated as:

BI_p}ib 2@: gefe + 'r'efg + |fe|p7 (2)

Using [|fllo, = 1/ 2 rf? to denote the r-weighted 2-norm, the objective can also be viewed as
g’ f+ Hng,, + If[[. Let val(f) denote value of a flow f according to the above objective, and
let OPT denote value of the optimal solution to Problem (2). Our main technical result is the
following statement which we prove as corollary of our main technical theorem in Section 3.3.

Theorem 1.1 (Smoothed ¢,-norm flows). For any p > 2, given weights r € Rgo, a “gradient” g €
R¥, a demand vector b € R (with b'1= 0), and an initial solution f(o) such that all parameters
are bounded by 2P°W1°8™) e can compute a flow f satisfying demands b, i.e., BETf = b, such

that
1

poly(m)

val(f) — OPT < <val(f(0)) ~ OPT) +

poly(m)

3 1
in 20077 TO) time, where m denotes the number of edges in G.

1.1.1  ¢,-Norm Flows

From this, we also get a (slightly simpler) statement about ¢,-norm flows.

Theorem 1.2 ({,-norm flows). For any p > 2, given an unweighted graph G(V, E) and demands
b, using the routine PFLOWS(G, b) (Algorithm 2) we can compute a flow f satisfying satisfying b,
ie., BCTf =b, such that

min | f 5.

HfHZ = <1 * polyl(m)> F:BCTf=b

3 L
in 20 /2)m1+o(\/5), time, where m denotes the number of edges in G.

This corollary is also proven in Section 3.3.

Picking g, r = 0 gives us an QO(pB/Z)mHO(\%) time high-accuracy algorithm for ¢,-norm min-
imizing flows on unit weighted undirected graphs (p > 2). For large p, e.g. p = y/logn this is an
m o) time algorithm, and to our knowledge the first almost linear time high-accuracy algorithm
for a flow problem other than Laplacian solvers (¢3) or shortest-paths (¢1).



1.1.2 Semi-Supervised Learning on Graphs.

Semi-supervised learning on graphs in machine learning is often based on solving an optimization
problem where voltages (labels) are fixed at some vertices in a graph the voltages at remaning
nodes are chosen so that some overall objective is minimized (e.g. ¢,-norm of the vector of voltage
differences across edges) [AL11, KRSS15, EACR'16]. Formally, given a graph G = (V, E) and a
labelled subset of the nodes T C V with labels s7 € R”, we can write the problem as

min Z]:I:u —x,|P. (3)

zeRVY |zr=sT o
By converting this problem to its dual, we get an almost linear time algorithm for solving it to high
accuracy, provided the initial voltage problem uses p close to 1: In this case, voltage solutions are
“cut-like”. Given p < 2, we get a solver that computes a (1 4+ 1/poly(m)) multiplicative accuracy

3
solution in time 201" 1+0/P=1) | For p=1+ \/li@’ this is time is bounded by m!to®).
Converting the dual of Problem (3) into a form solvable by our algorithms requires a small

transformation, which we describe in Appendix F.

1.1.3 Use as Oracle in Conjunction with Multiplicative Weight Updates

The mixed £3 and £ objective in our Problem (2) is useful for building oracles to use in multiplicative
weight update algorithms based on flows, as they appear in [CKM*11, AKPS19]. Assume we are
looking to solve some problem to (1 + €)-accuracy measured as multiplicative error, and let us
assume m < € < 0.5. Specifically we can solve for the following objective subject to certain
linear constraints.

o ellrlly
Z T'efe + T‘fe‘p‘ (4)

e

This gives an oracle for several problems. Algorithms based on oracle solutions to this type of
objective work by noting that any f with |f| ., < 1 gives an objective value at most

ell

al
Soref?+ SERIL < (4 Q)
e

Since such a flow must exist in the context where the oracle is applied, the optimum flow must also
meet this bound. Now, if we compute a (14 0.01¢) approximately optimal solution to this problem,
it must satisfy

el
S+ SERf P < (1 110
e

By Cauchy-Schwarz, we get S°_ re|f.| < +/lI7lly S ref? < (14 L.1€) |||, which tells us the oracle
is “good-on-average” according to the weights 7. The objective value also implies for every edge
that

Whig e <t 10l <20l

which simplifies to:
Fel < (m/e)!/? < m®) (5)



when we set p = log®! n. This is the width of the oracle, and together these conditions demonstrate
that the oracle suffices for a multiplicative weights algorithm and bounds the number of calls to
the oracle by m®Mpoly(1/e).

This oracle has multiple uses:

Approximate undirected maximum flow. Using the oracle, we can approximate maximum
flow using [CKM™11], giving an algorithm for undirected maximum flow that is not based
on oblivious routings unlike other fast algorithms for approximate maximum flow [Shel3,
KLOS14, Penl6]. Our algorithm obtains almost-linear time, albeit only for unit weighted
graphs.

Isotropic total variation denoising. Using our algorithm, we can give the first almost linear
time, low accuracy algorithm for total variation denoising on unit weighted graphs [ROF92,
ZWC10]. While there has been significant advances in image processing since the introduction
of this objective, it still remains a representative objective in pixel vision tasks. The total
variation objectives can be viewed as variants of semi-supervised learning on graphs: Given
a “signal” vector s which corresponds to noisy observations of pixels of an image, we want to
find a denoised version of s, which we refer to as . The denoised output  should minimize an
objective that measures both the between pixels in x that are close to each other in the image
(which should be small), and the difference between & and s (which should also be small).
The most popular version of this problem, known as isotropic total variation denoising, allows
the input to specify a collection of groups of pixels with connections inside each group 7 given
by a set of edges F;, and asks that 1) the denoised pixels are close in an /3 sense to the
measured signal, 2) in each group, the standard deviation between denoised pixels is not too
high. These goals are expressed in the objective

Z(:I:u —su)% + Z /Z (€ — x,)°.
u ) eckE;

The dual of this problem is grouped flows, which is finding f such that B'f = d and for
edge sets Fj,

I 5.l < 1.

Our oracle gives the first routine for approximate isotropic 7'V denoising that runs in almost
linear time. The previous best running time was about m*? [CMMP13].

1.2 Related Work

Network flow problems have a long history of motivating broader developments in algorithms, in-
cluding the introduction of strongly polynomial time as a benchmark of algorithmic efficiency [Edm65,
EKT2], the development of tree data structures [GN79, ST83, ST85], and randomized graph al-
gorithms and graph approximations [KS96, BK96]. For general capacities, the best strongly
polynomial time algorithms run in about quadratic time due to the flow decomposition bar-
rier [EK72, GN79, GT88, HO13, Orl13], which says that the there exists graphs where the path
decomposition of an optimum flow must have quadratic size.

The flow decomposition barrier suggest that sub-quadratic time algorithms for network flows
should decompose solutions numericallly, and this has indeed been the case in the development of



such algorithms [GR98, GT14]. These numerical approaches recently culminated in nearly-linear
time algorithms for undirected maximum flow and transshipment (the ¢; case of Problem (1)),
yielding nearly-linear time algorithms [CKM™11, Shel3, KLOS14, Pen16, Shel7b, Shel7a]. Much
of these progress were motivated by the development of nearly-linear time high-accuracy solvers for
Laplacian linear systems [ST14, KMP12, KOSZ13, LS13, KS16|, whose duals, electrical flows are
the {4 case of Problem (1). Such solvers can in turn be used to give the current best high accuracy
flow algorithms. For graphs with polynomially bounded capacities, the current best running time
is 5(m\/ﬁ) due to Lee and Sidford [LS14]. On sparse graphs, this bound still does not break
the long-standing O(n!-3) barrier dating back to the early 70s [HK73, Kar73, ET75]. Recently
Madry [Mad13, Mad16] broke this barrier on unit capacitated graphs, obtaining O(m!%/7) running
time.

Our result has in common with all previous results on almost-linear time optimization prob-
lems on graphs [KLOS14, Shel3, BKKL17, Pen16, Shel7b, Shel7a] in that it is based on white-box
modifications of a linear system solver. In particular, our high level algorithmic strategy in creat-
ing edge and vertex reductions is identical to the first nearly-linear time solver by Spielman and
Teng [ST14]. Much of this similarity is due to the lack of understanding of more general versions
of key components: some possibilities for simplifying the result will be discussed in Section 1.4.
On the other hand, our algorithms differ from previous adaptations of solvers in that it obtains
high accuracy '. This requires us to tailor the scheme to the residual problems from the p-norm
iterative methods, and results in us taking a more numerical approach, instead of the more routing
and path embedding-based approaches utilized in similar adaptations of Spielman and Teng [ST14]
to cuts [Mad10], flows [Shel3, KLOS14], and shortest paths [BKKL17].

The development of high-accuracy algorithms for p-norm minimization that are faster than in-
terior point methods (IPMs) [NN94] was pioneered by the recent work of Bubeck et al. [BCLL18§]
which introduced the y-functions that were also used in [AKPS19]. However, the methods in [BCLL18]
are conceptually similar to interior point methods (IPMs) [NN94] (as in they are homotopy meth-
ods). Their runtime for large p behaves essentially like IPMs, requiring about m%2=°() time for

solving p-norm flow problems, whereas the limiting behavior of our result is about mto(),

1.3 Overview

At a high level, our approach can be viewed as solving a graph optimization problem as a linear
system. This is done by combining the numerical methods for ¢,-norms by Adil et al. [AKPS19]
with the recursive preconditioning of graph structured linear systems by Spielman and Teng [ST14].
Many conceptual obstacles arise in trying to realize this vision, preventing us from adopting later
Laplacian linear solvers that have greatly simplified the result of Spielman and Teng. The main one
is the lack of concentration theory for the smoothed p-norm objectives integral to our algorithms:
these concentration arguments are at the core of all subsequent improvements to Laplacian solver
algorithms [KMP11, KOSZ13, LPS15, KS16].

Our starting point is a recent result involving a subset of the authors [AKPS19] that significantly
generalized the phenomenon of high-accuracy numerical methods. In particular, this method is
applicable to general £,-norm optimization problems, for all p that are bounded away from 1 and
oo. It also opens up a major question: can we develop an appropriate notion of preconditioning, the

! The nearly-linear time matrix scaling algorithm [CMTV17] has a linear dependence on the condition number &,
while convex optimization methods for matrix scaling have dependencies of log x instead.



other central ingredient of fast solvers for linear systems, applicable to £,-norms? We resolve this
question in the affirmative, and develop a theory of preconditioning that works for a wide class of
non-linear problems in Section 3. In particular, we show that the second and p*" order terms from
the main formulation in Equation 2 form a class of functions that’s closed under taking residual
problems. We will formally define these as smoothed ¢,-norms in Section 2.1.

The crux of our problem then becomes designing preconditioners that interact well with these
smoothed £,-norms. Here it’s worth noting that earlier works on preconditioning for non-linear
(maximum) flow problems all relied on oblivious routing which gives rise to linear preconditioners.
Such an approach encounters a significant obstacle with ¢, norms: consider changing a single
coordinate from, say 1, to (1 + 9):

e If the update 0 is much smaller than 1 in absolute value, the change in the objective from 17
to (1 + 6)P is dominated by terms that scale as 6 and 6.

e However, if the update is much larger than 1, the change is dominated by a 6P term.

This means that good preconditioning across small and large updates is inherently highly dependent
on the current coordinate value.

This example captures the core difficulties of our preconditioned iterative methods for smoothed
¢p-norm problems, which heavily rely on both the second and pth power terms the objective func-
tions. It means our graph theoretic components must simultaneously control terms of different
degrees (namely scaling as §, 2, and P) related to the flows on graphs. Here our key idea is that
unit-weighted graphs have “multi-objective low-stretch trees” that simultaneously preserve the §2
and 0P terms, while the linear (gradient) terms can be preserved exactly when routing along these
trees. Here a major difficulty is that the tree depends on the second order derivatives of the current
solution point, and thus must continuously change as the algorithm proceeds. Additionally, after
rerouting graph edges along the tree, we need to sparsify the graph according to weights defined
by the same second derivatives at the current solution, which makes the adaptive aspect of the
algorithm even more important. We defer the construction of our adaptive preconditioner to Sec-
tion 4, after first formally defining our objective functions in Section 2, and introducing numerical
methods based on them in Section 3.

1.4 Open Questions

We expect that our algorithm can be greatly simplified and adapted to non-unit weight graphs in
ways similar to the sampling based solvers for Laplacian linear systems [KMP14, KOSZ13, KS16].
The current understanding of concentration theory for £, norms rely heavily on tools from functional
analysis [CP15]: generalizing these tools to smoothed ¢,-norm objectives is beyond the scope of
this paper.

A major limitation of our result is the restriction to unit capacitated graphs. We believe this lim-
itation is inherent to our approach of constructing preconditioners from trees: for general weights,
there are cases where no tree can simultaneously have small stretch w.r.t. f9-norm and ¢,-norm
weights. We believe that by developing a more complete theory of elimination and sparsification for
these objectives, it will be possible to sparsify non-unit weight graphs, and develop solvers following
the patterns of non-tree based Laplacian solvers [PS14, LPS15, KS16].

We also believe that the overall algorithmic approach established here is applicable far be-
yond the class of objective functions studied in this paper. Here a direct question is whether the



dependency on p can be improved to handling ¢, flows, which in unit weighted graphs imply
maximum flows. The exponential dependence on p has already been shown to be improvable to
about 5(]92) [Sac19]. For even larger values of p, a natural approach is to use homotopy methods
that modify the p values gradually. Here it is also plausible that our techniques, or their possible
generalizations to weighted cases, can be used as algorithmic building blocks.

2 Preliminaries

2.1 Smoothed /,-norm functions

We consider p-norms smoothed by the addition of a quadratic term. First we define such a smoothed
p-power on R.

Definition 2.1 (Smoothed p*-power). Given r,z € R,r > 0 define the r-smoothed s-weighted
pP-power of = to be
hy(r, s,2) = ra? + s|z/P.

This definition can be naturally extended to vectors to obtained smoothed ¢,-norms.

Definition 2.2 (Smoothed ¢,-norm). Given vectors & € R™,r € RY), and a positive scalar
s € R>q, define the r-smooth s-weighted p-norm of  to be

m m
hp(ros,@) =Y hp(ri,s, i) = Y _(riz] + s|zi[”).
i=1 i=1

2.2 Flow Problems and Approximation

We will consider problems where we seek to find flows minimizing smoothed p-norms. We first
define these problem instances.

Definition 2.3 (Smoothed p-norm instance). A smoothed p-norm instance is a tuple G,

def
g é (Vg7 Eg7 gg7 rQ? Sg)7
where VY is a set of vertices, EY is a set of undirected edges on V9, the edges are accompanied by
a gradient, specified by g9 € ]REQ, the edges have (3-resistances given by r9 ¢ Rgg, and s € R>p
gives the p-norm scaling.

Definition 2.4 (Flows, residues, and circulations). Given a smoothed p-norm instance G, a vector

fe RZ? is said to be a flow on G. A flow vector f satisfies residues b € RV if (Bg)Tf = b, where

BY € RE9XVY ig the edge-vertex incidence matrix of the graph (V9, E9), i.e., (Bg)(Tuvv) =1,—-1,.
A flow f with residue 0 is called a circulation on G.

Note that our underlying instance and the edges are undirected. However, for every undirected
edge e = (u,v) € E, we assign an arbitrary fixed direction to the edge, say u — v, and interpret
fo >0 as flow in the direction of the edge from u to v, and f, < 0 as flow in the reverse direction.
For convenience, we assume that for any edge (u,v) € E, we have f (uw) = —F (wu)-



Definition 2.5 (Objective, £9). Given a smoothed p-norm instance G, and a flow f on G, the
associated objective function, or the energy, of f is given by

E9(F) = (g9) ' f — hy(r,s,f).

Definition 2.6 (Smoothed p-norm flow / circulation problem). Given a smoothed p-norm instance
G and a residue vector b € REQ, the smoothed p-norm flow problem (G, b), finds a flow f € REC
with residues b that maximizes £9(f), i.e.,

EY(F).
f:(Bngl?TXf:b &)

If b =0, we call it a smoothed p-norm circulation problem.

Note that the optimal objective of a smoothed p-norm circulation problem is always non-
negative, whereas for a smoothed p-norm flow problem, it could be negative.
2.3 Approximating Smoothed p-norm Instances

Since we work with objective functions that are non-standard (and not even homogeneous), we
need to carefully define a new notion of approximation for these instances.

Definition 2.7 (H <, G). For two smoothed p-norm instances, G, H, we write H <, G if there is a
linear map My_g : RE™ — RE? such that for every flow £* on H, we have that f9 = Mg (fH)
is a flow on G such that

1. £9 has the same residues as £ i.e., (B9)Tf9 = (B™)Tf™, and

2. has energy bounded by:

K

1 1
_57-[ (fH) < 5(} <Efg> )
For some of our transformations on graphs, we will be able to prove approximation guarantees

only for circulations. Thus, we define the following notion restricted to circulations.

Definition 2.8 (H jzyde G). For two smoothed p-norm instances, G, H, we write H jzyde G if there
is a linear map My_g : RE™ — REY such that for any circulation f* on H, i.e., (BH)TfH =0,
the flow f9 = My_g(f™) is a circulation, i.e., (BY)T f9 = 0, and satisfies

topy <o)

K

Observe that H =<, G implies H < g.
These definitions satisfy most properties that we want from comparisons.

Lemma 2.9 (Reflexivity). For every smoothed p-norm instance G, and every k > 1, G <, G and
G =% G with the identity map.

It behaves well under composition.



Lemma 2.10 (Composition). Given two smoothed p-norm instances, Gy, Ga, such that Gy =<y, Go
with the map Mg, g, and Go =, Gz with the map Mg,_g,, then Gi = x, Gz with the map
M91—>93 = M92—>93 o Mg, 6,

Similarly, for any Gi,Ga, if G jff{de Go with the map Mg, g, and Gy 52?;Cle G3 with the map
Mg, g, then Gy jlcﬁ?ifil; Gz with the map Mg, g, = Mg,—g; 0 Mg, 5,

The most important property of this is that this notion of approximation is also additive, i.e.,
it works well with graph decompositions.

Definition 2.11 (Union of two instances). Consider smoothed p-norm instances, Gy, Go, with the
same set of vertices, i.e. V9 = V9, Define G = G; UG5 as the instance on the same set of vertices
obtained by taking a disjoint union of the edges (potentially resulting in multi-edges). Formally,

G = (Vg1ng1 U EQ2’ (gg1’ ggz)’ (T917 TQ2)7 (3917 3g2))'

Lemma 2.12 (=, under union). Consider four smoothed p-norm instances, Gi,Ga, H1,Ha, on the
same set of vertices, i.e. VI = V92 = VHt = VM2 sych that for i = 1,2, H; <. Gi with the map
My, g, Let G def G1UGo, and H def H1UHo. Then, H =2, G with the map

Moo (F7 = (£ 772)) € (Mo, 6, (F7), M6, (£72)),

where (le,fH2) is the decomposition of % onto the supports of Hy and H.
This notion of approximation also behaves nicely with scaling of /5 and £, resistances.

Lemma 2.13. For all k > 1, and for all pairs of smoothed p-norm instances, G, H, on the same
underlying graphs, i.e., (V9,E9) = (V* EM), such that,

1. the gradients are identical, g9 = g™,

H

2. the (3 resistances are off by at most r, i.e., 79 < krlt for all edges e, and

3. the p-norm scaling is off by at most kP~ ie., s9 < kP15,

then H =, G with the identity map.

2.4 Orthogonal Decompositions of Flows

At the core of our graph decomposition and sparsification procedures is a decomposition of the
gradient g of G into its cycle space and potential flow space. We denote such a splitting using

~ T~
g9 =39+ B9, st. BY g9 =o. (6)

Here g is a circulation, while B gives a potential induced edge value. We will omit the superscripts
when the context is clear.

The following minimization based formulation of this splitting of g is critical to our method of
bounding the overall progress of our algorithm

Fact 2.14. The projection of g onto the cycle space is obtained by minimizing the energy added to
a potential flow to g. Specifically,

12 . 2
gl = m;an + Bx||;.

9



Lemma 2.15. Given a graph/gradient instance G, consider H formed from a subset of its edges.
The projections of g9 and g™ onto their respective cycle spaces, §g and §H satsify:

7= 5], = 19
571, = o1, = 1571

3 Numerical Methods

The general idea of (preconditioned) numerical methods, which are at the core of solvers for graph-
structured linear systems [ST14] is to repeatedly update a current solution in ways that multi-
plicative reduce the difference in objective value to optimum. In the setting of flows, suppose we
currently have some tentative solution f to the minimization problem
min || f||? 7

min £ (7)
by performing the step

f<rf+9o,

with the goal of improving the objective value substantially.

The work of Adil et al. [AKPS19] proved that £,-norm minimization problems could be iter-
atively refined. While that result hinted at a much more general theory of numerical iterative
methods for minimizing convex objectives, this topic is very much under development. In this sec-
tion, we will develop the tools necessary for preconditioning ¢,-norm based functions, and formalize
the requirements for preconditioners necessary for recursive preconditioning algorithms.

3.1 Iterative Refinement

The following key Lemma from [AKPS19] allows us to approximate the change in the smoothed
p-norm of & + § relative to the norm of «, in terms of another smoothed p-norm of 8.

Lemma 3.1 ([AKPS19]). For all r,z,é € R™, with r € RY, and s > 0, we have
27" hp('l” + |m|p—2’ S, 5) < hp(’l", 8, T + 6) - hil’(r7 Sy $) - 6val’hp(rv S5, m) < 22;17 ’ h;l?(r + |m|p—2’ S, 6)

The above lemma gives us the following theorem about iteratively refining smoothed ¢,-norm
minimization problems. While the lemma was essentially proven in [AKPS19], they used slightly
different definitions, and for completeness we prove the lemma in Appendix B.

The following theorem also essentially appeared in [AKPS19], but again as slightly different
definitions were used in that paper, we prove the theorem in Appendix B for completeness.

Theorem 3.2 ([AKPS19]). Given the following optimization problem,
def
maxg E1(x) = gz — hy(r, s, x) (P1)
s.t. Ax =b
and an initial feasible solution xg, we can construct the following residual problem:
def

maxs  E2(0) = (¢')18 — hy(r',5,0) (R1)
s.t. Ad =0,

10



where g' = 2P(g — Vh(r, s, €)|z=q,), and v’ = 7 + s|aoP2.

There exists a feasible solution 8 to the residual problem R1 that achieves an objective of
& (5) > (& (x*) — E1(>)), where * is an optimal solution to problem P1.

Moreover, given any feasible solution & to Program R1, the vector a1 def x4+ 278 is a feasible
solution to the Program P1 and obtains the objective

81(m1) > 51(%0) + 2_4p52(5).
Importantly, we can apply the above theorem to smoothed p-norm flow/circulation problems.

Corollary 3.3 (Iterative refinement for smoothed p-norm flow/circulation problems). Given any
smoothed p-norm flow problem (G, b) with optimal objective E*(G), and any initial circulation f,
we can build, in O(‘EQD time, a smoothed p-norm circulation problem H with the same underlying
graph (V, E™) = (V9,E9), such that £(H) > 2P(£*(G) — E9(f,)) and for any circulation £ on
H, the flow fy def fo+ 273 f M satisfies residues b on G and has an objective

E9(f1) = E9(fo) +27PEN ().

This means if we find even a crude approximate minimizer 5 of this update problem, we can move
to a new point f' = f 4+, so that the gap to the optimum in the original optimization problem (7)
will decrease by a constant factor (depending only on p) from Hin — OPT to Hf’”i — OPT <

(1 —279®)(||f |7 — OPT). In other words, we have a kind of iterative refinement: crude solutions
to an update problem directly give constant factor progress in the original objective.

Note that [|f|[P = >=, f7. This will help us understand the objective function of the update
problem coordinate-wise. Our update problem objective function is motivated by the following
observations. Our function differs slightly from the function used in [AKPS19], which in turn
was based on functions from [BCLL18]|, but our function still uses a few special properties of the
[BCLL18] functions. Suppose p > 2 is an even integer (only to avoid writing absolute values), then

FrApfl 0+ 2700 (F77202 4 67) < (fy+ 007 < f7+pft0i + 200 (£77%67 + 87)
—— ——
write as hp(ff72,5i) hp(f§)7275i)

Of course, the exact expansion gives
_ —1 _ —1 -2 _
(f; + 8,7 = fP + pf? 16,-+%ff 26?+%ﬁ S0 R (8)

So essentially we can approximate this expansion using only the zeroth, first, second, and last term
in the expansion. We use g(f) to denote the vector with g,(f) = pff_1 (i.e. the gradient), and
let £772 denote the entrywise powered vector, and define h,(fP~2,8) = >, hp(ff_Z, d;). Thus we
have

IFI2 4+ g(F) 76 +270Why(£772,8) < [If + 82 < £+ 9(F)7 6+ 2°0)n, (£72,8)
Note that for any scalar 0 < A < 1,

Nhp(FP72,8) < hp(FP72,A8) < Nhy(F772,9)
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Together, these observations are enough to ensure that if we have & which is a constant factor
approximate solution to the follow optimization problem, which we define as our update problem

min g(f)" 8+ hy(F772,6) (9)

then we can find a A s.t. Hf+x\5” —OPT < (1—2790 )(Hf||p OPT).

But what have we gained? Why is Problem (9) more tractable than the one we started with?

A key reason is that unlike the exact expansion of an update as given by Equation (8), all the
higher order terms in the objective function of (9) are coordinate-wise even functions, i.e. flipping
the sign of a coordinate does not change the value of the function. [AKPS19] used a different but
still even function instead of our h,. This symmetrization allowed them to develop a multiplicative
weights update algorithm motivated by [CKM*11] for their version of Problem (9), reducing the
problem to solving a sequence of linear equations.

For our choice of h,, it is particularly simple to show another very important property: Consider
solving Problem (9) by again applying iterative refinement to this problem. _That is, at some
intermediate step with § being the current solution, we aim to find an update 5 st. B& =0 and

a(f)T (6 + 6) + hy(FP72,8 + 5) is smaller than g(f)"(8) + h (fp 2.8). Then by expanding the
two non-linear terms of hp(ff_2,6i), ie. (6; + g)p and (6; + 5) , similar to Equation (8), we get
a sequence of terms with powers of §; ranging from 2 to p. If we approximate this sequence again

using only the 3\3 and Sf terms, we get another update problem. This update problem is an instance
of Problem (2). And in general, we can set up iterative refinement update problems for instances
of Problem (2), and get back another problem of the that class (after our approximation based
on dropping intermediate terms). Thus, the problem class (2) is closed under repeatedly creating
iterative update problems. This observation is central because it allows us to develop recursive
algorithms.

3.2 Vertex Elimination

Following the template of the Spielman-Teng Laplacian solver, we recursively solve a problem on
m edges by solving about x problems on graphs with n — 1+ m/k edges. These ultra-sparse graphs
allow us to eliminate degree 1 and 2 vertices and obtain a smaller problem. Because our update
problem (Problem (9)) corresponds to a flow-circulation problem with some objective, we are able
to understand elimination on these objectives in a relatively simple way: the flow on degree 1 and
2 vertices is easily related to flow in a smaller graph created by elimination. Unlike Spielman-Teng,
every recursive call must rely on a new graph sparsifier, because the “graph” we sparsify depends
heavily on the current solution that we are seeking to update: we have to simultaneously preserve
linear, quadratic and p-th order terms, whose weights depend on the current solution.

A critical component of this schema is the mapping of flows back and forth between the original
graph and the new graph so a good solution on a smaller graph can be transformed into a good
solution on the larger graph. These mappings are direct analogs of eliminating degrees 1 and 2
vertices. In Appendix C, we generalize these processes to smoothed £,-norm objectives, proving
the following statements:

Theorem 3.4 (Eliminating vertices with degree 1 and 2). Given a smoothed p-norm instance G,
the algorithm ELIMINATE(G) returns another smoothed p-norm instance G', along with the map
Mgi_g in O(|VY| + |E9|) time, such that the graph G' = (V9',E9") is obtained from the graph

12



G = (VI9,E9) by first repeatedly removing vertices with non-selfloop degree? 1 in G, and then
replacing every path u ~~ v in G where all internal path vertices have non-selfloop degree exactly 2
in G, with a new edge (u,v).
Moreover,
g/ jcyclle g jiycle Q',

np—1

where n = |V9|, and the map Mg _,g can be applied in O(|V9| + |EY|) time.

Lemma 3.5 (Eliminating Self-loops). There is an algorithm REMOVELOOPS such that, given a

smoothed p-norm instance G with self-loops in EY, in O(|Vg| + |Eg‘) time, it returns instances

G1,Go, such that G = G1 UG, where Gy is obtained from G by eliminating all self-loops from Eg, and

G is an instance consisting of just the self-loops from G. Thus, any flow £9% on Gy is a circulation.
Moreover, there is an algorithm SOLVELOOPS that, given Ga, for any § < 1/p, in time O(|E92|log 1/s),

finds a circulation 92 on Go such that

£ (f#) > (1-6)  max  E%(f%).
19:(B)9r9=0

We remark that only the map from the smaller graph to the larger has to be constructive.

3.3 Recursive Preconditioning

We can now present our main recursive preconditioning algorithm, RECURSIVEPRECONDITIONING
(Algorithm 1). Earlier work on preconditioning for non-linear (maximum) flow problems all relied
on oblivious routing which gives rise to linear preconditioners. These inherently cannot work well
for high-accuracy iterative refinement, and the issue is not merely linearity: Consider Problem (9):
the optimal & is highly dependent on the current f, and when a coordinate d; is large compared
to the current |f;|, the function depends on it as 67, while when §; is small compared to |f;], it
behaves as 522. Thus the behavior is highly dependent on the current solution. This necessitates
adaptive and non-linear preconditioners.

To develop adaptive preconditioners, we employ recursive chains of alternating calls to non-
linear iterative refinement and a new type of (ultra-)sparsification that is more general and stronger,
allowing us to simultanously preserve multiple different properties of our problem. And crucially,
every time our solution is updated, our preconditioners change. The central theorem governing the
combinatorial components of our algorithm, which is the main result proven in Section 4, is:

Theorem 3.6 (Ultra-Sparsification). Given any instance G = (V9,E9, g9, 79, 59) with n nodes, m
edges, and parameters K, where log % and logHrgHoo are both O(log®n) for some constant ¢ and k <
m , ULTRASPARSIFY computes in 5(m) running time another instance H = (VH, E" gh vt M =
59) along with flow mapping functions My _sg, Mg—s3 such that V* = V9 and with high probability
we have

1. EH consists of a spanning tree in the graph (V9,E9), up to m —n+ 1 self-loops and at most
O(™*) other non self-loop edges.

2By non-selfloop degree, we mean that self-loops do not count towards the degree of a vertex.
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2. With kgy = 5(/<;m3/(p_1)) for any flow f9 of G we have

Mg—ﬂ-l(.fg) > 1

Enl >
KG—H KG—H

E(£9) = 3] £9, ]l

27
and with Ky—g = 6(m2/(p_1)), for any flow solution f7* of H we have

H
Mool o Ly ) a0, + 171

Eg(
KH—G KH—

The flow mappings My g, Mg— preserve residue of flow, and can be applied in 6(m) time.

Algorithm 1 Recursive Preconditioning Algorithm for p-smoothed flow/circulation problem

1: procedure RECURSIVEPRECONDITIONING(G, b,f O k, J)

2 m < |EY]. If m < O(k), solve G using the algorithm from [AKPS19]

3: T + 5(23p/{m%1)

4 fort=0to T do

5 Construct the residual smoothed p-norm circulation problem #; for (G, b) with the
current solution f (t), given by Corollary 3.3.

6: 8"+ min{1, g”lu_ﬁ}-d/(Zle).

7: Hoy Mty 3y, KHo—#, < ULTRASPARSIFY(H1,k,0") > Ho is an ultrasparsifier for Hy
8: Hs, May—s, < ELIMINATE(H2) > Gaussian elimination to remove degree 1,2 vertices
9: Ha, Hioops < REMOVELOOPS(H3) > Remove self-loops
10: Ahoops SOLVELOOPS(Hioops; 1/p) > Solve the self-loop instance
11: AM1  RECURSIVEPRECONDITIONING(H4, 0,0, 5,0/T) > Recurse on smaller instance
12: AN AT 4 AMoops > Adding solution for H!'°°P to obtain solution for s
13: ATtz |V |_P+1 - M3y 31, (A™3). > Undo elimination to map solution back to Ha
14: A ’{7_{2 _,HlMHQ—ml(AHz) > Map it back to the residual problem
15: f (t+1) f (t) 4 2=3p AM1 > Update the current flow solution
16: return f ()

Our key theorem about the performance of the algorithm is then:
Theorem 3.7 (Recursive Preconditioning). For all p > 2, say we are given a smoothed p-norm in-
stance G, residues b, initial solution f(o), and § < 1 such that log1/s, logHggH,logH'r’gH,long(O) H <
~ ~ 1
O(1). We can pick k = ©(mvV»=1) so that the procedure RECURSIVEPRECONDITIONING(G, b, f(©), . )

runs in time 20(1”3/2)ml+o(”}*1)7 and returns a flow f on G such that f satisfies residues b, and
1
£4(G) - &9(f1) < S(E°(9) - E9(£ ) + 659,

Proof. (of Theorem 3.7) By scaling g9, 79, we can assume that s9 = 1 without loss of generality.

Let us consider iteration t of the for loop in RECURSIVEPRECONDITIONING. First, let us prove
guarantees on the optimal solutions of all the relevant instances. By the guarantees of Corol-
lary 3.3, we know that H; is a smoothed p-norm circulation problem with the same underlying
graph (VM1 EM1) = (V9, E9), such that £*(H,) > 2P (E*(G) — E9(f )).
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From Theorem 3.6, we know that ULTRASPARSIFY returns a smoothed p-norm circulation
instance Hs on the same set of vertices such that E*(Hsy) > /17_&_)%25*(7-[1) — & || g™ ||| £ ]
cycle

From Theorem 3.4, we know that the instance #3 returned by ELIMINATE(H) satisfies Hy <}
M3, and hence £*(Ha) < £*(H3). From Lemma 3.5, we know that £*(H4) + E*(Hioops) = E¥(H3).
Combining these guarantees, we obtain,

E*(Hs) = € (Ha) + € (Hioops) > 213, 34, (€7(G) = E9(F 1)) = ol g™ [ [l£74

Now, we analyze the approximation guarantee provided by the solutions to these instances.
From Lemma 3.5, SOLVELOOPS(Ho0ps) returns a AMioops that satisfies £Hoops (A Moops) > %oz*(?—lloops).
By induction, RECURSIVEPRECONDITIONING(Hy, 0, &, 6T ~1), upon starting with the initial solu-
tion 0, returns a A™* that satisfies, £#4(AM*) > L£%(H,) — 6T~ . Combining these guarantees,
we have,

gHg(AHg) — 5H4(AH4) + ngoops(AHloops) > %g*(}@) — 5T L.

cycle
Kelim

1
From Theorem 3.4, we also have Hg =< Ho, for Kelim = ‘VHZ ‘ r—1 and hence

Ko EM3(AM) < M2 (k! My, 3, (AME)) = £M2(AM2),

elim

Finally, from Theorem 3.6, we have,
EPH(AT) = E4 (] Mt (A7) > iz £72(87) — g7 [ 47| — o 4%

Combining these guarantees, we obtain,

2
— || g? || A% || - || A%
> 27k w7 (E7(G) — E9(F 1))
=8| g™ [ £ | - o] || A | - o[ A |” — o,
> Q2Pk T (E4(G) — E9(F D)) — 2677,

— — 1 — * 1 1 * -
4(8%) 2 it (570 lE7() — £ = 38 g™ 7% — o)

£ < Vg |75, since £7 (£+74) > 0 implies that m1 =74 2 < [[£94 2 < P T <

|lg™||||lF*7||. Similarly, HAHlH < \/ﬁHgH1HI’+1, and HAH2H < \/EHA%H, by the reverse tree
routing map.
Thus, by Theorem 3.3, £+ satisfies

E(G) — E9(fHY) < £(G) — €9(f V) — 27 M (AT
< (1- 5(2—3pm—1m—%)) (£5(G) — E9(FW)) + 27 . 26T,
Thus, repeating for loop 5(23p/<;m1’%1) times gives us a solution f () such that

EXG) - E9(FT) < =(£*(G) — 9+ ) + 4.

N =
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Now, we analyze the running time. In a single iteration, the total cost of all the operations
other than the recursive call to RECURSIVEPRECONDITIONING is 6(m) Note that H; has m edges.
Theorem 3.6 tells us that Ho consists of a tree (n — 1 edges), at most 6(m /k) non-selfloop edges,
plus many self-loops. After invoking ELIMINATE, and REMOVELOOPS, the instance H4 has no
self-loops left, and after dropping vertices with degree 0, only has vertices with degree at least
3. Every edge removed in ELIMINATE decreases the number of edges and vertices with non-zero
non-selfloop degree by 1. Suppose n’ is the number of vertices in H, with non- zero degree Then,
ELIMINATE must have removed n — n/ edges from Hs. Since H4 must have at least 3 n vertices, we

have n — 1+ O(m/k) — (n —n') > 3n/. Hence, n’ < O(m/k). Thus M4 is an 1nstance with at most

O(m/k) vertices and edges.
Thus, the total running time recurrence is

T(m) < O(2%kmr-1) (T(m//i) + 6(m)).

Note that & is fixed throughout the recursion. By picking x = @(mv 1), we can fix the depth of
the recursion to be O(y/p — I). The total cost is dominated by the cost at the bottom level of the
3 1
recursion, which adds up to a total running time of 20 )t m).
The above discussion does not take into account the reduction in ¢ as we go down the recursion.
Observe that § is lower bounded by

5(meangH%)_O(Vp_l) = o(m2P -1,

Thus, we always satisfy logd = 5(1) O
We can now prove the central collaries regardling smoothed ¢,-norm flows and ¢,-norm flows.

Theorem 1.1 (Smoothed ¢,-norm flows). For any p > 2, given weights r € R>0, a “gradient” g €

R, a demand vector b € R (with b'1= 0), and an initial solution f( such that all parameters
are bounded by 2P°W1°8™) e can compute a flow f satisfying demands b, i.e., BGT_f = b, such
that

val(f) — OPT < %(w(f(o)) - OPT) +

poly(m) poly(m)

3
in 2007 1+O( 7) time, where m denotes the number of edges in G.
Proof. First note that the Problem (2) is a smoothed p-norm instance after flipping the sign of g,
and the sign of the objective function. We can solve this smoothed p-norm instance G by using
Theorem 3.7 to compute the desired approximate solution to the residual problems. We start with
£ as our initial solution. At iteration ¢, we invoke Theorem 3.7 using f ) as the initial solution,

1
f(t) < RECURSIVEPRECONDITIONING <g, b, f¢ 1 g, >,
poly(n)

where & is given by Theorem 3.7.
We know that f ) satisfies,
1

* oG re(t-1)
(€(0) - ) + s

£X(G) —E9(f W) <

DO =
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Iterating O(logn) times, we obtain,

1
poly(n)

1

*(G) — £9(+0) -
(E() ~ 9GO + s

£5(G) — 91 <

Finally, noting that we had flipped the sign of the objective function in Problem (2), we obtain our
claim. O

Theorem 1.2 ({,-norm flows). For any p > 2, given an unweighted graph G(V, E) and demands

b, using the routine PFLOWS(G, b) (Algorithm 2) we can compute a flow f satisfying satisfying b,
ie., BGT_f = b, such that

I <+ o)

in 200", +0(5) , time, where m denotes the number of edges in G.

Proof. The pseudocode for our procedure PFLOWS(G, b) for this problem is given in Algorithm 2
Our goal is to compute a flow f satisfying B¢ f = b, such that

|7 < (1 N m) o

where f* is the flow minimizing the /,-norm with residue b. For concreteness, we take this to
mean H fH (1 +3m=°)|If*||7, for some constant c. We construct a smoothed p-norm instance

G = (V, E 0,0,1). Note that the smoothed p-norm flow problem (G, b) finds a flow satisfying
residues b, and maximizing £9(f) = —|| fll;. We can solve this smoothed p-norm instance by
iteratively refining using Corollary 3.3, and using Theorem 3.7 to compute the desired approximate
solution to the residual problems.

Formally, we use Laplacian solvers to compute in 5(m) time f(o) as a 2-approximation to
ming, g7,y [f]l. We have,

£, < [l#l, = 2 amin uri < 20871 < 23 Fg,

At each iteration ¢, we construct the residual smoothed p-norm circulation problem H; for (G, b)
with the current solution f (t), given by Corollary 3.3. We then invoke

AW RECURSIVEPRECONDITIONING(”Ht,0,0,/—i Hf(o H

p/zmc
where k = (:)(m\/%) is given by Theorem 3.7. Let A®) be the flow returned. We know

£ () — E"(AY) < g () + o[£

p/2mc
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We let f (t+1) i ®) 423 A Thus, by Corollary 3.3, at every iteration, we have

)

> 0]+ 27 (Gre) - 9 - il )

D |P 2G> £G (£ 4 o—apcHi( A1)
f EV(FIT) > EV (V) +27rET (AY)
p

2pmp/2mc

1
> =[] + 2 (Genon) -

> s+ 2‘4”<Hf“)Hz - Hf*uz) e

where we have used, f(O)H < 2m2r IF* M,
P

e =g < @ -z ([0 - i) + 2
Thus
el =y < a— 2 (o] - neg) + i
< max((1 = 200 (|0 = 417 ) sl 1),

Where first step follows by rearranging terms. To establish the second inequality, first consider the

case when (Hf(“([ - uf*nz) > 2m ™| £} and hence ||£ "~ 1) < (1-277/2) <Hf(t)( A )

p
meanwhile, when (Hf(t)H - Hf*Hg) < 2m~¢||f*||}, the inequality is immediate.
p

Iterating T = O((c + p)2% log m) times gives us

[ = 1oty < max (1 =200y ([0 - 1) omoelr i) < sl

4 Graph Theoretic Preconditioners

In this section, we discuss at a high level of the construction of ultra-sparsifiers for a smooth /-
norm instance. We start by restating the main theorem of our ultra-sparsifier. After establishing
the necessary tools, we prove this theorem at the end of this section.

Theorem 3.6 (Ultra-Sparsification). Given any instance G = (V9,E9, g9, 79, 59) with n nodes, m
edges, and parameters Kk, where log % and logHrgHoo are both O(log®n) for some constant ¢ and k <
m , ULTRASPARSIFY computes in 5(m) running time another instance H = (V*, EM, g™ rH M =
59) along with flow mapping functions Ma_sg, Mg_s3 such that V' = V9, and with high probability

we have
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Algorithm 2 Computing p-norm minimizing flows. Given constant p and ¢, the routine computes
f with residues b and p-norm that is within a factor (14 3m~°) of the minimum p-norm achievable
for these residues.

1: procedure PFLOWS(G, b)

2: Use Laplacian solvers to compute f(*) as a 2-approximation to ming, g7 f:b|| 7l

. min{l’ e Hf(O)HZ}

K 4 é(mﬁ)
T < O((c + p)2* logm)
fort=0to7T —1do
Construct the residual smoothed p-norm circulation problem H,; for (G, b) with the
current solution f (t), given by Corollary 3.3.
A + RECURSIVEPRECONDITIONING(H;, 0,0, 5, §)
FED O 4 93 A(®)
10: return f<— f(T)

© ®

1. QH consists of a spanning tree in the graph (V9,E9), up to m —n+ 1 self-loops and at most
O(™) other non self-loop edges.

2. With kgy = 5(/<;m3/(p_1)) for any flow f9 of G we have

Mg (F9 1
o)) 5 L go(79) — 559,191l

En
KG—H KG—H

and with Ky—g = 6(m2/(p_1)), for any flow solution f7* of H we have

H
e Elmt i B i W P IR o}

&g (
KH—G KH—

The flow mappings My g, Mg— preserve residue of flow, and can be applied in 6(m) time.

Our high-level approach is the same as Spielman-Teng [ST14], where we utilize a low-stretch
spanning tree, and move off-tree edges to a small set of portal nodes. Once most off-tree edges are
only between a small set of portal nodes, we sparsify the graph over the portal nodes to reduce
the number of edges. As we need to map flow solutions between the original instance and the
sparsified instance, our main concern is to carry out these step without incurring too much error on
the objective function values. In our case we have £} resistances and gradients on edges in addition
to £ resistances, and thus the main challenge is to simultaneously preserve their respective terms.

4.1 Tree-Portal Routing

Faced with a sparse graph or dense graph, we wish to move most edges onto a few vertices of a
tree, so that many of the remaining vertices are low degree and can be eliminated. Our high-level
approach is the same as Spielman-Teng [ST14], where we utilize a low-stretch spanning tree, and
move off-tree edges to a small set of portal nodes. However, when we reroute flow on the graph
where most edges are moved to be among a few vertices using the tree, we need to (approximately)
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preserve three different properties of the flow on the original graph, namely the inner product
between gradients and flows ) _g.f., the 2-norm energy 'refg, and the ¢p-norm energy » _ f%.
It turns out that we can move edges around on our graphs to produce a new graph while exactly
preserving the linear term ), g.f. for flows mapped between one graph and the other. This means
any tree is acceptable from the point of preserving the linear term. To move edges around and
bound distortion of solutions w.r.t. the quadratic 7, fg term, we use a low stretch tree w.r.t. the r
weights as resistances. This leaves us with little flexibility for the > f? term. However, for large
p, provided every p-th order term is weighted the same (i.e. we have s _ f? instead of ) _ s.f?),
it turns out that, moving edges along any tree will result in bounded distortion of the solution,
provided we are careful about how we move those edges. Thus, we can move edges around carefully
to be among a small subset of the portal nodes while simultaneously controlling all linear, 2-nd order
and p-th order terms. But, this only works if all the p-th order terms are weighted the same. This
leads us to maintain uniform-weighted p-th order terms as an invariant throughout the algorithm.
The iterative refinement steps naturally weigh all p-th order terms the same provided the original
function does. However, our sparsification procedures do not immediately achieve this, but we show
we can enforce this uniform-weight invariant with only a manageable additional distortion of our
solutions. Elimination also does not naturally weigh all p-th order terms the same even in our case
when the original function does, but we can bound the distortion incurred by explicitly making the
weights uniform. Our tree-based edge re-routing naturally creates maps between solutions on the
old and new graphs.

We first formalize what we mean by moving off-tree edges. Suppose we have a spanning tree T’
of a graph (V, E) and a subset set of nodes V' C V designated as portal nodes, for any off-tree edge
e = {u,v} € E\ T, there is a unique tree path Pr(u,v) in T from u to v. We define a tree-portal
path PTﬁ(u, v), which is not necessarily a simple path.

Definition 4.1 (Tree-portal path and edge moving). Given spanning tree 7' and set of portal nodes
V, let e = {u,v} be any edge not in T, and Pp(u,v) the unique tree path in T from u to v. We
define e’s tree-portal path PT‘7(u, v) and e’s image under tree-portal edge moving as follows

1. If Pp(u,v) doesn’t go through any portal vertex. In this case, we replace {u, v} with a distinct
self-loop of v. We let P (u,v) be the path Pr(u,v) followed by the self-loop at v.

2. If Pp(u,v) goes through exactly one portal vertex v. In this case, we replace {u,v} with a
distinct self-loop at v. We let P (u,v) be the tree path Pr(u, ) followed by the self-loop
at v and then the tree path Pr(v,v).

3. If P,, goes through at least two portal vertices. In this case, let u (and ) be closest the
portal vertex to u (and v) on P,,, we replace {u,v} with a distinct edge® {u,v}. We let
P (u,v) be the tree path Pr(u,u) followed by the new edge from @ to ¥ and then the tree
path Pr(v,v).

This maps any off-tree edge e to a unique (edge or self-loop) € given any T, V. We denote the
tree-portal edge moving with the map € = MOVE,, (e).

Although we will get self-loops in tree-portal routing, to keep the discussion simple, we ignore
the possibility of getting self-loops. This still captures all the main ideas, and the algorithm /analysis

3We will keep multi-edges explicitly between portal nodes.
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extends to self-loops in a very straightforward but slightly tedious way. We discuss self-loops briefly
at the end of the section.

Tree-portal routing is a mapping from flow solutions on the original off-tree edges to a flow
solution (with the same residue) using the edges they are mapped to. Any flow along off-tree edge
(u,v) in the original graph is rerouted (again from u to v) using the tree-portal path PT";(u,v)
instead. Rerouting the flow of any off-tree edge along its tree-portal path increases the congestion
on tree edges, which in turn incurs error in the 2 and £} terms in the objective function. We need
to pick the tree and portal nodes carefully to bound the error.

Definition 4.2. Given any graph (V, E), resistance r on edges, a spanning tree T, and a set of
portals V. C V, for any e = {u,v} € E, let € = MOVE,.(e) and P, (u,v) be as specified above.
The stretch of e = {u,v} € E'\ T in the tree-portal routing is

def 1
StrT7‘7(e) = — Z Tels

Te ~
e’GPTy\A/(e)\{e}
and the stretch of a tree edge e € T' is Str,.;(e) = 1. Note with our definition Strpg(e) gives the
standard stretch.

The starting point is low stretch spanning trees [AN12], which provide good bounds on the total
% stretch.

Lemma 4.3 (Low-Stretch Trees [AN12]). Given any graph G = (V,E) of m edges and n nodes,
as well as resistance r, LSST(r) finds a spanning tree in O(mlognloglogn) time such that

Z Strpp(e) < O(mlognloglogn).
eck

We will construct a low-stretch spanning tree T' of (Vg, E9Y, rg) using the above result. Still,
the error will be too large if we only use tree edges to reroute the flow of all the off-tree edges,
since the low average stretch doesn’t prevent one tree edge to be on the tree path for many off-tree
edges. Thus, we need to add portal nodes so we can shortcut between them to reduce the extra
congestion on tree edges.

4.2 Partitioning Trees into Subtrees and Portals

Next, we show how to find a small set of good portal nodes so that rerouting flow on off-tree edges
using their tree-portal paths incurs small error in the objective function. Pseudocode of this routine
is in Algorithm 3, and its guarantees are stated in Lemma 4.4 below.

Lemma 4.4. There is a linear-time routine FINDPORTALS that given any graph G, a spanning
tree T, with M off-tree edges, and a portal count n < m, returns a subset of V' of n vertices so that
for all edges € € T, we have

eeEPT,‘A,(e)
10m
< pypto] < 107
‘e € T7V(e) < —



Algorithm 3 Find portal nodes for tree-portal routing
1: procedure FINDPORTAL(T,E,n)
2: Ve € E:n(e) « max(StrTﬂ(e), W)
3: Call decompose in [ST14] (page 881 of journal version) with (T, E,n,n).
4: The subroutine breaks T into at most 7 edge-disjoint induced tree pieces to divide up the
n(e)’s roughly evenly so that the sum of n(e) for all e attached to each non-singleton piece is
not too big.

5: The subroutine works by recursively cut off sub-trees from 7" whenever the sum of n(e) of
23 nle)
e,

all e attached to a sub-tree is above
6: Let V be the set of nodes where the tree pieces intersect.

This lemma will be a fairly straightforward using the tree decomposition subroutine (page 881
of journal version) from Spielman and Teng [ST14], which we include below for completeness.

Definition 4.5 ([ST14] Definition 10.2). Given a tree T that spans a set of vertices V, a T-
decomposition is a decomposition of V into sets Wi,..., W}, such that V' = [JW;, the graph
induced by T' on each Wj is a tree, possibly with just one vertex, and for all ¢ # j, |W; [ W;| < 1.

Given an additional set of edges E on V, a (T, E)-decomposition is a pair ({Wi,..., Wy}, p)
where {W7,..., Wy} is a T-decomposition and p is a map that sends each edge of E to a set or
pair of sets in {Wy,...,Wj} so that for each edge in (u,v) € E,

1. if p(u,v) = {W;}, then {u,v} C W;, and
2. if p(u,v) = {W;, W,}, then either u € W; and v € W; or vice versa.

Theorem 4.6 ([ST14] Theorem 10.3). There exists a linear-time algorithm such that on input a
set of edges E on vertex set V, a spanning tree T on V, a function n : E — R, and an integer
1<t <Y cpnle), outputs a (T, E)-decomposition ({W1y,..., Wy}, p), such that

1. h<t
2. for all W; such that |W;| > 1,

> <3l

ecE:W;€ep(e) eck

We can use the above theorem to show Lemma 4.4.

Proof of Lemma 4.4. We will apply Theorem 4.6 with t = n, and the function n will be

n(e) = max (StrTm(e)’ 2ecE SA'EVT,@(€')>

m

Note by construction Y n(e) <23 .5 Strrg(e’). We get {W1,..., W5} back, and let T; be the
tree induced by T on W;. Note the T;’s will be edge disjoint, and cover all tree edges of 7. Our
set of portals will be the set of nodes that are in more than one of the W;’s, i.e. the nodes where
different 7;’s overlap. Note the number of portals is at most the number of 7;’s by an inductive
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argument from any 7T; that is a sub-tree in T'. Such T; have exactly one portal, and we can remove
T; from T and continue the argument until all that remain in 7" is one sub-tree.

Consider any tree edge € € T, suppose it in T; for some 7. € can only be on the tree-portal
routing for some edge {u,v} when W; € p(u,v). Note as T; contains at least one tree edge, we
know |W;| > 1, the second guarantee in Theorem 4.6 gives

Z max <StrT,@(e), Lecr ;;ch,@(e )> < %(2 Z StrTﬂ(e’))

e:W;ep(e) e'ck

which directly gives the bounds we want in the lemma. O

4.3 Graph Sparsification

Once we are able to move most of the edges onto a small subset of vertices, we wish to sparsify
the resulting dense graph over those vertices. This sparsification has to simultaneously preserve
properties of 1-st, 2-nd and p-th order terms, as well as the interactions between them, which turns
out to be challenging. We resort to expander decomposition which allows us to partition the vertex
set s.t. the edges internal to each subset form an expander and not too many edges cross the
partitions. Just having an expander graph is not enough to allow us to sample the graph due to the
need of preserving the linear terms. Thus, we also require that on each expander the orthogonal
projection of the gradient to the cycle space of the sub-graph has its maximum squared entry not
much larger than the the average squared entry. We refer to this as a uniform (projected) gradient.
We discuss how to obtain an expander decomposition that guarantees the projected gradients are
uniform in the expanders later in this overview. Given the uniform projected gradient condition,
we show that we can uniformly sample edges of these expanders to create sparsified versions of
them. We construct maps between the flows on an original expander and its sampled version that
work for any flow, not only a circulation. These maps preserve the linear term ), g.f. exactly,
while bounding the cost of the 2-norm and /,-norm terms by relating them to the cost of the
optimal routing of a flow with the same demands and same gradient inner product, and showing
that optimal solutions are similar on the original expander and its sampled version. This strategy
resembles the flow maps developed in [KLOS14], and like their maps, we route demands using
electrical flows on individual expanders, but additionally we need create a flow in the cycle space
that depends on projection of the gradient onto the cycle space.

Tree-portal routing will give us an instance where all the off-tree edges are between portal nodes.
We can look at the sub-graph restricted to the portal nodes and the off-tree edges between them.
This graph has many fewer nodes comparing to the original graph but roughly the same number of
edges, and thus is much denser. We can then sparsify this graph to reduce the number of off-tree
edges similar to the construction of spectral sparsifiers. The main technical difficulty is that in the
sparsified graph, we still want the ¢4 terms in our objective function to have a same scalar s for
every edge, but similar to the case of how resistances are scaled in spectral sparsification, to preserve
the total value of the /) terms, we would naturally want to scale s according to the probability we
sample an edge e. Thus, to get a same scalar s for all sampled edges, we are limited to uniform
sampling. We know uniform sampling works in expanders (c.f. [ST14, SS11] and [KLOS14, Shel3]
for {9 and /., respectively), so the natural approach is to first decompose the graph into expanders,
and sampling uniformly inside each expander. However, because of the presence of a gradient, we
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need to be a bit more careful than even expanderdecomposition-based sparsification steps. Thus,
we work with uniform expanders.

Definition 4.7. A graph * G is a a-uniform ¢-expander (or uniform expander when parameters
not spelled out explicitly) if

1. r on all edges are the same.

2. s on all edges are the same.

3. G has conductance® at least ¢.

4. The projection of g onto the cycle space of G, §& = (I — BL'BT)g, is a-uniform (see next

definition), where B is the edge-vertex incidence matrix of G, and L = B T B is the Laplacian.

Definition 4.8. A vector y € R™ is said to be a-uniform if

2 « 2
Iyl < Syl
We abuse the notation to also let the all zero vector 0 be 1-uniform.

In Section 5 we show how to decompose the graph consisting of portals and the off-tree edges
between them into vertex disjoint uniform expanders such that more than half of the edges are
inside the expanders.”

Theorem 4.9 (Decomposition into Uniform Expanders). Given any graph/gradient/resistance
instance G with n vertices, m edges, unit resistances, and gradient g9, along with a parameter 6,
DECOMPOSE(G, §) returns vertex disjoint subgraphs Gi,Ga, ... in O(mlog” nlog?(n/d)) time such
that at least m/2 edges are contained in these subgraphs, and each G; satisfies (for some absolute
constant Cpartition ):

1. The graph (V9 ,EY%) has conductance at least
1

Cpartition * 10g3 n- lOg(n/é) ’

¢ =

and degrees at least ¢ - 3%, where Cpartition 15 an absolute constant.

gi satisfies one of:

2. The projection of its gradient g% into the cycle space of Gi, §
(a) §9 is O(log® nlog®(n/d))-uniform,

2

(g%)Q _ O (log™* nnl:g5(n/5)) Hggi

Ve € E(g,)

Here m; is the number of edges in GY% .

4We use an instance and its underlying graph interchangeably in our discussion.

®r are uniform, so conductance is defined as in unweighted graphs. We use the standard definition of conductance.
For graph G = (V, E), the conductance of any 0 # S C V is ¢(S) = Wﬁ?ol(v\s» where §(S) is the number
of edges on the cut (S,V \ S) and vol(S) is the sum of the degree of nodes in S. The conductance of a graph is
G = mingg, v #(S).

6Some of the expanders we find actually won’t satisfy the projected gradient being a-uniform constraint (case 3(b)
in Theorem 4.9). For those expanders, the projection of the gradient in the cycle space is tiny so we make it 0. This
leads to the additive error in Theorem 3.6.
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(b) The €% norm of §gi is smaller by a factor of 6 than the unprojected gradient:

Hggz

<0 ]l6°)

Moreover, the min degree of any node in the expanders is up to a polylog factor close to the
average degree. For the off-tree edges not included in these uniform expanders, we work on the
pre-image” of them in the next iteration. That is, for any edge € inside one of the expanders, we
remove its pre-image from the instance G, and work on the remaining off-tree edges in G in the
next iteration. This iterative process terminates when the number of remaining off-tree edges is
small enough (i.e. O(|EY|/k)). This takes O(log |EY|) iterations as a constant fraction of off-tree
edges are moved to be inside the expanders each iteration.

Sparsify Uniform Expanders If we append a column containing the gradient of edges to the
edge-vertex incidence matrix B, the conditions of a a-uniform ¢-expander is equivalent to each
row of B having leverage score at most %’571 where n,m are number of nodes and edges. An
underlying connection with the £,-norm row sampling result by Cohen and Peng [CP15] is that this
is also a setting under which /,-norm functionals are preserved under uniform sampling. We refrain
from developing a more complete picture of such machinery here, and will utilize ideas closer to

routing on expanders [KM09, KLOS14] to show a cruder approximation in Section D.

Theorem 4.10 (Sampling Uniform Expanders). Given an a-uniform ¢-expander G = (VIEY 19,59, g9)
with m edges and vertex degrees at least dmin, for any sampling probability T satisfying

S 1 « n 1

T>cC slogn - | — 4+ ——

= Csample g m ¢2dmin ’

where Csgmple 1S some absolute constant, SAMPLEANDFIXGRADIENT(G, 7) w.h.p. returns a partial
instance H = (H,r™, s, g") and maps Mg_.3y and My_,g. The graph H has the same vertex set
as G, and H has at most 2rm edges. Furthermore, vt = 7-19 and s = 7 -59. The maps Mg_x
and My g certify

H =G and G 2 H,

where k = m' P19 1og? n.

4.4 Ultra-sparsification Algorithm and Error Analysis

Now we put all the pieces together. We need to show that adding together our individual sparsifiers
results in a sparsifier of the overall graph. This is fairly immediate given the strong guarantees
we established on the individual graphs. We also need to be able to repeatedly decompose and
sparsify enough times that the overall graph becomes sparse. To address this issue, we use ideas
from [KMP11] that suggest scaling up the tree from the tree routing section limits the error incurred
during sampling. Here it again becomes important that because we rely on [SW18], we know exactly
which edges belong to a sparsifier. This guarantee limits the interaction between sparsification of
different expanders.

"By pre-image of @ we mean the original off-tree edge e that gets moved to € in the tree-portal routing, i.e.
e = MoVE_ L (€).
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After constructing a low-stretch spanning tree T', we round each 9 of off-tree edges e € E9\ T
down to the nearest power of 2 (can be less than 1) if 79 > §, and round to 0 otherwise. This gives

of log I ”O" bucket of edges with uniform resistances, and we work with one bucket of edges at
a time, smce the edges in a uniform expander need to have uniform r.. If G’ is the instance of G
after rounding the resistance of off-tree edges, it is easy to see the following error guarantee.

Lemma 4.11. G =< G with the identity mapping, , and for any flow solution fg/ of G', again
using the identity mapping, we have

£a(55) > 3607 o 57

To avoid using too many symbols, we reuse G to refer to the original instance after the resistance
rounding (i.e. the G’ above). Denote E” the subset of edges in EY\ T containing edges with 7, = r

for some particular r, note there are at most log % possible value of r. We work iteratively
on the set E", starting with Ej = E". In the i-th iteration, we use FINDPORTAL(T, E}, m/k)
(Lemma 4.4) to find a set of m/k portal vertices for the edges remaining in E!, note the low-
stretch spanning tree is fixed through the process, but each iteration we find a new set of portals
using FINALPORTAL as introduced in Section 4.2.

We then move edges in £} using the tree-portal routing. We let @: to be the graph of the m/k
portal nodes and the off-tree edges between them. Note the number of edges in 6: is |E7| and the
number of nodes is m/k.

So far we haven’t specified the 7, s, g values on the edges in CA}'Z, and these values will depend
on the tree-portal routing as well as the average degree in @f For now we focus on discuss the
edge set in our final sparsified instance, and assume we have r, s, g values for @f We will come
back to specify these quantities later.

We use DECOMPOSE (Theorem 4.9) on the graph @f to compute a collection of vertex disjoint
sub-graphs {C?Zl, @22, ...}, and at least half of the edges in @’Z" are inside these sub-graphs. We

let E{’ to be the edges contained in these sub-graphs, and E{’ be the set of pre-images of edges in
E‘f (in terms of tree-portal off-tree edge moving). We remove E{’ from E; and proceed to iteration
i+ 1. If at the beginning of some iteration i, the size of E is at most O(m/k), we leave them as
off-tree edges, and denote Ej _, as the set containing them. Note for any r, the iterative process
must finish in O(log k) iterations as we start with |[E"| < m edges. We do this for all r.

So far any edge in the original instance G we get either (1) a tree edge in T, or (2) an off-tree
edge in a @f ; for some resistance value r, iteration ¢, and j-th expander computed in that iteration,
or (3) an off-tree edge remaining in Ej,, for some resistance value r. There are n — 1 edges in
group (1), and 5(m /k) edges in group (3), so we can keep all these edges in the ultra-sparsifier H.
For the off-tree edges in group (2), we uniformly sample the edges in each G to get a sparsified

graph F;j. Technically our sampling result only applies to an a-uniform qﬁ—expander Gi,j (i.e. case

3(a) in Theorem 4.9). If the @;"j we get back from DECOMPOSE is in case 3(b) of, we perturb
the gradient on edges so that the projection of the gradient to the cycle space of the expander is
0, i.e. project the gradient to the space orthogonal to the cycle space. Then we have @f] after
perturbation is a 1-uniform ¢-expander.

The edges in our final ultra-sparsifier H will be the tree edges in T', the off-tree edges in the
Ej,.’s over all resistance bucket value r, and the off-tree edges in the H ;'s over all resistance r,
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iteration 7 and expander j. We argued about the size of all but the edges in the sz’s, which we
will do now.

Sampling Probability We first specify the probability we sample each edge in éfj to get ﬁ:]
which we denote by 7,; (same across all the expanders, i.e. j’s, for any resistance r and iteration
i). By Theorem 4.10 we need the probability to be at least csgmpie log n(dr_mln(b_2 + am™!). Here
Csample 15 a fixed constant across all 7,1, j’s, and the guarantees on CA}':] from Theorem 4.9 allow us
to use some fixed polylogn as ¢~2 and « across all r,4, j’s. The only parameter that varies across
different 7,4’s is dmin, a lower bound on the minimum vertex degree in éf ;» which by Theorem 4.9 is
within a (fixed) polylog factor of the average degree in @f As there are m,; edges and m/k nodes
in @f, the average degree is m,;x/m. Thus, we can write 7,; = % for some global constants
c1, c2, and since both m,.; and s is at most m, 7, ; satisfies the requirement on 7 in Theorem 4.10.
With this particular choice of 7, ; we can use SAMPLEANDFIXGRADIENT to sample @:] and the
the guarantees from Theorem 4.10. Now we can prove the statement about the number of off-tree

edges in H.
Lemma 4.12. The total number of edges over all ﬁ:J ’s is 5(%) with high probability.

Proof. Pick any r, i, recall when we call DECOMPOSE in that iteration, we have éf with uniform 7,
my; = |E]| edges and n; = m/k nodes. From the previous discussion of the sampling probability,
we know it is sufficient to call SAMPLEANDFIXGRADIENT on Gy ; with probability

cimlog®n
Tri =

)

KMy 4

for some constants ci,ce. By Theorem 4.10, the number of edges in ﬁ;j’s over all j is at most
m

(:)(;) with high probability since over all j the 6: ;s contain ©(m;.;) edges.

g
Since for each r the number of iterations is at most i < log x, and there are log % possible

r values, the final bound in the lemma follows from summing over all r,i. Note we can hide all
log factors as logn factors by our assumption in Theorem 3.6 that logHT'gHoo and log% are both
polylog in n. O

Now we discuss the g,r,s values we put on the edges in all the steps. Note we need the
final instance H to have a uniform scalar s’ for every |f.|P term, so we can recursively optimize
the instance. However, in the intermediate steps, we will divide the instance into sub-instances
induced by the different subsets of edges, e.g. @’Z" j’s, and later combine sub-instances induced by

the sampled sub-graphs ﬁ;j’s to get H. Each of these sub-instances will have its own scalar, e.g.
STC,*:Z-, sfi, but in general they won’t necessarily have the same value across different sub-instances.
Notation-wise, in the following discussion, we assume each edge has its own scalar s, associated
with the term |f.|P in the intermediate instances. Eventually, the different scaling we do to s in
the intermediate steps will cancel so that in H we have the scalar s7*. The input G has a uniform
scalar s9, and we will make s = s9.

Now we specify the g, 7 and s values of the edges in the final instance H as well as in some of

the key intermediate sub-instances we consider.
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Algorithm 4 Producing Ultra-Sparsifier { with unit s’ = s9

1:
2
3
4:
5:
6
7
8
9:
10:

11:
12:
13:

14:
15:

16:
17:

18:

19:
20:
21:
22:
23:
24:

procedure ULTRASPARSIFY (G, k,0)

T + LSST(r9. (low-stretch spanning tree)
Initiate H with T', and the identity flow mapping.
Round 79 down to nearest power of 2, or 0 if less than §
n <+ m/k (number of portal nodes per batch)
for Each bucket of resistance value r do
Let i + 0, E" + {ele€ B9\ T,r9 =r}
while E” has more than O(m/k) off-tree edges do
Let m,.; be the number of edges in E".
Find 7 portal nodes to short-cut tree routing:

V <« FINDPORTAL(T, E”, 7).

Route edges in E” along T, using portal nodes to short-cut tree-portal routing;:
G} < TREEPORTALROUTE(E",T,V),,
Decompose the graph after tree-portal routing into uniform expanders:

{G;l, ;2,...} — DECOMPOSE(G;,(;/mE’).

Remove the pre-image of edges in G} {,G’ 5, ... from E".
€2 . ) .
Set Ty ; clmml# (for sampling Gi;’s in SAMPLEANDFIXGRADIENT)

for ecach (A?: j do

Rescale the gradients and 5 scalar as

AT
r%i =rk log?n

Gr, P .9

s =17, -8
K

Let F;j < SAMPLEANDFIXGRADIENT ((A;';‘,j,rr,i).
Add ﬁ:J to H, and incorporate the flow mappings between é: j and ﬁ:J
(composed with the tree-portal routing between G;"j and
its pre-image) to the mapping between G and H.
141+ 1
Add all remaining edges of E™ to H with the identity flow mapping on them
return #, My_g, and ky_g = O(km3/®=1),
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Algorithm 5 Tree-Portal Routing of Edges

1
2
3
4:
5
6
7

: procedure TREEPORTALROUTE(E,T,‘A/)

Initialize E + ()
for each e = {u,v} € E do
Let € « MOVETﬁ(e), and PT7‘7(u, v) be its tree-portal path.
(See Definition 4.1)
Let 75,85 be the same as r. and s..
Set g so that sending 1 unit of flow from u to v along P (u,v) has the same flow

dot gradient as g,, i.e. the flow dot gradient of sending directly zﬂong e. Note all edges on
P, > (u,v) other than € have known gradients.

v
Add /@\to E with gz, re, s as specified. Note E may contain multi-edges.
return F

Note all the edges in our H (i.e. group 1,2,4 above) end up with the same scalar s
Now we bound the approximation error. For simplicity, we carry out the analysis ignoring the

.ee Gr

1. e € T: The gradient, resistance and s, on these edges in ‘H remain the same as in G, that is

gz1£ = gg, rf = 'rg, and s, = sY.

. e € B, These off-tree edges remain at the end for each bucket E”. We keep their gradient,

g

resistance, and s, = s” as in the original instance.

T the j-th expander computed in iteration ¢ for resistance r: In the intermediate

sub-instance induced by C?Zj,

recall € is the image of some off-tree edge e under the mapping MOVE,, i, where ‘A/[ is the set

we have r; = relog’n, sz = TT,—i;zzSg' For the gradient on €,

of portals in the i-th iteration for resistance r. Under the tree-portal routing, any flow along

e = (u,v) will be rerouted along the tree-portal path Py, (u,v). We want the linear term

(i.e. gradient times flow) in the objective function to remain the same under this rerouting,

so routing 1 unit of flow from u to v along P ¢, (u,v) should give the same dot product with

the gradients as routing 1 unit of flow from u to v along e in the original instance (i.e. g¥). As
the only off-tree edge on the tree-portal path is €, and we are keeping the original gradients
on all the tree edges, this uniquely determines g;.

4. e e ﬁfj for some r,i,j: As specified in Theorem 4.10, if the edge € is sampled (with uniform

probability 7,;), and 7,8z are their corresponding values in 6: j scaled up by 7,.; and Tf i

respectively. In particular we get back sz = 59

A
GZ,_]

p : —p . .
as the Tri scaling cancels the Tri scaling in

H _ 4G

additive errors in the bound, and defer the discussion of them to the end. In particular, additive
errors come in at two cases. The first is when we round an original resistance to 0 when it is less
than §, and the second is in DECOMPOSE, we may get an expander whose projected gradient is not
O(1)-uniform but has tiny norm (i.e. case 3(b)), and we zero out its projection to the cycle space
before sampling. For now we assume we don’t have these cases.

We summarize the notations in our algorithm and analysis in Table 1. We explicitly point out

whenever we change the gradient, resistance or s value on an edge. We will use instances and their
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Table 1: Glossary of Notations in Algorithm and Analysis.

Notations in ULTRASPARSIFY

g Input instance with (Vg, EY, g9, r9, sg).

T Low stretch spanning tree of G (stretch with respect to r9).

E" All in E9 \ T whose resistance after rounding is 7.

E? The remaining edges in E" at the i-th iteration of tree-portal routing E".

(A?: The image of edges in E by the mapping MOVET’?7 i.e. moving off-tree edges along
tree-portal path. The gradients of edges in @f are set to preserve the linear flow dot
gradient term under tree-portal routing.

My i The number of edges in E (also the size of éj)

@Z] T\he j-th expander we get from decomposing @: Edges keep their gradients from
G, and 7, s are scaled.

@T The union of edges containid in the expanders ézj (i.e. over all j’s).

E7 The pre-image of edges in E] .

last The set of edges remaining in E" after the last iteration for r.

Tri The probability we use in SAMPLEANDFIXGRADIENT to uniformly sample (A?: -

F;j The sparsified graph of @;’,j computed by SAMPLEANDFIXGRADIENT. g,7,$ on
edges are computed by the subroutine.

Additional notations in the analysis

G The instance with the same edge set as G. Note! B9 = T+ EI .+ > i i Edges
in G has the same g, r,s as in G except for those in zm‘ E{ . For any resistance r
and iteration i, e € E{ has the same gradient as in G, but 7. = rxlog?n, s, = T;ipsg
are scaled.

G, The instance G restricted to the set of edges in E{’ .

Grest The instance G restricted to the set of edges in ) EJ .

T We use addition on sets as union but signify that the sets are disjoint.
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underlying graphs interchangeably, and when we refer to a subgraph as an instance, it will be clear
what are the g, r, s values for the instance.

First we let G be the instance on the same nodes and edges as G, but for any e € E{ (i.e. e will
be mapped to some € in éfj), we rescale the resistance and s to be 7. = rxlog?n, and s, = T;Z-psg
Note the gradient of e in G stays the same as in G. We first bound the approximation error

between G and this rescaled instance G.

Lemma 4.13. G <O(m1/(p k) G =1 G with the identity mapping in both directions.

Proof. For any edge e, we have ge = gg As to the £} scalar, we have either s = 5 or if e is
eventually moved to some Gi, j then

_ ) P
sC¢ = 77Ps9 = _ Mgk sY
e r ) 1 C2
cymlog™n

as mj, > 6m/ k or otherwise we would have stopped for resistance value r, we can assume m,.;x >
c1mlog® n so B
s9 < 8¢ < (kP/P=DYP=15G < (/=D g)p=159

e

where the second inequality is by m,.; < m, and the third inequality is by £ < m. Similar calculation
gives ¢ < r¢ < rklog®n - rY. Our result directly follow by Lemma 2.13. O

Now we break G into sub-instances induced on the disjoint edge sets. Let EZ be the instance
of G restricted to edges in E‘f , T the instance restricted to the tree edges, and G, the instance
restricted to edges in any of the EJ, ’s. When use addition as union on sets when the sets are
disjoint. The objective of the sum of two instances is simply the sum of the individual instances
objectives.

Lemma 4.14. For any resistance value v, round i, we have
- ey -
T+ E; 250m10-0y T+ B 250,/0-0) T+ E;
where the flow mapping is the tree-portal routing and its reverse.

Proof. Fix any resistance value r and iteration 7, the set of remaining off-tree edges of resistance
r in iteration i is E!, and these edges have a total stretch at most O(mlognloglogn) with T by
Lemma 4.3, and E] = m,;. As we use FINDPORTAL to get a set of m/k portal nodes V in that
iteration, by Lemma 4.4, for any edge ¢/ on T, we have in T' + E

Wes def Z StrTV Z StrTV ) < 10k lognloglogn < rlog?n
eGEl?":e’ePT"A,( e) eEET
and .
K. def 10m < 10xm,;

L
eGE{.eGPTﬁ(e)‘S — <

We first look at the direction from from T+ E; to T + E{ . Let f be the flow in T+ E;, and f be

the tree-portal routing of f. In the tree-portal routing, flow on tree edges is mapped to the same
flow, while any flow along an off-tree edge € = (u,v) € E: is rerouted along the tree-portal path
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PTV(u v). This rerouting clearly preserves the residue between f ,f, and if € € E{ is the image

of (u,v), its gradient g in ET is by construction set to be the value which preserves the linear
term in the objective function for f and f The cost of £3 and ¢} terms for fe is the same as the
corresponding costs for f since € is only used for the rerouting of € (so | f sl = |fz]), and they
have the same 7, s values. Thus, the contribution to the £3, /) terms in objective function from the
off-tree edges are the same for f and JA” The only extra cost comes from the E% and /) terms of tree
edges for f since we put additional flow through them. First consider the sum of the ¢5 terms over

all tree edges for f in T + E{’ . Recall we don’t scale the s value for tree edges, so the scalar is still

g

_ S \P
s¥ on tree edges, while for off-tree edges in E:, the value s is scaled to be <&> s9

cimlog® n
p

> el =2 > fe

e’'eT e’'eT E:e’EPT"’}(E)

:ZSQKP Z K,f

e'eT eeEP

I S

e'eT ee’€Py, 5 (e)

=Y KL Y Ifel

e'eT E:e’EPTV‘A/(E)
-1
<D >, KD
e EIEPTY‘A/(E)

< Z‘fg‘l’m . ngf,_l (Tree- portal path’s length < m)

(Using Jensen’s inequality)

< Z(lOcl log® n)P~tm - s5|f2|"

So the £} term goes up by at most a factor (10c;log® n)P~1m. Similar calculation shows that
the /2 term goes up by at most a constant factor by the tree-portal routing. Thus, we get
T+E; < S(mt/ -1y T + E}. The other direction is symmetric using the reverse tree-portal rout-
ing, and the calculation stays the same since the tree-portal routing in reverse incurs the same
load/congestion on tree edges. O

If we put the @2 over all resistance r’s and round i’s together, we get

Lemma 4.15.
—r ~ =T
T+ Z Gz ja(ml/(pfl)) T+ Z Ezr jé(ml/(pfl)) T+ Z GZ

T, T, T,

The sum is over all possible resistance value r’s, and over all iterations i for r.

Proof. By Lemma 4.14 and Lemma 2.12 we have

U T+G, =5(m1/ -1y U T+ E} 25(m1/0-1) U T+G,

T8 (X (X
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Note the G,’s (and the E{ ’s) are disjoint for different resistance values or different iterations, thus
these edges contribution to the objective function value simply adds up. For the tree edges, since
there are at most log? n different pairs of resistance and iteration pairs, we have

T jl UT+ lean T

T,

by considering the mapping that split flow on one tree edge to log?n copies of it and the reverse
mapping of merging. Note |a1]”" + ... + a1 < (Ja1] + ... + |ax|)* < k(las|” + ... + |a1|*). This
gives the final result we want. O

Note that G is the disjoint union of T + Zm’ @2 + Gest, while H is the disjoint union of
T+ Zm’ H; + Gyest- Thus, we can show the following

Lemma 4.16. G j'o"(mQ/(pfl)) H jé(mw(p,l)) G.

Proof. Recall for each resistance value r, in the i-th round, 6: ; is the j-th uniform expander we
find, and H - is the sparsified graph of G

G=T+ Grest + Za: (valid as the sets are disjoint)
T,
jé(ml/(p,l)) T 4 Grest + Z EZ (Lemma 4.15)
T,
=T+ Grest + Z ézj (ET is the disjoint union of G over all j)
T,7i7j
55(,”1/@71)) T+ Grest + Z I;TZTJ (By Theorem 4.10, and sets being disjoint)
7172‘7-]‘
=H

G = B(m2/ (-D) ‘H follows by taking the composition of all the intermediate steps, and multiplying
the approximation error by Lemma 2.10. The other direction is similar. ]

Now we can prove the main ultra-sparsification theorem.

Proof of Theorem 3.6. Other than the additive error terms and the self-loops, everything in the
theorem statement follow directly from Lemma 4.12 (the number of off-tree edges), and composition
of Lemma 4.13 with Lemma 4.16 (the approximation error). We explicitly spell out the flow
mappings between G and H. We start with the G to H direction. We break the flow in G as the
sum of flow on disjoint edge subsets T',G s, and ET, specify the mapping from each piece to H, and
later take the sum of the mappings. The mapping from 7" and Gmst to H is just the identity. For
flow on ET we get a flow on T + ET by tree-portal routing. As ET is the sum of GT s, for the flow

mapped to G ., we map it to a flow on H ; using the flow mapping in SAMPLEANDFIXGRADIENT

(2 ] ’
We add these mapping over all j’s to get a mapping from the flow on T + E{ to a flow on H, and
take the composition with the tree-portal routing to get a mapping from E; to H. Summing over

all 7,4 (together with the identity on 7 and G,cs gives the mapping from G to H. The mapping
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from H to G is symmetric, and in the part from E{ to T + E{ we use the reverse of tree-portal
routing.

All the subroutines take nearly linear time, and we have at most log n different r, and for each
r there are at most logm iterations, so the overall running time is 6(m) The flow mappings can
also be applied in 6(m) time, and they are linear maps.

Now we look at the additive error terms. In particular, additive errors come in at two places.
The first is when we round an original resistance to 0 when it is less than ¢, and we have Lemma 4.11
to bound the error (at that step). The second place is in DECOMPOSE (Algorithm 6), we may get
an expander ézj whose projected gradient is not a-uniform but has tiny norm (i.e. case 3(b)), and
we zero out its projection to the cycle space before sampling to make it 1-uniform. If we have a
flow f on such an @’Z-"J, the additive error is in the linear term, and is equal to the dot product
of f with the removed gradient. We let g7, g;, be the gradient on edges in @:,@fj respectively,
and g;, g; ; as the projection of g{ (and g7 ;) to the cycle space of 6: (and CA}':]) We remove g; ;
from the gradient g} ; when g; ; < ¢'g; for some parameter ', so the additive error we introduce is

f1g; ;, which is at most || f||,|/g7 ; ,» Which is in turn at most &'[| f|l5]|g7 |, as g; is a projection of
g;. Now we look at how this additive error propagates in terms of the overall approximation error
between G and H. We will get an additional factor m when we combine the additive errors over all
the individual expanders where we carry out this perturbation. Note we are not really introducing
more error here, but simply because /m|>, fill > > |Ifill > |22, fill when fi’s have disjoint
support and total size m. The additive error is also amplified through the intermediate steps,
but since the multiplicative approximation errors are m©1/p, we lose at most another polynomial
factor. Additional polynomial factor comes in because the norm of the gradient vector after tree-
routing can be off by a polynomial factor comparing to the norm of the original gradient. However,
overall the blowup is at most polynomial, and we use a polynomially smaller ' in DECOMPOSE to
accommodate these factors to get the additive error in our final result. The same argument applies
to the additive error introduced by resistance rounding (e.g. round to 0 when the gradient is at
most §/m¢ for some large enough c). O

We brief go over the case when tree-portal routing gives self-loops. We treat self-loops the same
way as the edges that are in the uniform expanders except they don’t go through the expander
decomposition and sampling steps. Once we get a self-loop € from tree-portal routing of some
edge e € EY, we add € to H, where the gradient on € is set (the same way as non self-loops) to
preserve the flow dot gradient term under tree-portal routing. We remove its pre-image e from E,
but if in some iteration, more than half of the edges in E] are mapped to self-loops by tree-portal
routing, we skip the decomposition and sampling steps also for other edges, as we don’t have a
dense enough graph between the portal nodes to sparsify. We still have the size of E; drop by at
least 1/2 across each iteration as before. The final caveat is that since self-loops don’t go through
SAMPLEANDFIXGRADIENT, and thus their s values are not scaled to be the same as the rest of
the edges in H. This is not an issue because we will remove them from the instance and optimize
them individually (see Lemma 3.5), so they won’t exist in the instance that we recursively solve,
so uniform s scalar is not required for them.
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5 Decomposing into Uniform Expanders

In this section we prove our decomposition result necessary for finding large portions of edges that
can be sampled. This and the subsequent sampling step in Appendix D are critical for reducing the
number of edges between portal vertices, after they were routed there in Line 12 of ULTRASPARSIFY
(Algorithm 4). The main algorithmic guarantees can be summarized as below in Theorem 4.9.

Theorem 4.9 (Decomposition into Uniform Expanders). Given any graph/gradient/resistance
instance G with n vertices, m edges, unit resistances, and gradient g9, along with a parameter 6,
DECOMPOSE(G, 8) returns vertex disjoint subgraphs Gi,Ga, ... in O(mlog’ nlog®(n/d)) time such
that at least m/2 edges are contained in these subgraphs, and each G; satisfies (for some absolute
constant cpartition ):

1. The graph (V9 ,EY%) has conductance at least

1

Cpartition * 10g3 n- log(n/é) 7

¢ =

and degrees at least ¢ - %, where Cpartition 15 an absolute constant.
2. The projection of its gradient g% into the cycle space of G, §gi satisfies one of:
(a) g9 is O(log® nlog®(n/8))-uniform,

e < Ot ) o

m;

Ve € E(gl)

Here m; is the number of edges in GY% .

(b) The €3 norm of §gi is smaller by a factor of 6 than the unprojected gradient:

a2, <5- 1s°15-

We will obtain the expansion properties via expander decompositions. Specifically we will invoke
the following result from [SW18] as a black box.

Lemma 5.1. There is a routine EXPANDERDECOMPOSE that when given any graph G and any de-

grees d such that d,, > degg(u) for allu, along with a parameter 0 < ¢ < 1, EXPANDERDECOMPOSE(G, d, ¢)
returns a partition of the vertices of G into Vi, Va, ... in O(m¢~"log* n) time such that G[Vi] has
conductance at least ¢ w.r.t. d,,, and the number of edges between the Vs is at most O(>_,, d,¢log? n).

Note that we explicitly introduce the d vector containing the degrees of the initial graph because
we will repeatedly invoke this partition routine. This is due to our other half of the routine, which
is to repeatedly project g among the remaining edges, and removing the ones that contribute to
too much of its £2-norm in order to ensure uniformity as given in Case 2a of Theorem 4.9. To see
that this process makes progress, we need the key observation from Lemma 2.15 that projections
can only decrease the £3 norm of g, the projection of the gradient.
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Algorithm 6 Decomposition into Uniform Expanders

1. procedure DECOMPOSE(G, 0)

2 Set ¢ < Cpartition log? nlog(1/0) for some absolute constant cpertition.-
3: Iteratively remove all vertices with degree less than {3 to form Gigrge.
4
5

Compute d, the degrees of Glarge
Return RECURSIVEDECOMPOSE(Giarge, @, 1, log(n/9)).

Algorithm 7 Recursive Helper for Decomposition

1: Compute the projection of gg into its cycle space, §g.
2: procedure DECOMPOSERECURSIVE(G, d, ¢, i, L)

3: Form Gipimmed by removing all edges e € EY such that (§9)2 > % ’ HagHz

4 (G1,Ga,...,Gy) + EXPANDERDECOMPOSE((V Ytrimmed | FGtrimmed) 'd\ g, . ).
5: Initialize collection of results, PY « 0.

6: fori=1...tdo

7: Form G; from the edges in G corresponding to G;

8: Compute g%, the projection of g(G;) onto its cycle space.

9: if i = L or (|[g9 )3 > 11|93 and m% > m9/2) then

10: Add G; to the results, PY < PY + G;.

11: else

12: Recurse on PY: PY « PY + DECOMPOSERECURSIVE(G;, d, ¢,i + 1, L).

13: Return PY.

This leads to an approach where we alternate between dropping the edges with high energy, and
repartitioning the remaining edges into expanders. Pseudocode of this routine is in Algorithm 6,
which calls a recursive routine, DECOMPOSERECURSIVE shown in Algorithm 7 with a suitable value
of ¢ and number of layers. Note that we also need to trim the initial graph so that we only work
with large degree vertices.

We will also need the following result (Lemma 28 of [KLOS14], see also [KM11]).

Lemma 5.2. Suppose G is a unit weight graph with conductance ¢. Then the projection operations
into cycle and potential flow spaces both have £ norms bounded by O(¢~2logn):

HBQ (BQTBQ)TBQT < O(¢2logn)

[e.e]

and

HI ~ BY (BQTBQ)TBQT < O(¢2logn).

o

Proof. (of Theorem 4.9)

We start by bounding the qualities of the G pieces returned. As we only return pieces that are
the outputs of EXPANDERDECOMPOSE, all of them have conductance at least ¢ by Lemma 5.1.
Also, since we only keep the non-trivial pieces containing edges, taking the singleton cuts gives that
the degrees in these pieces are at least

on Cpartition log®n - log(n /o) - 10n log® nlog(n/s)’
36



Now consider the quality of each §g1’: if it was returned due to ¢ = L, then the energy of the
projected gradient must have been halved at least L — logn times, or by a factor of 2L-1gn —
2l0e(1/9) — 1/5. Thus we would have

2
~G;
o],

Otherwise, we must have terminated because both the energy and edge count did not decrease
too much. An edge e was kept in the trimmed set only if
2
7l
2

2
Combining this with the termination requirement of H’g\gl >
2

< e, < ls°l:

(#) < wle’l, < o=

2
%Hﬁg‘t gives that the £, norm of

the pre-projection gradient on G;, §%g1 satisfies

2 < 40L

2
~G;
g 5

On the other hand, because G; has expansion ¢, doing an orthogonal cycle projection on it can only
increase the £,-norm of a vector by a factor of O(¢~2logn) by Lemma 5.2. Thus we have

2
H/\gz

H <I BY (BQTBQ) BQT>

HI BY (BQTBQ) BY'

HgEgz

[e.e]

HAQZ_H2:O(log nlog n/5 Hg

<0(¢67"10g?n) - 9% || ) e

’ < O(¢*log” n)-O(Trng)

which is the desired (post-projection) uniformity bound.

We now bound the number of edges removed during all the recursive calls. The bound on L
means this recursion has at most O(log(n/J)) levels. Lemma 5.1 gives that the number of edges
between the expander pieces is

0 (Z d,¢log? n> -log(n/8) = O(m¢log® nlog(n/d)),

1
Cpartition 10g3 n 1Og(n/6))
approprlate choice of Cpartition -

Furthermore, as each edge’s contribution to g is non-negative, the number of edges whose
relative contribution exceed 12LL is at most {gr. Summing this over all levels gives at most m/10
edges removed from the trimming step on Line 3 of DECOMPOSERECURSIVE in Algorithm 7.

Finally, the running time is dominated by the expander decomposition calls. As there are
O(log(n/0)) levels of recursion and each level deals with edge-disjoint subsets, we obtain the total
running time by substituting the value of ¢ into the runtime of expander decompositions as given
in Lemma 5.1. U

so the setting of ¢ = gives at most m/10 edges between the pieces for an

37



Acknowledgements

This project would not have been possible without Dan Spielman’s optimism about the existence
of analogs of numerical methods for ¢,-norms, which he has expressed to us on multiple occasions
over the past six years. We also thank Ainesh Bakshi, Jelani Nelson, Aaron Schild, and Junxing
Wang for comments and suggestions on earlier drafts and presentations of these ideas.

As with many recent works in optimization algorithms on graphs, this project has its large
share of influence by the late Michael B. Cohen. In fact, Michael’s first papers on recursive precon-
ditioning [CKM*14] and ¢,-norm preserving sampling of matrices [CP15] directly influenced the
constructions of preconditioners (Section 4.4) and uniform expanders (Section 5 and Appendix D)
respectively. While our overall algorithm falls short of what Michael would consider ‘snazzy’, it’s
also striking how many aspects of it he predicted, including: the use of expander decompositions;
the p — oo case being different than the p — 1 case; and the large initial dependence on p that’s
also eventually fixable (see Section 1.4).

Richard regrets not being able to convince Michael to systematically investigate preconditioning
for £,-norm flows. He is deeply grateful to Aleksander Madry, Jon Kelner, Ilan Munro, Tom Cohen,
Marie Cohen, Sebastian Bubeck, and Ilya Razenshteyn for many helpful conversations following
Michael’s passing.

References

[AKPS19] Deeksha Adil, Rasmus Kyng, Richard Peng, and Sushant Sachdeva. Iterative re-
finement for £,-norm regression. In Proceedings of the Thirtieth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2019, 2019.

[AL11] Morteza Alamgir and Ulrike V Luxburg. Phase transition in the family of p-
resistances. In Advances in Neural Information Processing Systems, pages 379-387,
2011.

[ALAOW17] Zeyuan Allen-Zhu, Yuanzhi Li, Rafael Mendes de Oliveira, and Avi Wigderson. Much
faster algorithms for matrix scaling. In Symposium on Foundations of Computer Sci-
ence (FOCS), pages 890-901, 2017. Available at: https://arxiv.org/abs/1704.02315.

[AN12] Ittai Abraham and Ofer Neiman. Using petal-decompositions to build a low stretch
spanning tree. In STOC, 2012.

[BCLL18]  Sébastien Bubeck, Michael B. Cohen, Yin Tat Lee, and Yuanzhi Li. An homotopy
method for Ip regression provably beyond self-concordance and in input-sparsity time.
In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Comput-
ing, STOC 2018, pages 1130-1137, New York, NY, USA, 2018. ACM.

[BK96] Andrés A. Benczir and David R. Karger. Approximating s-t minimum cuts in O(n?)
time. In Proceedings of the twenty-eighth annual ACM symposium on Theory of com-
puting, STOC ’96, pages 47-55, New York, NY, USA, 1996. ACM.

[BKKL17] Ruben Becker, Andreas Karrenbauer, Sebastian Krinninger, and Christoph Lenzen.
Near-optimal approximate shortest paths and transshipment in distributed and

38



[CKM*11]

[CKM+14]

[CMMP13]

[CMTV17]

[CP15]

[DSO08]

[EACR*16]

[Edm65]

[EK72]

[ET75

streaming models. In 31st International Symposium on Distributed Computing, DISC
2017, October 16-20, 2017, Vienna, Austria, pages 7:1-7:16, 2017. Available at:
https://arxiv.org/abs/1607.05127.

Paul Christiano, Jonathan A. Kelner, Aleksander Madry, Daniel A. Spielman, and
Shang-Hua Teng. Electrical flows, laplacian systems, and faster approximation of
maximum flow in undirected graphs. In Proceedings of the 43rd annual ACM sympo-
sium on Theory of computing, STOC 11, pages 273-282, New York, NY, USA, 2011.
ACM. Available at http://arxiv.org/abs/1010.2921.

Michael B. Cohen, Rasmus Kyng, Gary L. Miller, Jakub W. Pachocki, Richard Peng,
Anup Rao, and Shen Chen Xu. Solving SDD linear systems in nearly m logl/ 2 n time.
In STOC, pages 343-352, 2014.

Hui Han Chin, Aleksander Madry, Gary L. Miller, and Richard Peng. Runtime guar-
antees for regression problems. In Proceedings of the 4™ conference on Innovations in
Theoretical Computer Science, ITCS ’13, pages 269-282, New York, NY, USA, 2013.
ACM. Available at http://arxiv.org/abs/1110.1358.

Michael B. Cohen, Aleksander Madry, Dimitris Tsipras, and Adrian Vladu. Matrix
scaling and balancing via box constrained newton’s method and interior point meth-
ods. In 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS
2017, Berkeley, CA, USA, October 15-17, 2017, pages 902-913, 2017. Available at:
https://arxiv.org/abs/1704.02310.

Michael B. Cohen and Richard Peng. ¢, row sampling by Lewis weights. In Pro-
ceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Comput-
ing, STOC ’15, pages 183-192, New York, NY, USA, 2015. ACM. Available at
http://arxiv.org/abs/1412.0588.

Samuel I. Daitch and Daniel A. Spielman. Faster approximate lossy generalized flow
via interior point algorithms. In Proceedings of the 40th annual ACM symposium on
Theory of computing, STOC 08, pages 451-460, New York, NY, USA, 2008. ACM.
Available at http://arxiv.org/abs/0803.0988.

Ahmed El Alaoui, Xiang Cheng, Aaditya Ramdas, Martin J Wainwright, and Michael 1
Jordan. Asymptotic behavior of /)-based Laplacian regularization in semi-supervised
learning. In Conference on Learning Theory, pages 879-906, 2016.

Jack Edmonds. Paths, trees, and flowers. Canadian Journal of mathematics,
17(3):449-467, 1965. Available at: https://cms.math.ca/10.4153/CJM-1965-045-4.

Jack Edmonds and Richard M. Karp. Theoretical improvements in algorithmic effi-
ciency for network flow problems. J. ACM, 19(2):248-264, 1972.

Shimon Even and Robert Endre Tarjan. Network flow and testing graph connectivity.
SIAM J. Comput., 4(4):507-518, 1975.

39



[GKK*15]

[GN79]

[GROS]

[GTSS)

[GT14]

[HK73]

[HO13]

[Hoc08]

[Kar73]

[KBROT]

[KLOS14]

[KMO09]

[KM11]

Mohsen Ghaffari, Andreas Karrenbauer, Fabian Kuhn, Christoph Lenzen, and Boaz
Patt-Shamir. Near-optimal distributed maximum flow: Extended abstract. In Pro-
ceedings of the 2015 ACM Symposium on Principles of Distributed Computing, PODC
2015, Donostia-San Sebastian, Spain, July 21 - 23, 2015, pages 81-90, 2015. Available
at: https://arxiv.org/abs/1508.04747.

Zvi Galil and Amnon Naamad. Network flow and generalized path compression. In
Proceedings of the 11h Annual ACM Symposium on Theory of Computing, April 30 -
May 2, 1979, Atlanta, Georgia, USA, pages 1326, 1979.

Andrew V. Goldberg and Satish Rao. Beyond the flow decomposition barrier. J.
ACM, 45(5):783-797, 1998.

Andrew V. Goldberg and Robert Endre Tarjan. A new approach to the maximum-flow
problem. J. ACM, 35(4):921-940, 1988.

Andrew V. Goldberg and Robert Endre Tarjan. Efficient maximum flow algorithms.
Commun. ACM, 57(8):82-89, 2014.

John E. Hopcroft and Richard M. Karp. An n5/2 algorithm for maximum matchings
in bipartite graphs. SIAM J. Comput., 2(4):225-231, 1973.

Dorit S. Hochbaum and James B. Orlin. Simplifications and speedups of the pseud-
oflow algorithm. Networks, 61(1):40-57, 2013.

Dorit S Hochbaum. The pseudoflow algorithm: A new algorithm for the maximum-
flow problem. Operations research, 56(4):992-1009, 2008.

Alexander V. Karzanov. O nakhozhdenii maksimaliiogo potoka v setyakh spetsialiogo
vida i nekotorykh prilozheniyakh. Matematicheskie Voprosy Upravleniya Proizvod-
stvom, 5:81-94, 1973. In Russian, title translation: on finding maximum flows in
networks with special structure and some applications.

Vladimir Kolmogorov, Yuri Boykov, and Carsten Rother. Applications of parametric
maxflow in computer vision. In Computer Vision, 2007. ICCV 2007. IEEE 11th
International Conference on, pages 1-8. IEEE, 2007.

Jonathan A. Kelner, Yin Tat Lee, Lorenzo Orecchia, and Aaron Sidford. An almost-
linear-time algorithm for approximate max flow in undirected graphs, and its multi-
commodity generalizations. In Proceedings of the Twenty-Fifth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January
5-7, 2014, pages 217-226, 2014. Available at http://arxiv.org/abs/1304.2338.

J.A. Kelner and A. Madry. Faster generation of random spanning trees. In FOCS,
20009.

Jonathan A. Kelner and Petar Maymounkov. Electric routing and concurrent
flow cutting.  Theor. Comput. Sci., 412(32):4123-4135, 2011.  Available at:
https://arxiv.org/abs/0909.2859.

40



[KMP11]

[KMP12]

[KMP14]

[KOSZ13]

[KRSS15]

[KS96]

[KS16]

[LPS15]

[LS13]

[LS14]

[LSBG13]

[Mad10]

[Mad11]

Toannis Koutis, Gary L. Miller, and Richard Peng. A nearly-m log n time solver for
SDD linear systems. In Proceedings of the 2011 IEEE 52nd Annual Symposium on
Foundations of Computer Science, FOCS ’11, pages 590-598, Washington, DC, USA,
2011. IEEE Computer Society. Available at http://arxiv.org/abs/1102.4842.

Toannis Koutis, Gary L. Miller, and Richard Peng. A fast solver for a class of lin-
ear systems. Communications of the ACM, 55(10):99-107, October 2012. Avail-
able at https://cacm.acm.org/magazines/2012/10/155538-a-fast-solver-for-a-class-of-
linear-systems/fulltext.

I. Koutis, G. Miller, and R. Peng. Approaching optimality for solving sdd lin-
ear systems. SIAM Journal on Computing, 43(1):337-354, 2014. Available at
http://arxiv.org/abs/1003.2958.

J. A. Kelner, L. Orecchia, A. Sidford, and Z. A. Zhu. A simple, combinatorial algo-
rithm for solving sdd systems in nearly-linear time. In STOC, 2013.

R. Kyng, A. B. Rao, S. Sachdeva, and D. A Spielman. Algorithms for lipschitz learning
on graphs. In COLT, 2015.

David R. Karger and Clifford Stein. A new approach to the minimum cut problem.
J. ACM, 43(4):601-640, 1996.

Rasmus Kyng and Sushant Sachdeva. Approximate gaussian elimination for laplacians
- fast, sparse, and simple. In FOCS, pages 573-582. IEEE Computer Society, 2016.
Available at http://arxiv.org/abs/1605.02353.

Y. T. Lee, R. Peng, and D. A. Spielman. Sparsified cholesky solvers for SDD linear
systems. CoRR, abs/1506.08204, 2015.

Yin Tat Lee and Aaron Sidford. Efficient accelerated coordinate descent methods and
faster algorithms for solving linear systems. In Proceedings of the 2013 IEEE 54th
Annual Symposium on Foundations of Computer Science, FOCS 13, pages 147-156,
Washington, DC, USA, 2013. IEEE Computer Society.

Y. T. Lee and A. Sidford. Path finding methods for linear programming: Solving
linear programs in O(vrank) iterations and faster algorithms for maximum flow. In
FOCS, 2014.

Bingdong Li, Jeff Springer, George Bebis, and Mehmet Hadi Gunes. A survey of
network flow applications. Journal of Network and Computer Applications, 36(2):567—
581, 2013.

Aleksander Madry. Fast approximation algorithms for cut-based problems
in undirected graphs. In Foundations of Computer Science (FOCS), 2010
51st Annual IEEE Symposium on, pages 245-254. IEEE, 2010. Available at
http://arxiv.org/abs/1008.1975.

Aleksander Madry. From graphs to matrices, and back: mnew techniques for graph
algorithms. PhD thesis, Massachusetts Institute of Technology, 2011.

41



[Mad13]

[Mad16]

[NN94]

[Orl13]

[Pen16]

[PS14]

[PZZ13]

[ROF92]

[Sacl9]
[Sch02]

[Shel3]

[Shel7a]

[Shel7b]

A. Madry. Navigating central path with electrical flows: From flows to matchings,
and back. In FOCS, 2013.

Aleksander Madry. Computing maximum flow with augmenting electrical flows. In
IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS 2016, 9-
11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA, pages 593-602,
2016. Available at: https://arxiv.org/abs/1608.06016.

Y. Nesterov and A. Nemirovskii. Interior-Point Polynomial Algorithms in Convex
Programming. Society for Industrial and Applied Mathematics, 1994.

James B. Orlin. Max flows in o(nm) time, or better. In Symposium on Theory of
Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 765—
774, 2013.

Richard Peng. Approximate undirected maximum flows in O(m polylog(n)) time. In
Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pages 1862-1867. STAM, 2016. Available at http://arxiv.org/abs/1411.7631.

Richard Peng and Daniel A. Spielman. An efficient parallel solver for SDD linear
systems. In Proceedings of the 46th Annual ACM Symposium on Theory of Com-
puting, STOC ’14, pages 333-342, New York, NY, USA, 2014. ACM. Available at
http://arxiv.org/abs/1311.3286.

Bo Peng, Lei Zhang, and David Zhang. A survey of graph theoretical approaches to
image segmentation. Pattern Recognition, 46(3):1020-1038, 2013.

Leonid I Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total variation based
noise removal algorithms. Physica D: nonlinear phenomena, 60(1-4):259-268, 1992.

Sushant Sachdeva. Private Communication, 2019.

Alexander Schrijver. On the history of the transportation and maximum flow prob-
lems. Math. Program., 91(3):437-445, 2002.

Jonah Sherman. Nearly maximum flows in nearly linear time. In 54th An-
nual IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26-
29 October, 2013, Berkeley, CA, USA, pages 263-269, 2013.  Available at
http://arxiv.org/abs/1304.2077.

Jonah Sherman. Area-convexity, loo regularization, and undirected multicommodity
flow. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 452—460,
2017.

Jonah Sherman. Generalized preconditioning and undirected minimum-cost
flow. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’17, pages 772-780, 2017. Available at:
https://arxiv.org/abs/1606.07425.

42



[Spil8] D. A. Spielman. Conductance, the Normalized Laplacian, and Cheegers Inequality.
http://www.cs.yale.edu/homes/spielman/561/lect11-18.pdf, 2018.

[SS11] D. Spielman and N. Srivastava. Graph sparsification by effective resis-
tances.  SIAM Journal on Computing, 40(6):1913-1926, 2011.  Available at
http://arxiv.org/abs/0803.0929.

[ST83] Daniel D Sleator and Robert Endre Tarjan. A data structure for dynamic trees. Jour-
nal of computer and system sciences, 26(3):362-391, 1983. Announced at STOC’81.

[ST85] Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary search trees.
J. ACM, 32(3):652-686, 1985.

[ST14] D. Spielman and S. Teng. Nearly linear time algorithms for preconditioning and solving
symmetric, diagonally dominant linear systems. SIAM Journal on Matriz Analysis
and Applications, 35(3):835-885, 2014. Available at http://arxiv.org/abs/cs/0607105.

[SW18] Thatchaphol Saranurak and Di Wang. Expander decomposition and prun-
ing:  Faster, stronger, and simpler, 2018. To appear at SODA 2019.
https://dw236.github.io/papers/main_decomp.pdf.

[Trol2] Joel A. Tropp. User-friendly tail bounds for sums of random matrices. Found. Comput.
Math., 12(4):389-434, August 2012. Available at http://arxiv.org/abs/1004.4389.

[ZWC10] Mingqgiang Zhu, Stephen J Wright, and Tony F Chan. Duality-based algorithms
for total-variation-regularized image restoration. Computational Optimization and
Applications, 47(3):377-400, 2010.

A Deferred Proofs from Prelims, Section 2.2

Lemma 2.9 (Reflexivity). For every smoothed p-norm instance G, and every k > 1, G <, G and
G <% G with the identity map.

Proof. Consider the map Mg_,g such that for every flow £9 on G, we have Mg_,g(f9) = f9. Thus,
£9 (/-i_l./\/lgﬁg(fg)) — gg(ﬁ—lfg)
T, _ _
= (¢) (57 19) byl 159

>w! (gg)ng — K 2hy(r, £9) (Using Lemma B.1)
_ T _ —
>k (g%) f9— kT (e f9) = kTIEY(£Y).
Moreover (B9)T Mg_.g(f9) = BY9fY. Thus, the claims follow. O

Lemma 2.10 (Composition). Given two smoothed p-norm instances, Gy, Ga, such that Gy =<, Go
with the map Mg, g, and Go =, Gz with the map Mg,_g,, then Gi =k, Gz with the map
M91—>93 = M92—>93 o Mg, g,

Similarly, for any Gi,Go, if G <Y Gy with the map Mg, g, and Gy <2vele Go with the map
Mg, g, then Gy jlcﬁ?ifil; Gz with the map Mg, g, = Mg,—g; © Mg, 56,
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Proof. Tt is easy to observe that the given mapping is linear. Given a flow £9' on G;, we have,

(ng)T(MQQ%QS © M91—>92 (fgl)) = (ng)'l' (M92—>91 (Mg3—>g2 (fgl)))
= (B%)T (Mg, -6, (f9)) = (BT (F).

Moreover,

5g3 ((/{1/{2)_1M92—>93 (Mg1—>gz (fgl))) = 5g3 (/{2_1M92—>93 ("Ql_lMg1—>g2 (fgl))) (USing hnearitY)
> ’{2_1“:@2 (51_1M91—>92 (fgl)) (USing G2 jl@z g3)
> (kok1) " Eg, (F") (Using G1 =k, G2)

The same proof works for <evele O

Lemma 2.12 (=, under union). Consider four smoothed p-norm instances, Gi,Ga, H1, Ha, on the
same set of vertices, i.e. V91 = V92 = VM1 = VM2 such that for i = 1,2, H; <. G; with the map

My, g, Let G def G1 UG, and H def HiUHs. Then, H =<, G with the map

Mg (FE = (F9, £72)) < (Moo (F1), Magy o6, (F72)),

where (le,fH2) is the decomposition of % onto the supports of Hy and Hs.

Proof. Let £ be a flow on H. We write £ = (", fH2). Let f9 aof Mag(F). If £9 denotes
May, g, (f 1) for i = 1,2, then we know that f9 = (9, £92). Thus, the objectives satisfy

E9(RTIfI) = N (kTIN) + £ (TIFP)
> T IE(F) + wTIETR (F7) = IR (FT)
For the residues, we have,
(BY)'(£9) = (B9) T (f9) + (B®) T (%)
= (B™)T(f7) + (B™)T(£%2) = (B™)T (f ).
Thus, H <x G. O

Lemma 2.13. For all k > 1, and for all pairs of smoothed p-norm instances, G, H, on the same
underlying graphs, i.e., (V9,E9) = (V* EM), such that,

1. the gradients are identical, g9 = g™,

H

2. the (3 resistances are off by at most r, i.e., 79 < krlt for all edges e, and

3. the p-norm scaling is off by at most kP~ ie., s9 < kP15,
then H =, G with the identity map.

Proof. Consider the map My _,g(f) = f. Thus, since the underlying graphs are the same, we
immediately have (B9)Tf = (B™)T f. For the objective, we have

9T = (v tgdf . — v Il — kP9 f[P)
> w7y (gl — vl = SMIELP) = kTIER().
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B Deferred Proofs for Numerical Methods from Section 3

The following simple lemma characterizes the change in smoothed £,-norms under rescaling of the
input vector.

Lemma B.1. For all x e R™,r € R’Z”O,s € R>o, and A € R, we have,
min{|A|%, AP Yh, (7, 5, ) < hy(r, s, Ax) < max{|\*, | AP} Ry (7, s, ).
Proof. It suffices to prove the claim for x € R, € R>g,s5 € R>g
hy(r, s, \x) = r(Ax)? + s|\z|?
= NP rz? 4+ AP - s|z)?
Since all terms are non-negative, we get,

hy(r, s, Ax) > min{ |\, AP} - (rz? + s|z|P),
and  hy(r, s, \x) < max{|A]%, |A]P} - (rz? + s|z|P).

Lemma 3.1 ([AKPS19]). For all r,z,é € R™, with r € RT, and s > 0, we have
2P hy(r+|xP2,5,8) < hy(r, s, +8) — hy(r,s,2) — 8 Vihy(r,s,z) < 2% -hy(r+|z[P72 s, 0).
Proof. Note that all the terms are a sum over the coordinates. Thus, it suffices to prove the

inequality for z,0 € R, and r, s € R>¢. We have,

hy(r, s, 4+ 0) — hy(r,s,z) — (52

3 hp(r, s,x) = r(x + 8)? + s|lx + §|P — ra? — s|z|P — 6(2rz + ps|z|P~2z)
x

= 16% + slx + 0P — s|z[P — psd|zP 2z

=ré + s\x]pﬂl +5'|p -1 —p5’),

where §' = §/x.
Lemma B.2, proved later, proves that for all 4, and p > 2, we have,

|1+ [7 =1 —p& <p2r= (67 +|5'P).
Thus,

hy(r, s,z 4 0) — hy(r,s,x) — 5a%hp(r, s,x) <167 + slz[Pp2rt (67 + |'|F)
= 162 + sp2P~ P 726% + sp2P~L|6|P
< p2" N ((r + slalP )5 + 5[0[7)
— p2P L h, (r + s|z|P 72, 5, 6)
< 2%h,(r + s|lzP72, s, 6).
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Lemma B.3, proved later, shows that for all &', and p > 2, we have,

1+ 0" —1—pd > 277 (8% + |d'P).

hp(rv 5, T + 5) - hp(h 87$) - 5%]7’17(7'7 8733) 2 7"52 + S|$|p2—p(5/2 + |5l|p)
=102 + 27Ps|x|P726% + 27 Ps|o|P
> 27P((r + s|z[P7%)0% + s|0P)

= 2_php(r + S|x|p_27 S, 5)

Lemma B.2. For all § € R, p > 1, we have,
1+ 6P —1—ps < p2P= (5% + [8]P).

Proof. The proof has to consider several cases.

d > 1. Using mean-value theorem, we know there is some z € [0, §] such that

N+ —1—pd=(1+d6P—1—pd
=pé((1+ 2P~ 1)
< ps(1+ )Pt
< pé(26)P 1.

0 < d < 1. Using mean-value theorem, we know there is some z € [0, 4] such that
N+ —1—pd=(1+6P—-1—pd
=pi((1+ z)P~1 1)
<pd((L+0P~t —1).
If p < 2, we have (1 +6)P~! is a concave function, and hence (1+6)P~! <1+ (p—1)d. If p > 2, we
have (1 +0)P~! is a convex function, and hence for ¢ € [0, 1], we have (14 §)P~1 < 14 (2P~1 —1)4.

Thus,
I1+6P —1—pé < pmax{(p —1)6%, (2P~1 —1)5?}.

—1 <6 < 0. Using mean-value theorem, we know there is some z € [—|d],0] such that

1+ —1—pd=(14+06)P—-1—pd
— (1P 1)
< pla|(1 - (1+6)P7).

If p < 2, we have (14-0)P~! is a concave function, and hence for § € [—1, 1], we have (140)P~! > 1+6.
If p > 2, we have (1 +6)P~! is a convex function, and hence (1 + §)?~! > 1 + (p — 1)8. Thus,

1+ 6" = 1= pd < p|6| max{|d], (p — 1)[6]}.
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0 < —1. We have,

140 —1—ps = (6] —1)P — 1+ p|J]
< 6" + pld]
< |6 + plof?,

since || > 1. O
Lemma B.3. For all § € R,p > 2, we have
140" — 1 —ps > 27P(6% + |8]7).
Proof. Let h(d) denote the function
h(6) = |1+ 6|7 — 1 —pd — 27P(6% + |5]7).

Thus, h(0) = 0. As for the previous proof, we consider several cases:

d > 0. We have h(0) = (14 6)P — 1 —pé — 27P(62 + 7). Thus,

R(8) =p(1+ 6Pt —p—27PH5 _ po=psp=t
R'(6) = p(p — 1)(1 +8)P72 = 277+ — p(p — 1)27P5P

Observe that since p > 2, we have (1 + §)P~2 > max{1,6?=2} > 271(1 + 6?72), and p(p — 1) > 2.
Thus,

R (8) > 27 p(p — 1) + 27 p(p — 1)6P72 — 27PHL — p(p —1)27P5P2 > 0.
Since h(0) = A'(0) = 0, and A”(5) > 0, for all 6 > 0, we must have h(d) > 0 for all 6 > 0.
-1 <6 <0. We have,

h(0) = (14 6)P —1—pd —27P5% — 27P|5P
W (6) = p(1+ 6Pt —p—27PFL5 4 p27P|5P L,

Since 0 <1+ <1, and p—1>1, we have (14 6Pt <1+ 6, and |6/P~" < |§]' = —48. Thus,

R(8) < p(1+46) —p—27PTL5 + p27P§|
= —plé[ + (2+p)277|¢]
< —pld| +27%(p +2)|5] < 0.
0 < —1. We have,

h(8) = (=1 —=6)P —1—pd —27P6% — 27P|5|P
W (0) = —p(—1— 6P~ —p— 2P 4 p27P|§P~ L.
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Since |d] > 1, and p — 1 > 1, we have —6 = |§] < [§]P~!. Thus,
W) < —p(=1= 0" —p+27P(2+p)lo|"!
< —p<(—1 N 2—p+1|5|p—1>_
Now, observe that since 0 < —1—9, and p—1>1,
0P = (=0t = (U (-1 =) 2T 4 (<1 = 0P,

Thus,
(=1 =0t 41 -2 PPt >0,

and hence h/(§) <0 for 6 < —1.

For the last two cases, since h(0) = 0, and h/(§) < 0, for all § < 0. Thus, we must have h(d) > 0,
for § < 0. O

Theorem 3.2 ([AKPS19]). Given the following optimization problem,

def
maxg E1(z) = gz — hy(r, s, x) (P1)
s.1. Az =1b

and an initial feasible solution xg, we can construct the following residual problem:

maxs () ¥ (g")T8 — hy(r', s, 8) (R1)
s.t. Ad =0,

where g' = 2P(g — Vgh(r, s, @)|z=q,), and v’ = r + s|aolP 2.
There exists a feasible solution § to the residual problem R1 that achieves an objective of
& (6) > 2P(&(x*) — E1(x0)), where * is an optimal solution to problem P1.

Moreover, given any feasible solution § to Program R1, the vector def xo+273P6 is a feasible
solution to the Program P1 and obtains the objective

E1(x1) > E1(xwo) + 2_4p€2(5).
Proof. Let x* to be an optimal solution to Problem P1. Consider §=z*— xg. Thus,
AS = Az* — Azg=b— b =0.
Thus, § is a feasible solution to Problem Rl. Moreover, it satisfies,
£2(8) = (8)2°(9 — Vah(r, s, ®)|aewy) — hp(r + slzoP~2, s, 0)
= 27976 — 2 (27 hy(r + sl %, 5,8) + (8) Vuh(r, 5, @)lazsy )
> 27’ng — 2P (hp(r, s, o+ 5) — hp(r,s, :I:o)) (Using Lemma 3.1)
=20g" (z* — xg) — 2P(hy(r, s, %) — hy(r, s, 20))

= 2;0(51(:1:*) — 51(:)30))
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Now, given a feasible solution § to Problem R1, we must have Ad = 0. Thus, Ax; = Axy +
273’ A§ = b, and x; is a feasible solution to Problem P1. Moreover,

Ei(xy) = g (mo +27P8) — hy(r, 5,20 + 27P9)
> glag+27g"8 — hy(r,s,g) — 27P8 Vehy(1, 8, )| oy — 27 hyp(r + s|@o|P 2, 5,27%P5)
(Using Lemma 3.1)
> E(mo) + 278 g/ — 2% . 27 (v 4 s|awoP 2, 5, 8) (Using Lemma B.1)
= 51(:1:0) + 2—4p52(5)'

C Elimination of Low-Degree Vertices, and Loops

In this section, we that the instance H returned by ULTRASPARSIFY can be reduced to a smaller
graph by repeatedly eliminating vertices of degree at most 2. This step is analogous to the partial
Cholesky factorization in the Laplacian solver of Spielman and Teng [ST14]. A slight technical
issue is that if we run into a cycle where at most 1 vertex on the cycle has edge(s) to the rest of
the graph, the elimination of the degree 2 nodes on the cycle essentially becomes an optimization
problem on only the cycle edges that can be solved independently from the rest of the graph.

Algorithm 8 Elimination of Degree 1 and 2 vertices and Self-loops
1: procedure ELIMINATE(H)
2: Initiate H' < H

3: repeat
4: For every edge with non-selfloop degree 1, remove the only non-selfloop edge incident on
it
5: until No vertex has non-selfloop degree 1
6: for every maximal path with all internal nodes having non-selfloop degree 2 do
7 Replace such a path with a single edge in H’ with the end points as the end points of
the path, and,
e resistance is the sum of the resistances of the edges on the path
e gradient is the sum of the gradients of the edges on the path
e s the same as before
e Flow on the new edge is mapped to a flow along the original path (or cycle) in H.
8: Move all self-loops from H' to Higep
9: return ', Hioop, M 30/ 1 1,,,) 4

Theorem 3.4 (Eliminating vertices with degree 1 and 2). Given a smoothed p-norm instance G,
the algorithm ELIMINATE(G) returns another smoothed p-norm instance G', along with the map
Mgi_g in O(‘Vg| + ‘EQD time, such that the graph G' = (V9',EY") is obtained from the graph
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G = (VI9,E9) by first repeatedly removing vertices with non-selfloop degree® 1 in G, and then
replacing every path u ~~ v in G where all internal path vertices have non-selfloop degree exactly 2
in G, with a new edge (u,v).
Moreover,
g/ jcyclle g jiycle Q',

np—1

where n = |V9|, and the map Mg _,g can be applied in O(|V9| + |EY|) time.

Proof. We first observe that a self-loop e € EY on a vertex v € V9 does not contribute to the
residue at any vertex, including v. Thus, the circulation constraint on a flow f9 does not impose
any constraint on fg. Moreover, since the objective a9 can be written as a sum over the edges,
for every self-loop e, the variable f g is independent of all other variables. Thus, we can ignore the
self-loops in remainder of the proof.

We first prove that we can repeatedly eliminate vertices of non-selfloop degree 1 in G while
preserving £ exactly for a circulation. Consider one such vertex v € V9, and let e = (v,u) € EY be
the only non-selfloop edge incident on v (the argument for the reverse direction is identical). Given
any circulation f9, since the only non-selfloop edge incident on v is e, we must have f g = 0. Thus,
we can drop e entirely from the instance. Formally, we define

/

VI =v9 B9 =E9\{e}, g9 =¢%0, 19 =1 gy, and 7 =59

We let the mapping Mg_,g/ to be just the projection on to EY". Thus, Mg_,g/(f9) = fg|Eg/. Since
£9 =0, we immediately get £9' (Mg_g/(f9)) = E9(£9). Thus, G < ¢'.
Now, consider the mapping Mg/ _,g that pads a circulation fg/ on G’ with 0 on e, i.e.,

(Mog()), = {0 e

f g,l otherwise.

Again, it is immediate that E9(Mgrg(f9)) = €9 (f9'). Thus, ¢’ jiydo g.

We can repeatedly apply the above transformation to eliminate all vertices of non-selfloop
degree 1 in G. For convenience, we let G’ denote the final instance obtained. Thus, we have,
g/ j(1:ycle g j(1:ycle g/.

Now, we will replace maximal paths with all internal vertices of non-selfloop degree 2 with single
edges. Consider such a path P. Formally, P is a path of length [ in G, say P = (vg,v1,...,v-1,0]),
with all of v1,...,v;_1 having degree exactly 2, and vy, v; have non-selfloop degree at least 3. For
convenience, we assume that all edges (v;—1,v;) are oriented in the same direction. Observe that
for a circulation fgl, the flow on all the edges (v;—1,v;) must be the same, i.e., f(gvll_i1 o) must all
be equal. Thus, we can replace P with a single edge ep while preserving the amount of flow and
the direction.

Formally, let P = {P,..., P;} denote the set of all maximal paths in G' = (Vg’, Eg’) such that
all their internal vertices have non-selfloop degree exactly 2 in G’. We replace each of these paths

8By non-selfloop degree, we mean that self-loops do not count towards the degree of a vertex.
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with a new edge connecting its endpoints. Let,

v — v,

EY" = EY Upep {ep = (v0,0)|P = (vo,..., 1)} \ Upep{e = (vi_1,v;) € P|P = (vo,...,v)},
o _ |97 if e € B9 N EY",

e = {Zefepgg,, ife=epfor PeP,

ng_{rg ifee B9 NEY
© Derep 7’5,, ife=ep for PP,

Sg” = Sg.

We define the mapping Mg/_,g~ as follows
o ' ifee F9 NEY",
(Mgﬁwg D e Tes -
e f(vo o) if e=ep, where P = (vg,...,v;), P € P.
We define Mgr_,g to be the inverse map of Mg/_,gn.

(./\/l (fg//)) B fg" ifec B9 NEY,
GG e f% if e = (v;—1,v;),1 € [l], where P = (vg,...,v;) € P.

U

It follows from the definitions that for every circulation f9', letting £9° denote Mg g (f9),
we have, Mgr_,g/(f9 ) = f9. Moreover,

(6) 1 = (%) 1
> (sg) = X ()

ecEY’ ecE9"
1 &
> —sY E
n

=N

ecE9’ ecE9" ecEY’

p
)

fo

where the last inequality follows since for every path of length [, the contribution to the ¢ changes
by a factor of I™!, and since the paths must be vertex-disjoint, I < [V9| < n. The above inequalities
imply,
E9(F9) <9 (£,
and hence G’ jiyde G". Combined with G jiyde g, we get G jiyde G". Moreover, we have, for
1

[{:’[’LP*l,

T 2 p
’ -1 ’ / -1 ’ -9 ’ ’ _ / /
e (n7 ) = (o) WS —n2 Y () —nrsT Y |
ecEY’ ecEY’
’ T / / N 2 1 / /| P
-1 -1
=nt (67) 17w X0 w(FE) - s DD e
ec B9’ ecEY9’
_1 g// T g// g// g// 2 g// g// p _1 g// g//
>n7t (o) 9= 2 8 () =T D | = w0,
ecE9" ecE9"

o1



Thus, G” <yele gr. Combining with G’ < Cyde G, we obtain G” < <%¢le ¢ The final instance returned
is G”, giving us our theorem. O

Lemma 3.5 (Eliminating Self-loops). There is an algorithm REMOVELOOPS such that, given a

smoothed p-norm instance G with self-loops in EY, in O(|Vg| + |Eg‘) time, it returns instances

G1,Go, such that G = G UGa, where Gy is obtained from G by eliminating all self-loops from EY, and

Go is an instance consisting of just the self-loops from G. Thus, any flow £9% on Gy is a circulation.
Moreover, there is an algorithm SOLVELOOPS that, given Ga, for any & < 1/p, in time O(|E9|1og 1/s),

finds a circulation 92 on Go such that

ggz(fgz) > (1 _ 5) max 592 (fgz)'
£9:(B)9£9=0

Proof. Let E' denote the set of all self-loops in EY. Then, we define G; to be the instance obtained
by removing all edges in E’. Formally,

def
G1 = (V9 E9\ E', g% o\ 79| po or, 59).

We define Gy be the instance G restricted to E’. Thus,

def
g2 = (Vg7E,7gg|E’7Tg|Elvsg)‘

It is immediate that G = G U Gs. Since Go only has self-loops, we have that for every ng, we have
(B92)T £92 = 0. Thus, the constraint (B9)T £92 = 0 is vacuous.

Now, observe that in the absence of linear constraints on £92, the variables ng are independent
for all e € E92. Moreover, we have

592 fgz Z 592 fgz

e€E9%2

Thus, we can solve for each f 52 independently. Now, consider a fixed e € E92. We write f, for f eg2.
We wish to solve
max £22(fe) = max g2 fo — v f7 = sPILl".

e

Note that the objective function is concave. The gradient of 852 (fe) with respect to fe is

e d
(55)(fe)_d_fe

First observe that if fJ is the optimal solution, it must have the same sign as ge2 Without loss

EL(f.) = g9 — (2r%2 + ps@|f [P f.

K
of generality, we assume that g¥2 > 0. Observe that for f, > o g , we have g3 7 5g2 < 0. Thus,

1
Go Go \ p—1
o < Ze—. Similarly, we have, fF < ( pgs\.ig2 > P 1’ where f is the optimal solution. Thus, if we define
zas = ° )
def ggz gQQ p—1
z = ming —&—, | =5~ ,

2,,,52 p3g2

then fr < z.
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Moreover, for f. < £, we have
) e 27 M

2ardr  psRl g 98 g
2 g1 =9 T 5T T =

(€82)'(fo) = g —

Thus, fF > %, and hence z gives a 2-approximation to f* that can be computed in O(1) time. Now,
applying binary search allows us to find f. € [(1 —9/p)f¥, (1 + 5/p) 1] in O(log 1/5) time. Now, we
show that such an estimate is good enough. Consider the point 4z. We have

. .3 3 13 131 1
H"fxgeg (fe) > &Y (Zz) =9 g9z(1— 51 pm) > Zzgg'
Now,
£ (fe) — €22 (12) < ofz max{| (€22) (1= ) £2)], | (€&) (1 + )12}

(Using mean-value theorem and concavity)
< ofzmax{g?, —g% + (1+8)2r8 f2 + (1+ 9 psTl 12}
< 0z max{g¢, —g¢ + (1 +0)g + (1+ 0" 'gd}
<46frg¢  (Using 6 < 1/p)
< 40297 < 160 n}gxéf%fe)

Rewriting, we get £92(fe) > (1 — 166) maxy, £92(f.). Rescaling d, we obtain our claim.
We can compute such an estimate for all the edges in O(|Eg2| log 1/s) time. O

D Sparsifying Uniform Expanders

We now verify that sparsifying that sampling a-uniform expanders preserve the objectives of the
optimizations. Pseudocode of our routine and the flow maps constructed by it are in Algorithm 9.
We remark that the maps are identical to the ones used for flow sparsifiers by Kelner et al. [KLOS14].

Algorithm 9 Producing Sparsifier

1: procedure SAMPLEANDFIXGRADIENT(G = (G, 19,59, g9),7)

2 Initialize H with V* = V9.

3: Sample each edge of EY independently w. probability 7 to form E™.
4: Let 7t < 779 and s =77 - s9
5
6
7

Compute the decomposition g% = §g + B9, s.t. § is the cycle-space projection of g9.
Let g7t + (9 )|F, i.e g’ is the restriction of g9 to F.
Let g g — (I — BH(BHTBH)TBHT) g™ ie. the cycle-space projection of ng

8 Let g « g + BMy

9: Let Mg_,3 be the map f — BH(BHTBH)TBng + WZEI\HZ]\QTJC

10: Let My _,g be the map f — Bg(BgTBg)TBHTf + ||,\éH2 §Q§HTf
9 2

11: return H = (VM E" ¢ 57 g™) Mg 3, My _.g
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Note that the decomposition in Line (5) can be found by first computing ¢ = (BgTBg) TBngg.
The only randomness in the Algorithm 9 is in the sampling in Line (3). In Lines (5), and (7)-(10),
when the pseudo-inverse of a Laplacian is applied, we can rely deterministically on a high-accuracy
approximation based on the fact that if the earlier sampling succeeded, both matrices are Lapla-
cians of expanders, and hence well-conditioned. Alternatively, we can call a high-accuracy Laplacian
solver. This encurs another small failure probability. In either case, we can ensure that an implicit
representation of the operator is only computed once, and succeeds with high probability.

Theorem 4.10 (Sampling Uniform Expanders). Given an a-uniform ¢-expander G = (VIEY 19,59, g9)
with m edges and vertex degrees at least dmin, for any sampling probability T satisfying

> 1 a + !
T>cC logn - | — 4+ |,
= Csample g m ¢2dmin

where Csgmple 1S some absolute constant, SAMPLEANDFIXGRADIENT(G, 7) w.h.p. returns a partial
instance H = (H,r™, sM, g") and maps Mg_.3; and My_,g. The graph H has the same vertex set
as G, and H has at most 2rm edges. Furthermore, vt = 7-19 and s™ = 7 -59. The maps Mg_x
and My g certify

H =2k G and G 2, H,

where k= m P~ ¢ 10g® n.

Remark D.1. If in Algorithm 9, the input gradient g9 has zero cycle-space projection, i.e. §g =0,
then the cycle-space gradient terms in Lines (9) and (10) should be set to zero, so that Mg_,%
is the map f — B*(BYTB")'BITf and My g is the map f — BY(BYTBY)'BHTf. The
proof of this case is simpler, we omit all terms that deal with cycle-space projected gradients and
everything else stays the same as in the proof given in this section.

To prove this theorem, we first collect a number of observations that will help us. The most
basic of these is that Line (3) succeeds in producing a sparsifier in the spectral approximation
sense, and with edge set F satisfying 0.57m < |F| < 2rm. This is a direct consequence of matrix
concentration bounds [Trol2].

Lemma D.2. Consider the edge-vertex incidence matrices with gradients (projected via wg) ap-
pended as an extra column for both G and H, [BY, §g] and [B®, ’g”]. With high probability we have

that for any vector x

2 2

o [7.3%) i

it :

2
and the edge set F' of H satisfies 0.5mm < |F| < 27m.

Proof. The bounds on |F| follow from a scalar Chernoff bound. For the matrix approximation
bound, we will invoke matrix Chernoff bounds [Tro12], which give such a bound as long as the rows
of [Bg, §g] are sampled with probaiblity exceeding cggmpie log n times their leverage scores.

So it suffices to bound the leverage scores of the rows of this matrix. As BY and §g are
orthogonal to each other, we can bound the leverage scores of the rows in these two matrices and
add them.

The fact that the graph (V9, EY) has expansion ¢ means that its normalized Laplacian has
eigenvalue at least ¢~2. So the leverage score of a row of BY is at least ¢~ 2dmin. The leverage score
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of gf in g on the other hand is at most a/m due to the a-uniform assumption. Thus, the sampling
probablity 7 meets the requirements of matrix Chernoff bounds, and we get the approximation
with high probability.

O

Corollary D.3. Assuming Equation (12), the graphs underlying G and H (with resistances r9 and
ri ) are spectral approximations of each other:

rB9"BY ~,, BHTB™ (13)

and the subset of gradient terms chosen after rescaling, §H, has €3 norm that’s bigger by a factor
of about T:

2 2
ol = o, 09

Proof. The approximation of graphs follows from considering vectors  with 0 in the last coordinate.
The approximation of ¢3 norms of vectors follow from considering the indicator vector with 1
in the last column and 0 everywhere else. O

From this spectral approximation, we can also conclude that (V7 E*) must be an expander,
as captured by the next corollary.

Corollary D.4. Assuming Equation (12), H has conductance at least 0.8¢.

Proof. Let Cg(S) and Cy(S) denote the number of edges of EY9 and E™ respectively crossing a cut
S C V9 = V¥, Condition (13) implies that cuts are preserved between (V9, E9) and (V' EM):
For all S CV 7Cg(S) ~p.1 Cx(S), by computing the quadratic form in an indicator vector of S.

The degree of every vertex is also preserved, to up a scaling of 7 and a multiplicative error 1+0.1,
i.e. 7degy(v) =o.1 degg(v). This follows from considering the quadratic form of Condition (13) in
the indicator vector of vertex v. This implies for any S,

Cu(S) Cg(S)

~

=5 SN2
> ves degy(v) > ves degg(v)
from which we conclude the conductance is preserved up to a factor of 0.8. O
We can also conclude from this that §H is well-spread.

Corollary D.5. Assuming Equation (12), the projection of g’ onto the cycle-space of H, §H has
£1 and £y norms that are close to T times the corresponding terms in G:

|57, o2 7l 1)
[, moreasiortar 7 (1)
And g™ is O(ap=51log? n)-well spread, i.e. (as |F| is the number of entries of §'*)

—6 2
e A
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~3||? ~g||? ~g||? Go . =9|° :
Proof. We first show Hg H2 ~0.5 THg H2 Note that Hg H2 = HB 0+g H2 Now, consider ¢ =

0

1). By Equation (12),

2 2 2
], = 7[5 5)= ], o |[[ 2 5]

2 2

] (7))

> min
Y

2 2
Thus TH@QH > 0. 9H§HH

The definition ofg ensures HggH = min HBgy + ggH Letting y* € arg mlnyHBHy + gHH

o))
= ()], -1

2 2
Thus we also have TH§HH2 > 0.9H§QH2, allowing us to conclude that Equation (15) is satisfied.

we get from the definition of gH7 that

= |15 (%)

2

2
~01 T

> 7 min
Y

Next, observe that by Lemma 5.2, since H has conductance at least 0.8¢,
f il
%)= (-2 () 57 )5 <|(r-m(m ) T 5|

< 0(6~ logm) g7 .

o0

where in the last step we also used H§ < HﬁgH , since the former vector consists of a subset
o

of the entries of the latter. Furthermore, by combining the above inequality with the assumption
that g9 is a-well-spread, and Equation (15) holds, we get
12 @ (ap™© log?n
[, < otrogtm ], < Z T o
o] m
As ¢t has |F| < 27m entries, this shows that it is O(a¢p 5 log? n)—well—spread, which establishes
Equation (17).
Next, to prove that Equation (16) holds, we first observe that for any ~-well-spread vector on
@ with ¢ coordinates, since ||z||, ||z > ||=|3,

Bl Y2
HwHI— Hmuz >_Hw”ooZ —Hw”2
So tl/z Iz, < |z, < t/2||z|, Asg g9 and g" are o and O(a¢~6log? n)-well-spread respectively,
we then get
2 2
il O NN
6 g9 |Fl\|g
Q(l)(a(b log® n)? ! < 21 §0(1)722
=G ~G m ([5G
mo H2 .



- N (P G| |
Combining this with Hg H2 0.2 THQ ‘ ) and 0.57 < —— < 27, we get

12
(aqb—GlegQ n)2 ~ H;guzl < O(1)a*r.
1

From this we can directly conclude that Equation (16) holds. O

Also, we can show that for any b and 6, the optimum /5 as well as £, energies are close to the
per degree lower bounds. We start with the lower bounds.

Lemma D.6. Consider any graph with degrees D, uniform r and s, gradient g decomposable into
g = g + B where g is the cycle-space projection of g, and any 0, any flow f such that:

1. f has residues b: B'f = b, and
2. f has dot product 0 + b with g, i.e. g'f=0+b'
must satisfy

62 6 \?
S orefitsdff =l rlblpa+r-——5+s-[[D7'b|L +s- <A—> .
. 19113 l9ll4

Proof. First, note that because B' f = b, we have
G F=(9-By) f=g"f-¢ (B'f)=g'f-2'b=0.

That is, the dot of f against g must be 6.

The total energy is a sum of the ¢3 and £} terms. First, we will give two different lower bounds
on the E%, and can hence also conclude that the average of the two lower bounds is another lower
bound. We then do the same for the ¢ terms and add the lower bounds together for a lower bound
on the overall objective. We will do so separately, by matching the £2 terms to the electrical energy,
and the /5 terms to the minimum congestion.

LIfI5 > HbH%*l‘ here we use the fact that the minimum energy of the electrical flow is given
by
b"L'b,

and that the graph Laplacian is dominated by twice its diagonal

L<2D,

to get
2 2
1615 = 1b]3 5.

2. ng > ﬁ is by rearranging Cauchy-Schwarz inequality, which in its simplest form gives

171+ gl = £ 75| = 1ol
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3. |IFIIE > HD_lep is because if we have a residue of b, at some vertex, then some edge
p 00

incident to w must have flow at least )
u

dy

on it. The p-th power of that lower bounds the overall p-norm energy.

4. |FI1P > (%)p uses a similar lower bound on ||f||,, except using Holder’s inequality on /

and ¢; norms to obtain

1Fllcllglly = 161,
which rearranges to give
10|
1Flloe = 1
191l

O

Before proving upper bounds on the energy required to route a flow in the graph, we state a
lemma that upper bounds the energy required to route the “electrical” component of the flow, i.e.
the projection of the flow orthogonal to the cycle space.

Lemma D.7. Consider a graph G with degrees D, conductance ¢, and edge-vertex incidence matriz
B, and any demand b_11. Define the electrical flow f = B (BTB)Tb. Then Zefg < 2¢_2Hb||2D71.

The proof relies on first Cheeger’s Inequality (e.g. see [Spil8]):

Theorem D.8. (Cheeger’s Inequality) Consider a graph G with degrees D, conductance ¢, and
adjancency matrix A. Then

.
9 .z (D—A=z
. < _— <2
V=Ml T e e =
We will also need the following helpful fact.

Fact D.9. Suppose M = X AX " where A is symmetric and X is non-singular, and that P is the
projection orthogonal to the kernel of M, i.e. P = MM = MM?'. Then M' = PX~TA'X~'P.

Proof of Lemma D.7. Note BTB = D — A = L, where A is the adjacency matrix of the graph,
and L is its Laplacian. Also Y, f> = (B(B"B)'6)"B(B"B)'6 = 67 (B"B)'b = b L'b. By
Theorem D.8, we get that for x L D1

z'Lx > 0.5¢°z D.

Substituting y = D2z changes the constraint to D~Y?y1 D1 i.e. y L DY?1. The inequality now
states
yTD_1/2LD_1/2y > 05¢2y—|—y

If we let @ denote the projection orthogonal to D'/ 21, we can summarize the inequality and
orthogonality constraint in one condition using the Loewner order as

QD '?’LD'2Q = 0.5¢° Q.
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Note that the null space of D~/2LD~/? is spanned by D'/21, as 1 spans the null space of L. So
in fact QD_1/2LD_1/2Q = D_1/2LD_1/2, and we can conclude

D '2LD~12 = 0.54% Q.

From this we conclude that,
(D—l/ZLD—l/Z)]L =< 2¢—2 QT

as A = B implies A" < BT when A and B have the same null space. Hence by Fact D.9 and
Q = QF, we then get
QD'’L'D'?Q < 2467°Q.

This we can rewrite as for all yJ_Dl/ 21.
y DV2LIDY2y < 2972y T y.

Substituting z = D1/2y changes the constraint to D~Y221 D'?1 ie. z11. Thus we have that
for all z11.
2 L'z < 2¢_2zTD_1z.

Taking z = b, we then get bT(BTB)Tb < 2¢_2Hb||2D,1. O

Lemma D.10. Consider a graph G on n vertices with degrees D, conductance ¢, and edge-vertex
incidence matriz B, and any demand b1l1. Define the electrical flow f = B(BTB)Tb. Then
£l < O(@~*log(n))|[ Db ..

Proof. We first note that if f* is the optimal routing of b in G, then
D7) < If o < 07HID 710,
as per Example 1.4 of [Shel3]. Secondly, we note that by Lemma 5.2, the electrical flow & =

B(B"B)'b = B(B"B)'BT#* satisfies

£l < O(¢~logn)||D~"b]| .

oc0—00

Hngoo _ HB<BTB>TBTf*

< HB(BTB)TBT

[e.e]

O

Lemma D.11. On an expander G with degrees D, conductance ¢, and gradient g whose projection
into the cycle space of G, g is a-well-spread, for any demand b1 and dot 0 with g, the flow given
by

0

~112
19l

f= B(BTB)Tb—ir g (18)

satisfies

dorfi+ slfel <
2 12\ ?
Op(r-qﬁ_szH%q +r - (—’Ae‘ > +s-m- (¢_3lognHD_leoo)p+s-m- ‘6’3 .
g1l g1l
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Proof. We first bound the quadratic term ), rfg. Let us write f¢ = ( ) b and f€ = B ”2 g

and note (in fact, appealing to orthogonality would save an additional factor of 2)
Zfe = Z FE+ 0?2 < 22 FE? +2(£9)%

Then we observe by Lemma D.7 that 3 (f5)? < ¢72|| b”%—l. Furthermore,

C\2 _ pCT pC __ ’9‘ 2
SR =Ty —(H§ )

. I

Combining these equations gives

_ 0 \°
> orfi<2or-¢7?|b|Ha + 2 <”‘§“‘ ) .
2

e

We then bound the p-th power term,

SUslfelP =D slrE £ < s2n(FE+ FET) < ms2P - (1 £510 + (1610

Now by Lemma D.10, we have Hf‘gHoo = HB(BTB)TbH < O(p~3 logn)HD_leoo and by the

a-well-spreadness of g

o~ 0 fa . \/2 _ a'?|f at/?|o
170 = a < o (L) < S < ol
83" = a3 gl = Tall,

1/2

where in the last step we used ||g||; < m"*|/g|,.

O

Proof of Theorem 4.10. Refer to the pseudo-code in Algorithm 9. We first collect the facts that
we have established about the sampling procedure. In Line 3, E™ is formed from EY by sampling
each edge independently with probability 7. It follows that the expected number of edges in E™ is
Tm, and since 7 > logn/m, a standard scalar Chernoff bound shows that !EH‘ < 27m with high
probability. The parameters 7 = 7-r9 and s = 7P . s9 are set in Line 4. By Lemma D.2, with
high probability the sampling in Line 3 guarantees Equation (12). Note also that

e Equation (13) implies D" ~q, DY, by considering the quadratic form in each of the stan-
dard basis vectors.
L=l

e By Corollary D.5, g7* is O(a¢~% log? n)-well-spread, and Hg R~ THg and Hg H O(ag—6 log? n)

7%

e As G has conductance at least ¢, by Corollary D.4, H has conductance at least 0.8¢.
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We can now establish G <,. H. Suppose fY is a flow in G with BY9fY = b and gngg =60. Then
g9Tf9 =0+ b. By Lemma D.6, we then get that

Sord(ra?+> s re)

p

00 bl |
o1, E

>Q Tg : Hb”?pg)f1 + Tg

Applying our flow map from G to H

t PETR
= Mgou(f9) :BH(BHTBH> BITf9 ¢ 5 HGIT £9
5",
.i.
= B"(B"TB") b+ — 5"
"
2
We note that by construction, we can readily verify B*f*" = b, §HTfH =0, and gl =

6+ 'b. So by applying Lemma D.11 to %fﬂ, we get

() (%)

e

2 P! 2
<Oy T“HwaHw(?) o

",
<O, (7r¥) _”bH(Dg <¢T_1>2+(7-rg) = H H
(%) 770 - || (D™ lbu’;<m - ) T (7759) 7P H;Z'H p(ml/p(aszs—Zlog?n)?’/?)”

Our goal is to ensure

() o () - (s

e

Because the linear terms cancel out, we can use the upper and lower bounds established above to
say that this inequality holds provided the following conditions are satisfied (for a C), which is a
constant greater than 1 that depends on p):
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SN2
° Cp<¢71) < 1/k.
o O 2 < 1/k.

o Cp<m1/:¢72)p < 1/k.

- p
. Cp(ml/P(a¢ Zlog2 n)3/2) < 1/l€
Recalling that « is a constant, it follows that there exists a constant C'; (depending on p), s.t. all
of the above conditions are satisfied, provided

k> Ol max (ml/(p—1)¢—2p/(p—1> (=1 §=99/(0=1) (16 )3/ (1), ¢—2)

And this in turn is implied by the stronger condition, x > C’Il’,(ml/ (=1 =9 1og3 n), which is hence
sufficient to ensure G <, H.

We can then show H =<, G with a very similar calculation. We include it for completeness.
Suppose % is a flow in H with B*f* = b and g7/ "f* = 0. Then g’ Tf* =6+ "b.

By Lemma D.6, we then get that

SOorRE? > M >
p
A uafiu
g
p
H'lle?DH)er rit. 2+8 H(D b H + sM ,\ .
. "],

Applying our flow map from H to G

19 = Mag(r?) = B (BT B9) BT ¥ 4 Wa%mﬁ‘
g

(T e
g 2

2

Again, by construction, we have BYf9 = b, g97f9 =0, and g97f9 = 0 + ¢ b. So by applying
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Lemma D.11 to %fg, we get

() ()

—1\ 2 0
SO;D TgHbH%DQ)1<¢T> +Tg' | | K2

+s7-m - (¢72|(D) b ) R 4 s - v K-
Jo°].
1, H 2 Y 1, H (4 2 —2
SOp|(r77r )’T”bH(DH)fl P + ()T H:‘iHH +
1pg-2\" Ry 6102 1\3/2
(rrsty e [(D*) | (PR sty ) (el o)
A o "

Now, we want to guarantee

i) (2t prrpo)

e

Again the linear terms agree, and termwise verification shows that x > C;,(ml/ (-1 log3(n)q§_9) is
sufficient to give H <. G.
|

E Using Approximate Projections

Finally, we need to account for the errors in computing the cycle projections g of the gradients g.
This error arise due to the use of iterative methods in Laplacian solvers used to evaluate (B' B)T.
As we only perform such projections on expanders, we can in fact use iterative methods. However,
a dependence of log(1/¢) in the error € still remain.

We first formalize the exact form of this error. Kelner et al. [KOSZ13] showed that a Laplacian
solver can converge in error proportional to that of the electrical flow. That is, for a slightly higher
overhead of O(log(n/e)), we can obtain a vector g such that

19 — glly < €llglly < €llgll,-

This was also generalized to a black-box reduction between solvers for vertex solutions and flows
subsequently [CKM™14]. As a result, we will work this guarantee with errors relative to g.

For the partitioning stage, this error occurs in two places: for computing the norm of the
projection, and for identifying edges with high contributions (aka. non-uniform) for removal.

For the former, a constant factor error in the norm of g will only lead to a constant factor
increase in:
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1. The uniformity of the true projected gradient,
2. The factor of decrease in the norm of the projected gradient from one step to next.

For both of these, such constant factor slowdowns can be absorbed by an increase in the thresholds,
which in turn result in a higher uniformity parameter in decompositions returned. As this unifor-
mity parameter only affects the number of edges sampled in Theorem 4.10, they only accumulate
to a larger overhead in the m®(/v®) term in the overall running time.

The other invocation of projections is in the sparsification of expanders in Algorithm 9. Here
the decomposition of g¥ into a circulation and potential flows is necessary for the construction of
the gradient of the sampled graph, H.

While an approximate energy minimizing circulation g will not have g — g being a potential
flow, we can instead perturb g slightly in this instance. Specifically, we can also compute a set of
approximate potentials 1 so that

l9—(3+Bv)|| <l

That is, we can perturb the initial g based on the result of this solve so that we have an exact
decomposition of it into a circulation and a potential flow. The error of this perturbation is then
incorporated in the same manner as terminating when ||g||, is too small in Case 2b of Theorem 4.9.
Specifically, the additive error of this goes into the additive trailing terms of the guarantees of the
ultra-sparsifier shown in Theorem 3.6.

Finally, the projection of the sampled gradient §H into §H also carries such an error term. By
picking € to be in the 1/poly(n) range, we ensure that both the ¢ and ¢; norms of §'* is close
to their true terms. This in turn leads to constant factor errors in the lower and upper bounds
on objectives give in Lemmas D.6 and D.11, and thus a constant factor increase in the overall
approximation factors.

Therefore, it suffices to set € in these approximate projection algorithms to be within poly(n)
factors of the 6 by which ULTRASPARSIFY is invoked by the overall recursive preconditioning scheme.
The choice of parameters in Theorem 3.7 then gives that it suffices to have log(1/¢) < O(1) in all
projection steps. In other words, all the projections can be performed in time nearly-liner in the
sizes of the graphs.

F {,-norm Semi-Supervised Learning on Graphs.

In this appendix, we briefly describe how to convert Problem (3), into a form that can be solved
using our algorithm for smoothed p-norm flows as stated in Theorem 1.1.

Recall that formally, given a graph G = (V, E) and a labelled subset of the nodes 7' C V with
labels s7 € RT, we can write the problem as

min g |z, — x|
zeRY N
s.t. xr=sT un~v

Taking a Lagrange dual now results in the problem

max OgT.f_Z’fuv‘q‘

-f:(BT-f)V\T: u~v
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where ¢ = ﬁ, and the gradient g is given by g = B.rsr. We cannot directly solve this

formulation, since the net incoming flow at vertices in 7' is unknown. However, notice that the
flow is preserved at all other vertices, so summed across all of T', the net flow must be zero. Thus
if we merge all the vertices in T into one vertex, while turning edges in 7' x T into self-loops,
the problem is now a circulation. Note that the optimal flow on each self-loop can be computed
exactly. Now the resulting problem can be solved to high accuracy using Theorem 1.1. Meanwhile,
mapping the flow back to the original flow, it can be shown that the optimal flow arises as a simple
non-linear function of some voltages x: f, = (Bx)¢. This means that if we have f to high enough
accuracy, we can get an almost optimal set of voltages, e.g. by looking at flow along edges of a
tree to compute a set of voltages « that are a (1 4+ 1/poly(m)) multiplicative accuracy solution to
Problem (3). Since we call the algorithm of Theorem 1.1 using to solve a I%-ﬂow problem, where

3 /p—1
p < 2, the running time will be on the order of 920((357) /2)m1+o( E ). This in turn can be further
. . 1% Yoy | . L. .
simplified as 90(G=1) ") 140 P=1) since p < 2. For p = 1+ ﬁa this is time is bounded by
14o(1)
m .

65



	1 Introduction
	1.1 Main Results and Applications
	1.1.1 p-Norm Flows
	1.1.2 Semi-Supervised Learning on Graphs.
	1.1.3 Use as Oracle in Conjunction with Multiplicative Weight Updates

	1.2 Related Work
	1.3 Overview
	1.4 Open Questions

	2 Preliminaries
	2.1 Smoothed p-norm functions
	2.2 Flow Problems and Approximation
	2.3 Approximating Smoothed p-norm Instances
	2.4 Orthogonal Decompositions of Flows

	3 Numerical Methods
	3.1 Iterative Refinement
	3.2 Vertex Elimination
	3.3 Recursive Preconditioning

	4 Graph Theoretic Preconditioners
	4.1 Tree-Portal Routing
	4.2 Partitioning Trees into Subtrees and Portals
	4.3 Graph Sparsification
	4.4 Ultra-sparsification Algorithm and Error Analysis

	5 Decomposing into Uniform Expanders
	Acknowledgements
	A Deferred Proofs from Prelims, Section 2.2
	B Deferred Proofs for Numerical Methods from Section 3
	C Elimination of Low-Degree Vertices, and Loops
	D Sparsifying Uniform Expanders
	E Using Approximate Projections
	F p-norm Semi-Supervised Learning on Graphs.

