Genarris 2.0: A Random Structure Generator for Molecular
Crystals

Rithwik Tom?, Timothy Rose”, Imanuel Bier®, Harriet O’Brien®, Alvaro
Viazquez-Mayagoitia®, Noa Marom®P

@ Department of Physics, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
b Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213,
USA
¢ Computational Science Division, Argonne National Lab, Lemont, Illinois 60439, USA
4 Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA

Abstract

Genarris is an open source Python package for generating random molecular crystal
structures with physical constraints for seeding crystal structure prediction algorithms and
training machine learning models. Here we present a new version of the code, containing
several major improvements. A MPI-based parallelization scheme has been implemented,
which facilitates the seamless sequential execution of user-defined workflows. A new method
for estimating the unit cell volume based on the single molecule structure has been developed
using a machine-learned model trained on experimental structures. A new algorithm has
been implemented for generating crystal structures with molecules occupying special Wyck-
off positions. A new hierarchical structure check procedure has been developed to detect
unphysical close contacts efficiently and accurately. New intermolecular distance settings
have been implemented for strong hydrogen bonds. To demonstrate these new features, we
study two specific cases: benzene and glycine. For all polymorphs, the final pools contained
the experimental structure.
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1. Introduction

The properties of molecular crystals depend not only on their constituents but also the
relative arrangement of the molecules inside the unit cell. Properties such as the stability [1-
3], electronic conductivity [4-8], solubility and bioavailability [9, 10], have all been observed
to vary as a function of the molecular crystal solid state form. The molecules comprising
these crystals are held together by weak intermolecular interactions [11, 12] and thus can
commonly be experimentally synthesized in multiple forms [13, 14]. This phenomenon,
known as polymorphism, has been of great importance to pharmaceutical research and for
the design of high performance organic electronics [5, 15, 16].

The field of crystal structure prediction (CSP) is devoted to the prediction of the solid
state forms of a molecule [17-23]. CSP requires algorithms that can efficiently generate new
structures in order to sample the high dimensional configuration space associated with molec-
ular crystals [23, 24]. Random, and quasi-random, sampling of the configuration space has
been established as a critical component of CSP workflows within the Cambridge Crystallo-
graphic Data Centre (CCDC) CSP blind test [17-22]. Most of the groups that participated
in the sixth CSP blind test used a random crystal structure generation method [25-29).
Random crystal structure generation methods identified four of the five, chemically diverse
target systems in the sixth blind test, demonstrating their importance for CSP [22].

Random crystal structure generation methods for CSP follow a similar procedure. First
a space group [30] is chosen for the new structure. Second, random unit cell parameters
commensurate with the space group’s crystal system are generated. Third, the molecule
positions and orientation of each independent molecule are randomly sampled within the
asymmetric unit. Finally, the symmetry operations of the space group are applied to the
asymmetric unit generating all molecules in the unit cell. The generated structures are
subsequently relaxed using either a system specific force field [31-33] or a fully ab initio
approach [26, 34, 35]. The success of random structure generation stems from unbiased and
diverse sampling covering the potential energy surface, followed by a structural relaxation to
the nearest local minima, hopefully converging to all experimentally observed polymorphs
[25-27].

Despite their overall similarity, structure generation methods from the sixth blind test
differ in subtle ways. Structure parameters may be sampled using either a uniformly random
number generator [26, 34|, or quasi-random, low discrepancy sequences [25, 27, 28|. Struc-
ture generation may be performed over all space groups [34], or using only the most common
space groups [24, 27] observed in the Cambridge Structural Database (CSD) [36, 37]. A crit-
ical component of the generation procedure is approximating the volume of the molecular
crystal before generation. Several methods have been proposed, such as adding up atomic
volumes [26], using the morphology of the molecule [25, 38|, or relaxing a few handmade
structures [27, 29]. It has been demonstrated that random CSP methods may be sensi-
tive to the choice of unit cell volume [25]. Therefore, it is important to use an accurate
volume estimation method. Additionally, structures with reasonable densities are typically
closer to their respective local minima making structure relaxations more efficient. Lastly,
most random crystal structure generation packages are only capable of generating struc-
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tures in general Wyckoff positions and rely on the serendipitous generation of structures
with molecules occupying special positions. However, analysis of the CSD has shown that
molecules with internal symmetry often occupy special Wyckoff positions [39].

In addition to random structure generation, optimization methods, such as Monte Carlo
(MC) simulated annealing or parallel tempering and evolutionary algorithms have also
demonstrated success in the CSP blind tests [22]. Optimization algorithms use informa-
tion about the energy of generated structures to make sampling decisions and speed up
convergence towards the global minimum. MC Simulated annealing is performed at temper-
atures that allow configuration exploration [40]. Updates to the geometry are performed by
randomly sampling a new position, calculating the potential energy of updated system, and
then deciding to accept or reject the update based on the temperature of the simulation. MC
Parallel tempering works similarly while also allowing systems at different temperatures to
exchange complete configurations [41]. Evolutionary algorithms explore the configuration
space by blending or mutating structural genes to generate new structures [42-44]. The
genes of structures that are stabler are chosen more often to perform global optimization.
Optimization algorithms typically require an initial set of random structures to start.

Here we present a new version of Genarris [34], an open source Python package that
performs random structure generation for homomolecular molecular crystals of semi-rigid
molecules with no bond rotational degrees of freedom using general and special Wyckoff
positions. Genarris 2.0 offers several improvements over the previous version. The paral-
lelization model has been changed from Python multiprocessing to MPI for Python (mpidpy)
[45] to enable more efficient utilization of many cores and seamless sequential execution of
user-defined workflows. A new machine learning method for volume estimation, based on a
topological molecular descriptor, provides accurate volume predictions across a chemically
diverse dataset from the CSD. The speed of structure generation has been significantly in-
creased by developing a new hierarchical scheme for intermolecular distance checks. New
settings have been implemented to improve structure generation for systems with strong
hydrogen bonds. The performance of new the features in Genarris 2.0 is demonstrated for
glycine, which contains relatively strong intermolecular hydrogen bonds, and benzene, a
symmetric molecule occupying special Wykckoff positions.

2. Code description

Genarris 2.0 is written in Python 3, with the exception of the new structure generation
function, Pygenarris, which is written in C and automatically compiled and installed into
Genarris 2.0 as a Python library. Genarris only requires standard Python libraries to install
on any machine (i.e. numpy, sci-kit learn, mpidpy, spglib, pymatgen,and ASE, PyTorch).
Genarris 2.0 is parallelized with MPI, using mpidpy (Sec. 2.1). For energy evaluations and
geometry relaxations, Genarris currently interfaces with the electronic structure package
FHI-aims [46]. It may be adapted to interface with any other electronic structure, force
field, or machine learning package that accepts an MPI communicator as an argument.

The workflow of Genarris 2.0 is depicted in Figure 1. It begins by estimating the crystal
unit cell volume. Given the desired number of molecules per unit cell (Z), the estimate is
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Figure 1: The workflow of Genarris 2.0

obtained by relaxing the single molecule geometry and applying a machine-learned model
trained on a dataset of experimental structures from the Cambridge Structural Database
(CSD) (Sec. 2.2). Crystal structure generation begins by determining all compatible space
groups that have Z molecules in the conventional unit cell, which can occupy general or
special Wyckoff positions, and no more than one molecule in the asymmetric unit (Sec. 2.3).
Genarris automatically determines if the molecule is sufficiently symmetric to be placed on
a special position, within a user-defined tolerance (Sec. 2.3.1). Genarris moves sequentially
through this list of space groups, generating a user-defined number of structures per allowed
space group and checking them to ensure that no two molecules are unphysically close to
each other (Sec. 2.4). If the user-defined maximum number of consecutive failed generation
attempts for a space group is reached, Genarris will proceed to the next space group on the
list.

Once a “raw” pool of physically reasonable, random structures is generated, a user-
defined sequence of energy evaluation, clustering, and selection steps may be performed to
produce a smaller curated pool of structures, which can be used, e.g., as an initial population
for a genetic algorithm [44, 47]. For clustering, Genarris uses the affinity propagation (AP)
machine learning algorithm [48]. Two types of feature vectors are available in Genarris
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2.0, the relative coordinate descriptor (RCD) [34] and radial symmetry functions (RSF),
implemented in PyTorch, similar to those described in Ref. [49]. Three workflows for down
selection have been proposed previously [34]. Here, a new “Robust” workflow is proposed
(Sec. 2.5). Lastly, full geometry relaxation may be performed for the final pool of structures.

Genarris 2.0 automatically executes all the procedures in the user-defined procedure list
in the order specified. A single input file contains the user defined settings for all desired
procedures. This includes the number of cores to be used for each procedure, as different
procedures scale differently (see Sec. 2.1). Genarris can infer some parameters from previous
sections of the workflow. For example, the output file containing the relaxed geometry of
the single molecule becomes the default molecule path of subsequent sections if it exists.
The user may reorder the procedures as long as the dependencies are satisfied (e.g., feature
vector calculation must be performed prior to clustering). If Genarris is aborted, it will
restart from the procedure where it was stopped. If Genarris is stopped during structure
generation, it will resume from the last generated space group. For procedures that run
FHI-aims geometry relaxations for a batch of structures, Genarris will restart all FHI-aims
jobs from their last relaxation step.

2.1. Parallelization

Genarris 2.0 is parallelized using the message passing interface (MPI) paradigm via the
mpidpy package. MPI enables immediate cross-platform portability without code changes.
The structure generation function in Genarris 2.0 determines the number of allowed space
groups for the given molecule, n, and accepts as input the number of structures to generate
for each of these space groups. Hence, structure generation and subsequent structure checks
(Sec. 2.3) are embarrassingly parallelized over the total number of structures desired, N,
with the problem size (maximum number of usable cores) for the generation and structure
check procedures equal to N/n.

For clustering (see Sec. 2.5), both the RCD and RSF feature vector calculations are
embarrassingly parallelized with problem size N. As explained in Sec. 2.5, the number of
cluster exemplars output by the affinity propagation (AP) algorithm generally increases with
the value of the preference hyperparameter. Therefore, a parallelized version of the standard
binary search algorithm has been implemented to output a specified number of clusters C'
within a tolerance tol. The preference range is initially wide ([—1000,1000]). This range
is evenly partitioned into R preference values, where R is the number of total MPI ranks
available. Each rank executes AP with its assigned value of preference and reports the
number of clusters obtained to the root rank. The root rank sets the preference range upper
(lower) bound to the preference that returned the lowest (highest) number of clusters above
(below) the target number of clusters. The root then partitions the updated preference range
and assigns each rank its new preference value. The procedure is repeated until a preference
value is found which yields C' + tol clusters. Because there is a small chance that increasing
preference may cause a lower number of clusters output, fail-safes have been implemented.
For example, if the current preference range fails to yield a number of clusters within C'+tol,
then the preference range is widened by a random amount. In addition, the user may have
the program output the closest number of clusters to C' within a desired number of iterations.
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The memory usage is kept manageable by writing and accessing the affinity and distance
matrices via memory maps so that each rank does not make a redundant copy.

Genarris currently interfaces with FHI-aims for energy evaluations and geometry relax-
ations. It may be adapted to interface with any other electronic structure, force field, or
machine learning package that accepts an MPI communicator (a group of ranks (cores) that
can send/receive messages among themselves) as an argument. The master rank (rank 0 of
the global MPI communicator) keeps track of which jobs remain and gives the next job to the
first responsive rank. It gives the following job to the next responder, and so on. This yields
automatic load-balancing. Only a single, designated rank of a particular sub-communicator
(sub-group of ranks) requests a job from the master to limit communication latency. Each
group performs a different FHI-aims job enabling massive parallelism.

2.2, Unit cell volume estimation

The solid form volume of a molecule is defined as the volume of the unit cell divided
by Z, the number of molecules contained in the unit cell. Accurate prediction of the solid
form volume of an input molecule is critical for generating structures with reasonable unit
cell volumes. To this end, a machine learned model using a Monte Carlo volume estimation
scheme and a topological molecular fingerprint constructed based on atomic neighborhoods
was developed. The model was trained on a dataset obtained from the CSD using the
Conquest program [50]. A chemically diverse dataset was compiled, containing molecules
with 5 to 260 atoms comprising the organic elements, H, C, N, O, all the halogens, F, Cl, Br,
and I, as well as B, P, S, Si, Te, and Se. The accuracy of the machine learned model is within
the range of polymorph density differences as identified from 2,173 unique, homomolecular
polymorph pairs from the CSD.

2.2.1. Dataset construction

The dataset used for training the volume estimation model was obtained from the CSD
using the Conquest program [50]. The search was performed over entries of the 2017 version
of the CSD for structures of homomolecular organic crystals, characterized at room temper-
ature, under standard pressure, and containing the text phrase ‘polymorph’. As described
elsewhere [51-53], all polymorphic compounds in the CSD are flagged with the tag ‘poly-
morph’. All duplicate structures were identified using the COMPACK program [54] and
removed. This yielded 3,768 individual entries in the dataset and 2,173 unique polymorph
pairs, which is similar in size to previous statistical studies of homomolecular polymorphs
52, 53].

The expected variance of the percent difference in the solid form volume of a molecule
due to polymorphism was calculated using this dataset. All unique pairs of polymorphs
were identified and the percent difference between each polymorph density was calculated.
The percent difference of densities is equivalent to that of the solid form molecular volume
because the molecular weight remains constant for these systems. The distribution of percent
differences is plotted in Figure 2. The distribution has a standard deviation of 2.95% with
respect to the solid form volume of the molecule, consistent with numerous previous reports
of molecular crystal density estimation [55-58]. This indicates that polymorphs which can

7



exist under the same temperature and pressure conditions could posses significant volume
differences owing to the complex nature of the relatively weak intermolecular interactions
that govern the lattice energy of homomolecular crystals. Thus, the distribution presented
in Figure 2 places a lower bound on the expected accuracy of estimated solid form molecular
volumes.
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Figure 2: Histogram of the percent difference of polymorph density for 2,173 unique pairs of polymorphs
in a dataset obtained from the CSD. The standard deviation of the distribution is displayed in the top left
corner.

2.2.2. Monte Carlo volume estimation

Volume estimation is performed by placing a sphere with a van der Waals (vdW) radius
[59] at the position of each atom in the molecule [60, 61]. A Monte Carlo method is then used
evaluate the volume occupied by the spheres. First, a three-dimensional box encompassing
the molecule is defined. Points within the box are sampled randomly and determined if
they fall within at least one of the atomic vdW spheres. The ratio between the number of
sampled points and the number of points found within a sphere multiplied by the volume
of the three-dimensional box is the estimated volume of the molecule. The Monte Carlo
volume estimation is deemed to be converged when the estimated volume changes by less
than 1073A? after 10° new points are sampled.

The ratio between the experimental molecular solid form volume and the Monte Carlo
volume estimate for the polymorph dataset was found to be 1.47, indicating that the Monte
Carlo method systematically underestimates the true solid form volume. Using this linear
relationship to predict the solid form volume of the molecule achieves a standard deviation
of 4.72% error with respect to the dataset (Figure 3). To improve the accuracy of the volume
estimation model, specific information about the chemical environment of the atoms in the
molecule must be included. To this end, a molecular topological fragment representation
has been developed.



2.2.3. Molecular topological fragment model

We present a topological molecular fingerprint representation for predicting solid form
molecular volume within the accuracy of polymorph density differences. The representation
is based on molecular fragments determined through analysis of the CSD dataset. The
fact that the fragments are not predefined enables an unbiased choice of fragments such
that they can represent any structural class. The complexity of the model increases with
the size and chemical diversity of the dataset making this representation amenable to large
datasets as well as datasets comprising a restricted chemical space. Moreover, representation
is invariant to permutations of the atom indexing. The molecular topological fragment
representation can be used to predict any molecular property of interest with linear and non-
linear regression or classification models and can also be used to compute chemical similarity
between molecules using metrics such as the Tanimoto coefficient [62]. The Genarris 2.0
source code includes a model construction Python class, enabling users to quickly build
topological fingerprints for a training dataset, regularize the model, evaluate the accuracy
on a target dataset, and output graphs of predicted values versus target values to asses the
performance of the model.

The construction of each molecule’s topological fragment representation begins by gen-
erating a string representation for every atom in the molecule. The string captures each
atom’s local environment and is built as follows: First, a graph is constructed with nodes
and edges that correspond to the nuclei and bonds of the molecule, respectively. Second,
for each atom, the bonds to the nearest neighbors are transformed into a string sorted first
by the elements of the terminal nuclei, in alphabetical order, then by the atom itself if it is
not terminal, and lastly by the elements of the other nuclei the atom is bonded to, which
are also sorted in alphabetical order. This string representation is unique for each distinct
atomic environment and is generated and stored for each atom in a given molecule.

In order to train a machine learned volume estimation model, every molecule in the
dataset must have a vector representation of the same length. This requirement was sat-
isfied by first finding all unique atomic environments across the entire dataset and then
constructing their string representation using the above-described procedure. These strings
were then sorted in alphabetical order and used to index a vector representation of each
molecule. The value at each index of the vector was equal to the number of times the
fragment was present in a given molecule. This representation also ensured that the sum of
all elements in the vector was equal to the number of atoms in the molecule. By following
the described procedure, a unique vector representation for each distinct molecule in the
dataset was constructed. Examples of vector representations of glycine and benzene are
shown in Table 1. The representation described here is similar to other fragment based
representations used in chemical informatics [63, 64].

Table 1: Example of vector representations constructed for a dataset containing benzene and glycine using
the molecular topological fragment model.

Fragment HC HCCC HHCCN HHHNC HN OC O0OO0CC
Benzene 6 6 0 0 0 0 0
Glycine 2 0 1 1 3 2 1




To construct a predictive model for solid form molecular volumes, the volume predicted
by the Monte Carlo method was concatenated to the topological fragment representation
vector of each molecule. The coefficients for a linear model were then calculated using
Bayesian ridge regression as implemented in scikit-learn [65]. The regularization parameter
was optimized using a grid search method and five-fold cross validation. The number of
features contained in the model was constrained by removing features that did not occur
at least thirty times in the dataset. Thirty was identified as the optimal number using a
five-fold cross validation scheme. This left 64 unique molecular fragments in the model.

The distribution of errors obtained using the topological fragment model is displayed in
Figure 3. It is shown that the fragment based model significantly reduces the error in the
predicted solid state molecular volumes compared to the Monte Carlo volume estimation.
Furthermore, the fragment based model achieves an error of similar magnitude to the volume
differences between polymorphs found in the CSD. Thus, the topological fragment model
developed here achieves an accuracy within the error one could expect from polymorph
density differences.
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Figure 3: Percent error of the predicted solid form volume for the described dataset from the CSD for a
linear model using Monte Carlo volumes and a linear model using Monte Carlo volumes in green and the
topological fragment representation of the molecules in orange.

2.3. Structure generation

The generation process begins by identifying all space groups compatible with the number
of molecules in the unit cell (Z). Space groups are considered compatible if they have Z
molecules in the conventional cell unit cell and no more than one molecule in the asymmetric
unit. Genarris 2.0 detects compatible space groups automatically. If the multiplicity of
the general position of a space group equals Z, it is deemed compatible regardless of the
symmetry of the molecule. If the multiplicity of a special position of a space group equals Z
and the molecule has sufficient symmetry to occupy it (within a given numerical tolerance),
then the space group is considered compatible. Once the compatible space groups are found,
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Genarris 2.0 attempts generation of crystal structures sequentially, starting from the lowest
space group number. We note that compatibility does not guarantee successful structure
generation in a given space group because generated structures are subjected to additional
constraints on the unit cell volume and intermolecular distances, as explained below.

A random volume is drawn from a Gaussian distribution whose mean and standard
deviation are the predicted volume and three times the prediction error of our volume
estimation method (see Sec. 2.2). The volume is redrawn after a successful generation or
after a user-specified number of failed attempts. Subsequently, using this volume, a unit
cell of the desired lattice system is constructed randomly as shown in Figure 4. If the
attempted position is a general Wyckoff position, then the molecule’s orientation is sampled
randomly and placed randomly inside the unit cell. The space group symmetry operations
are then applied to generate the remaining molecules in the unit cell. Special positions, with
the exception of inversion centers, require alignment of the molecule and their treatment is
described in Sec. 2.3.1. The attempted structures that pass the intermolecular distance
checks, as described in Sec. 2.4, are added to the raw pool. If Genarris is unable to generate
a structure within the maximum attempt limit specified by the user, then it proceeds to the
next space group.

2.3.1. Generation in special positions of space groups

Special Wyckoff positions are left invariant under at least one symmetry operation of
the space group in addition to the identity operation. These symmetry operations define
the site symmetry of the special position. For each space group, the International Table of
Crystallography [66] lists the special positions whose multiplicity is lower than that of the
general position. Only molecules that satisfy the site symmetry of the special position can
occupy it. Most molecules do not have higher order symmetries, therefore molecular crystals
with molecules occupying special positions are infrequent. According to an analysis of the
CSD [39], in 70.1% of the molecular crystals, molecules occupy general positions, and in
the remaining structures molecules occupy special positions. Among the special positions,
two-fold rotation (2), mirror planes (m), and inversion centers (1) are the most frequent.

Genarris 2.0 generates molecular crystals with molecules on special positions by checking
all possible orientations of the molecule with respect to the symmetry directions of the crystal
system [66], as shown in the flowchart in Figure 4. At the start of generation, the program
finds all possible molecular axes that may be associated with a symmetry element. For this
purpose, first the center of mass of the molecule is shifted to the origin. Then, all atoms
of the same element that are farthest from the center of mass are selected. The possible
symmetry elements of the molecule would map any of these atoms onto itself or onto another.
The axes corresponding to these symmetry elements are obtained by calculating the averages
and cross products of the position vectors of the selected atoms. A list of potential molecular
axes is constructed. To keep the length of the list minimal, parallel vectors are deleted. Once
the potential molecular axes are identified, the code proceeds to check the compatibility of
molecule placement at a special position with the specified number of molecules in a unit cell.
The molecule’s center of mass is placed in a special position, such that one of the molecular
axes is oriented along one of the symmetry directions of the crystal system. Then, the
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Figure 4: Flowchart of crystal structure generation in Genarris 2.0. Molecules are placed in general Wyck-
off positions with a random orientation. In contrast, special positions require specific orientations of the
molecule to be compatible with the site symmetry.

symmetry operations of the space group are applied. If the number of molecules that coalesce
into one molecule is equal to the order of the site, the special Wyckoff position is regarded
as compatible. If not, different molecular axes and symmetry directions are considered. All
combinations of molecular symmetry axes and lattice symmetry directions are examined and
compatible ones are stored for subsequent generation attempts. Once a molecule is placed
in a compatible special position, its geometry is slightly adjusted (within a user-defined
tolerance) by averaging over the atomic positions of all the overlapping molecules occupying
the same site. Depending on the site symmetry of the special position, the allowed degrees
of freedom are randomized. For example, a molecule placed on an inversion center can be
freely rotated if the molecule’s inversion center coincides with the inversion center of the
space group. A molecule with a 2-fold axis of rotation can placed at a suitable Wyckoff
position provided this axis coincides with the 2-fold site symmetry axis. The molecule is
free to rotate about this axis because the rotated molecule still satisfies the site symmetry
of the Wyckoff position. These freedoms of rotation are randomized to promote diversity
within special positions.
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2.4. Structure checks

Attempted structures are checked to avoid unphysically close intermolecular contacts.
Checking the distance between every atom of a molecule and every atom of all neighboring
molecules, including its own periodic replicas, has a scaling of O(N?), where N is the number
of atoms in the unit cell. This is found to be the bottleneck of structure generation. To
improve the efficiency, Genarris 2.0 performs a series of three hierarchical structure checks.
Failed structures are discarded at each stage, such that fewer structures undergo the more
rigorous and computationally expensive checks.

The threshold for allowed close contacts between two atoms is called the cutoff distance
and is defined based on a specific radius fraction, s,, of the sum of atomic van der Waals radii
[34]. The crystal structure is deemed unphysical and rejected if the distance, d, between two
atoms belonging to different molecules is such that

d < s.(ra+rp) (1)

where r4 and rp are the van der Waals radii of atom A and atom B, respectively. This
ensures the quality of the generated structures. The default value of s, is 0.85. Based on
statistical analysis of structures extracted from the CSD, this is a reasonable setting for all
but the strong hydrogen bonds. For these cases, special settings have been implemented in
Genarris 2.0, as described in Sec. 2.4.4. For this value of s, and the target unit cell volume
determined as described in Sec. 2.2, random generation of crystal structures may require a
large number of attempts (a few thousand to millions) before it passes all three stages of
structure checks and is accepted into the pool. Therefore, the new hierarchical structure
check procedure is a significant efficiency improvement in Genarris 2.0. The details of each
stage are explained below.

2.4.1. Stage I: Fast screening without periodic boundary conditions

For preliminary screening, periodic boundary conditions are completely ignored and only
intermolecular distances in the unit cell are evaluated. Because distances are computed using
the Euclidean norm, this stage is the fastest. If the centers of mass of a pair of molecules
in a cell are much farther than twice the molecule length, defined as the maximum distance
between two atoms of a molecule, then those pairs are ignored as these molecules cannot
overlap. We find that most of the unphysical structures generated are rejected at this stage.
The structures that pass this screening proceed to the second stage of structure checks.

2.4.2. Stage II: Distance checks with periodic replicas

In this stage, the distances of a molecule from other molecules in the unit cell as well as
its own periodic images are checked against the cutoff distance. An approximate minimum
image convention is implemented for non-orthogonal cells. To accelerate the distance checks,
non-orthogonal cells undergo a lattice reduction. Let a = [a,,0,0], b = [b,,b,,0], and ¢ =
[cz, ¢y, ¢;] be the lattice vectors in a Cartesian coordinate system. It is possible to choose a
less oblique lattice which satisfies: a,, by, c, > 0; |b|, |cx| < a,/2; and |c,| < b, /2.

The Stage II algorithm is illustrated in Figure 5. First, the atom positions are expressed
in fractional coordinates. Then, the distance between two atoms is computed in fractional
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Figure 5: A two dimensional representation of Stage II approximate distance evaluation under periodic
boundary conditions. a) An oblique lattice in Cartesian coordinates. The star denotes the point whose
distance to the nearest lattice point we need to find. b) Once the lattice is converted from real space into
the fractional basis, it is easy to find the box that bounds the point. c¢) The nearest lattice point is likely to
be one of the real space points that map to the green points.

space and translated to the “origin cube”, spanned by the vectors [1,0, 0], [0, 1,0], [0, 0, 1].
Finally, the minimum Cartesian distance of this point from the corners of the origin cube is
calculated. For orthogonal cells, the closest point in fractional space necessarily corresponds
to the closest point in real Cartesian space. However, for an oblique triclinic lattice a
different lattice point may be closer to this point. Therefore, if a non-orthogonal structure
passes Stage 11, it proceeds to Stage III for a more rigorous check.

2.4.8. Stage III: Rigorous checks for non-orthogonal cells

Complete structure checks require exact evaluation of distances under minimum image
convention. For non-orthogonal cells, this problem is a three-dimensional case of the well-
studied closest vector problem [67]. If the lattice is translated such that one of the two
points coincides with the origin, we need to find the distance d to the nearest lattice point
of the position vector x of the second point. That is,

d* = min |L"n — x|?, (2)

where n = [ng, n,, n.]; ng,ny,n. € Z3 and L = [a,b,c]”. This problem is encountered in
communication theory, where the received signal over a communication line is decoded by
finding the nearest lattice point [68]. One popular approach is the Finck and Pohst sphere
decoder [69, 70] method, where the closest lattice point is found using a tree search and the
depth of the tree corresponds to the dimension of the problem. Genarris 2.0 uses a version
of the sphere decoder to compute the exact distance under minimum image convention for
non-orthogonal cells. The distance estimate obtained from Stage II is used as the initial
sphere radius for the sphere decoder algorithm. This step is the slowest, but only few non-
orthogonal structures that pass Stage I and Stage II reach Stage III. Hence, the overall
efficiency is not compromised.

2.4.4. Intermolecular cutoff distances

Choosing appropriate intermolecular cutoff distances is critical for generating physically
reasonable structures. In Genarris 2.0, cutoff distances are a function of the elements par-
ticipating in the intermolecular interaction. For vdW interactions, cutoff distances are im-
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plemented using an s, of 0.85. An s, of 0.85 was determined to be a physically reasonable
value based on our statistical analysis of intermolecular contacts in a data extracted from
CSD and presented in Figure 6 as well as an earlier analysis [71]. However, for hydrogen
bonds, the intermolecular distance may be considerably shorter than the s, value used for
weaker intermolecular interactions [71, 72]. Hence, new settings for the allowed interatomic
distances for hydrogen bonds have been implemented in Genarris 2.0.

Hydrogen bonds among the most important intermolecular interactions in both naturally
occurring and artificially engineered molecular crystals [72]. Intermolecular hydrogen bonds
are denoted as XH---Y where X is the donor, which is covalently bonded to the hydrogen,
and Y is the acceptor, which belongs to a different molecule than X. The cutoff distance
between H and Y implemented in Genarris 2.0 depends on the identity of atoms X and
Y. However, these cutoff distances are applicable to any functional group pair that would
participate in an intermolecular hydrogen bond for homomolecular crystals.
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Table 2: New cutoff distances implemented in Genarris for intermolecular hydrogen bonds. The cutoff
distances are compared to the sum of the van der Waals radii for the intermolecular interactions using the
specific radius (s,) fraction defined in Sec. 2.4.

Contact Type | Cutoff Distance (A%) | Sum of van der | s,
Waals radii (A?)

OH---O 1.5 2.72 0.55
OH---N 1.6 2.75 0.58
NH---O 1.6 2.72 0.59
NH.--N 1.7 2.75 0.62

Table 2 displays the newly implemented contact distances for hydrogen bonds, in which
oxygen or nitrogen are the donor and acceptor. These values were determined based on the
existing literature [73], as well as statistical searches of the CSD using the IsoStar program
[74]. The IsoStar program provides distributions of nonbonded, intermolecular distances
between pairs of functional groups. The central and contact functional groups were chosen
across the available pK, range [75] for each type of hydrogen bond in order to develop
general three body cutoff distances for all relevant hydrogen bonds. The results of the
[soStar searches are shown in Figure 6. For hydrogen bonds involving oxygen and nitrogen
as the donor and acceptor, the sum of the vdW radii multiplied by the default s, value of 0.85
(red dashed lines) exceeds a large number of non-bonded interaction distances, illustrated
by the left-most peak of the bimodal distributions. Using the default s, value, structures
with strong hydrogen bonds, such as glycine, would be deemed unphysical and discarded.
With the new settings listed in Table 2, they would be considered physically reasonable. For
hydrogen bonds involving halogens [76], or those with carbon as the donor atom [77], the
default s, value of 0.85 is still appropriate.

2.5. Clustering and down-selection

Once a “raw” pool of physically reasonable, random structures is generated, Genarris
2.0 offers the option of performing a user-defined sequence of clustering, energy evaluation,
and down selection steps in order to form a smaller curated pool of structures. Here, we use
the Robust workflow, as shown in Figure 7. The affinity propagation (AP) algorithm [48§]
is used here for unsupervised clustering because it has been found to perform better than a
popular alternative, k-means clustering. [34]. Briefly, the AP algorithm works by iteratively
letting each structure update its belief about which structure is its representative example
(exemplar) based on its structural similarity (affinity) which is derived from a feature vector
describing the structure. The AP algorithm converges on the autonomously determined
number of exemplars that accumulate the most “votes” from their cluster constituents. The
preference hyperparameter value is proportional to each structure’s belief that it is an exem-
plar, and thus increasing preference generally increases the number of exemplars produced.
The preference hyperparameter of AP is automatically tuned by Genarris 2.0 to produce
the desired number of clusters within a user-defined tolerance, as described in Sec. 2.1.
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Figure 7: The clustering and down-selection steps of the “Robust” workflow of Genarris 2.0.

For the purpose of clustering via AP, a feature vector describing the molecular packing
is calculated for each structure. The relative coordinate descriptor (RCD) [34] and radial
symmetry functions (RSF) [49, 78, 79] descriptor are implemented in Genarris 2.0. The
default number of clusters for this step is 10% of the the number of structures in the raw
pool. For the exemplar of each cluster, a single point energy (SPE) evaluation is performed
using FHI-aims with the settings described in Sec. 3 below. Then, AP clustering is performed
again with the target number of clusters set to 10% of the reduced pool and the lowest energy
structure is selected out of each cluster. Finally, the remaining structures are fully relaxed
with FHI-aims as described in Sec. 3. This constitutes the final pool of structures output
by Genarris 2.0 using the Robust workflow. The Robust workflow differs from the Diverse
workflow of Genarris 1.0 [34] in that it first down-samples based on diversity considerations,
which enables evaluating self-consistent single-point DFT energies for a smaller number of
structures rather than using the Harris approximation.

3. DFT settings

Genarris 2.0 interfaces with the FHI-aims electronic structure code [46] for geometry
relaxation of the single molecule and of the structures in the final pool, as well as for single
point energy (SPE) evaluations within the Robust workflow used here. All invocations of
FHI-aims in this work used the Perdew-Burke-Ernzerhof (PBE) generalized gradient ap-
proximation [80] and the Tkatchenko-Scheffler (T'S) pairwise dispersion correction [81] with
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lower-level numerical settings, which correspond to the light/tierl settings of FHI-aims.
SPE calculations for crystals were done self-consistently with a 1 x 1 x 1 k-point grid for
fast screening. Geometry relaxations of the final pool were performed using a 3 x 3 x 3
k-point grid. Additionally, no constraints were placed on the lattice. Relaxations for the
high-pressure Z = 2 polymorph of benzene were performed with the pressure set to 25 kbar
to reflect the experimental conditions.

4. Case studies

4.1. Benzene

With the chemical formula of CiHg, benzene is one of the simplest aromatic hydrocar-
bons. It is a highly symmetric molecule with a 6/mmm point group which allows special
positions with 20 different site symmetries. Two known polymorphs of benzene are [82]: a)
Z = 4 and space group Pbca (61) under ambient pressure and b) Z = 2 and space group
P21 /¢ (14) under high pressure. In both structures, benzene occupies a special position with
an inversion center (1).

Column I in Figures 8 and 9 shows the volume histograms obtained at each step of the
Robust workflow for benzene with Z = 2 and Z = 4, respectively, using RSF-based clus-
tering. The results obtained using RCD-based clustering are provided in the Supplemental
Information. The volumes of the experimental structures, 20643 and 49043, respectively,
are indicated by solid red lines. The volumes of the experimental structures relaxed with
PBE+TS and lower-level numerical settings, 180 A3 and 491 A3, respectively, are indicated
by solid green lines. The volumes predicted by our machine learned model are indicated
by dashed orange lines. For both Z = 2 and Z = 4, the predicted volumes are closer to
the unrelaxed experimental volumes because the volume estimation model was trained on
unrelaxed structures from the CSD (see Sec. 2.2). Our prediction for Z = 4 is closer to
the experimental volume than for Z = 2 because the latter forms under pressure of 25 kbar
whereas the volume estimation model was trained on structures obtained under ambient
pressure. Raw pools of about 6000 structures were generated for both Z = 2 and Z = 4
with predicted volumes of 243 A3 and 487 A*, and volume standard deviations of 18 A3
and 37 A3, respectively. Figure 8 shows noteworthy density about the experimental volume
throughout the workflow progression. The resulting volume distributions are approximately
Gaussian until the relaxation step. Panels (IIlc) and (I1Id) of Figure 8 show that for Z = 2,
relaxation under pressure resulted in significant volume contraction, whereas Panels (IIlc)
and (IIId) of Figure 9 show that some Z = 4 structures expanded beyond the initial volume
range.

Column II in Figures 8 and 9 shows the space group distributions obtained at each step
of the Robust workflow using RSF-based clustering for benzene with Z = 2 and Z = 4,
respectively. The results obtained using RCD-based clustering are provided in the Supple-
mental Information. Space groups with general Wyckoff positions are colored in blue and
space groups with special Wyckoff positions are colored in orange. Genarris 2.0 attempts
to generate a uniform space group distribution. We find that the generated space group
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Figure 8: (I) Unit cell volume distributions, (II) space group distributions, and (III) lattice parameter
distributions for benzene with Z = 2, obtained at each step of the Robust workflow, using RSF-based
clustering. On the volume histograms, the solid red line denotes the volume of the experimental structure,
observed under pressure of 25 kbar, the solid green line denotes the unit cell volume of the experimental
structure after relaxation under pressure of 25 kbar, and the dashed orange line shows the volume predicted
by our model, as described in Sec.2.2. On the space group distribution histograms, the green arrow points
to the space group of the experimental structure, P2;/c (14). The green cross in panel (I1Id) denotes the
(relaxed) experimental structure, which was found in the final pool.
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Figure 9: (I) Unit cell volume distributions, (II) space group distributions, and (IIT) lattice parameter
distributions for benzene with Z = 4, obtained at each step of the Robust workflow, using RSF-based
clustering. On the volume histograms, the solid red line denotes the volume of the experimental structure,
the solid green line denotes the unit cell volume of the experimental structure after relaxation, and the
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distributions are approximately uniform with significant number of structures in the exper-
imental space group for both Z = 2 and Z = 4. Some space groups may be very difficult or
impossible to generate within the given physical constraints. For example, for Z = 4, space
groups like P2/m (10), Pmm?2 (25), and Pmmm (47) which have mirror planes are harder
to generate as molecules that touch the planes overlap with their own mirror image [39].
In contrast, space groups with glide planes and screw axes are easier to generate because
symmetry-equivalent molecules are translated in space. Some structures can have a higher
site symmetry on a special position than we attempted to generate, resulting in overpop-
ulation of some space groups. For example, for Z = 2, space group P6/mmm (191) has
a relatively large occupation as shown in panel (Ib) of Figure 8. Many of these structures
were discarded in the subsequent selection steps.

Column IIT in Figures 8 and 9 shows the lattice parameter distributions obtained at
each step of the Robust workflow, using RSF-based clustering for benzene with Z = 2 and
7 = 4, respectively. The results obtained using RCD-based clustering are provided in the
Supplemental Information. For the energy-based selection and final relaxation steps, the
color scale corresponds to relative energies with respect to the lowest energy structure in
the final relaxed pool. As shown in Panels (IIlc) and (IIId) of Figures 8 and 9, the range
of relative energies in the relaxed pools for benzene is about 100kJ/mol or 1eV, which is
about six times smaller than the range of energies in the unrelaxed pools. The lattice pa-
rameter distribution of the raw pools resembles the shape of the surface |a||b||c| = constant
(an approximate relation given that benzene is able to assume many lattice types), indicat-
ing approximately uniform sampling of the lattice parameter space. Down-selection based
on energy tends to filter out very elongated structures whose ¢ parameter is significantly
longer than a and b, indicating that these are relatively unstable for benzene. In fact, the
experimental unit cells are not elongated. Panels (Illc) and (I11d) of Figure 8 show that re-
laxation under pressure resulted in a distribution characterized by a few clusters, suggesting
that pressure may have restricted the physically feasible regions. For both Z =2 and Z =4
the experimental structure, indicated by a green X, is found in the final relaxed pools.

4.2. Glycine

Glycine is the simplest proteinogenic amino acid. It is achiral and forms a zwitterion
in the solid state. Under ambient conditions, glycine has three common polymorphs: a)
a-glycine with Z = 4 and space group P2;/n (14), b) [-glycine with Z = 2 and space
group P2, (4), and c) v-glycine with Z = 3 and space group P3; (144)/ P3, (145) [83]. The
structures belonging to the two space groups are enantiomorphic forms of the chiral y-glycine
crystal. Experimentally, it has been found that the relative thermodynamic stability of the
polymorphs at room temperature is v > « > [ with Gibbs free energy difference (AG) of 0.16
kJ/mol between ~v-glycine and a-glycine [84]. At temperatures higher than 440 K, a-glycine
becomes more stable than ~v-glycine. The crystal structure and relative stabilities of the
glycine polymorphs have been studied extensively, using different computational methods
[85-91].

Glycine is known for its ability to form strong intermolecular hydrogen bonds, owing to
which it crystallizes in a relatively dense molecular solid. Column I in Figures 10, 11, and
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Figure 10: (I) Unit cell volume distributions, (II) space group distributions, and (III) lattice parameter
distributions for glycine with Z = 2, obtained at each step of the Robust workflow, using RSF-based
clustering. On the volume histograms, the solid red line denotes the volume of the experimental structure,
the solid green line denotes the unit cell volume of the experimental structure after relaxation, and the
dashed orange line shows the volume predicted by our model, as described in Sec.2.2. On the space group
distribution histograms, the green arrow points to the space group of the experimental structure, P2; (4).
The green cross in panel (IIId) denotes the (relaxed) experimental structure, which was found in the final
pool.
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Figure 11: (I) Unit cell volume distributions, (II) space group distributions, and (III) lattice parameter
distributions for glycine with Z = 3, obtained at each step of the Robust workflow, using RSF-based
clustering. On the volume histograms, the solid red line denotes the volume of the experimental structure,
the solid green line denotes the unit cell volume of the experimental structure after relaxation, and the
dashed orange line shows the volume predicted by our model, as described in Sec.2.2. On the space group
distribution histograms, the green arrow points to the space group of the experimental structure, P3; (144).
The green cross in panel (IIId) denotes the (relaxed) experimental structure, which was found in the final
pool.
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Figure 12: (I) Unit cell volume distributions, (II) space group distributions, and (III) lattice parameter
distributions for glycine with Z = 4, obtained at each step of the Robust workflow, using RSF-based
clustering. On the volume histograms, the solid red line denotes the volume of the experimental structure,
the solid green line denotes the unit cell volume of the experimental structure after relaxation, and the
dashed orange line shows the volume predicted by our model, as described in Sec.2.2. On the space group
distribution histograms, the green arrow points to the space group of the experimental structure, P2;/n
(14). The green cross in panel (I1Id) denotes the (relaxed) experimental structure, which was found in the
final pool.
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12 shows the volume histograms for 7 = 2, 7 = 3, and Z = 4, respectively, at each step of
the Robust workflow, using RSF-based clustering. The results obtained using RCD-based
clustering are provided in the Supplemental Information. The relaxed volumes of 158, 238,
and 312 A3, for Z = 2, Z = 3, and Z = 4, respectively, indicated by solid green lines,
are very close to the experimental volumes of 157, 233, and 310 A3, indicated by solid red
lines. The volumes predicted by our machine learned volume estimation model, indicated
by dashed orange lines, are close to the experimental values for all polymorphs. About
5000 structures with mean unit cell volume and standard deviation of (159, 236,316) A% and
(12,18,24) A3, respectively, were generated for the Z = (2,3,4) polymorphs. The single
molecule geometry for structure generation was extracted from the experimental structure
for each Z. For Z = 2 and Z = 4, the mean of the raw pool volume distribution is larger
than the predicted volume, whereas for Z = 3 the mean is closer to the predicted volume.
This is because the Z = 3 is easier to generate as two out of the three space groups that are
allowed have screw axes. The new settings for hydrogen-bonded systems helped generate
dense structures that are close to the predicted volume. Panels (Ic) and (Id) in Figures 10,
11, and 12 show that energy-based selection and the final relaxation favor structures near
the experimental volume.

Column II in Figures 10, 11, and 12 shows the space group distribution for each step
of the Robust workflow for glycine with Z = 2, Z = 3, and Z = 4, respectively, using
RSF-based clustering. The results obtained using RCD-based clustering are provided in the
Supplemental Information. The raw pools for all cases show almost uniform space group
distribution. For Z = 4, space groups P2/m (10) and Pmm?2 (25) are missing because
they contain mirror planes that are hard to generate [39]. There are a significant number
of structures in the experimental space group in the raw pool and subsequently selected
pools for all cases. Relaxation of the final pool may break existing symmetries or create new
ones as there are no constraints imposed. This resulted in additional space groups with a
different Z or Z'. For example, space group Cmc2; (36) and space group P1 were created
after geometry optimization for glycine with Z = 2, as shown in panels (Ilc) and (IId) of
Figure 10.

Column III in Figures 10, 11, and 12 shows the lattice parameter distributions obtained
at each stage of the Robust workflow for glycine with Z = 2, 3, and 4, respectively, using
RSF-based clustering. The results obtained using RCD-based clustering are provided in the
Supplemental Information. For the energy-based selection and final relaxation steps, the
color scale corresponds to relative energies with respect to the lowest energy structure in
the final relaxed pool. As shown in Panels (IIlc) and (IIId) of Figures 10, 11, and 12, the
range of energy in the relaxed pools for glycine is about 100k.J/mol or 1eV which is an
order of magnitude smaller than the range of energies in the unrelaxed pool. For Z = 2 and
Z = 4, the lattice parameter space is well-sampled and diverse regions are obtained upon
down-selection. For Z = 3, the generated structures are concentrated in distinct regions
of the lattice parameter space because there are only three compatible space groups, all
of which are in the hexagonal crystal family. The experimental structures of «, 3, and
glycine were found in Z =4, Z = 2, and Z = 3 runs, respectively.
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5. Conclusion

In summary, we have presented a new version of the molecular crystal random structure
generator, Genarris, with several new features and demonstrated its application to benzene
and glycine. The new MPI parallelization scheme has made Genarris 2.0 significantly faster
than the previous version, more portable, and able to scale better on high performance
computing architectures. The new machine learning method for volume estimation has been
demonstrated to reliably predict the volumes of the polymorphs of benzene and glycine. The
somewhat larger deviation from the experimental volume for the high-pressure polymorph of
benzene was expected, considering that the model was trained on crystal structures obtained
at ambient pressure.

For all polymorphs of benzene and glycine, the new structure generation function has
successfully generated structures in the target volume range with approximately uniform
space group distributions and has adequately sampled the possible range of lattice param-
eters. The new capability to generate structures with molecules occupying special Wyckoff
positions has proven to be instrumental for benzene. The updated structure check settings
for strong hydrogen bonds have been particularly useful for glycine. Thus, Genarris 2.0 is ex-
pected to deliver a significantly better performance than the previous version for symmetric
molecules and for molecules capable of forming strong hydrogen bonds.

A new Robust workflow has been implemented for clustering and down-selection of the
raw pool of random structures to form a small curated population of low-energy structures
with diverse crystal packing motifs. The affinity propagation clustering algorithm performs
similarly well based on the RSF and RCD descriptors. Although the Robust workflow is
intended for producing an initial population for other structure search algorithms (such as
genetic algorithms), not as a structure prediction method, the experimental structures of
both polymorphs of benzene and of the three forms of glycine were found in the final relaxed
pools.

Genarris 2.0 offers the user full flexibility to design and easily implement new workflows
by sequentially executing a user-defined list of procedures. For example, to generate datasets
for training machine learning models, the user may wish to perform energy evaluations for
a larger number of structures from the raw pool. To perform crystal structure prediction,
the user may wish to fully relax a larger number of structures and to re-rank them with
more accurate methods. Thus, Genarris 2.0 is a useful random structure generator for ho-
momolecular crystals of semi-rigid molecules with no rotatable bonds, which can be applied
to generate initial populations for structure search algorithms or to generate datasets for
machine learning or as a standalone crystal structure prediction method.
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