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Abstract

An accurate yet computationally very efficient and formally well justified approach to calculate
molecular ionization potentials is presented. The first as well as higher ionization potentials are
obtained as the negatives of the Kohn-Sham eigenvalues of the neutral molecule after adjusting
the eigenvalues by a recently [Phys. Rev. B 91, 245120 (2015)] introduced potential adjustor
for exchange-correlation potentials. Technically the method is very simple. Besides a Kohn-
Sham calculation of the neutral molecule only a second Kohn-Sham calculation of the cation is
required. Then the eigenvalue spectrum of the neutral molecule is shifted such that the negative
of the eigenvalue of the highest occupied molecular orbital equals the energy difference of the total
electronic energies of the cation minus the neutral molecule. For the first ionization potential this
simply amounts to a ASCF calculation. The higher ionization potentials, however, then are simply
obtained as the negatives of the correspondig Kohn-Sham eigenvalues. The shift of the Kohn-
Sham eigenvalue spectrum is not just ad-hoc but actually leads to the physically correct energetic
adjustment of the eigenvalue spectrum as it results from emsemble density-fucntional theory. As
examples the ionization potentials of a number of small molecules and of a test set of medium size
organic acceptor molecules are considered with the exchange-correlation potential due to Perdew,
Burke and Ernzerhof (PBE) and the hybrid functional BSLYP. The potential adjusted B3LYP
eigenvalues yield ionization potentials that are in very good agreement with experimental values
and that are of the same accuracy as those of various GW methods, which require substantially
higher computational effort. The potential adjusted PBE eigenvalues result in somewhat less

accurate ionization potential, which, however, are ...



I. INTRODUCTION
II. ENERGETIC ADJUSTMENT OF POTENTIALS

For a start, we consider the Kohn-Sham (KS) formalism for a fix integer electron number
N. For simplicity we consider neutral non-spin-polarized molecules with real-valued KS
orbitals. The electron number N in this case has to be even. The KS equation for the KS

orbitals ¢; and their eigenvalues ¢;[v,] is given by

[(=1/2)V* + 0,(r)] @ir) = &ifvs] gi(r) (1)

with the effective KS potential

_ 5Ts
Uy(r) = o) (2)

given by the functional derivative of the 'noninteracting’ kinetic energy T, i.e., the kinetic
energy of the KS model system of hypothetical non-interacting electrons, with respect to

the electron density.

The bar above v, indicates that the KS potential is defined only up to an additive constant
in the KS formalism with fix integer electron number. This means v, stands not for a single
potential but for a whole set of potentials, all potentials, namely, that can be obtained by
adding an arbitrary constant to one member of the set v5. The fact that the KS potential is
defined only up to an additive constant is a consequence of the fact that changes dp of the

electron density have to integrate to zero

/drap =0 (3)

in order to keep the electron number fix. If we pick one arbitrary member v, out of the set

v then the change 6T of T due to a change dp of the electron density is given by
0T = /dr 0s(r) dp(r)
= /dr [0s(r) + v] dp(r)
— [dr 0,00 50t (4)
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with v denoting an arbitrary constant. The three right hand sides of Eq. (4) equal each
other due to Eq. (3), which, of course, can be multiplied by any constant v. Eq. (3)
demonstrates that each member of the set of potentials v, equally well acts as functional
derivative of the kinetic energy T, with respect to the electron density, or, the other way
around, the functional derivative of T is to be identified with the whole set of potentials ;.
It is important to realize that this is a simple mathematical consequence of the fact that the
electron number is fix, in the KS formalism with fix integer electron number, the undefined
additive constant in the KS potential has nothing to do with a Lagrange multiplier or a

chemical potential in this case.

The KS potential is given as sum

vs(r) = v(r) + vn(r) + Upe(r) ()

of the external potential v, usually the potential of the nuclei, the Hartree potential

oU

vp(r) = 3o’ (6)
and the exchange-correlation potential

— 5EZCC

UIC(r> - 5p(r) (7>

with the Coulomb energy U and the exchange-correlation energy F,.. The Hartree and the
exchange-correlation potential are again undefined up to an additive constant in the KS
formalism with fix integer electron number for the same reason as the effective KS potential.
That is vy and v,. represent sets of potentials obtained by adding arbitrary constants to

one member of the set.

In order to determine the absolute energetic positions of the potentials v,, vy, and v, we
have to turn to the ensemble KS formalism. A straightforward definition for the Coulomb
energy in the ensemble KS formalism is U[p] = [drdr’ p(r)p(r’)/|r — r'| which can be eval-
uated for any electron density including those integrating to noninteger electron numbers.
The Hartree potential in the ensemble KS formalism then is given by the classical electro-
static potential vy(r) = [dr’ p(r')/|r — r'| of the electron density. In the ensemble KS

formalism, the Hartree potential vy (r) is completely defined without the freedom of adding
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an abitray constant. The above Hartree potential, of course, is the one usually used in

practice.

Determining the exchange-correlation potential in the ensemble KS formalism is more
difficult. In the ensemble KS formalism the exchange-correlation potential is known to have a
derivative discontinuity at integer electron numbers. Because typically exchange-correlation
potentials are required at integer electron numbers, two limits have to be considered for the
exchange-correlation potential, (i) coming from the electron deficiency side corresponding

to the limit

oF.
N— T xc
ch (I‘) - qgr]{f{ (5p<I‘)

(8)

and (ii) coming from the electron surplus side corresponding to the limit

OF
N (r) = lim =

=Ny 0p(r)

(9)

Here lirjlvl shall be the limit of the noninteger number ¢ of electrons approaching the in-
qg—N_

teger number N from below while lirj{} denotes the limit of ¢ approaching N from above.
q— N4

There are three possibilities two determine the potentials v~ and v *. All three yield the

same result for the unknown exact exchange-correlation functional but have a very different

outcome for approximate functionals:

(1) The potentials v~ and v " are obtained by taking the functional derivatives (8) and
(9) of the exchange-correlation energy of the ensemble KS formalism. This is the obvious
route to the potentials v~ and v following their definitions. It requires, however, reli-
able approximations for the exchange-correlation functional of the ensemble KS formalism.
Exchange-correlation functionals within the local density approximation (LDA) as well as
the generalized gradient approximation (GGA) can be evaluated for any electron density in-
cluding those integrating to noninteger electron numbers. Therefore, in practice, LDA and
GGA functionals usually are considered as approximate ensemble exchange-correlation func-
tionals. This approximation, however, is an unphysical one because the functional derivative
of LDA and GGA energies with respect to the electron density does not exhibit an integer dis-
continuity. This means the common practice to calculate LDA or GGA exchange-correlation

potentials is fundamentally flawed and therefore questionable.

(2) In case of finite nonperiodic electronic systems the potential vY.” can be obtained

5



from any member of the set of exchange-correlation potentials v,. of the KS formalism with
fix integer electron number by simply adding a constant such that the potential vanishes
at infinity. The justification is that the exact potential vY.~ vanishes far away from a finite
nonperiodic electronic system. For LDA and GGA functionals this approach has the same
outcome as approach (i) discussed above. However, apart from the fact that only v~
but not v is accessible in this way, this approach is not well-suited for LDA of GGA
functionals. The reason is simple that LDA and GGA potentials decay exponentially with
the electron density for large distances from the center of charge which is fundamentally
wrong. The true exchange-correlation potential decays as 1/r with r being the distance
from the center of charge. Relying on a qualitatively wrong asymptotic when adjsting the

energy of a potential obviously is not advisable.

(3) Following Ref. [1], the potentials v~ and v)" can be determined by potential

xc

adjustors from any member of the set of exchange-correlation potentials v, according to

Ufc\cf:_ (r) = Vpe(r) + Ai\zf:_ [Vzc]

(10)
with the potential adjustor
AN 04 = By — EY ™" — enomolv + ve + Uae] - (11)
and according to
Utae(r) = Tae(r) + AL [Us] (12)
with the potential adjustor
ANF0,] = BN — EY — ervmolv + v + U] . (13)

In Egs. (11) and (13), EY, EY~', and E)'*" are the electronic ground state energies of the
N-, the (N — 1)—, and the (N + 1)-electron system. This means, in order to calculate the
potential adjustor, self-consistent KS calculations of the cation and the anion have to be
carried out. By egomolv+ vy + U] and epppolv + vy + .| the eigenvalues of the highest

occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO)
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of the neutral molecule are denoted. Any member of the set v,. of exchange-correlation
potentials can be chosen and yields the same adjusted potentials v~ and v*. The only
requirement is consistency. That is, when calculating the eigenvalues ex[v + vy + U] and
EN+1[V+vH + Uye| that member of the set v, has to be used which is then adjusted via Egs.
(10) and (12). In the LDA or GGA case the simplest choice for a member of the set v, is
the one resulting from the usual straightforward functional derivative of the LDA or GGA
energy functional. In constrast to approaches (1) and (2) this third approach to calculate

v~ and vt is well-suited for LDA or GGA functionals for several reasons. Firstly, for

any finite system different potentials v~ and v).;" are obtained, that is, the LDA and GGA
exchange-correlation potentials exhibit a derivative discontinuity as they should they are if
constructed according to approach (3). Secondly, it is known that, for molecules, energy
differences E} — EY™' and Ej)'*' — EY, which correspond to the negatives of the first
ionization potential and the first electron affinity, can be calculated with good accuracy
by ASCF (A-Self-Consistent-Field) calculations using LDA or GGA functionals. A third
advantage of approach (3), which is beneficial not only for LDA and GGA functionals but
generally, is that vY.~ and v are obtained exclusively from quantities that are accessible
within the KS formalism of fix integer electron number, despite the fact that the potentials

v~ and v are defined in the ensemble KS formalism. Moreover, keep in mind that Egs.

xc
(10) — (13) are exact equations. Approximations only are introduced by the approximate

functionals they are applied to.

III. ENERGETIC ADJUSTMENT OF EIGENVALUE SPECTRA

If the exchange-correlation potential is adjusted then this leads to a corresponding ad-

justment of the KS eigenvalues. The KS equation (1) turns into

[(=1/2)V? + vp(r) + vp(r) + 5e(r) + AN [Us]] @i(r) = [(—1/2)V? + 0,(r) + AN [0.]] @i(r)

= [ei[vs] + AN [0.]] @ilr)

= [eilv + v + Uy + AN [0]] @i(T)

=& pi(r)

(14)



if the exchange-correlation potential is adjusted with the potential adjustor AN~ [v,.] of Eq.

(11). The adjusted KS eigenvalues 5fv ~ are given by

eNT =eifv+vg 4 Uu] + AN U] = &ifvs] + AN [0k] - (15)
The adjusted eigenvalues £~ are independent of the choice which member of the set of
potentials 7, is used in Eq. (15), i.e., Eq. (15) yields the same adjusted eigenvalues £~
for all members of the set 7,.. That means the adjusted eigenvalues £~ are uniquely
defined. The reason is that the addition of a constant to a potential of the set v,. leads to
a corresponding change in the opposite direction in the potential adjustor AN~ [v,.], see Eq.
(11), and therefore in summary has no effect in Eq. (15).
For the HOMO eigenvalue we obtain

eNomo = €romolv + v + Uy + AN [0,]
= epomolv + vy + Uge] + Eév — Eév_l — egomolv + vy + Uyl

— EN — BN (16)

with Eq. (11) for AY~[9,.]. This means the HOMO eigenvalue equals the negative of first
ionization energy given by EJ — EN™' as it should. In the case of LDA or GGA func-
tionals the negative of the adjusted HOMO eigenvalue, equals the first ionization potential
calculated by a ASCF calculation with the LDA or GGA functional. This means Eq. (16)
holds true not only for the exact functional but also for LDA or GGA functionals provided
the exchange-correlation potentials and subsequently the KS eigenvalues are correctly ad-
justed energetically. Technically the adjustment of the KS eigenvalue spectra can be simply
achieved by calculating the first ionization potential via a ASCF calculation and by then
shifting the original eigenvalue spectrum such that the negative of the HOMO eigenvlaue
equals the first ionization potential. As already mentioned, the crucial point is that this
is not just an ad-hoc shift but it is the formally correct adjustment of the KS eigenvalue
spectrum for the case of approaching the integer electron number N from below which is the
case relevant for ionization. For the first ionization potential the approach to determine ion-
ization energies from energetically adjusted KS eigenvalue is tantamount to the well-known
ASCF approach. However, having at hand an eigenvalue spectrum that is properly adjusted

energetically, it is promising to approximate higher ionization potentials from the negatives



of the energetically lower occupied KS eigenvalues. This is what is proposed in this work
and what is shown to work extremly well in the following section.
If the exchange-correlation potential is adjusted with the potential adjustor ANF[o,.]

from Eq. (13) then the KS equation (1) turns into

[(=1/2)V? + vi(r) + vi(r) + Gue(r) + AN [oe]] @ilr) = [(=1/2)V? + 04(r) + AN [0a]] ¢i(r)
= [ai[vs] + AL [0:]] @ilr)
= [eilv 4+ vg + Uoc) + AL [Uac]] @i(r)
= " pilr) (17)

The adjusted KS eigenvalues V" then are given by
e =eilvton + 0 + ALt [Tad] = &ilts] + A [T (18)

Eq. (18) again yields the same adjusted eigenvalues ¥ for all members of the set ©,.. That
means the adjusted eigenvalues M, like the eigenvalues £, are uniquely defined.

For the LUMO eigenvalue we obtain

Ertmo = ELumolv + vg + Uae] + AL [Uac]
= erumolv +vm + U + EYT — EY — epumolv + vm + Uae

— N EY (19)

with Eq. (13) for AN *[v,.]. This means the LUMO eigenvalue equals the negative of first
electron affinity given by Eév 1 BV as it should. In the case of LDA or GGA functionals
the negative of the adjusted LUMO eigenvalue, equals the first electron affinity calculated
by a ASCF calculation with the LDA or GGA functional. Analogously to the case of
ionization, this means Eq. (19) holds true not only for the exact functional but also for
LDA or GGA functionals provided the exchange-correlation potentials and subsequently

the KS eigenvalues are correctly adjusted energetically. It suggests itself to approximate

higher electron affinities by the negatives of energetically higher KS eigenvalues 51]-\[ *

N

In summary, two KS eigenvalues spectra containing the eigenvalues ;' ~ and sf»v * respec-

tively are associated with an electronic system. The first spectrum containing the eigenvalues

N

g, is related to ionization, the second one containing the eigenvalues 5ZN * is related to the
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attachment of additional electrons. From the first spectrum the eigenvalues of the occupied
orbitals have physical meaning, from the second spectrum the eigenvalues of the unoccupied
orbitals are physically meaningful. By combining the eigenvalues of the occupied orbitals of
the first spectrum with the eigenvalues of the unoccupied orbitals of the second spectrum
an approximate quasiparticle spectrum ist obtained. The HOMO and LUMO eigenvalues
of this combined spectrum are exact quasiparticle energies, that is they yield the exact first
ionization potential and electron affinity. All other eigenvalues of this combined spectrum
can be interpreted as approximate quasiparticle energies. The fact that two KS eigenvalue
spectra are associated with an electronic system that need to be combined for an approxi-
mate quasiparticle spectrum follows from the basic ensemble KS formalism, more precisely
from the presence of the derivative discontinuity of the exchange-correlation potential. By
correctly adjusting energetically LDA and GGA exchange-correlation potentials also these
approximate functionals exhibit a derivative discontinuity for finite systems and therefore
lead to two KS eigenvalue spectra that can be combined to an approximate quasiparticle

spectrum.

IV. TONIZATION POTENTIALS OF SMALL AND MEDIUM SIZE MOLECULES

V. CONCLUSIONS
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