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Abstract

An accurate yet computationally very efficient and formally well justified approach to calculate

molecular ionization potentials is presented. The first as well as higher ionization potentials are

obtained as the negatives of the Kohn-Sham eigenvalues of the neutral molecule after adjusting

the eigenvalues by a recently [Phys. Rev. B 91, 245120 (2015)] introduced potential adjustor

for exchange-correlation potentials. Technically the method is very simple. Besides a Kohn-

Sham calculation of the neutral molecule only a second Kohn-Sham calculation of the cation is

required. Then the eigenvalue spectrum of the neutral molecule is shifted such that the negative

of the eigenvalue of the highest occupied molecular orbital equals the energy difference of the total

electronic energies of the cation minus the neutral molecule. For the first ionization potential this

simply amounts to a ∆SCF calculation. The higher ionization potentials, however, then are simply

obtained as the negatives of the correspondig Kohn-Sham eigenvalues. The shift of the Kohn-

Sham eigenvalue spectrum is not just ad-hoc but actually leads to the physically correct energetic

adjustment of the eigenvalue spectrum as it results from emsemble density-fucntional theory. As

examples the ionization potentials of a number of small molecules and of a test set of medium size

organic acceptor molecules are considered with the exchange-correlation potential due to Perdew,

Burke and Ernzerhof (PBE) and the hybrid functional B3LYP. The potential adjusted B3LYP

eigenvalues yield ionization potentials that are in very good agreement with experimental values

and that are of the same accuracy as those of various GW methods, which require substantially

higher computational effort. The potential adjusted PBE eigenvalues result in somewhat less

accurate ionization potential, which, however, are ...
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I. INTRODUCTION

II. ENERGETIC ADJUSTMENT OF POTENTIALS

For a start, we consider the Kohn-Sham (KS) formalism for a fix integer electron number

N . For simplicity we consider neutral non-spin-polarized molecules with real-valued KS

orbitals. The electron number N in this case has to be even. The KS equation for the KS

orbitals ϕi and their eigenvalues εi[v̄s] is given by

[
(−1/2)∇2 + v̄s(r)

]
ϕi(r) = εi[v̄s]ϕi(r) (1)

with the effective KS potential

v̄s(r) = − δTs
δρ(r)

(2)

given by the functional derivative of the ’noninteracting’ kinetic energy Ts, i.e., the kinetic

energy of the KS model system of hypothetical non-interacting electrons, with respect to

the electron density.

The bar above v̄s indicates that the KS potential is defined only up to an additive constant

in the KS formalism with fix integer electron number. This means v̄s stands not for a single

potential but for a whole set of potentials, all potentials, namely, that can be obtained by

adding an arbitrary constant to one member of the set v̄s. The fact that the KS potential is

defined only up to an additive constant is a consequence of the fact that changes δρ of the

electron density have to integrate to zero∫
dr δρ = 0 (3)

in order to keep the electron number fix. If we pick one arbitrary member ṽs out of the set

v̄s then the change δTs of Ts due to a change δρ of the electron density is given by

δTs =

∫
dr ṽs(r) δρ(r)

=

∫
dr [ṽs(r) + ν] δρ(r)

=

∫
dr v̄s(r) δρ(r) (4)
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with ν denoting an arbitrary constant. The three right hand sides of Eq. (4) equal each

other due to Eq. (3), which, of course, can be multiplied by any constant ν. Eq. (3)

demonstrates that each member of the set of potentials v̄s equally well acts as functional

derivative of the kinetic energy Ts with respect to the electron density, or, the other way

around, the functional derivative of Ts is to be identified with the whole set of potentials v̄s.

It is important to realize that this is a simple mathematical consequence of the fact that the

electron number is fix, in the KS formalism with fix integer electron number, the undefined

additive constant in the KS potential has nothing to do with a Lagrange multiplier or a

chemical potential in this case.

The KS potential is given as sum

v̄s(r) = v(r) + v̄H(r) + v̄xc(r) (5)

of the external potential v, usually the potential of the nuclei, the Hartree potential

v̄H(r) =
δU

δρ(r)
, (6)

and the exchange-correlation potential

v̄xc(r) =
δExc

δρ(r)
(7)

with the Coulomb energy U and the exchange-correlation energy Exc. The Hartree and the

exchange-correlation potential are again undefined up to an additive constant in the KS

formalism with fix integer electron number for the same reason as the effective KS potential.

That is v̄H and v̄xc represent sets of potentials obtained by adding arbitrary constants to

one member of the set.

In order to determine the absolute energetic positions of the potentials v̄s, v̄H , and v̄xc we

have to turn to the ensemble KS formalism. A straightforward definition for the Coulomb

energy in the ensemble KS formalism is U [ρ] =
∫
drdr′ ρ(r)ρ(r′)/|r− r′| which can be eval-

uated for any electron density including those integrating to noninteger electron numbers.

The Hartree potential in the ensemble KS formalism then is given by the classical electro-

static potential vH(r) =
∫
dr′ ρ(r′)/|r − r′| of the electron density. In the ensemble KS

formalism, the Hartree potential vH(r) is completely defined without the freedom of adding
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an abitray constant. The above Hartree potential, of course, is the one usually used in

practice.

Determining the exchange-correlation potential in the ensemble KS formalism is more

difficult. In the ensemble KS formalism the exchange-correlation potential is known to have a

derivative discontinuity at integer electron numbers. Because typically exchange-correlation

potentials are required at integer electron numbers, two limits have to be considered for the

exchange-correlation potential, (i) coming from the electron deficiency side corresponding

to the limit

vN−xc (r) = lim
q→N−

δExc

δρ(r)
(8)

and (ii) coming from the electron surplus side corresponding to the limit

vN+
xc (r) = lim

q→N+

δExc

δρ(r)
. (9)

Here lim
q→N−

shall be the limit of the noninteger number q of electrons approaching the in-

teger number N from below while lim
q→N+

denotes the limit of q approaching N from above.

There are three possibilities two determine the potentials vN−xc and vN+
xc . All three yield the

same result for the unknown exact exchange-correlation functional but have a very different

outcome for approximate functionals:

(1) The potentials vN−xc and vN+
xc are obtained by taking the functional derivatives (8) and

(9) of the exchange-correlation energy of the ensemble KS formalism. This is the obvious

route to the potentials vN−xc and vN+
xc following their definitions. It requires, however, reli-

able approximations for the exchange-correlation functional of the ensemble KS formalism.

Exchange-correlation functionals within the local density approximation (LDA) as well as

the generalized gradient approximation (GGA) can be evaluated for any electron density in-

cluding those integrating to noninteger electron numbers. Therefore, in practice, LDA and

GGA functionals usually are considered as approximate ensemble exchange-correlation func-

tionals. This approximation, however, is an unphysical one because the functional derivative

of LDA and GGA energies with respect to the electron density does not exhibit an integer dis-

continuity. This means the common practice to calculate LDA or GGA exchange-correlation

potentials is fundamentally flawed and therefore questionable.

(2) In case of finite nonperiodic electronic systems the potential vN−xc can be obtained
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from any member of the set of exchange-correlation potentials v̄xc of the KS formalism with

fix integer electron number by simply adding a constant such that the potential vanishes

at infinity. The justification is that the exact potential vN−xc vanishes far away from a finite

nonperiodic electronic system. For LDA and GGA functionals this approach has the same

outcome as approach (i) discussed above. However, apart from the fact that only vN−xc

but not vN+
xc is accessible in this way, this approach is not well-suited for LDA of GGA

functionals. The reason is simple that LDA and GGA potentials decay exponentially with

the electron density for large distances from the center of charge which is fundamentally

wrong. The true exchange-correlation potential decays as 1/r with r being the distance

from the center of charge. Relying on a qualitatively wrong asymptotic when adjsting the

energy of a potential obviously is not advisable.

(3) Following Ref. [1], the potentials vN−xc and vN+
xc can be determined by potential

adjustors from any member of the set of exchange-correlation potentials v̄xc according to

vN−xc (r) = v̄xc(r) + ∆N−
xc [v̄xc]

(10)

with the potential adjustor

∆N−
xc [v̄xc] = EN

0 − EN−1
0 − εHOMO[v + vH + v̄xc] . (11)

and according to

vN+
Hxc(r) = v̄xc(r) + ∆N+

xc [v̄xc] (12)

with the potential adjustor

∆N+
xc [v̄xc] = EN+1

0 − EN
0 − εLUMO[v + vH + v̄xc] . (13)

In Eqs. (11) and (13), EN
0 , EN−1

0 , and EN+1
0 are the electronic ground state energies of the

N -, the (N − 1)−, and the (N + 1)-electron system. This means, in order to calculate the

potential adjustor, self-consistent KS calculations of the cation and the anion have to be

carried out. By εHOMO[v+ vH + v̄xc] and εLUMO[v+ vH + v̄xc] the eigenvalues of the highest

occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO)
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of the neutral molecule are denoted. Any member of the set v̄xc of exchange-correlation

potentials can be chosen and yields the same adjusted potentials vN−xc and vN+
xc . The only

requirement is consistency. That is, when calculating the eigenvalues εN [v + vH + v̄xc] and

εN+1[v+ vH + v̄xc] that member of the set v̄xc has to be used which is then adjusted via Eqs.

(10) and (12). In the LDA or GGA case the simplest choice for a member of the set v̄xc is

the one resulting from the usual straightforward functional derivative of the LDA or GGA

energy functional. In constrast to approaches (1) and (2) this third approach to calculate

vN−xc and vN+
xc is well-suited for LDA or GGA functionals for several reasons. Firstly, for

any finite system different potentials vN−xc and vN+
xc are obtained, that is, the LDA and GGA

exchange-correlation potentials exhibit a derivative discontinuity as they should they are if

constructed according to approach (3). Secondly, it is known that, for molecules, energy

differences EN
0 − EN−1

0 and EN+1
0 − EN

0 , which correspond to the negatives of the first

ionization potential and the first electron affinity, can be calculated with good accuracy

by ∆SCF (∆-Self-Consistent-Field) calculations using LDA or GGA functionals. A third

advantage of approach (3), which is beneficial not only for LDA and GGA functionals but

generally, is that vN−xc and vN+
xc are obtained exclusively from quantities that are accessible

within the KS formalism of fix integer electron number, despite the fact that the potentials

vN−xc and vN+
xc are defined in the ensemble KS formalism. Moreover, keep in mind that Eqs.

(10) – (13) are exact equations. Approximations only are introduced by the approximate

functionals they are applied to.

III. ENERGETIC ADJUSTMENT OF EIGENVALUE SPECTRA

If the exchange-correlation potential is adjusted then this leads to a corresponding ad-

justment of the KS eigenvalues. The KS equation (1) turns into

[
(−1/2)∇2 + vH(r) + vH(r) + v̄xc(r) + ∆N−

xc [v̄xc]
]
ϕi(r) =

[
(−1/2)∇2 + v̄s(r) + ∆N−

xc [v̄xc]
]
ϕi(r)

=
[
εi[v̄s] + ∆N−

xc [v̄xc]
]
ϕi(r)

=
[
εi[v + vH + v̄xc] + ∆N−

xc [v̄xc]
]
ϕi(r)

= εN−i ϕi(r) (14)
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if the exchange-correlation potential is adjusted with the potential adjustor ∆N−
xc [v̄xc] of Eq.

(11). The adjusted KS eigenvalues εN−i are given by

εN−i = εi[v + vH + v̄xc] + ∆N−
xc [v̄xc] = εi[v̄s] + ∆N−

xc [v̄xc] . (15)

The adjusted eigenvalues εN−i are independent of the choice which member of the set of

potentials v̄xc is used in Eq. (15), i.e., Eq. (15) yields the same adjusted eigenvalues εN−i

for all members of the set v̄xc. That means the adjusted eigenvalues εN−i are uniquely

defined. The reason is that the addition of a constant to a potential of the set v̄xc leads to

a corresponding change in the opposite direction in the potential adjustor ∆N−
xc [v̄xc], see Eq.

(11), and therefore in summary has no effect in Eq. (15).

For the HOMO eigenvalue we obtain

εN−HOMO = εHOMO[v + vH + v̄xc] + ∆N−
xc [v̄xc]

= εHOMO[v + vH + v̄xc] + EN
0 − EN−1

0 − εHOMO[v + vH + v̄xc]

= EN
0 − EN−1

0 (16)

with Eq. (11) for ∆N−
xc [v̄xc]. This means the HOMO eigenvalue equals the negative of first

ionization energy given by EN
0 − EN−1

0 as it should. In the case of LDA or GGA func-

tionals the negative of the adjusted HOMO eigenvalue, equals the first ionization potential

calculated by a ∆SCF calculation with the LDA or GGA functional. This means Eq. (16)

holds true not only for the exact functional but also for LDA or GGA functionals provided

the exchange-correlation potentials and subsequently the KS eigenvalues are correctly ad-

justed energetically. Technically the adjustment of the KS eigenvalue spectra can be simply

achieved by calculating the first ionization potential via a ∆SCF calculation and by then

shifting the original eigenvalue spectrum such that the negative of the HOMO eigenvlaue

equals the first ionization potential. As already mentioned, the crucial point is that this

is not just an ad-hoc shift but it is the formally correct adjustment of the KS eigenvalue

spectrum for the case of approaching the integer electron number N from below which is the

case relevant for ionization. For the first ionization potential the approach to determine ion-

ization energies from energetically adjusted KS eigenvalue is tantamount to the well-known

∆SCF approach. However, having at hand an eigenvalue spectrum that is properly adjusted

energetically, it is promising to approximate higher ionization potentials from the negatives
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of the energetically lower occupied KS eigenvalues. This is what is proposed in this work

and what is shown to work extremly well in the following section.

If the exchange-correlation potential is adjusted with the potential adjustor ∆N+
xc [v̄xc]

from Eq. (13) then the KS equation (1) turns into

[
(−1/2)∇2 + vH(r) + vH(r) + v̄xc(r) + ∆N+

xc [v̄xc]
]
ϕi(r) =

[
(−1/2)∇2 + v̄s(r) + ∆N+

xc [v̄xc]
]
ϕi(r)

=
[
εi[v̄s] + ∆N+

xc [v̄xc]
]
ϕi(r)

=
[
εi[v + vH + v̄xc] + ∆N+

xc [v̄xc]
]
ϕi(r)

= εN+
i ϕi(r) (17)

The adjusted KS eigenvalues εN+
i then are given by

εN+
i = εi[v + vH + v̄xc] + ∆N+

xc [v̄xc] = εi[v̄s] + ∆N+
xc [v̄xc] . (18)

Eq. (18) again yields the same adjusted eigenvalues εN+
i for all members of the set v̄xc. That

means the adjusted eigenvalues εN+
i , like the eigenvalues εN−i , are uniquely defined.

For the LUMO eigenvalue we obtain

εN+
LUMO = εLUMO[v + vH + v̄xc] + ∆N+

xc [v̄xc]

= εLUMO[v + vH + v̄xc] + EN+1
0 − EN

0 − εLUMO[v + vH + v̄xc]

= EN+1
0 − EN

0 (19)

with Eq. (13) for ∆N+
xc [v̄xc]. This means the LUMO eigenvalue equals the negative of first

electron affinity given by EN+1
0 − EN

0 as it should. In the case of LDA or GGA functionals

the negative of the adjusted LUMO eigenvalue, equals the first electron affinity calculated

by a ∆SCF calculation with the LDA or GGA functional. Analogously to the case of

ionization, this means Eq. (19) holds true not only for the exact functional but also for

LDA or GGA functionals provided the exchange-correlation potentials and subsequently

the KS eigenvalues are correctly adjusted energetically. It suggests itself to approximate

higher electron affinities by the negatives of energetically higher KS eigenvalues εN+
i .

In summary, two KS eigenvalues spectra containing the eigenvalues εN−i and εN+
i , respec-

tively are associated with an electronic system. The first spectrum containing the eigenvalues

εN−i is related to ionization, the second one containing the eigenvalues εN+
i is related to the
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attachment of additional electrons. From the first spectrum the eigenvalues of the occupied

orbitals have physical meaning, from the second spectrum the eigenvalues of the unoccupied

orbitals are physically meaningful. By combining the eigenvalues of the occupied orbitals of

the first spectrum with the eigenvalues of the unoccupied orbitals of the second spectrum

an approximate quasiparticle spectrum ist obtained. The HOMO and LUMO eigenvalues

of this combined spectrum are exact quasiparticle energies, that is they yield the exact first

ionization potential and electron affinity. All other eigenvalues of this combined spectrum

can be interpreted as approximate quasiparticle energies. The fact that two KS eigenvalue

spectra are associated with an electronic system that need to be combined for an approxi-

mate quasiparticle spectrum follows from the basic ensemble KS formalism, more precisely

from the presence of the derivative discontinuity of the exchange-correlation potential. By

correctly adjusting energetically LDA and GGA exchange-correlation potentials also these

approximate functionals exhibit a derivative discontinuity for finite systems and therefore

lead to two KS eigenvalue spectra that can be combined to an approximate quasiparticle

spectrum.

IV. IONIZATION POTENTIALS OF SMALL AND MEDIUM SIZE MOLECULES

V. CONCLUSIONS
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