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Abstract—Mobile edge computing has emerged as a promising
technology to augment the computational capabilities of mobile
devices. For a multi-user network in which its users periodically
compute their tasks with the help of an edge cloud, we investigate
the network lifetime maximization problem based on present user
task information. We pursue this objective via a minimum energy
eff ciency maximization (MEEM) strategy that jointly optimizes
the fraction of user task computations off oaded to the cloud
and the respective allocation of edge computing and network
communication resources across the users. We also investigate
the network lifetime maximization problem for the case when
the user task information is available for all future time slots,
as well. This setting represents an upper bound for the MEEM
strategy. Optimal solutions for both investigated strategies are
formulated via feasibility testing and geometric programming.
We show that MEEM can achieve a 70% lifetime improvement
over the state-of-the-art and 450% lifetime improvement over
the case of local user task computation only.

I. INTRODUCTION

As mobile devices are gaining enormous popularity over the
last decade, many new applications, e.g., face/f ngerprint/iris
recognition, augmented reality, natural language processing,
and interactive gaming have emerged and attracted great
attention. Due to the requirements of high reliability, inten-
sive computing, and low latency for these applications, the
concept of Mobile-Edge Computing (MEC) has emerged [1].
In MEC based system, small-scale cloud-computing facilities
are available at the edge of pervasive radio access networks
in close proximity to the mobile users [1].

Since wireless devices have limited battery energy, en-
ergy eff ciency is a crucial design parameter for cooperative
wireless networks. Signif cant effort has been made to date
to investigate maximizing the lifetime of such networks [2—
4]. It has been shown [3] that the wireless nodes’ residual
battery energy information must be taken into consideration to
decide the transmit power control, relay selection, and channel
allocation, so that the overall network lifetime is improved.

For wireless networks in which the nodes have computation-
ally intensive tasks with low latency requirements, off oading
them to the edge cloud may improve the network energy
eff ciency [1,5-11]. [7] investigates a weighted sum energy
consumption minimization scheme in mobile-edge computing
networks, by jointly optimizing the load and communication
resource allocation. For a multi-server mobile-edge computing
network, [10] studies a joint computation resource allocation,
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transmit power allocation, and task off oading decision op-
timization, to minimize a system utility casted as a weighted
function of task completion time and task energy consumption.
To improve the lifetime of a mobile-edge computing net-
work with fnite communication and computation resource,
the decisions on resource allocation, for the users, need to
be made based on their residual battery energy. For example,
a node with low residual battery energy should be allocated
high communication and computation resources, so that it can
compute its task with low energy consumption. No previous
study has considered residual battery energy information, to
allocate computation and communication resources in mobile
edge computing networks. Similarly, to the best of our knowl-
edge, the lifetime maximization problem has not been studied
for such networks. These are the objectives we pursue here.
Aiming to maximize the network lifetime, we investigate the
joint optimization of sharing computation between the users
and the edge cloud, and allocating communication and edge
computing resources for each user. The network lifetime is
defned as the time interval for which each user can compute
his task within a maximum tolerable delay and none of
the users is depleted of energy. Our main contributions are
the following: 1) Aiming to maximize the network lifetime
based on user task information for the present time slot only,
we explore an MEEM strategy for joint optimization of the
fraction of user task computations off oaded to the cloud
and the respective allocation of edge computing and network
communication resources across the users; ii) We optimally
solve the network lifetime maximization problem when future
user task information is available; this setting is an upper
bound for MEEM; iii) We show that MEEM performs close
to the optimal network lifetime, for low initial user battery
energy; and iv) We show that MEEM achieves signif cant
network lifetime improvement over the state-of-the-art (70%)
and the case of local user task computation only (450%).

II. SYSTEM MODEL

Our multiuser network comprises K users denoted by the
set £ = {1,.., K} and a base station (BS) equipped with an
edge cloud of limited computational capability. Each user &
has a computation capability of fi and residual battery energy
Ex. Every n seconds, the edge cloud serves a set of users which
have computationally intensive tasks. Let K; C IC denote the
set of users to be served by the cloud at slot [ € {1,2,..}. Let
user k € K, has a task ¢x (1) = (85 (1), bx (1)) to compute at the
Ith time slot, where by (1) is the number of bits to be computed



which include program codes, and input parameters and 3y (1)
is the required number of CPU cycles for 1 bit computation
of the task. Therefore 8 (1)bx (1) denotes the total CPU cycles
required to compute the task ¢ (l). The methods proposed
in [12] can be applied to determine by (l) and Sy (1). Similar
to [7], we consider splittable task. The tasks are needed to
be executed within a maximum tolerable delay Tth < n. An
example of such network is internet of things (IoT) networks
in which the edge cloud receives periodically splittable task,
e.g., images from the [oT devices for processing.
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Fig. 1: Task computation of user k assisted by the edge cloud.
A. Local Computation

As shown in Fig. 1, user k& € K; off oads bEC(I) bits to
the edge cloud and computes by (1) — bEC(1) bits at its own
processor at time slot /. Thus, the local computation time is

B (be(l) — BEE(D)
= 5 .

Following the energy model in [11], the overall computation
energy at user k to compute by (l) — b¥¢(1) bits is

Ey(1) = 7eB(1) (be(l) — b°(D)) f7 ®)
where 7. is the effective switched capacitance of the CPU.

B. Computation of Off oaded Tasks

Each user k € K; off oads b¢(1) bits to the edge cloud at
time slot [, and then the edge cloud computes these bits at
its processor and sends back the output to the users. Let the
bandwidth allocated to user k at time slot [ be By(l). The
spectral eff ciency (in b/s/Hz) of the link between user k and
the base station, for ergodic Rayleigh fading, is [13]:

Ny Ny )
R p = ex E log, e
e p<Pk 9k,b> 1<Pk Ik.b 82

where Eq(z) = floo m~1le~*™dm is an exponential integral,
gk,» 1s the large-scale channel gain from user & to the BS, P is
the transmit power density of user k, and Ny is the noise power
spectral density. Therefore, the delay in off oading bC(l) bits
to the edge cloud becomes

Ty (1) (D

3

Tk,b(l) _ bEC(l)

= k) 4
Bi() Ry’ )

and the energy consumption at user & to off oad b¥¢(l) bits is

bEC(l)

En(l) = Pt~
b(l) =By Ry

Let the cloud allocate Fy () of its computation resource to

user k at time slot /. Thus, to compute the b¥¢(1) bits for user

k, the edge cloud requires time
B (Db (1)
Tec k() = —=F—=. 6
Ec, k(1) Frll) (6)

III. PROBLEM FORMULATION

6))

The overall completion time of task ¢ (1), k € K;, is
Tk(l) = max (Tk(l),Tk_’b(l) —|—TEC7]€(Z)) . (7)

We disregard the time spent in sending back the results of
the computation, as the size of the output data tends to be
small relative to the input data [5]. Note that extension of the
proposed resource allocation analysis for non-negligible output
data size is straightforward.

The network lifetime is defned as the time duration for
which all user tasks are executed within a maximum tolerable
delay, while none of the users is depleted of energy. Thus,
maximizing the lifetime of the network can be expressed as:

max, T, (3)
st > (Bul)+&(1) <E, ke{l,., K}

les]

Tim) <T" iekp, me{l,., T},

Z Bz(m)SBa mG{l,..,T},

€L

Z Fz(m)SFv mE{l,..,T},

€L

where T denotes the network operating time in number of
slots, S denotes the set of time slots when user k is
activated within the network operating time T, B is the total
available bandwidth in the system and F' is the total processing
capability of the cloud. In turn, B, F', and b are respectively
the vectors of all values of B;(m), F;(m), and b€ (m), for
i€Km,me{l,. T}

The frst constraint in (8) imposes that the energy consump-
tion of user k£ (in local computation and off oading bits) over
T be bounded by its residual battery energy Ex. The second
constraint imposes that the task completion time of user ¢ at
time slot m be bounded by the maximum tolerable delay T*".
The communication and computation resource allocations for
the mobile users and the cloud are restricted by the total system
bandwidth and the cloud’s processing capability, respectively,
as captured by the third and fourth constraints.

The above problem is hard to solve in practice, as task
information for users in future time slots, 8;(m),b;(m),i €
Km,m € {1,.., T}, may not be available, and the number of
optimization variables is large (proportional to T), thus, f nding
the optimal solution requires high computational complexity.
Aiming to maximize the network lifetime based on user task



information for the present time slot only, we investigate the
following optimization problem:

l 9
A, min ), )
st Tp() < T keky,
st. Y Be()<B, Y F()<F
ke, keK,

where 1 (1) = Ex/ (Ex(1) + £ (1)) is the energy eff ciency of
user k € K;, and B’, F’, and b’ are respectively the vectors of
all values of By(l), Fi(I), and bEC(1), for k € K;. Minimum
energy eff ciency maximization (MEEM) of the network, as
given in (9), leads to high computation and communication
resource allocation for a user with low residual battery energy,
and low communication and computation resource allocation
for a user with high residual battery energy. Thus, the resulting
energy consumption of the user with low residual energy would
be low, and the energy consumption of the user with high
residual energy would be high, which result in network lifetime
improvement. Our experimental results in Section VI verify
this induced property. The optimization problem in (9) can
be solved eff ciently and does not require knowledge of task
information for future time slots. Note that (8), or (9) may be
infeasible if T*" is very small. Next, we investigate solution
methodologies for the problems (8), and (9).

IV. MINIMUM ENERGY EFFICIENCY MAXIMIZATION

Let V be a slack variable such that 1/V = mingex, ni(1).
Using (1)-(7), (9) can be expressed as

(10)

min V,
F’' B’b
bEC
st YeBr (b — bR°) fi + PkRL <EV, keky,
k,b

B (br — b;°)

fr
BrbEC

Ey, BirRip

ZBkSB,

ke,

< Tth, ke,

bEC
<Tth, kek,

ZFng.

ke,

We omit the time slot index [ above for notation brevity. The
problem (10) is nonconvex. It can be converted to a geometric
programming problem via the single condensation method
[14]. According to this method, for a constraint which is a ratio
of posynomials, the denominator posynomial (say f(x)) can be
approximated into a monomial using the following inequality:

~Yueozieo-T1[52]7 o

[
where 6, > 0 and 3", 8, = 1. Then, for &, = f,(%)/f(%), f(x)
is the best monomial approximation of f(x) near x = x.

We formulate an iterative technique to optimally solve (10).
At each iteration ¢, the frst constraint in (10) is converted into

) > f(x)

a posynomial using (11) as

() (g

bEC( )
YeBrbif7 + Pa <1, keky, (12)
Ry

where 01(t), and d2(t) are obtained from the solution at the
(t — 1)-th iteration as

B EkV(t — 1)
o(t) = ExV(t — 1) 4+ 7. BubEC(t — 1) f?
EC(s 2
(1) = g LD (13)

EV (T — 1)+ 1eBebE(t — DfE
Similarly, at each iteration ¢, the second constraints therein
is converted into a posynomial using (11) as

Tthf —83(t) Br bEC( ) —04(1)
mm<@m> (64)) =horeh
Tthf
where:  d3(t) = Tthf, + Bkbgc(t -1
a(t) = — BB =1) (15)

Tt fi + BrbpS(t — 1)

Thus, the overall optimization to be solved at iteration ¢ is

min Vit 16
V(t),Fr(t),Br(t) ®) (16)
bEC (1), keX,
st (12), (14)
EC EC

Bkbk (t) bk (t) S Tth, ke IC[

Fi(t) By (t)Rip

> But)<B, Y Fi(t)<F

ke, ke

The above optimization problem is geometric programming
and can be solved optimally. The iterative optimization is
carried out until |[V(¢) = V(t —1)] < e with 0 < € < 1.
An algorithmic implementation is included in Algorithm 1,
which converges to the global solution of (10) [14].

Algorithm 1 Algorithm for MEEM.

I: Set t = 1, initialize V (t), Fy(t), Bi(t), bEC(t), k € K

such that the feasibility of (10) is preserved.

2: while true do > inf nite loop

3: t=t+1

4: Calculate 01 (1), 2(t), d3(t) and d4(t)

5:  Find the optimum V (), Fy(t), By(t), b¥(t), k € K;

by solving (16) using GGPLAB [15]

6 if |[V(t)—V(t—1)| <e then
7: Break
8
9

end if
. end while

Implementation Of MEEM: The resource allocation accord-
ing to MEEM strategy can be implemented in a centralized



manner. To implement the MEEM strategy in a centralized
manner, task information of the present time slot for all the
users should be available at the BS which is similar to the
centralized resource allocation strategies in literature [1,5—
10]. Additionally, the BS should also have the residual energy
information of the users to implement the resource allocation.
We assume that information of initial battery energy of the
users is available at the BS which can be obtained with one
time transmission from the users. Then, the BS calculate the
energy consumption at each time slot and and f nd the available
residual energy for the next time slot.

V. OPTIMAL LIFETIME MAXIMIZATION

Using (1)-(7), the problem in (8) can be expressed as

max T, a7
F.B)b
EC bEC(l)
s.t. Z (%ﬁk(l) (br (1) = b°()) f7 + P Rt > <E,
lesy '
ke{l,.,K},
Bi(m) (bi(”;)_ = b;%(m)) < Tth
BmMESm) | Wm)
Fm) BB S
1€ Km,me{l,..,T},
i€ 1€ m

me{1,.,T}

Let T = T’ be a given value of T. The following feasibility
test decides if the network will operate up to T’ time slots:

min 0 (18)
F,B.b
e bEC(1)
s.t. Z <%Bk(l) (bk(l) — bk ( )) fk + P Ry > < Ey,
lesy ’
ke{l,.,K},
mmmﬁyw%»<ﬁ@
BmEC(m) B,
Fm) BimRi =
i€ Km,me{1,.., T},
Em 1€ m

Thus, problem (17) can be solved in a two-nested search loops
in which we vary the value of T’ in the outer loop, and in the
inner loop, check if (18) is feasible. The maximum value of
T’, for which (18) is feasible, is the optimal network lifetime.
We consider the following optimization problem:

min S,
F.Bb

EC
sty <%[3k(l) (br(1) — bEC (D)) f7 +Pkb1’:T£?) < B,

lesy
ke{l,.,K}, (19a)
Bi(m) (bi(ﬂ;) — b¢(m)) <5,
Z i€ Kpm,me{1,..,T'}, (19b)
Bi(m)bi(m) | bE(m)
Fi(m) Bi(m)Riy =5
i€ Km,me{l,.,T'}, (19¢)
Z Bi(m) < B, me{l,.,T}, (19d)
1€ m
Y F(m)<F, me{l,.T} (19¢)
1€ m

Proposition 1. The feasibility testing in (18) can be solved in
two steps, frst to solve (19) optimally, and then check if the
optimal value of S for T’ time slots, St: which is obtained
by solving (19), is less than or equal to T

Proof. See Appendix. A

Problem (19) can be converted into geometric programming,
similarly to Section IV. We apply an iterative technique to
solve it. At each iteration ¢, using (11), the frst constraint in
(19) is converted into a posynomial as

() )
5 - 65 (1

jeSy

(20)

EC
wammﬁ+m%#ﬁygmeﬂwK}
kb

lesy
=
where:  d5(t) = , 2D
T ST AT Y
. : bEC ',t -1 2
56, (t) = VeBr(5)by (4 )i

I SN (Y.

and the second constraint is converted into a posynomial as

7610(75)
S@f>%”(@<>w%m@>
i b; — =1
gt ) (507 S
i€ K, med{l,.,T'}, (22)
St—1)f;
here: dg(t) = 23
B | L COT R
S1o(t) = Bi(m)bEC (m,t — 1)
O S =D fi+ Bi(m)bE(m t — 1)
Thus, the overall optimization to be solved at time ¢ is:
S(0)Fum.o), S, .
Bi(m,t),bfc(m,t)
s.t. (20), (22),



Bi(m)bi (m, t)

EC
b’i (m7t) < S,
Fi(m,1)

Bi(m,t)Ri)b -
i€ Km,me{l,., T},

> Bim,t)< B, Y Fi(m,t)<Fme{l,.,T}
1€ m 1€ m

The above optimization is geometric programming and can
be solved optimally. Hence, the optimal solution of (19) is
obtained by solving (24) iteratively, following similar steps as
given in Algorithm 1 [14]. Thus, to solve (17), in the inner

Algorithm 2 Finding the optimal network lifetime.
1: Initialize low and high (lower and upper bounds for
bisection search)

while high > low do
. T/ _ Llow-}-hith

2
Find Sp/ by solving (19)

2:

3

4:

S: if St/ < T" then
6 low=T +1
7 else

8: high =T’

9: end if
10: end while

11: Toptimal = low — 1

loop, we check if the network operates for T’ time slots, by
frst solving (19), following the approach as stated above, and
then checking the condition S/ < Tth, for the given value of
T’. In the outer loop, we then use bisection search to fnd the
maximum value of T’ for which the network operates. The
overall procedure is described in Algorithm 2. The output of
the algorithm T',1imq; is the optimal network lifetime.

Even though this strategy may not be practically imple-
mentable due to its high computational complexity and the
requirement for future user task information, it represents an
upper bound for the performance of the MEEM approach.

VI. PERFORMANCE EVALUATION

Here we present simulation results that evaluate the network
lifetime performance of the proposed strategies. Many of
the works in literature [7,8, 10] have considered sum energy
minimization as objective to decide resource allocation for
mobile-edge computing networks. Therefore, as a reference,
we will compare our proposed strategies with sum energy min-
imization objective, i.e., minimizing total energy consumption
of all the users >, i, (Ek(l) + &k(l)) at each time slot [
with the same constraints of the problem in (9). The resource
allocation for sum energy minimization can be solved using
geometric programming iteratively with similar steps as given
in Algorithm 1. We refer this strategy as 'Reference Method’.
For comparison purposes, we also consider the strategy ’Local
Computation’ in which the users compute the tasks at their
own processors. We note that the users do not meet the
maximum tolerable delay for *Local Computation’, since their
processing capability is low.

For the evaluations that follow, ten users are uniformly
distributed in a circular region of radius 50 m with a cloud-
associated BS at the center. The system parameters are f; =
0.5 GHz, P, = 1078 W/Hz B = 5 MHz, T?" = 0.15 s,
Y. = 10728 MHz, Ny = —147 dBM/Hz, € = 107>, b; = 200
Kb and §; follow the uniform distribution with [500, 1500]
cycles/bit. Each user in the network is activated according to an
activation probability p; which follow the uniform distribution
with [0.3,0.7]. Therefore, the set of users which are activated
at different time slots may be different. The obtained results
are averaged over 500 network realizations.
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Fig. 2: Network lifetime vs. E,.q4;0 for Fypy = 5 J.

In Fig. 2, we consider the performance of the proposed
strategy in a network where the initial energy of the users is
not identical. The network has a total of ten users among which
fve randomly chosen users have initial energy E; and the
other fve users have initial energy Fo with Fo < F;. We fx
the initial total network energy (i.e., the sum of battery energy
of all users) as E;,; = 5 J. The network lifetime performance
of the proposed strategies is evaluated when the initial user
energy ratio F,.q:;, = E1/F> varies from 1 to 5, while F =6
GHz. If E,4,, = 1, we have identical initial energy for all
the users, i.e., 1 = Ey = 0.5 ], and if E,u, = 5, fve
users have initial energy Fq = 0.83 and the other fve users
have initial energy Ey = 0.17. As E,44, i increased, Fy
increases more compared to Fso, and the energy balancing
decreases in the network. Thus, the network lifetime decreases
for all strategies. Since the MEEM strategy considers the
residual battery energy information to decide on the task
sharing and resource allocation, while the reference method
does not consider the residual battery energy information to
optimize the system parameters, MEEM achieves signif cant
performance improvement compared to reference method for
high values of E, .. For example, if F,.t,0 = 5, the MEEM
strategy achieves 1.71 times longer network lifetime (70%
improvement).

Here we analyze the performance of MEEM compared to
the optimal network lifetime strategy described in Section
V. For the latter, the number of optimization variables is
proportional to the number of time slots the network operates.
Thus, if the network lifetime is high, fnding the optimal
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Fig. 3: Network lifetime vs. total initial energy for the users.

solution of (17) via geometric programming is hard with so
many optimization variables. Hence, we show the performance
of the proposed strategies when FE,,; is low for which the
network lifetime is low. Fig. 3 shows the network lifetime for
a random network realization when the total initial energy in
the network FE,; varies from 0.3 J to 0.7 J, while E, ;0 = 1,
F = 6 GHz. As FE;, increases, the network lifetime for
all strategies increase. The optimal network lifetime strategy
achieves 1.15 to 1.20 times better network lifetime compared
to MEEM as FE,,; varies.
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In Fig. 4, we analyze the computation resource distribution
among the users at a given time slot. We consider that fve
users are active at the time slot and the initial battery energy
of the users 1 to 5 are 0.83 J, 0.17 J, 0.83 J, 0.17 J and
0.83 J, respectively. The initial battery energy for each user
has been shown in rectangular box in the fgures. While the
computation resource allocation are balanced across the users
for reference method, MEEM allocates higher resource for the
users with lower residual energy and lower resource for the
user with higher residual energy and therefore performs better.

VII. CONCLUSION

We investigated the lifetime maximization problem in a
network where its nodes/users periodically compute their task
with the help of an edge cloud. Aiming to maximize the
network lifetime based on the user task information for the
present time slot only, we have proposed an MEEM strategy
to decide the sharing of tasks between the users and the
cloud, and the allocation of computation and communication

resources. We further investigated network lifetime maximiza-
tion when future user task information is available, as well, as
an upper bound to MEEM. Though the optimization problem
for MEEM is non-convex, we have shown that the global
optimal solution can be obtained using feasibility testing and
geometric programming. We have shown that the MEEM strat-
egy performs close to the optimal network lifetime. For high
value of the initial user energy ratio, MEEM achieves roughly
70% lifetime improvement over the state-of-the-art and 450%
lifetime improvement relative to local user computation only.

APPENDIX A
PROOF OF PROPOSITION 1

Let (F', B, b) be a feasible solution point of (19), i.e., the
constraints (19a), (19d) and (19¢) are met at this point. If
(F, B,b) is also a feasible solution of (18), then the value of

Bi(m) (bi(m) — b5 (m))
fi ’

bi¢(m)
Bi (m) Ri,b )

S = max
1€k ,me{1,..,T'}

Bi(m)bE< (m)
Fy(m)
is less than or equal to T". If (F, B,b) is not a feasible

solution of (18), then S > T*. Therefore S7+ must be less
than or equal to T*" if there exist a feasible solution of (17).
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