432

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 22, NO. 2, FEBRUARY 2020

Collaborative Content Placement Among Wireless
Edge Caching Stations With Time-to-Live Cache

Lixing Chen"”, Linqgi Song

and Jie Xu

Abstract—Content caching at the Internet edge using a network
of wireless edge caching stations (ECSs) is recently considered
as a key solution to alleviating the backhaul traffic burden and
improving the quality of experience in 5G networks. This paper
studies wireless edge caching systems with the following features:
first, content files can be partitioned into many coded packets,
which then can be cached in multiple ECSs for collaborative content
delivery; second, the service provider (SP) deploys time-to-live
cache at ECSs and each cached content file has an occupancy
time that needs to be guaranteed; third, the content-to-be-cached
arrives at the caching system following a stochastic process as
users request new content over time. Unlike existing works that
determine which content to cache, this paper focuses on how to
distribute the coded packets of content-to-be-cached among the
network of ECSs in order to reduce the content downloading time.
A novel content placement strategy, called stochastic collaborative
content placement is proposed based on Lyapunov techniques.
The proposed algorithm makes content placement decisions using
only currently available information without foreseeing future
content arrivals, takes advantage of the spatial content popularity
variation with coded caching, and achieves the provable close-to-
optimal long-term caching performance. Simulations are carried
out on a real-world YouTube video request trace and the results
demonstrate a tremendous caching performance improvement
against a variety of benchmark schemes.

Index Terms—Content placement, coded caching, wireless
network, online decision-making.

I. INTRODUCTION

UE to the prevalence of smart mobile devices with ad-
D vanced multimedia capabilities and the trend towards high
data rate applications, wireless networks have been experienc-
ing a tremendous increase in data traffic, especially multimedia

Manuscript received August 23, 2018; revised February 4, 2019; accepted
June 25, 2019. Date of publication July 16, 2019; date of current version January
24, 2020. The work of L. Chen and J. Xu was supported in part by the U.S.
Army Research Office under Grant W91 1NF1810343. The work of L. Song was
supported by the City University of Hong Kong under Grant 7200594. The work
of J. Chakareski was supported in part by the National Science Foundation (NSF)
under Award CCF-1528030, Award ECCS-1711592, Award CNS-1836909, and
Award CNS-1821875, and in part by research gifts and an Adobe Data Science
Award from Adobe Systems. The associate editor coordinating the review of
this manuscript and approving it for publication was Prof. Christian Timmerer.
(Corresponding authors: Lixing Chen; Lingi Song; Jie Xu.)

L. Chen and J. Xu are with the Department of Electrical and Computer
Engineering, University of Miami, Coral Gables, FL 33146 USA (e-mail:
Ix.chen@miami.edu; jiexu@miami.edu).

L. Song is with the Department of Computer Science, City University of Hong
Kong, Hong Kong (e-mail: lingi.song@cityu.edu.hk).

J. Chakareski is with the Ying Wu College of Computing, New Jersey Institute
of Technology, Newark, NJ 07103 (e-mail: jacob@ua.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMM.2019.2929004

, Member, IEEE, Jacob Chakareski
, Member, IEEE

, Senior Member, IEEE,

data traffic, in recent years. To keep up with the massive growth
of mobile data demand, there is a growing interest in caching at
the edge of the Internet. Wireless Edge Caching Stations (ECSs)
(e.g. caching-enabled small cell base stations or wireless infos-
tations [1], [2]) are being deployed as a supplement to the exist-
ing cellular architecture and content delivery networks (CDNs)
for caching popular content (e.g. videos) in close proximity to
end users, thereby reducing the content downloading time and
alleviating the backhaul traffic burden. Wireless environment
is very different from wired networks due to its broadcasting
nature and limited transmission range. Thanks to the recently
developed coded caching approach [3] and network densifica-
tion in 5G [4], collaborative caching among a network of ECSs
further improves the caching performance: content files can be
partitioned into many coded packets, which then are cached in
multiple collaborative ECSs. In this way, ECSs collaborate in
terms of not only sharing cache spaces but also the physical
transmission for content delivery.

Network service providers (SPs) offer caching-as-a-service
to content providers (CPs). Recent studies [5] have shown that
without explicit monetary compensation or incentive structures,
such CDNs do not operate effectively. However, standard cache
management policies such as Least Frequently Used (LFU) and
Least Recently Used (LRU) make it difficult for SPs to design
individualized contracts and for CPs to account for their valu-
ation of their content when contracting with SPs because these
policies treat different content in a strongly coupled manner.
This recently motivates the design of Time-to-Live (TTL) cache
management policies, which aim to ensure the occupancy time
of content and decouple the dependency of different content.
Specifically, the CP can negotiate with the SP to determine the
price and occupancy time of a content file when a caching re-
quest is issued. The SP then will ensure that this content file will
be cached for at least a certain amount of time [6], [7].

In this paper, we investigate content placement among a net-
work of wireless ECSs under a TTL cache management policy.
Different from many existing works that consider which content
to cache, we focus on how to place the content-to-be-cached
among the ECS network to maximize the caching performance,
taking into account the content occupancy time requirements
and the limited storage/cache space in ECSs. The content occu-
pancy time requirements in TTL cache make the collaborative
content placement problem significantly different and more dif-
ficult: once a content file is chosen to be cached, it has to stay
in the cache for at least the negotiated occupancy time, which
may reduce the chance of caching a more popular content file

1520-9210 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on February 23,2020 at 04:26:16 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-1805-0183
https://orcid.org/0000-0003-2756-4984
https://orcid.org/0000-0003-2428-9518
https://orcid.org/0000-0002-0515-1647
mailto:lx.chen@miami.edu
mailto:jiexu@miami.edu
mailto:linqi.song@cityu.edu.hk
mailto:jacob@ua.edu

CHEN et al.: COLLABORATIVE CONTENT PLACEMENT AMONG WIRELESS ECS WITH TIME-TO-LIVE CACHE 433

forthcoming in the future. This is very different from existing
cache management policies where a content file can be replaced
by a new content file at any time. The fact that new content files,
which vary considerably in size and popularity, arrive at the net-
work (i.e. are requested by users for the first time) sequentially
in realistic scenarios makes collaborative content placement par-
ticularly challenging, as any content placement decisions must
be made without foreseeing the size and popularity of new con-
tent files forthcoming in the future. This thus calls for an effi-
cient online algorithm that makes content placement decisions
on-the-fly. The main contributions of this paper are summarized
as follows:

1) We propose a stochastic collaborative content placement
(SCCP) framework. SCCP adopts the coded caching approach
which allows ECSs to cache a portion of coded packets of a
content file depending on the content popularity among their
serving regions as well as their spare caching spaces. SCCP aims
to optimize the long-term caching performance, explicitly taking
into account the fact that new content-to-be-cached arrives to
the system according to a stochastic process and the content
occupancy time requirements due to TTL cache.

2) The proposed content placement algorithm performs in an
online fashion without requiring the future information of forth-
coming new content files by leveraging and extending the per-
turbed Lyapunov optimization [8] technique. We prove that the
proposed algorithm achieves within a bounded deviation from
the optimal caching performance (in terms of minimizing con-
tent downloading time) that can be achieved by an oracle algo-
rithm that knows the complete future information.

3) As an integral part of the SCCP framework, a content cod-
ing strategy for distributed ECSs, namely spatial coded packets
reuse, is designed to minimize the coding overhead. The key idea
is to allow ECSs sufficiently apart from each other to cache the
same coded packets, thereby reducing the number of required
distinct coded packets. The proposed coding strategy is proved
to achieve optimal coding efficiency.

4) Simulations on real-world YouTube video request traces
are carried out to validate our analytical results and evaluate the
performance of the proposed algorithms. The results confirm
that our method significantly improves caching performance in
terms of downloading time against state-of-the-art benchmark
algorithms.

The rest of this paper is organized as follows. Section II
discusses related work. Section III presents the system model
and formulates the stochastic collaborative content placement
problem. Section IV develops a novel content placement algo-
rithm based on the perturbed Lyapunov technique and proves its
performance guarantee. Section V designs a coding strategy to
minimize the coding overhead. Simulations on real-world data
are carried out in Section VI, followed by the conclusion in
Section VII.

II. RELATED WORK

Recent effort has been made on caching policy design
in wireless CDNs to improve quality of experience for mo-
bile users. Authors in [9], [10] introduce the concept of
FemtoCaching/EdgeCaching and study content placement at
cache helpers at the network edge to minimize the content

downloading delay, utilizing coded caching. Geographical
caching is investigated in [11] to maximize the probability of
serving a user using the stochastic geometry model. The idea
of using caching to support mobility is investigated in [12].
Authors in [13] study context-aware resource allocation for
energy-efficient caching and [14] designs a caching policy for
base stations with energy harvesting. A common simplification
for content caching assumes that the content popularity follows
the Zipf distribution [13]. More complicated models employ
user-specific context and social information for popularity pre-
diction [15]. However, most of these works do not consider col-
laboration among multiple ECSs.

Due to the trend of the network densification in 5G, collabo-
rative caching among multiple ECSs is gaining increasing atten-
tion. For example, [16] considers a hierarchical structure where
the core caching network and a set of (possibly) interconnected
base stations work collaboratively to cache content. Authors in
[17] consider the energy consumption of Small-cell Base Sta-
tions (SBSs) when performing the collaborative caching [18].
Investigates the collaborative caching for multiple CPs such that
the payment of a CP for caching a number of content files is min-
imized. However, these works only consider caching schemes
under static offline settings where the content-to-be-cached is
already-known. Although authors of [18] also propose an on-
line algorithm for collaborative caching under unlimited cache
space, it is very different from our work since we consider the
limited cache capacities of ECSs, that new content files are re-
quested by users in a stochastic manner and that the system
employs TTL caches.

Many recent works also consider dynamic cache-enabled sys-
tems. For instance, [19] proposes an online proactive caching
strategy concerning the uncertainty of user activities. [20] jointly
optimizes content placement and request redirection with dy-
namic user request distribution. [21] designs a multicast schedul-
ing policy based on Markov Decision Process (MDP). [22]
designs a caching strategy based on Lyapunov criterion to sta-
bilize the service request queues thereby ensuring finite delay.
However, these works focus on the stochasticity of users’ con-
tent requests. In contrast, we focus on the stochastic content
arrival process and decision making, i.e. the content placement
decision is made when a new content file is to be cached un-
der the TTL cache management policy. Because the arrival
of new content-to-be-cached follows a stochastic process, the
content placement problem is a stochastic optimization prob-
lem where information about future content-to-be-cached is un-
known at the current decision time. The Lyapunov technique
is a widely used stochastic optimization technique. Originally
proposed for establishing control system stability, it was later
extended to achieve long-term queuing stability in networks [8],
with a salient feature that it does not require future informa-
tion when making control decisions. However, standard Lya-
punov technique cannot handle the causality constraint induced
by the cache dynamics and the occupancy time requirements. In
this paper, we develop our content placement algorithm based
on the perturbed Lyapunov optimization technique [23], which
was applied to address similar causality challenges in other ap-
plications [24], [25]. We introduce the concept of “free cache
space”, a type of virtual queue, and derive application-specific
performance bounds.

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on February 23,2020 at 04:26:16 UTC from IEEE Xplore. Restrictions apply.

434

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 22, NO. 2, FEBRUARY 2020

TABLE I
COMPARISON WITH EXISTING WORKS

[91[27] [29] [16], [17] [18] [21],[22] [19] [5], [30] This paper
Collaboration Yes No Yes Yes Yes No No Yes
Online No No No Yes Yes Yes Yes Yes
.. User User Content
Stochasticity No No No No - .
request request arrival
Limited capacity Yes Yes Yes No Yes No Yes Yes
FETRE, We further assume that the inter-ECS interference is handled by
%""é - state-of-the-art interference mitigation solutions, e.g. successive
<3
) o £ % — ; interference cancellation [31]. Depending on the locations of the
e - ~ £ = N
Collaborative Ls Future content ECSs and regions, the expected transmission rate differs across
] : s :
s § [| unknownsize, popularity ECS-region pairs. Specifically, the expected downlink transmis-
Q
2 n

Qahteqt Delivery {((&

’ . 3 \3\
& - l- Current content

- known size, popularlty (predlcted)

& («gi \

L em @) 4 g

\ / \ (() (h?usehold
bu,ildmg etc.)

ﬁ ECS #
4.

Rt~ —-~"Coded packets

-\

Regnoh

— —(cache- enable
femtocell;
inqutation.)

Fig. 1. Stochastic collaborative caching in heterogeneous small cell networks.

Coded caching [3]is a fundamental technique that enables col-
laboration among multiple ECSs. It has been shown that coded
caching can effectively enhance caching efficiency by partition-
ing files into packets and caching them in collaborative ECSs.
The authors in [26] combine the coded/uncoded caching strategy
in disjoint cluster-centric small cell networks. In [27], [28], the
maximum distance separable (MDS) coded caching is consid-
ered where the optimal MDS-coded cache placement problems
are formulated to minimize the downloading time and the back-
haul rate, respectively. Our paper does not develop new codes
for collaborative caching. Instead, we use existing coding meth-
ods to enable ECS collaboration and focus on developing online
content placement schemes for stochastic content arrivals. Ta-
ble I summarizes the differences of the proposed scheme from
the existing works.

III. SYSTEM MODEL
A. Network Model

We consider a heterogeneous wireless network (see Fig. 1
for illustration) consisting of one macro base station (MBS)
and N wireless Edge Caching Stations (ECSs), indexed by
N ={1,2,...,N}. The MBS provides coverage with a large
cell radlus. The ECSs are densely deployed in hotspots for
caching capacity enhancement (e.g. SBSs). We consider that
the network is divided into M disjoint regions (or hotspots), in-
dexed by M = {1,2,..., M}. Due to the dense deployment of
ECSs, users in aregion are in the transmission range of (possibly)
multiple ECSs. Let B,, € N be the set of ECSSs that can serve
region m and M, be the set of regions that are served by ECS n.
By making each region small, we consider the expected trans-
mission rate between ECS n and region m, denoted by 7, .

sion rate between ECS n and region m is

hm,nPn

NotT ey

Tman = Ehp, [Wn log (1)] ,
where W, is the channel bandwidth of ECS n, h,, ,, is the chan-
nel gain, P, is the transmission power of ECS n, Ny is the
noise level, and I is the interference from other ECSs. At the
content placement decision time, the channel condition under
which users will download the content is not realized. There-
fore, we consider the expected rate rather than instantaneous
rate.

If the content file requested by a user is cached at the nearby
ECSs, then the user can access the content quickly, bearing only
the ECS-to-user transmission delay. Otherwise, the user has to
retrieve the content by turning to the cache entities at the MBS
(if cached at the MBS) or the content provider (if not cached at
the MBS), which incurs the larger transmission delay. Let 7, o
denote the data rate for content retrieval via the MBS, which
is assumed to be lower than 7, ,. This is because the MBS
often can only provide limited radio resources to each user and
hence, the MBS transmission rate is usually lower than the ECS
transmission rate [32].

B. Content Arrival and Popularity Model

From an operational perspective, when a user requests some
content, if the content is not in the cache, then the SP needs to
fetch the content from the CP and forward it to the user. There-
fore, this is a natural time for the SP to negotiate contracts with
the CP and determine caching decisions for future requests. This
leads to an event-driven system in which content caching and
placement decisions have to be made sequentially over time. In
this paper, we consider only content files that the SP decides to
cache in MBS/ECSs according to some contract-based caching
mechanism and focus on how fo place the content packets among
the MBS/ECSs. Hence, we are not deciding whether or not to
cache content but rather where to place the content-to-be-cached,
which is substantially different from many existing works. To
better see the link between content placement and traditional
caching problems, consider scenarios with and without ECSs.
In the scenario without ECSs, caching occurs only on the MBS
and existing TTL-based caching policies can be directly applied.
In the scenario with ECSs, caching can occur on both the MBS
and ECSs, which play as caching helpers to move cached con-
tent even closer to the end users. The decision of whether or not

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on February 23,2020 at 04:26:16 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: COLLABORATIVE CONTENT PLACEMENT AMONG WIRELESS ECS WITH TIME-TO-LIVE CACHE 435

Past Current Future
Q
N
‘@ Content k k+1 Unknown yet
I:I I:I k+2
i User requests time
‘_M_L
Predict popularity Hmd)
Caching fork Occupancy time of k
Fig. 2. Illustration of content arrival, occupancy time and popularity.

to cache is the same as before and hence the same TTL-based
caching policy can be used. The difference is that where to place
the content is not a simple decision of putting the content in the
MBS, but rather involves a more complex decision of distribut-
ing content packets among the ECSs given their capacity and
location constraints.

Let £ =0,1,2,... be the sequence of new content files that
the caching policy decides to cache over time. The size of content
file k is denoted by ke (0, smax] (measured in packets of the
same size), which differ across content files. Each content file to
be cached has an occupancy time requirement as a result of some
contract-based mechanism determined by the CP and the SP. The
occupancy time does not need to be a predetermined constant.
It can also be variable (renewed/prolonged) as in [6]. When
the content has been cached by the SP for the corresponding
occupancy time, the content expires so the SP is allowed to
remove it from the caches of the MBS/ECSs, thereby making
room for new content. Let g* denote the number of expired
packets in the cache of ECS n when a new content file & arrives.
‘We assume that each ECS n has a limited cache capacity, denoted
by C,, (measured in packets), and the MBS has a sufficiently
large cache capacity to support all content files that are to be
cached. Note that the MBS does not cache the whole content
catalog; it only needs to cache content that the TTL caching
policy decides to cache. However, due to the limited ECS cache
capacity and the required content occupancy time, the system
has to judiciously decide how to place each content file in the
ECS network based on the available cache spaces, the content
size as well as the popularity of the content among users in order
to minimize the expected downloading time.

To facilitate the content placement decisions among the ECSs,
the region-wise popularity of each content file £ will have to be
predicted. Here, we assume that an accurate enough prediction
algorithm [15], [33] is used and do not develop new prediction
algorithms. In this paper, the popularity of content file k is de-
scribed by (pk, . .., p%,) where p¥, € [0, piax] is the probability
that content k£ will be requested by users in region m within its oc-
cupancy time. However, we note that the popularity and the size
of forthcoming content files (i.e. content & + 1, k + 2,...) are
not known and cannot be predicted by the system. The fact that
new content files become available sequentially makes the prob-
lem very challenging since content placement decisions must be
made without foreseeing forthcoming new content files.

Fig. 2 illustrates the content arrival process. When content k
arrives to the system (namely it is requested by some user in the
cell for the first time and the caching policy decides to cache it),

its region-wise popularity is predicted. At this point, the system
does not know what content file & + 1, k 4 2, . . . are, when they
will arrive or what their sizes are and hence also cannot predict
their popularity.

C. Coded Caching and Content Downloading Model

While many codes can be used for collaborative content place-
ment, we use Maximum Distance Separable (MDS) code as a
specific example, which is also widely used in the literature [17],
[34]. Specifically, a content file & is divided into s* small packets
and then Q* > s* coded packets are generated using the MDS
code at the MBS. Then the coded packets will be distributed
among the network of ECSs. The MDS code allows a user to
recover the original content file by downloading any s* distinct
coded packets. In general, we would like the coding overhead,
defined as Q% /s*, to be small in order to reduce the coding com-
plexity. In the following sections, we first determine how many
coded packets each ECS should cache for a particular content
file. In Section V, we design a coding scheme to minimize the
coding overhead.

Let 2¥ < s* denote the number of coded packets cached in
ECS n for content file k. We let x§ = s* so that the users can
always retrieve the whole content from the MBS. A user may
have to access multiple ECSs to acquire a total of s* distinct
packets for content recovery. We assume that the user device is
equipped with a single radio and hence, it cannot download from
multiple ECSs at the same time. To examine the total download-
ing time for a typical user in region m when it requests file k,
letak, n < < x¥ denote the number of coded packets downloaded
from ECS n by the user. Then, the user can recover the origi-
nal content k by following the MDS decoding rule if the total
number of downloaded coded packets is greater than s”, i.e.

m0+zamn— (2)

neEBy,

where afﬁuo denotes the number of coded packets received from
the MBS. Depending on the transmission rates between ECSs
and region m, the total downloading time of content k for a user
in region m is thus

k k k
d(ak) o am,n + st = ZneBm am,n
m) = E

neB T'm,n T'm.0
1

k

= — g (Uy 3)
T'm,0 nes,, T'm,0 Tm,n

The optimal downloading strategy that minimizes the down-
loading time by user in region m given the caching strategy

xk = (z%,...,2%) can therefore be obtained by solving the
following linear program:
mings d(afn) (4a)
S.t. Uy < x Ym, n (4b)
Z am n < Ym, n (4¢)
neB,,

The solution to the above linear program is intuitive: the
user ranks its reachable ECSs according to the transmission

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on February 23,2020 at 04:26:16 UTC from IEEE Xplore. Restrictions apply.

436

rate in the descending order. Then, it downloads as many coded
packets as possible following this ranking until s* distinct
coded packets have been downloaded. If the number of coded
packets cached at all reachable ECSs is smaller than s*, then
the user turns to the MBS to download the remaining coded
packets. We denote d,,, (") as its optimal downloading time
of content file k£ for users in region m achieved by the optimal
association/downloading strategy given the content placement
strategy =" . Since content popularity differs across regions, the
expected downloading time of all users for a given collaborative
content placement strategy z” is d*(z*) =Y, pk d,.(z").
In this paper, we use the content downloading time as the
performance metric.

D. Model Assumptions and Justifications

We summarize the assumptions made in the above model
and their justifications. 1) Inter-ECS interference is handled by
state-of-the-art interference mitigation solutions: A simple in-
terference mitigation scheme is to assign orthogonal frequency
bands to adjacent ECSs. A more advanced (but more compli-
cated) solution can be successive interference cancellation. 2)
Data rate for content retrieval via MBS is lower than ECS: This
is a standard assumption and what motivates caching on ECSs. 3)
Each ECS has a limited cache capacity and the MBS has a suffi-
ciently large cache capacity to support all content-to-be-cached:
It is a natural assumption that an ECS has a limited cache capac-
ity. For the second part, note that the MBS caches only content
that the TTL caching policy decides to cache. 4) An accurate
enough prediction algorithm is used to predict content popular-
ity of the current received content: Many existing content pop-
ularity prediction algorithms have been developed in the past
recent years, e.g. [15], [33]. Our algorithm takes the output of
these algorithms to make content placement decisions. Develop-
ing prediction algorithms is orthogonal to this effort. 5) The user
device is equipped with a single radio so it cannot download from
multiple ECSs at the same time: Most current commercial mobile
devices have a single radio that can only communicate with one
other device at a time. The mobile device may have multiple
antennas to leverage multiple-input multiple-output (MIMO),
but the communication is still between one transmitter and one
receiver at a time.

E. Problem Formulation

As the ECSs have limited storage capacity, the number of
content packets that can be cached in an ECSs is limited by
the current free cache space at the placement decision time. We
define ¢k as the free cache space of ECS n at the decision time for
content k, which evolves as old content packets expire and new
content packets are pushed into the cache over time. Note that
¢k is not the content size already cached in ECS n; rather, it is
the space available for caching new content. To understand how
ck evolves over time, we illustrate the events occurred between
arrivals of content k and content k£ + 1.

1) Content-to-be-cached k arrives to the system. The current

free cache space of ECS n is c&.

2) Each ECS n pushes x* < s* packets into its local cache

where we must also have =¥ < c¥ satisfied.

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 22, NO. 2, FEBRUARY 2020

[]

4 Pop v

————

Expired Packets gk

Fig. 3.

§Push x

Free Cache Space c¥

Cache Capacity C,

Pop, push and cache space evolution.

3) Users request and download unexpired content up to k.
4) By the time when content-to-be-cached k + 1 arrives, g*
packets in ECS n’s cache become expired and y* of them
are removed from the cache of ECS n. Thus, the free cache
space evolves to cFt = ¢k — 2k 4 ok Fig 3 illustrates
the evolution of the free cache space.

For each newly arrived content %, each ECS n makes two
caching decisions: the push decision z¥ and the pop decision
yk. The objective of our system is to minimize the average con-
tent downloading time by judiciously making content placement
decisions (push/pop) for the network of ECSs. Formally, the
stochastic collaborative content placement (SCCP) problem is
formulated as follows:

K
SCCP mk{r;ilcr}Vk Jim % ; d*(x") (5a)
st 2l <sF R < gf vn,VE (5b)
k< F vn, VE (5¢)
A=k gk gk v Ve (5d)

The SCCP problem aims to minimize the average content
downloading time, i.e., = > r_, d*(z*), for a total of K con-
tent files arriving sequentially. For the decision problem with
respect to content k, the decision variables are push decision
xh = (zf,... %) and pop decision y* = (yf,...,y%). Al-
though the pop decision y” is not explicitly reflected in the
objective function, it indirectly affects the maximal number of
packets that can be put in the ECSs through the free caching
space dynamics. We use K — oo to model a long period of
time during which there are many content arrivals. Our model
also captures the dynamic system where individual users can
move because we consider content download between ECSs and
user regions. The SCCP problem is a stochastic optimization
problem because information about content k + 1,k + 2, ... is
unavailable at decision time for content k. Therefore, it cannot
be solved using a conventional offline optimization approach.
Let d* be the infimum average downloading time achievable
by any content placement policy that meets the required con-
straints, possibly by an oracle policy that have complete in-
formation of future content. We will compare the performance
achieved by our algorithm with d* in the next section. Before
proceeding with the algorithm, we make several remarks on this
formulation:

Causality Constraint: Constraints (5¢) and (5d) impose a
free cache space causality constraint on the feasible cache push
actions. This constraint makes SCCP a particularly challenging
problem to solve since the system’s decisions are now intricately
intertwined across different content % due to the free caching

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on February 23,2020 at 04:26:16 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: COLLABORATIVE CONTENT PLACEMENT AMONG WIRELESS ECS WITH TIME-TO-LIVE CACHE 437

space dynamics (5d). Even if the information of future content
size and popularity were known, solving SCCP involves 2N K
decision variables coupled via (5d) for a number of K content
files. Therefore, solving SCCP can be intractable when K is
large. The problem becomes even more complicated due to
the fact that content file k + 1,k + 2, ... are unknown by the
arrival of content &, and hence their content sizes and popularity
are unknown.

Content Expiration Process: The number of expired pack-
ets g* in ECS n during decision cycle & is a random variable
depending on content 1, . .., k’s popularity changes and their as-
sociated contract renewal processes (if the TTL-based caching
policy allows renewal). Given the current free cache space c*,
it is clear that g* must be no more than C,, — c¥. To enable our
subsequent analysis, we make the following assumption.

Assumption 1: Foreach ECS n, there exists arandom process
Gk sothat (1) g% € [0, gmaz] isii.d. over k, (2) gF = gk if gk <
C,—ckand 3) g% = C, — cFif gk > C,, — k.

This assumption states that g is a truncated version (truncated
by C,, — &) of an i.i.d. random variable §*. We note that this
assumption is required to perform rigorous performance anal-
ysis of our algorithm, but our algorithm can still run without
this assumption. Moreover, we show that the i.i.d. assumption
roughly holds by using real-world data traces. Simulations in
Section VI-E show that g¥ itself is already i.i.d. and hence, sim-
ply taking g¥ = g justifies this assumption.

Pop Action: In addition to the push decision, each ECS also
has to make a pop decision which removes part of the expired
packets from the cache. In practice, however, all expired packets
can be removed to make more room for newly arrived content.
The pop decision is only introduced and needed to facilitate the
analysis. In particular, by appropriately deciding the number of
packets to remove from the cache, the free cache space c can
be kept bounded in our problem (which will be shown later).
Therefore, the total required cache capacity can be made finite,
thereby enabling practical implementation. Apparently, remov-
ing all expired packets will require a smaller cache capacity to
implement the algorithm.

Objective Function: we consider content downloading time
as the objective function. Nevertheless, our framework can
be easily adapted to handle different objective functions. For
instance, instead of the downloading time, we can assign other
types of costs (e.g. energy, bandwidth or monetary cost) to down-
loading the content from the network edge and from the core
network (i.e. wired Internet backbone and the MBS). Moreover,
instead of minimizing cost, our framework can also be used to
maximize user satisfaction or the SP’s profit.

IV. STOCHASTIC COLLABORATIVE CONTENT PLACEMENT

In this section, we develop the stochastic collaborative con-
tent placement algorithm for ECSs based on the perturbed Lya-
punov optimization technique. We will have to solve the SCCP
problem involving both the spatial correlation among ECSs due
to coded caching and the temporal correlation due to the free
cache space causality constraint, yet the placement decision of a
content file has to be made without foreseeing the forthcoming
content files in the future.

Instead of solving the original SCCP problem, we will first
investigate a relaxed problem (R-SCCP) below:

. . 1 k(o k
R-SCCP mkr_glkr,lw I%linoo 7 ; d”(x") (62)
st ak <sF gk <gk vn,Vk (6b)
k< Vn, Vk (6¢)

1
lim —E lZ(xﬁ—yﬁ)lzo, Vn (6d)

K—o0
k

R-SCCEP is a relaxed problem of SCCP since the constraint
(5b) is relaxed due to y* < g* and the causality constraint (5d)
is relaxed to (6d). Denote d' as the infimum average down-
loading time achievable by any content placement policy that
meets the required constraints in R-SCCP. Therefore, we must
have d' < d*. Because ¢ may be larger than C,, — c¥, the
cache capacity constraint may be violated. Therefore, we as-
sume C),, = oo, Vn for now but we will show later that our al-
gorithm only requires a finite cache capacity while meeting all
constraints in SCCP. As a result, our algorithm will also be a
feasible content placement policy for the original problem. Sim-
ilar techniques are also adopted in [25]. We define perturbed free
cache space for each ECS n as ¢& = ¢k — 6,, where 0, is a per-
turbation term for each ECS. We choose 6,, as follows:

1 1
en é V max - max 7
s T () o O

meM,,

where V' is a control parameter, and the exact rationale behind
this choice will be explained later. The main purpose of the per-
turbation parameter is to stabilize the occupied caching space
and meanwhile minimizing the average downloading time. The
required caching capacity can be determined based on the per-
turbation. The quadratic Lyapunov function associated with the
perturbed fr ee cache space is defined as:

\Ilk:%Z(cﬁ—On)Q. ®)

We now examine the Lyapunov drift A¥ which represents the
expected change in the Lyapunov function:

AF £ E[WF — 0k M 9)

where the expectation is with respect to the random process
es associated with the system, given the free cache space c”.
Moreover, due to the free cache dynamics (5d), we also have
cktl 9, =cF — 0, —zF + y*. Squaring both sides of the
above equation, we obtain (cE+1 — 6,,)% = (& —0,,)% + (zF —
yE)? = 2(ck — 6,)(ak — yF). The term (o — 15)% < 2, +
Jmax 18 upper-bounded by a constant. Using this bound and
rearranging the above equation, we have (c**! —)2 — (c¥ —
0)? < 82, + G2 — 2(c* — 0)(a* — y*). Using this inequal-
ity and the definition of A¥, we have

N<D-E [zez<xﬁ—yz> |ck]

n

(10)

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on February 23,2020 at 04:26:16 UTC from IEEE Xplore. Restrictions apply.

438

where D £ N(s2 Sma + g2,..)/2 is a constant. We then add the
term VEE [d*(x") | ¢*] to both sides and denote

)|,

which is known as the drift-plus-penalty. We further have

AV = A¥ + VE [d¥(z* (11)

AV < D+E |V (ah) > &k (af -

yEY | a2

Following the theory of Lyapunov optimization (drift-plus-
penalty method) [8], the control actions are chosen for each
content k to minimize the bound on the drift-plus-penalty. There-
fore, for each content k, we solve the problem below:

. k k ~k k k
min, Vdt (@) = e (2 —yl) (13a)
st al < Y < gk vn (13b)
oF < cF vn, Vk (13¢)

where V' is a positive control parameter to adjust the trade-off
between the downloading time and the cache capacity require-
ment. This problem can be converted to a linear program taking
into account the optimal downloading strategies of individual

users in (4a) as follows
1 1
> (-))
T'm ,0 T'm \n ’

rnln —Vme (

kyk,ak

neb,,

- Z) (14a)
st xh <s® ok <gkl wn (14b)
ay, , — x5 <0, Vm,n (14c)
Z af, , <sF Vm (14d)

neb,,

The objective function can be further simplified to
mEMn

where we define pf, ,, £ pk, (1/rm,0 — 1/7m). Clearly, the
cache pop actions y* can be decoupled from the cache push
actions z* and the downloading actions a*. Next, we discuss
the solutions for y* and =* separately.

Solution of the Pop actions y*. The optimal pop actions can
be obtained by solving

min Z dyr stk <ghvn (16)
Depending on the signs of ¢&, the solution is
f gk, ifck <6, (a7
on 0, otherwise

That is, ECS n removes all expired packets from the cache if the
free cache space c¥ is smaller than a threshold 6,,. Otherwise, it
simply leaves these packets in the cache temporally. Again, we
note that in actual implementation, all expired packets can be
removed from the cache.

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 22, NO. 2, FEBRUARY 2020

Algorithm 1: SCCP

Input: Current free cache space (cf,...,c
size s*, transmission rates Tmon, YN, N,

for each new content file k£ do

: Predict content popularity pf;, ., Vm,n;

3: Each ECS n pops y* = §* packets if ¢ < 6,, and
yk = 0 otherwise;

4. Obtain the push decision z*, ¥n and downloading
strategies a’ﬁ,m, Vm, n by solving the linear program

k), content

N =

(13);
5: Update k1 = ¢k — 2k 4 ok vn;
6: end for

Solution of the Push actions x*. The optimal push actions
can be obtained by solving the following linear program

~k k
LP max (V > Bhnak, . cnxn> (18a)
? meM,,
s.t. xﬁ — sk <o, Vn (18b)
ak, . — x5 <0, Ym,n (18¢)
> ak,—s"<0, ¥m (184d)

n

In particular, because V'Y .. pF ak . +chak <
(V¥ men, Phnn +0n) k., we must have xf =0 if
V'Y em, P+ < 0. In other words, ECS n does
not push anything into the cache if the current free
cache space ¢* is smaller than a threshold 6, defined as
OF 20—V cn P (1/Tmo — 1/rmn). Note that 6F is
not a constant but is changing depending on the popularity of
content k£ among the users served by ECS n. If the content
is sufficiently unpopular (in the sense of weighted average
popularity among all user regions where the weight for region
m is o
at all to save cache space for future (possibly more popular)
content. However, even if the content is sufficiently popular,
ECSs may not want to push the entire content in the cache. By
collaborating with other ECSs, each ECS only needs to cache
a portion of the content, and the the exact number of packets
to be cached is determined by LP. We summarize the proposed
SCCP algorithm in Algorithm 1.

A. Performance Analysis

First, we show that by employing the proposed algorithm, g*
in fact equals ¥ for all k by choosing an appropriate V' provided
that the cache capacity is moderately large.

Lemma I: For any () > meax ZmeM (1/rm,o —
1/Tmn) + Smax + 20max, We have gk = ¥ Vk,n by choosing

C — Smax — ngax

0<V <
min Trm)

™ Pmax Zme/\/t (1/Tm 0—

1 1
en = meax Z <7'm_0 - o n) + Smax; vn (20)

meM,,
Proof: See in online Appendix A [35].

19)

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on February 23,2020 at 04:26:16 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: COLLABORATIVE CONTENT PLACEMENT AMONG WIRELESS ECS WITH TIME-TO-LIVE CACHE 439

Lemma 1 is a crucial result because it shows that our algo-
rithm not only leads to a feasible content placement policy for
the relaxed R-SCCP problem but also a feasible policy for the
original SCCP problem. Based on this result, Theorem 1 below
proves a performance guarantee for our algorithm.

Theorem 1: If the cache capacity satisfies

Crn > Vpmax Z
meM,,

1 1
- + Smax + 29max (21D
T'm,0 T'm,n

then SCCP yields a feasible content placement policy. More-
over, the achievable average downloading time satisfies

lim — Z E[d*] < d (22)

K—oo K -

<Ibz

where d* is the optimal average downloading time that can be
achieved by solving the original SCCP problem and D is a
constant less than D.

Proof: See in online Appendix B [35].

Theorem 1 provides a strong performance guarantee for our
proposed algorithm. It proves that the achievable average down-
loading time is within a bounded deviation of the optimal perfor-
mance achieved by a policy that possibly knows the information
on future content. Moreover, by tuning the control parameter
V', SCCP can easily make a [O(1/V), O(V)] tradeoff between
the content downloading time and the required cache space, i.e.
average downloading time is inversely proportional to the con-
trol parameter V' and the required cache capacity of ECS is
proportional to the control parameter V. The result can be in-
tuitively understood: a stronger performance guarantee (i.e. a
tighter bound) can be obtained if the cache capacity is larger.
In particular, when we have an unlimited cache space, SCCP
achieves the optimal performance and the policy becomes sim-
ply to cache the entire content file & on every ECS, which is
intuitively optimal.

V. SPATIAL CODED PACKETS REUSE

The SCCP algorithm developed in the previous section deter-
mines the number of coded packets that should be cached in the
ECSs for each content k. For a user to successfully decode to
obtain the original content, the coded packets downloaded from
possibly multiple ECSs must be distinct. To ensure that the user
can download distinct coded packets even from multiple ECSs,
careful MDS code design is essential. In this section, we describe
an MDS code design that fulfills this purpose while minimizing
the coding overhead.

The MDS code is described by a tuple (s, Q) where s is the
number of original packets and () is the number of coded pack-
ets. This code allows the original s packets to be recovered using
any s distinct coded packets from the) coded packets, and Q) /s
represents the coding overhead. A straightforward MDS code
design is to make @) = Zgzl ., + s distinct coded packets. In
this way, each ECS n has z,, coded packets and the MBS has s
coded packets, which are all distinct from each other. However,
this straightforward design is inefficient: when the number of
ECSs N is large, the overhead)/ s can also be large. To address

transmission range\
wcs 9
a,..7) 7\ o
,/e ”::_“_A}_ |:> o/e\
o f / Independent Sets: e
{1}, {2}, {3}, {4}, {5}

overlapped e {1,4} {1,5}, {4,5}, {2,4}, {2,5}
service regions {1, 4,5}, {2, 4,5}

Physical graph Conflict graph

Fig. 4. Conflict graph of collaborative content placement

this issue, we propose “spatial coded packets reuse”, similar to
“spatial spectrum reuse” in wireless communications, and pro-
vide the optimal MDS code design that minimizes () for given s
and z1, ..., xy. The key idea is that ECSs apart from each other
far enough do not have common service regions and hence, the
same coded packets can be cached on these ECSs, thereby re-
ducing the total number of required coded packets. Nevertheless,
the spatially complex network structure still demands a careful
design of the coded packets allocation among the ECSs.

A. Weighted Conflict Graph for Collaborative Caching

Depending on the locations of the ECSs and their common
service regions, we construct a weighted conflict graph G =
(V,E, W) for ECSs and the MBS for each content &, where the
elements are defined as follows:

® Vertices: each caching entity (ECS or MBS) corresponds
to a vertex n € V

e Edges: for every pair of vertices, add an edge between
them if and only if there exist common service regions that
can access both of them. Clearly, there is an edge between
MBS and every ECS.

e Weights: for each vertex, assign a weight w(n) as the so-
lution of the content placement decision for this content
derived in SCCP. In particular, w(n) = x,, if n € N is an
ECS and w(n) = s if n = 0 is the MBS.

Fig. 4 illustrates an example of the weighted conflict graph of
collaborative content placement. The weighted conflict graph is
different for different content because of the weights. However,
the connection relationship remains the same for all content files.
The following concepts in graph theory are important for our
MDS code design.

Definition 1: An independent set (IS) is a set of vertices in
which no pair is connected by an edge.

Let Z(G) denote the set of all ISs of graph G, and Z(G, n)
denote the set of ISs of G that contain the vertex n. A frac-
tional coloring of G is a function f : Z(G) — R that assigns
each independent set a non-negative real number such that for
any vertex n of GG, the sum of real numbers assigned to it is no
less than its weight, namely >~ ;7 ,) f(I) > w(n),Vn. Ap-
parently, there are many feasible fractional coloring functions.
The minimum possible sum } ;.7 f(I) overall ISs of a frac-
tional coloring is called the fractional chromatic number x ¢ (G),

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on February 23,2020 at 04:26:16 UTC from IEEE Xplore. Restrictions apply.

440

Algorithm 2: Spatial Coded Packets Reuse

I: Construct the weighted conflict graph G = (V, €, W)
2: Determine the set of ISs Z(G) and Z(G, n),Vn

3: for each content k& do

4: Determine z* by running SCCP

5: Determine f* and x ¢ (G) by solving (23a)

6.

7

8

Construct MDS code (s, x#(G))
Distribute coded packets among ISs according to f*
Each ECS/MBS n picks =¥ coded packets from its
associated ISs to push into its cache

9: end for

which can be obtained by solving the following minimization

problem:
min Z f(I) (23a)
I€Z(G)
st. Y f)=wn), Vnev (23b)
I€Z(G,n)
f(I)>o, VI € Z(G) (23¢)

B. Optimal MDS Coding via Spatial Coded Packets Reuse

Now we are ready to present our MDS code design via spatial
coded packets reuse. For each content, we compute the fractional
coloring function f* that achieves the fractional chromatic num-
ber x¢(G) by solving (23a). Then we construct a MDS code
(s, Q) such that Q = x ¢(G) following the standard MDS con-
struction process. Next, we distribute the x s (G) coded packets
among the ISs without overlapping so thateachIS I € Z(G) gets
f*(I) coded packets. Then each ECS n picks any w(n) coded
packets out of the total number of 3 ;7 ,,) f*(I) coded pack-
ets that it can use to push into its cache. The whole process is
summarized in Algorithm 2.

We discuss a couple of implementation issues regarding the
above algorithm as follows. First, Algorithm 2 is run for each
content arrival, which involves solving the SCCP problem and
(23a). Both problems are linear programs so easy to solve. In
order to solve (23a), the set of ISs needs to be determined first,
which can be complex if the number of ECSs are large. How-
ever, computing the ISs is a one-time task that can be carried out
offline before the system starts given the coverage relationships
of the ECSs and the user regions. Moreover, there exist various
graph coloring approaches that can be used to obtain an approx-
imate solution of x s (G) with low complexity. Second, since the
content is cached into the ECSs, broadcasting can be utilized to
reduce duplicated transmissions. Specifically, the MBS broad-
casts a stream of x s(G) coded packets to all ECSs, and only
when the coded packets are for the ISs that ECS n belongs to
does this ECS push these packets into its cache. This can be done
by simply adding a few bits to the broadcasted stream, which
indicate the IS that each coded packet belongs to.

We now prove the optimality of the proposed MDS coding
scheme in terms of minimizing the coding overhead Q/s.

Theorem 2: The proposed MDS coding scheme minimizes
the coding overhead Q/s.
Proof: See in online Appendix C [35].

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 22, NO. 2, FEBRUARY 2020

VI. SIMULATION

We carry out simulations on real-world YouTube video re-
quest traces [36] to evaluate the performance of the proposed
algorithm (SCCP). We simulate a 500 m x 500 m area served
by 5 ECSs whose locations are randomly chosen. We split the
video requests into 4 groups according to their IP addresses.
To be specific, the requests are grouped by Network ID (i.e.,
the first 16 bits of IP address). For example, given three users’
IP addresses 254.212.25.141, 254.212.31.36, and 63.22.67.111,
the first and second users belong to the same group since they
have the same Network ID 254.212. The rationale behind this
grouping scheme is that users with the same Network ID be-
long to the same LAN and therefore are geographically closer
to each other (e.g. employees of the same company). There-
fore, each group can be abstracted as a region. We further de-
ploy an MBS whose location is randomly generated and is at
least 1Km away from the ECSs. The MBS and ECSs work at
a fixed transmission power and the downlink channel condition
hum,n is calculated by the path-loss model with log-normal shad-
owing: Py, (dist)[dB] = Py (disto) + 10+ log(dist/disty) + X,
where dist is the average distance between a region and an ECS
and disty = 1km, X5 ~ N(0,§?) is the random shadowing ef-
fects, y = 2is the path-loss exponent, Py, (distg) = 28 dB. Other
parameters for wireless communication model in (1) are: noise
power Ng = —174 dBm/Hz, transmission power of ECS n is
P,, = 20 dBm, and channel bandwidth W,, = 20 MHz. We em-
ploy the policy in [37] to determine the occupancy time of con-
tent files. The occupancy time Ly, for content file & is calculated
as L* = exp(250 - p* — 1)/p”, where popular content files tend
to have a longer occupancy time. However, SCCP is also com-
patible with other strategies that determine the occupancy time
of the content in different ways. We compare the performance
of SCCP with the following benchmarks:

e First In First Out (FIFO) [38]: Each ECS pops out the
earliest arrived content and pushes as many coded packets
as possible into the cache upon arrival of a new content file.

e] east Frequently Used (LFU) [39]: Each ECS has an or-
dered list to track the number of accesses of cached con-
tent files. LFU pushes as many coded packets as pos-
sible into the cache upon arrival of new content files.
The least frequently used one is replaced when the cache
is full.

e Life-time Based Caching (LBC) [37]: Each content file
is associated with an expected occupancy time L* =
(exp(250 - p*) — 1)/p* determined by its popularity py.
Upon the arrival of a content file, LBC pushes as many
packets as possible into each ECS and ensures their occu-
pancy time. LBC pops out packets when they expire.

® Myopic SCCP (SCCP-M): SCCP-M is a myopic version
of SCCP where ECSs collaboratively cache coded pack-
ets to minimize the content downloading time but does not
concern the forthcoming content. Specifically, upon the ar-
rival of content file k£, ECSs solve a myopic optimization
problem mingx d*(z*) + w"x* subject to current cache
space constraints. The term w ' z* is added to avoid ex-
cessive pushing, without which the problem degenerates
to LBC. The weight is set to w = [3,3,...,3]" which is
empirically optimal.

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on February 23,2020 at 04:26:16 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: COLLABORATIVE CONTENT PLACEMENT AMONG WIRELESS ECS WITH TIME-TO-LIVE CACHE

441

—_
o
N

--;;%++

—
o
N

-+ YouTube video clips |
= == Zipf + exp cutoff

Heglon

. 1
+ YouTube video clips

= = =Zipf + exp cutoff 0.9
0.8
] 0.7
0.6
. 05

: "]

—_
o
=]

10"

Number of videos with > x views

500 1000 1500 10° 102 103
Video rank Number of Views Reglon
(a) CDF of content popularity (b) Distribution of user requests (c) Popularity correlation across regions
Fig. 5. Statistics of YouTube data.
e Non-collaborative SCCP (SCCP-NC): SCCP-NC is a non- . —o—scop 1
cooperative version of SCCP where each ECS decides on- § —=—LFU 52.5% downloading
line content placement decisions independently using the o 60 | Fro time|reduction 1
Lyapunov technique. Moreover, the users can only request £ = g‘égp M 1
content from one ECS or the MBS. 250 5 scepne S = 1
e Non-caching: The users directly request content files via 8 40 Non-caching e 1
MBS without exploiting ECSs. € J
In our simulation, FIFO, LFU, LBC are semi-collaborative 3 30
caching schemes in the sense that users are allowed to download % 20 L I
from multiple ECSs fbut the content placement decisions of o
ECSs are not jointly optimized. <10 ‘ ‘ ‘ ‘ ‘ ‘ ‘ B
200 400 600 800 1000 1200 1400 1600
A. YouTube Data Decision cycle k
We use the YouTube data from the study conducted at the Fig. 6. Performance comparison.

University of Massachusetts’ Amherst campus [36]. The study
records YouTube requests arising from the campus network for
several days. We use the data recorded on 09/15/07. The request
traces contain 928 unique users (source IP address); every user
request has a start timestamp, duration (in second), requested
content (content server IP), and the size of the requested con-
tent. The data contains 1,766 video files across the operational
timeline which is equally divided into 20,000 time slots. Each
content placement decision cycle begins with a request for a new
video. The distribution of the content files is presented in Fig. 5.
As can be seen from Fig. 5(a) and Fig. 5(b), the popularity dis-
tribution of the adopted YouTube video data follows a Zipf’s
distribution with an exponential cutoff. Based on the content re-
quests of users in four regions, we analyze the content popularity
for each region and depict the correlation of content popularity
across four regions in Fig. 5(c). For example, the color block
at the grid (1,3) denotes the correlation of content popularity
vectors (pi,p?,...,pi) and (pi,p3,...,pk). We see that the
correlation value at grid (1,3) is very small, which means that the
content popularities of region 1 and region 3 are very different.
It can be observed in Fig. 5(c) that these four regions have no-
ticeable differences in content popularity as has been considered
in our model.

B. Performance Comparison

Fig. 6 shows the average downloading time (the objective
of the SCCP problem in (5)) of SCCP and 6 benchmarks
on the YouTube data upon the arrival of each content file &

(ie., £ 3°F | d'(z')). The cache capacity of each ECS is set

to 600 packets. It can be observed from Fig. 6 that SCCP
significantly outperforms other benchmark schemes, providing
a 52.5% downloading time reduction compared to the Non-
caching scheme. In general, traditional caching schemes, i.e.
LFU, LRU, and FIFO, incur large downloading time, since these
schemes simply cache content files as they arrive without ana-
lyzing the popularity of content. As a result, the cache space at
ECSs is more likely to be occupied by unpopular content due
to occupancy time in TTL setting. By comparing SCCP and
SCCP-NC, we see that enabling the collaboration among ECSs
dramatically reduces the content downloading time. Comparing
SCCP and SCCP-M, we see that the content downloading time
can be further reduced by proactively considering forthcoming
content while making content placement decision for the current
content file.

Besides the content downloading time, we also report an MBS
offloading performance of SCCP and other benchmarks in Fig. 7.
Specifically, the MBS offloading performance shows the frac-
tion of content packets downloaded from ECSs and the fraction
of content packets downloaded from the MBS. Fig. 7 shows
that SCCP has the highest fraction of packets downloaded from
ECSs.

C. Impact of Control Parameter V

We are also interested in whether the theoretical performance
guarantee of SCCP still holds in a realistic scenario. We vary

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on February 23,2020 at 04:26:16 UTC from IEEE Xplore. Restrictions apply.

442

1 ; ; ; ; — T T T
[Received from ECSs
[1Received from MBS

0.6 [b

02 J

Percentage of packets received from ECSs/MBS

SCCP LFU LRU FIFO LBC SCCP-MSCCP-NC
Policies
Fig. 7. Content packet MBS offloading.
x10%
® 60 —E— K-average downloading time (SCCP) 2
e — » = K-average downloading time (Non-caching -, 18 >
= = | =4~ Required cache capacity (ECS 1) ——— =% ° 5
Cd
250 1 |-4%--Required cache capacity (ECS 2) e Al6 g
ko] —-»-= Required cache capacity (ECS 3) b ’,,-" 114 ®©
g 40 —-¥-- Required cache capacity (ECS 4) /,v" 112 g
I ——+-= Required cache capacity (ECS 5) r - _S
2 T T A
T 30 B e - 10.8
o I 2
= R D N P Pt 106 @
o - 5
o 20 104 &
© : 102 &
S oaeS TS ‘ o
60 100 300 500

Control parameter V

Fig. 8. Impact of control parameterV.

the control parameter V instead of setting a fix cache capac-
ity C. Fig. 8 shows the K-average downloading time (i.e.,
L 52K | d*(z*), where K is the total number of content files
in YouTube data) and required cache capacity under different
values of control parameter V. The result shows clearly that
the performance of SCCP follows a [O(1/V'),O(V)] tradeoff
between the content downloading time and the required cache
capacity as characterized in Theorem 1. With a larger V', SCCP
emphasizes more on minimizing the downloading time and a
large cache capacity is required to implement the algorithm.

D. Impact of Cache Capacity

Fig. 9 shows the K-average downloading time (i.e.,
L S | d*(a*), where K is the total number of content files
in YouTube data) of SCCP and other benchmarks with different
cache capacities. Fig. 9 shows a general trend that the down-
loading time decreases as the cache capacity increases for all
content placement schemes. The reason is intuitive: with larger
caches at ECS, more coded packets can be downloaded at a
higher transmission rate. In addition, it is worth emphasizing
that SCCP is more effective when the cache capacity is small:
when the cache capacity is around 200, the downloading time
of SCCP is much lower than other benchmarks; however, when
the capacity is increased to 1600, many benchmarks can achieve
similar downloading time as SCCP does.

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 22, NO. 2, FEBRUARY 2020

c)

e
o2}
o

—e—SCCP
—e—LFU

LRU
—+—FIFO
—+—LBC

SCCP-M
—p—SCCP-NC
Non-caching

a
=}
Yy

> —>—p—p

N
o
T

W
o

N
o

K-average downloading time (s

800 1000 1200 1400 1600
Cache Capacity

Fig. 9. Impact of cache capacity on downloading time.

E. Analysis of Expiration Process

The content expiration process g* is assumed to be i.i.d. pre-
viously for ease of performance analysis of SCCP. Here, we an-
alyze the content expiration process when running the proposed
algorithm on the YouTube data to see if this i.i.d. assumption
holds true. Fig. 10(a) depicts the number of expired packets at
ECS 1 upon the arrival of content file k. To check whether the
expiration process in Fig. 10(a) is i.i.d., we should ask two ques-
tions: 1) are the observations independent? 2) do they all have
the same distribution? As for the first question, the autocorrela-
tion function can be used to investigate the independence of the
expiration process. The independence is ascertained by comput-
ing autocorrelations for the expiration process at varying time
lags. If independent, such autocorrelations should be near zero
for any and all time-lag separations. Fig. 10(b) gives a lag plot of
autocorrelation function of expiration process. We can see that
the value of autocorrelation function is effectively O for all lag
separations, which means the observations are independent. For
the second question, we do a stationary test for the expiration
process. If the expiration process is stationary (i.e., the distri-
bution of the expiration process does not change over time), it
means that the observations are from an identical distribution.
We utilize a moving-window to show the changes in the statistic
parameters, namely mean and standard deviation, of the expi-
ration process over time. The length of the moving window is
set to 400 and the step is 1. The result is given in Fig. 10(c)
and it shows that the mean and standard deviation stay almost
the same over time, which indicates that the expiration process
is stationary. With the above analysis, we can conclude that the
expiration process of SCCP is i.i.d.

F. Impact of Popularity Prediction Accuracy

One assumption of our algorithm is that the content popular-
ity can be accurately predicted upon their arrival. However, this
assumption may not be true in real-world applications. There-
fore, we run SCCP with popularity prediction errors to see the
impact of prediction accuracy. Specifically, we add random er-
rors (chosen from a normal distribution) on the ground-truth
content popularity to simulate the inaccurate prediction. Fig. 11
shows the performances of SCCP when running with different
prediction errors. We can see clearly that SCCP provides better

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on February 23,2020 at 04:26:16 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: COLLABORATIVE CONTENT PLACEMENT AMONG WIRELESS ECS WITH TIME-TO-LIVE CACHE 443

o
S

- @ 25
(%) > Mean value
@ 80 C 0.8 E /g 20 I Standard deviation
© o o8 15
‘e £ 06 3 E
o 60 ® 53 10
17} < o
2 5 04 (IS
S 40 2 g 5
3 5 0.2 [N=]
> < 2% o
B 20} ‘ ‘ et e Jon nal S el o« Ss
.9:) | ‘ [‘ ‘ ‘ ‘ [V e cpe— — T e ¥e _6 ¢ v c® -5
Q © O
o o D T T 00 L 1 02 L L L 2 10
200 400 600 800 1000 1200 1400 1600 0 5 10 15 20 200 400 600 800 1000
Content file k arrives Lag Window offset
(a) Content expiration process at ECS 1 (b) Autocorrelation of expiration process (c) Stationary test for expiration process
Fig. 10. Analysis of content expiration process.

w
a

w
o

n
a

20

—&— Prediction error N(0,0)
15 —=— Prediction error N(0,0.2) |

Prediction error N(0,0.4)
—&— Prediction error N(0,0.8)

Average downloading time (sec)

10 : :
200 400 600 800 1000
Decision cycle k
Fig. 11. Impact of prediction accuracy.

-

o
e

o
o

1
~

Original content file
— — - Spatial coded packets reuse | |
‘‘‘‘‘‘‘‘‘ Straightforward MDS code

o
o

have coded packets less than Q

0 ‘
0 100 200 300 400 500 600
Number of coded packets Q

CDF: percentage of content files that

Fig. 12. CDF of content files on the number of coded packets.

performance (i.e., lower content downloading time) if the pop-
ularity prediction is more accurate. By comparing Fig. 11 and
Fig. 6, we see that SCCP still has lower downloading time com-
pared to other benchmarks even when the popularity prediction
is inaccurate.

G. Spatial Coded Packets Reuse

Fig. 12 compares the coding overhead of the spatial coded
packets reuse and the straightforward MDS. It depicts a CDF
of content files on the number of created coded packets. We see
that with the proposed spatial coded packets reuse, the system
requires much fewer coded packets compared to the straightfor-
ward MDS coding, thereby reducing the coding overhead and
complexity.

VII. CONCLUSIONS

In this paper, we investigated collaborative caching in ECS
networks, explicitly considering the stochastic nature of con-
tent arrivals and the content occupancy time requirement. An
online algorithm is developed by leveraging the Lyapunov opti-
mization with perturbation. The key idea of our online algorithm
is that the ECSs make caching decisions collaboratively based
on the current free cache spaces in the hope of saving proper
cache spaces for the potentially more popular future content,
thereby improving the caching performance in the long run.
The proposed algorithm provides provable performance guar-
antee that achieves within a bounded deviation from the op-
timal caching performance. We evaluated our algorithm on a
real-world YouTube video request trace and our simulation re-
sults show that the proposed collaborative ECS caching system
reduces the average downloading time by more than 50% com-
pared to the non-caching scenario.

REFERENCES

[1] A. Iacono and C. Rose, “Infostations: New perspectives on wireless data
networks,” Next Gener. Wireless Netw., vol. 598, pp. 3-63, 2000.

[2] P.Blasco and D. Gunduz, “Multi-armed bandit optimization of cache con-
tent in wireless infostation networks,” in Proc. IEEE Int. Symp. Inf. Theory,
2014, pp. 51-55.

[3] M. A. Maddah-Ali and U. Niesen, “Decentralized coded caching attains
order-optimal memory-rate tradeoff,” IEEE/ACM Trans. Netw., vol. 23,
no. 4, pp. 1029-1040, Aug. 2015.

[4] N. Bhushan et al., “Network densification: The dominant theme for wire-
less evolution into 5G,” IEEE Commun. Mag., vol. 52, no. 2, pp. 82-89,
Feb. 2014.

[5] P.K.Agyapongand M. Sirbu, “Economic incentives in information-centric
networking: Implications for protocol design and public policy,” IEEE
Commun. Mag., vol. 50, no. 12, pp. 18-26, Dec. 2012.

[6] R. T. Ma and D. Towsley, “Cashing in on caching: On-demand contract
design with linear pricing,” in Proc. 11th ACM Conf. Emerg. Netw. Exp.
Technologies, 2015, pp. 1-6.

[71 M. Dehghan, L. Massoulie, D. Towsley, D. Menasche, and Y. Tay, “A
utility optimization approach to network cache design,” in Proc. Annu.
IEEE Int. Conf. Comput. Commun., 2016, pp. 1-9.

[8] M. J. Neely, “Stochastic network optimization with application to com-
munication and queueing systems,” Synthesis Lectures Commun. Netw.,
vol. 3, no. 1, pp. 1-211, 2010.

[9]1 N. Golrezaei, A. F. Molisch, A. G. Dimakis, and G. Caire, “Femtocaching

and device-to-device collaboration: A new architecture for wireless video

distribution,” IEEE Commun. Mag.,vol. 51, no. 4, pp. 142-149, Apr. 2013.

C.Li, L. Toni, J. Zou, H. Xiong, and P. Frossard, “QoE-driven mobile edge

caching placement for adaptive video streaming,” IEEE Trans. Multimedia,

vol. 20, no. 4, pp. 965-984, Apr. 2018.

B. Blaszczyszyn and A. Giovanidis, “Optimal geographic caching in cel-

lular networks,” in Proc. IEEE Int. Conf. Commun., 2015, pp. 3358-3363.

T. Wang, L. Song, and Z. Han, “Dynamic femtocaching for mobile users,”

in Proc. IEEE Wireless Commun. Netw. Conf., 2015, pp. 861-865.

[10]

(1]

[12]

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on February 23,2020 at 04:26:16 UTC from IEEE Xplore. Restrictions apply.

444

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Z.Zhou, M. Dong, K. Ota, and Z. Chang, “Energy-efficient context-aware
matching for resource allocation in ultra-dense small cells,” IEEE Access,
vol. 3, pp. 1849-1860, 2015.

S.Zhou, J. Gong, Z. Zhou, W. Chen, and Z. Niu, “Greendelivery: Proactive
content caching and push with energy-harvesting-based small cells,” IEEE
Commun. Mag., vol. 53, no. 4, pp. 142-149, Apr. 2015.

S. Li, J. Xu, M. van der Schaar, and W. Li, “Trend-aware video caching
through online learning,” IEEE Trans. Multimedia, vol. 18, no. 12,
pp. 2503-2516, Dec. 2016.

X. Wang, X. Li, V. C. Leung, and P. Nasiopoulos, “A framework of coop-
erative cell caching for the future mobile networks,” in Proc. Hawaii Int.
Conf. Syst. Sci., 2015, pp. 5404-5413.

A. Khreishah, J. Chakareski, and A. Gharaibeh, “Joint caching, routing,
and channel assignment for collaborative small-cell cellular networks,”
IEEE J. Sel. Areas Commun., vol. 34, no. 8, pp. 2275-2284, Aug. 2016.
A. Gharaibeh, A. Khreishah, B. Ji, and M. Ayyash, “A provably efficient
online collaborative caching algorithm for multicell-coordinated systems,”
IEEE Trans. Mobile Comput., vol. 15, no. 8, pp. 1863-1876, Aug. 2016.
J. Tadrous and A. Eryilmaz, “On optimal proactive caching for mobile
networks with demand uncertainties,” IEEE/ACM Trans. Netw., vol. 24,
no. 5, pp. 2715-2727, Oct. 2016.

J. Liu, Q. Yang, and G. Simon, “Joint optimization of content placement
and request redirection in mobile-CDN,” in Proc. FIP/IEEE Int. Symp.
Integr. Netw. Manage., 2017, pp. 169-176.

B.Zhou, Y. Cui, and M. Tao, “Stochastic content-centric multicast schedul-
ing for cache-enabled heterogeneous cellular networks,” IEEE Trans. Wire-
less Commun., vol. 15, no. 9, pp. 62846297, Sep. 2016.

N. Abedini and S. Shakkottai, “Content caching and scheduling in wire-
less networks with elastic and inelastic traffic,” IEEE/ACM Trans. Netw.,
vol. 22, no. 3, pp. 864-874, Jun. 2014.

L.Huang and M. J. Neely, “Utility optimal scheduling in energy-harvesting
networks,” IEEE/ACM Trans. Netw., vol. 21, no. 4, pp. 1117-1130, Aug.
2013.

Y. Mao, J. Zhang, and K. B. Letaief, “A Lyapunov optimization approach
for green cellular networks with hybrid energy supplies,” IEEE J. Sel.
Areas Commun., vol. 33, no. 12, pp. 2463-2477, Dec. 2015.
S.Lakshminarayana, T. Q. Quek, and H. V. Poor, “Cooperation and storage
tradeoffs in power grids with renewable energy resources,” IEEE J. Sel.
Areas Commun., vol. 32, no. 7, pp. 1386—1397, Jul. 2014.

Z.Chen, J. Lee, T. Q. Quek, and M. Kountouris, “Cooperative caching and
transmission design in cluster-centric small cell networks,” IEEE Trans.
Wireless Commun., vol. 16, no. 5, pp. 3401-3415, May 2017.

K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F. Molisch, and G. Caire,
“Femtocaching: Wireless content delivery through distributed caching
helpers,” IEEE Trans. Inf. Theory, vol. 59, no. 12, pp. 8402-8413, Dec.
2013.

V. Bioglio, F. Gabry, and I. Land, “Optimizing MDS codes for caching at
the edge,” in Proc. IEEE Global Commun. Conf., 2015, pp. 1-6.

E. Bastug, M. Bennis, and M. Debbah, “Living on the edge: The role of
proactive caching in 5G wireless networks,” IEEE Commun. Mag., vol. 52,
no. &, pp. 82-89, Aug. 2014.

F. Kocak, G. Kesidis, T.-M. Pham, and S. Fdida, “The effect of caching
on a model of content and access provider revenues in information-centric
networks,” in Proc. Int. Conf. Social Comput., 2013, pp. 45-50.

M. Wildemeersch, T. Q. Quek, M. Kountouris, A. Rabbachin, and C. H.
Slump, “Successive interference cancellation in heterogeneous networks,”
IEEE Trans. Commun., vol. 62, no. 12, pp. 4440-4453, Dec. 2014.

S. Zhang, N. Zhang, X. Fang, P. Yang, and X. Shen, “Self-sustaining
caching stations: Toward cost-effective 5G-enabled vehicular networks,”
IEEE Commun. Mag., vol. 55, no. 11, pp. 202-208, Nov. 2017.

J. Xu, M. van der Schaar, J. Liu, and H. Li, “Forecasting popularity of
videos using social media,” IEEE J. Sel. Topics Signal Process., vol. 9,
no. 2, pp. 330-343, Mar. 2015.

E. Ozfatura and D. Giindiiz, “Mobility and popularity-aware coded small-
cell caching,” IEEE Commun. Lett., vol. 22, no. 2, pp. 288-291, Feb. 2018.
L. Chen, L. Song, J. Chakareski, and J. Xu, Online appendix.
2019. [Online]. Available: https://www.dropbox.com/sh/hmiexb15i0z01u2/
AABGvGKkwEJ3IHxhB9SHpUH3Va?dl=0

M. Zink, K. Suh, Y. Gu, and J. Kurose, “Characteristics of YouTube net-
work traffic at a campus network—measurements, models, and implica-
tions,” Comput. Netw., vol. 53, no. 4, pp. 501-514, 2009.

H. Qian, W. Mugqing, W. Dongyang, and G. Song, “Lifetime-based greedy
caching approach for content-centric networking,” in Proc. Int. Conf.
Telecommun., 2014, pp. 426-430.

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 22, NO. 2, FEBRUARY 2020

[38] D. Rossi and G. Rossini, “Caching performance of content centric net-
works under multi-path routing (and more),” Telecom Paris-Tech, Paris,
France, Tech. Rep. 1, 2011.

[39] D. Lee et al., “LRFU: A spectrum of policies that subsumes the least
recently used and least frequently used policies,” IEEE Trans. Comput.,
vol. 50, no. 12, pp. 1352-1361, Dec. 2001.

Lixing Chen received the B.S. and M.S. degrees from
the College of Information and Control Engineering,
China University of Petroleum, Qingdao, China, in
2013 and 2016, respectively. He is currently working
toward the Ph.D. degree at the College of Engineer-
ing, University of Miami, Coral Gables, FL, USA.
His primary research interests include mobile edge
computing, game theory, and machine learning for
networks.

Lingi Song (M’17) received the B.S. and M.S. de-
grees in electronic engineering, Tsinghua Univer-
sity, Beijing, China, and the Ph.D. degree in elec-
trical engineering from University of California, Los
Angeles (UCLA), Los Angeles, CA, USA. He is cur-
rently an Assistant Professor with the Computer Sci-
ence Department, City University of Hong Kong,
Hong Kong. Prior to that, he was a Postdoctoral
Scholar with the Electrical and Computer Engineer-
ing Department, UCLA. His research interests in-
clude content-type coding, index coding, network
coding, algorithms, big data, and machine learning. He was the recipient of
the UCLA Fellowship for his graduate studies.

Jacob Chakareski (SM’14) trained as a Ph.D. stu-
dent at Rice University, Houston, TX, USA, and
Stanford University, Stanford, CA, USA. He is cur-
rently an Associate Professor with the Ying Wu
College of Computing, New Jersey Institute of Tech-
nology, Newark, NJ, USA, where he leads the Lab-
oratory for VR/AR Immersive Communication. His
research interests span networked virtual and aug-
mented reality, UAV IoT sensing and networking, fast
online machine learning, 5G wireless edge comput-
ing/caching, ubiquitous immersive communication,
and societal applications. He was the recipient of the Adobe Data Science Fac-
ulty Research Award in 2017 and 2018, the Swiss NSF Career Award Ambizione
in 2009, the AFOSR Faculty Fellowship in 2016 and 2017, and Best/Fast Track
Paper Awards at the IEEE International Conference on Communications in 2017
and the IEEE Global Communications Conference in 2016. He is the organizer
of the first NSF Visioning Workshop on networked VR/AR communications.
He held research appointments with Microsoft, HP Labs, and EPFL, and sits
on the advisory board of Frame, Inc. His research was supported by the NSF,
AFOSR, Adobe, Tencent Research, NVIDIA, and Microsoft.

Jie Xu (S’09-M’15) received the B.S. and M.S. de-
grees in electronic engineering from Tsinghua Uni-
versity, Beijing, China, in 2008 and 2010, respectively
and the Ph.D. degree in electrical engineering from
the University of California, Los Angeles, Los Ange-
les, CA, USA in 2015. He is currently an Assistant
Professor with the Electrical and Computer Engineer-
ing Department, University of Miami, Coral Gables,
FL, USA. His primary research interests include mo-
bile edge computing, machine learning for networks,
and network security.

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on February 23,2020 at 04:26:16 UTC from IEEE Xplore. Restrictions apply.

https://www.dropbox.com/sh/hmiexb15ioz01u2/penalty -@M AABGvGkwEJ3IHxhB95HpUH3Va{?}dl$=$0

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

