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Abstract—Mobile edge computing has emerged as a promising
technology to augment the computational capabilities of mobile
devices. For a multi-user network in which its users periodically
compute their tasks with the help of an edge cloud, we investigate
the network lifetime maximization problem based on present user
task information. We pursue this objective via a minimum energy
efficiency maximization (MEEM) strategy that jointly optimizes
the fraction of user task computations offloaded to the cloud and
the respective allocation of edge computing and network com-
munication resources across the users. We also investigate the
network lifetime maximization problem for the case when the
user task information is available for all future time slots, as well.
This setting represents an upper bound for the MEEM strategy.
Optimal solutions for both investigated strategies are formulated
via feasibility testing and geometric programming. We show that
MEEM can achieve a 70% lifetime improvement over the state-of-
the-art and 460% lifetime improvement over the case of local user
task computation only. We also show that for a high value of the
maximum tolerable delay for completing the computation tasks of
the users, MEEM achieves the globally optimal network lifetime
performance. Finally, we show that MEEM achieves a significant
reduction (3X) in variation of enabled network lifetime over diverse
network topologies, relative to the state-of-the-art.

Index Terms—Mobile-edge computing, energy efficiency,
lifetime maximization, resource allocation.

I. INTRODUCTION

A
S mobile devices are gaining enormous popularity over

the last decade, many new applications, e.g., virtual reality,

natural language processing, interactive gaming, speech-to-text,

image processing, have emerged and attracted great attention.

Due to the requirements of high reliability, intensive comput-

ing, and low latency for these applications, the concept of

Mobile-Edge Computing (MEC) has emerged [2]. In MEC based

systems, small-scale cloud-computing facilities are available at

the edge of pervasive radio access networks in close proximity

to the mobile users [2].
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A. Motivation

In this paper, we investigate joint computing task sharing and

computing and communication resource allocation in mobile

edge computing networks, towards maximizing their lifetime. To

the best of our knowledge, lifetime maximization has not been

explored for such networks before. In particular, though prior

studies have examined energy efficiency in mobile-edge com-

puting networks, they have not considered the residual battery

energy information for the wireless nodes, when allocating com-

puting and communication resources in such networks [2]–[11].

Thus, these studies may not necessarily result in good (long)

network lifetimes. The motivation behind our work is based on

the following observations:

• To improve the lifetime of a network with battery operated

nodes, the decisions on communication and computation

resource allocation for the users need to be made based

on the residual battery energy of their devices. For exam-

ple, a node which has low residual battery energy and a

highly computation-intensive task to complete, should be

allocated high communication and edge cloud computation

resources, so that it can compute its task with low energy

consumption.

• Solving the network lifetime maximization problem re-

quires availability of user task information for all future

time slots, as shown later on. However, task information

for the users may not be available for future time slots.

Therefore, it is important to design a resource allocation

strategy which can operate based on user task information

solely for the present time slot and the current residual

battery energy information for the users.

B. Contributions

The scenario we investigate is illustrated in Fig. 1. Aiming

to maximize the network lifetime, we investigate the joint op-

timization of sharing computation between the users and the

edge cloud, and allocating communication and edge computing

resources for each user. The lifetime of a network is defined as

the time interval during which each of its users can compute his

task within a maximum tolerable delay and none of the users is

depleted of device battery energy. Our main contributions are:

• Aiming to maximize the network lifetime based on user task

information for the present time slot only, we explore a

minimum energy efficiency maximization (MEEM)

strategy for joint optimization of the fraction of user task

computations offloaded to the cloud and the respective
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Fig. 1. System model of the scenario under investigation.

allocation of edge computing and network communication

resources across the users.

• We optimally solve the network lifetime maximization

problem when future user task information is available.

This setting is an upper bound for MEEM. Furthermore,

an upper bound to the optimal network lifetime is obtained

for the case in which the task characteristic for all the users

at each time slot is same.

• We formulate the optimal solutions for the proposed strate-

gies using feasibility testing and geometric programming.

We also discuss the centralized implementation of MEEM

strategy.

• We show that MEEM achieves significant network life-

time improvement over local computation scheme (460%).

Furthermore, we compare our proposed strategy with the

following state-of-the-art methods: i) minimizing the total

energy consumption of the users, and ii) minimizing the

maximum energy consumption across the users and show

that our proposed strategy can achieve 50–70% improve-

ment in network lifetime compared to them.

• We show that MEEM achieves a significant reduction (3X)

in variation of enabled network lifetime over diverse net-

work topologies, relative to the state-of-the-art.

C. Related Work

Since wireless devices have limited battery energy, energy

efficiency is a crucial design parameter for cooperative wireless

networks. Significant effort has been made to date to investigate

maximizing the lifetime of such networks [12]–[22]. Network

lifetime maximization with power allocation and relay selection

for the single-user cooperative network is investigated in [12]–

[19]. It has been shown that the wireless node’s residual battery

energy information must be taken into account in deciding

the transmit power control, relay selection, and channel allo-

cation, so that the overall network lifetime is improved [19].

For multiple-user cooperative network, Himsoon et al. [20] has

studied joint power allocation and relay placement problem for

lifetime maximization. Power allocation and partner selection

for lifetime maximization in pairwise cooperative network has

been investigated in [22].

For wireless networks in which the nodes have computation-

ally intensive tasks with low latency requirements, offloading

them to the edge cloud may improve the network energy effi-

ciency [2]–[11], [23]–[31]. You et al. [7] investigates a weighted

sum energy consumption minimization scheme in mobile-edge

computing networks, by jointly optimizing the load and com-

munication resource allocation. A joint optimization of the

utilization of radio resources, the transmit precoding matrices

of the users, and the allocation of computational resources is

proposed for MIMO multi-cell systems with the aim of mini-

mizing the overall user energy consumption, while meeting the

latency constraints for each user’s task [8]. For a multi-server

mobile-edge computing network, Tran et al. [10] studies a joint

computation resource allocation, transmit power allocation, and

task offloading decision optimization, to minimize a system

utility casted as a weighted function of the task completion

time and task energy consumption. Cao et al. [11] investigate

computation and communication resource allocation when task

is computed with help of a peer device and edge cloud to

minimize the total energy consumption in the network while

satisfying the users computation latency constraint.

D. Organization of the Paper

The rest of this paper is organized as follows. In Section II,

we describe our system models. The joint optimization of com-

putation task sharing and resource allocation for the proposed

MEEM strategy is formulated in Section III. This section also

includes a formulation of the network lifetime maximization

problem with the availability of future user task information.

We derive the optimal solutions via geometric programming for

all three strategies under investigation in Sections IV-V, respec-

tively. Numerical simulation results are examined in Section VI.

The paper concludes in Section VII.

II. SYSTEM MODEL

Our multiuser network comprises of K users denoted by the

set K = {1, ..,K} and a base station (BS) equipped with an

edge cloud of limited computational capability. Each user k ∈ K
has a computation capability of fk and initial battery energy

ek J. The system operates in a time-slotted manner where in

every n seconds, the edge cloud serves a set of users which

have computationally intensive tasks. We consider a quasi-static

scenario where the set of mobile users remains unchanged dur-

ing a computation offloading period, while may change across

different time-slots.

Let Kl ⊆ K denote the set of users to be served by the

cloud at slot l ∈ {1, 2, ..}. Let user k ∈ Kl has a task φk(l) =
(βk(l), bk(l)) to compute at the lth time slot, where bk(l) is the

number of bits to be computed which include program codes,

and input parameters and βk(l) is the required number of CPU

cycles for 1 bit computation of the task. Therefore βk(l)bk(l)
denotes the total CPU cycles required to compute the task φk(l).
The method proposed in [32] can be applied to determine bk(l)
and βk(l). In [33], authors have investigated the value of βk(l)
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TABLE I
MAJOR NOTATION USED IN THE PAPER

for some of the applications. Similar to [6], [7], [28]–[31],

we consider splittable task and therefore each user can fully

or partially offload its computing tasks to the BS. The tasks

are needed to be executed within a maximum tolerable delay

T
th ≤ n. An example of such network is internet of things (IoT)

networks in which the edge cloud receives periodically splittable

task, e.g., images from the IoT devices for processing. Table I

summarizes the main notation used in the paper.

A. Local Computation

As shown in Fig. 2, user k ∈ Kl offloads bEC
k (l) bits to the edge

cloud and computes bk(l)− bEC
k (l) bits at its own processor at

time slot l. Thus, the local computation time is

Tk(l) =
βk(l)

(

bk(l)− bEC
k (l)

)

fk
. (1)

Following the standard energy consumption model for task

computation in [34], the overall computation energy at user k to

compute bk(l)− bEC
k (l) bits is

Ek(l) = γcβk(l)
(

bk(l)− bEC
k (l)

)

f 2
k , (2)

where γc is the effective switched capacitance of the CPU.

Fig. 2. Task computation of user k assisted by the edge cloud.

B. Computation of Offloaded Tasks

Each user k ∈ Kl offloads bEC
k (l) bits to the edge cloud at

time slot l, and then the edge cloud computes these bits at its

processor and sends back the output of the computed tasks

to the users. Let the bandwidth allocated to user k at time

slot l be Bk(l). The spectral efficiency (in b/s/Hz) of the link

between user k and the base station, for ergodic Rayleigh fading,

is [35]:

Rk,b = exp

(

N0

Pk gk,b

)

E1

(

N0

Pk gk,b

)

log2 e (3)

where E1(x) =
∫∞

1
m−1e−xmdm is an exponential integral,

gk,b is the large-scale channel gain from user k to the BS, Pk is

the transmit power density of user k, and N0 is the noise power

spectral density. Therefore, the delay in offloading bEC
k (l) bits to

the edge cloud becomes

τk,EC(l) =
bEC
k (l)

Bk(l)Rk,b
, (4)

The energy consumption at user k to offload bEC
k (l) bits is

Ek(l) = Pk
bEC
k (l)

Rk,b
. (5)

Let the cloud allocate Fk(l) of its computation resource to

user k at time slot l. Thus, to compute the bEC
k (l) bits for user k,

the edge cloud requires time

TEC,k(l) =
βk(l)b

EC
k (l)

Fk(l)
. (6)

III. PROBLEM FORMULATION

The overall completion time of task φk(l), k ∈ Kl, is

Tk(l) = max (Tk(l), τk,b(l) + TEC,k(l)) . (7)

We disregard the time spent in sending back the results of the

computation, as the size of the output data tends to be small

relative to the input data [3].

The network lifetime is defined as the time duration for which

all user tasks are executed within a maximum tolerable delay,

while none of the users is depleted of energy. Thus, maximizing

A A
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the lifetime of the network can be expressed as:

max
F ,B,b

T,

s.t.
∑

l∈ST

k

(Ek(l) + Ek(l)) ≤ ek, k ∈ {1, ..,K},

Ti(m) ≤ T
th, i ∈ Km, m ∈ {1, ..,T},

∑

i∈Km

Bi(m) ≤ B, m ∈ {1, ..,T},

∑

i∈Km

Fi(m) ≤ F, m ∈ {1, ..,T}, (8)

where T denotes the network operating time in number of slots,

ST

k denotes the set of time slots when user k is activated within

the network operating time T, B is the total available bandwidth

in the system andF is the total processing capability of the cloud.

In turn, B, F , and b are respectively the vectors of all values

of Bi(m), Fi(m), and bEC
i (m), for i ∈ Km, m ∈ {1, ..,T}. The

first constraint in (8) imposes that the energy consumption of

user k (in local computation and offloading bits) over T be

bounded by its initial battery energy ek. The second constraint

imposes that the task completion time of user i at the time

slot m be bounded by the maximum tolerable delay T
th. The

communication and computation resource allocations for the

mobile users and the cloud at each time slot m are restricted by

the total system bandwidth and the cloud’s processing capability,

respectively, as captured by the third and fourth constraints.

The above problem is hard to solve in practice for two rea-

sons. Firstly, to obtain computation and communication resource

allocation based on this strategy, task information for users in

future time slots,βi(m), bi(m), i ∈ Km,m ∈ {1, ..,T} needs to

be available which may not be practical. Secondly, the number of

optimization variables is large (proportional to T) in (8). Thus,

finding the optimal solution requires very high computational

complexity. Aiming to maximize the network lifetime based

on user task information for the present time slot only, we

investigate the following optimization problem:

max
F

′,B′,b′

min
k∈Kl

ηk(l),

s.t. Tk(l) ≤ T
th, k ∈ Kl,

s.t.
∑

k∈Kl

Bk(l) ≤ B,
∑

k∈Kl

Fk(l) ≤ F, (9)

where ηk(l) = e′k(l)/(Ek(l) + Ek(l)) is the energy efficiency

of user k ∈ Kl with e′k(l) as the residual energy of the user k
at time slot l, and B

′, F ′, and b
′ are respectively the vectors

of all values of Bk(l), Fk(l), and bEC
k (l), for k ∈ Kl. Minimum

energy efficiency maximization (MEEM) of the network, as given

in (9), aims to balance the residual battery energy available

across all the users at each time slot l ∈ {1, ..,T} in the fol-

lowing manner: To maximizemink∈Kl
e′k(l)/(Ek(l) + Ek(l)),

energy consumption of an user with low residual battery energy

would be low, and the energy consumption of an user with high

residual battery energy would be high which is achieved by high

computation and communication resource allocation for the user

with low residual battery energy, and low communication and

computation resource allocation for a user with high residual

battery energy. Our experimental results in Section VI verify

this induced property.

To allocate computation and communication resource allo-

cation at each time slot l ∈ {1, ..,T} according to MEEM, only

task information for users in time slots l, βk(l), bk(l), is required

and therefore this strategy is easy to implement unlike (8).

The optimal network lifetime problem in (8) aims to find the

design variables that maximize network lifetime and therefore

the network lifetime performance based on the solution of this

strategy provides an upper bound to MEEM. Note that (8), or

(9) may be infeasible if the value of T
th is very small. Next, we

investigate solution methodologies for the problems (8), and (9).

IV. MINIMUM ENERGY EFFICIENCY MAXIMIZATION

Let V be a slack variable such that 1/V = mink∈Kl
ηk(l).

Using (1)–(7), (9) can be expressed as

min
F

′,B′,b′

V,

s.t. γcβk

(

bk − bEC
k

)

f 2
k + Pk

bEC
k

Rk,b
≤ e′k(l)V, k ∈ Kl,

βk

(

bk − bEC
k

)

fk
≤ T

th, k ∈ Kl,

βkb
EC
k

Fk
+

bEC
k

BkRk,b
≤ T

th, k ∈ Kl,

∑

k∈Kl

Bk ≤ B,
∑

k∈Kl

Fk ≤ F. (10)

We omit the time slot index l above for notation brevity. The

problem (10) is nonconvex since the third constraint is noncon-

vex. It can be converted to a geometric programming problem via

the single condensation method [36]. According to this method,

for a constraint which is a ratio of posynomials, the denominator

posynomial (say f(x)) can be approximated into a monomial

using the following inequality:

f(x) =
∑

�

f�(x) ≥ f̂(x) =
∏

�

[

f�(x)

δ�

]δ�

, (11)

where δ� > 0 and
∑

� δ� = 1. Then, for δ� = f�(x̂)/f(x̂), f̂(x̂)
is the best monomial approximation of f(x) near x = x̂.

We formulate an iterative technique to optimally solve (10).

At each iteration t, the first constraint in (10) is converted into a

posynomial using (11) as

(

e′k(l)V (t)

δ1(t)

)−δ1(t) (γcβkb
EC
k (t)f 2

k

δ2(t)

)−δ2(t)

·

(

γcβkbkf
2
k + Pk

bEC
k (t)

Rk,b

)

≤ 1, k ∈ Kl, (12)

� �
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Algorithm 1: Algorithm for MEEM.

1: Set t = 1, initialize V (t), Fk(t), Bk(t), b
EC
k (t), k ∈ Kl

such that the feasibility of (10) is preserved.

2: while true do � infinite loop

3: t = t+ 1

4: Calculate δ1(t), δ2(t), δ3(t) and δ4(t)
5: Find the optimum V (t), Fk(t), Bk(t), b

EC
k (t),

k ∈ Kl by solving (14) using GGPLAB [37]

6: if |V (t)− V (t− 1)| ≤ ε then

7: Break

8: end if

9: end while

where δ1(t), and δ2(t) are obtained from the solution at the

(t− 1)-th iteration as

δ1(t) =
e′k(l)V (t− 1)

e′k(l)V (t− 1) + γcβkbEC
k (t− 1)f 2

k

,

δ2(t) =
γcβkb

EC
k (t− 1)f 2

k

e′k(l)V (t− 1) + γcβkbEC
k (t− 1)f 2

k

.

Similarly, at each iteration t, the second constraints therein is

converted into a posynomial using (11) as

βkbk

(

T
thfk
δ3(t)

)−δ3(t) (βkb
EC
k (t)

δ4(t)

)−δ4(t)

≤ 1, k ∈ Kl, (13)

where

δ3(t)=
T
thfk

Tthfk + βkbEC
k (t− 1)

, δ4(t)=
βkb

EC
k (t− 1)

Tthfk + βkbEC
k (t− 1)

.

Thus, the overall optimization to be solved at iteration t is

min
V (t),Fk(t),Bk(t)

bEC
k
(t),k∈Kl

V (t)

s.t. (12), (13)

βkb
EC
k (t)

Fk(t)
+

bEC
k (t)

Bk(t)Rk,b
≤ T

th, k ∈ Kl

∑

k∈Kl

Bk(t) ≤ B,
∑

k∈Kl

Fk(t) ≤ F. (14)

The above optimization problem is geometric programming and

can be solved optimally. The iterative optimization is carried out

until |V (t)− V (t− 1)| ≤ ε with 0 ≤ ε � 1. An algorithmic

implementation is included in Algorithm 1, which converges

to the global solution of (10). The proof of the convergence of

Algorithm 1 to the global solution of (10) available in [36].

Implementation Of MEEM: The resource allocation accord-

ing to MEEM strategy can be implemented in a centralized

manner. For this purpose, task information of the present time

slot for all the users should be available at the BS which is similar

to the centralized resource allocation strategies in literature [2],

[3], [6]–[10]. Additionally, the BS should also have the residual

energy information of the users to implement the resource allo-

cation. We assume that information of the initial battery energy

of the users is available at the BS, which can be obtained with a

one-time transmission from the users. Then, the BS can calculate

the energy consumption at each time slot and find the available

residual energy for the next time slot.

Complexity Of Solution Strategy: Since CVX is used to solve

GP sub-problems with the interior point method in step 5, the

number of required iterations is
log((3|Kl|+2)/t0ε)

log ξ where |Kl| is

the number of active users at time slot l and hence 3|Kl|+ 2 is the

total number of constraints, t0 is the initial point to approximate

the accuracy of interior point method, 0 < ε < 1 is the stopping

criterion for interior point method, and ξ is used for updating

the accuracy of interior point method [38]. For each iteration,

the number of computations required to convert the non-convex

problems into (12) and (13) is on the order of |Kl|. Therefore,

the total number of computations for Algorithm 1 is on the order

of |Kl| ×
log((3|Kl|+2)/t0ε)

log ξ .

Since we have considered ergodic data rate in (3), the pro-

posed solution depends upon large-scale channel gain. If the

users do not change their position significantly from a time slot

to another and the task parameters do not change from a time

slot to another, the resource allocation and data partition remain

unchanged. Therefore, it is not necessary to run the proposed

algorithms in each time slot.

V. OPTIMAL LIFETIME MAXIMIZATION

Using (1)–(7), the problem in (8) can be expressed as

max
F ,B,b

T,

s.t.
∑

l∈ST

k

(

γcβk(l)
(

bk(l)− bEC
k (l)

)

f 2
k + Pk

bEC
k (l)

Rk,b

)

≤ ek,

k ∈ {1, ..,K},

βi(m)
(

bi(m)− bEC
i (m)

)

fi
≤ T

th,

i ∈ Km,m ∈ {1, ..,T},

βi(m)bEC
i (m)

Fi(m)
+

bEC
i (m)

Bi(m)Ri,b
≤ T

th,

i ∈ Km,m ∈ {1, ..,T},
∑

i∈Km

Bi(m) ≤ B,
∑

i∈Km

Fi(m) ≤ F, m ∈ {1, ..,T}.

(15)

Let T = T
′ be a given value of T. The following feasibility test

decides if the network will operate up to T
′ time slots:

min
F ,B,b

0

s.t.
∑

l∈ST′

k

(

γcβk(l)
(

bk(l)−bEC
k (l)

)

f 2
k+Pk

bEC
k (l)

Rk,b

)

≤ ek,

k ∈ {1, ..,K},

βi(m)
(

bi(m)− bEC
i (m)

)

fi
≤ T

th,

� �
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i ∈ Km,m ∈ {1, ..,T′},

βi(m)bEC
i (m)

Fi(m)
+

bEC
i (m)

Bi(m)Ri,b
≤ T

th,

i ∈ Km,m ∈ {1, ..,T′},
∑

i∈Km

Bi(m) ≤ B,
∑

i∈Km

Fi(m) ≤ F, m ∈ {1, ..,T′}

(16)

Thus, problem (15) can be solved in a two-nested search loop

in which we vary the value of T
′ in the outer loop, and in the

inner loop, check if (16) is feasible. The maximum value of T
′,

for which (16) is feasible, is the optimal network lifetime. We

consider the following optimization problem:

min
F ,B,b

S,

s.t.
∑

l∈ST′

k

(

γcβk(l)
(

bk(l)− bEC
k (l)

)

f 2
k + Pk

bEC
k (l)

Rk,b

)

≤ ek,

k ∈ {1, ..,K}, (17a)

βi(m)
(

bi(m)− bEC
i (m)

)

fi
≤ S,

i ∈ Km,m ∈ {1, ..,T′}, (17b)

βi(m)bEC
i (m)

Fi(m)
+

bEC
i (m)

Bi(m)Ri,b
≤ S,

i ∈ Km,m ∈ {1, ..,T′}, (17c)

∑

i∈Km

Bi(m) ≤ B, m ∈ {1, ..,T′}, (17d)

∑

i∈Km

Fi(m) ≤ F, m ∈ {1, ..,T′}, (17e)

Proposition 1: The feasibility testing in (16) can be solved

in two steps, first to solve (17) optimally, and then check if the

optimal value of S for T ′ time slots, ST ′ which is obtained by

solving (17), is less than or equal to T
th.

Proof: See Appendix B. �

Problem (17) can be converted into geometric programming,

similarly to Section IV. We apply an iterative technique to solve

it. At each iteration t, using (11), the first constraint in (17) is

converted into a posynomial as

(

ek
δ5(t)

)−δ5(t)
∏

j∈ST′

k

(

γcβk(j)b
EC
k (j, t)f 2

k

δ6j(t)

)−δ6j(t)

·
∑

l∈ST′

k

(

γcβk(l)bk(l)f
2
k + Pk

bEC
k (l, t)

Rk,b

)

≤ 1, k ∈ {1, ..,K}

(18)

where

δ5(t) =
ek

ek +
∑

l∈ST′

k
γcβk(l)bEC

k (l, t− 1)f 2
k

,

δ6j(t) =
γcβk(j)b

EC
k (j, t− 1)f 2

k

ek +
∑

l∈ST′

k
γcβk(l)bEC

k (l, t− 1)f 2
k

,

and the second constraint is converted into a posynomial as

βi(m)bi(m)

(

S(t)fi
δ9(t)

)−δ9(t) (βi(m)bEC
i (m, t)

δ10(t)

)−δ10(t)

≤ 1,

i ∈ Km, m ∈ {1, ..,T′}, (19)

where

δ9(t) =
S(t− 1)fi

S(t− 1)fi + βi(m)bEC
i (m, t− 1)

,

δ10(t) =
βi(m)bEC

i (m, t− 1)

S(t− 1)fi + βi(m)bEC
i (m, t− 1)

.

Thus, the overall optimization to be solved at time t is:

min
S(t),Fi(m,t),

Bi(m,t),bEC
i (m,t)

S(t),

s.t. (18), (19),

βi(m)bEC
i (m, t)

Fi(m, t)
+

bEC
i (m, t)

Bi(m, t)Ri,b
≤ S,

i ∈ Km,m ∈ {1, ..,T′},
∑

i∈Km

Bi(m, t) ≤ B, m ∈ {1, ..,T′}.

∑

i∈Km

Fi(m, t) ≤ F, m ∈ {1, ..,T′}. (20)

The above optimization is geometric programming and can be

solved optimally. Hence, the optimal solution of (17) is obtained

by solving (20) iteratively, following similar steps as given in

Algorithm 1 [36]. Thus, to solve (15), in the inner loop, we check

if the network operates for T
′ time slots, by first solving (17),

following the approach as stated above, and then checking the

condition ST ′ ≤ T
th, for the given value of T

′. In the outer loop,

we then use the bisection search to find the maximum value

of T
′ for which the network operates. The overall procedure is

described in Algorithm 2. The output of the algorithm Toptimal

is the optimal network lifetime.

Even though this strategy may not be practically imple-

mentable due to its high computational complexity and the re-

quirement for future user task information, it represents an upper

bound for the performance of the MEEM approach. We show

that in certain settings MEEM achieves the same performance

as the globally optimal network lifetime strategy. The following

proposition provides the upper bound of the optimal network

lifetime when all the users have same task parameters.

Proposition 2: If each user k has the same task characteris-

tics in every time slot, i.e., φk(l) = φk = (βk, bk), the optimal

network lifetime which can be obtained by solving (15) is upper

bounded as follows

Toptimal ≤ mink∈{1,..,K}
ek
εk

, (21)
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Algorithm 2: Finding the Optimal Network Lifetime.

1: Initialize low and high (lower and upper bounds for

bisection search)

2: while high > low do

3: T ′ = 	 low+high
2



4: Find ST ′ by solving (17)

5: if ST ′ < T
th then

6: low = T ′ + 1

7: else

8: high = T ′

9: end if

10: end while

11: Toptimal = low − 1

where

εk =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

γcβkbkf
2
k , if γcβkf

2
k ≤

Pk

Rk,b
,

Pk
bk

Rk,b
, if γcβkf

2
k >

Pk

Rk,b
.

Proof: See Appendix B. �

VI. PERFORMANCE EVALUATION

Here we present simulation results that evaluate the network

lifetime performance of the proposed strategies. As a reference,

we will compare our proposed strategies with the following

benchmarks:

• Reference Method 1 This scheme aims to minimize to-

tal energy consumption of all the users, i.e., minimize
∑

k∈Kl
(Ek(l) + Ek(l)) at each time slot l with the same

constraints of the problem of (9). Many state-of-the-art

the works in literature [7], [8], [10], [11] have considered

sum energy minimization as objective to decide resource

allocation for mobile-edge computing networks.

• Reference Method 2 This scheme aims to minimize the

maximum energy consumption across all the users, i.e.,

minimize maxk∈Kl
(Ek(l) + Ek(l)) at each time slot l with

the same constraints of the problem of (9). Minimizing

maximum energy consumption across all the users at each

time slot aims to provide fairness in energy consumption

across the users to improve network lifetime.

• Local Computation In this scheme, the users compute the

tasks at their own processors.

• Full Offload In this scheme, all the users are allocated equal

computation and communication resources. At each time

slot, all the bits of each user’s task are offloaded to the edge

cloud and computed at the processor of the edge cloud.

The resource allocation for reference methods 1 and 2 can

be solved using geometric programming iteratively with similar

steps as given in Algorithm 1. For the evaluations that follow,

ten users are uniformly distributed in a circular region of radius

50 m with a cloud-associated BS at the center. The simulation

parameters, unless mentioned otherwise, are summarized in

Table II. Each user in the network is activated according to an

activation probability pi which follows the uniform distribution

TABLE II
SIMULATION PARAMETERS

Fig. 3. Network lifetime versus eratio for total energy etot = 5 J. Local
computation scheme does not meet the maximum tolerable delay per time slot
and is included here only for illustration.

with [0.3, 0.7]. Therefore, the set of users which are activated

at different time slots may be different. The obtained results are

averaged over 500 network realizations.

Note that the local computation and full offload schemes

do not utilize all the resources available in the network and

therefore for these two strategies, the users do not meet the

maximum tolerable delay. The average delay achieved by local

computation and full offload schemes are 0.21 s and 0.20 s,

respectively, as indicated in the following figures.

In Fig. 3, we consider the performance of the proposed

strategy in a network where the initial energy of the users is

not identical. The network has a total of ten users among which

five randomly chosen users have initial energy e1 and the other

five users have initial energy e2 with e2 ≤ e1. We fix the initial

total network energy (i.e., the sum of battery energy of all

users) as etot = 5 J. The network lifetime performance of the

proposed strategies is evaluated when the initial user energy

ratio eratio = e1/e2 varies from 1 to 5. If eratio = 1, we have

identical initial energy for all the users, i.e., e1 = e2 = 0.5 J,

� �
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Fig. 4. Network lifetime versus total initial energy for the users. Local com-
putation scheme does not meet the maximum tolerable delay per time slot and
is included here only for illustration.

and if eratio = 5, five users have initial energy e1 = 0.83 and

the other five users have initial energy e2 = 0.17. As eratio is

increased, e1 increases more compared to e2, and the energy

balancing decreases in the network. Thus, the network lifetime

decreases for all strategies. Since the MEEM strategy considers

the residual battery energy information to decide on the task

sharing and resource allocation, while the reference methods do

not consider the residual battery energy information to optimize

the system parameters, MEEM achieves significant performance

improvement compared to reference methods for high values of

eratio. For example, if eratio = 5, the MEEM strategy achieves

1.73 times longer network lifetime (70% improvement) and

1.53 times longer network lifetime (50% improvement) com-

pared reference methods 1 and 2, respectively. Furthermore, for

eratio = 5, MEEM has 4.6 times higher network lifetime (460%

improvement) compared to the local computation scheme.

Fig. 4 shows the network lifetime performance of the in-

vestigated strategies when the initial total network energy etot
varies from 5 J to 25 J and eratio = 1. As etot increases, the

network lifetime performance improves for each strategy. It can

be observed that the rate of improvement of the MEEM and

reference methods compared to the local computation strategies

is higher. For etot = 25 J, the MEEM strategy achieves 1.15,

1.35 and 3.70 times longer network lifetimes compared to the

reference methods 1, 2 and local computation respectively.

Fig. 5 shows the enabled network lifetime when the maximum

tolerable delay T
th increases from 0.15 s to 0.21 s. We have

eratio = 1, etot = 5 J. Here, we also show the performance

of the full offload strategy. It can be observed that the full

offload strategy has a higher network lifetime compared to the

local computation strategy since the energy consumption for

the users in offloading the task is lower compared to computing

the task at their processor. However, none of these strategies is a

practical choice, since the tasks can not be completed within the

maximum tolerable delay for these strategies. As T
th increases,

the network lifetime performance for MEEM and reference

methods increases. This is because with an increase in the

Fig. 5. Network lifetime versus Tth for total energy etot = 5 J. Local
computation and full offload schemes do not meet the maximum tolerable delay
per time slot and is included here only for illustration.

maximum tolerable delay, the decisions on sharing of tasks and

allocation of computation and communication resources become

more relaxed, and thus the energy consumption decreases for

the users. Moreover, we can observe that for high values of T
th,

MEEM has the same performance as reference methods and full

offload, i.e., they converge. This is because energy consumption

in offloading the task to the edge cloud for task computation is

lower compared to the energy consumption in computing the

task at local processor and at high value of T
th, each task is

completed within maximum tolerable delay by offloading all

the bits of each task at the edge cloud for MEEM and reference

methods.

Next, we study the performance of MEEM and reference

methods compared to the optimal network lifetime strategy

described in Section V. For the latter, the number of optimization

variables is proportional to the number of time slots over which

the network operates. Thus, if the network lifetime is high,

finding the optimal solution of (15) via geometric programming

is challenging with many optimization variables. Hence, we

show the performance of the proposed strategies when etot is

low for which the network lifetime is low, and thus the number of

optimization variables is small. In Fig. 6, we obtain the network

lifetime performance of the proposed strategies for eratio = 1.

We can observe that with local computation providing the worst

performance, followed by reference methods 1, 2 and MEEM,

enabling increasingly longer network lifetime, in the middle,

and the Optimal Network Lifetime strategy providing the best

performance, as expected. Similarly, we can observe that as

etot increases, the network lifetime for all strategies increases,

as expected, as well. The optimal network lifetime strategy

achieves 12–17% higher network lifetime compared to MEEM,

as etot varies, and that MEEM enables a consistent network

lifetime gain of 21–45% relative to reference methods 1 and 2

respectively.

Fig. 7 compares the network lifetime enabled by the investi-

gated strategies, as the computing power of the edge cloud varies

from 5 to 9 GHz, for etot = 0.5 and eratio = 1. As the cloud

� �
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Fig. 6. Network lifetime versus total initial energy for the users. Local com-
putation scheme does not meet the maximum tolerable delay per time slot and
is included here only for illustration.

Fig. 7. Network lifetime versus cloud computing power. Local computation
scheme does not meet the maximum tolerable delay per time slot and is included
here only for illustration.

computing power increases, the network lifetime increases for

all strategies. With an increase in cloud computing power, cloud

computing power allocated to each user increases. Therefore,

the users can offload more bits to the edge cloud, which helps

to reduce the computation energy consumption for each user.

This results in an improvement in the achieved network lifetime.

Particularly, the users k ∈ Kl which have tasks with a high value

ofβk(l), can save high energy by offloading bits to the edge cloud

and not computing at its own processor. Finally, for high cloud

computing power, optimal network lifetime strategy, MEEM and

reference methods have same performance, as observed from

Fig. 7. This is because, at high value of cloud computing power,

each user is allocated high computational resource of the edge

cloud and the task for each user is completed within maximum

tolerable delay by offloading all the bits of each task at the edge

cloud to save energy consumption.

Fig. 8. Cumulative distribution function of enabled network lifetime.

Fig. 9. Cloud computation power distribution among users.

In Fig. 8, we examine the empirical cumulative distribution

function (CDF) of the network lifetime, achieved by each of

the investigated strategies, for etot = 5 and eratio = 1. A total

of 1000 network realizations have been considered in generat-

ing these results. The expected network lifetime achieved by

local computation, reference methods 1, 2, and MEEM are

108.1, 304.3, 353.8 and 414 time slots, respectively. We note

that these values match with the network lifetime performance

demonstrated by these strategies in Fig. 5, for etot = 5 J . The

standard deviation of the enabled network lifetime is 12, 34,

12.3, and 14 (in time slots), respectively, for local computation,

reference methods 1, 2, and MEEM, respectively. Thus, MEEM

considerably improves over reference method 1, not only in

enabled expected network lifetime, but, also in its consistency

across different network realizations. In particular, a close to

three times reduction in network lifetime standard deviation

is observed for MEEM compared to reference method 1 from

Fig. 8.

In Figs. 9 and 10, we analyze the computation and commu-

nication resource distribution among the users at a given time

slot. We consider that five users are active at the time slot and

the initial battery energy of the users 1 to 5 are 0.83 J, 0.17 J,

0.83 J, 0.17 J and 0.83 J, respectively. Similarly, the number of

bits to be computed by the users 1 to 5 are 200 Kb, 400 Kb,
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Fig. 10. Bandwidth distribution among users.

Fig. 11. Network lifetime versus bi for total energy etot = 5 J. Local com-
putation scheme does not meet the maximum tolerable delay per time slot and
is included here only for illustration.

200 Kb, 400 Kb and 200 Kb, respectively. The initial battery

energy and the number of computation bits for each user have

been shown in rectangular box in the figures. The computation

and communication resource allocation are balanced across the

users for reference method 1. However, MEEM allocates higher

computation and communication resources for the users with

lower residual energy, larger number of computation bits, and it

allocates lower computation and communication resources for

the user with higher residual energy, smaller number of com-

putation bits. Therefore, it performs better. Reference method

2 aims to minimize the maximum energy consumption across

the users and therefore it allocates higher computation and

communication resources for the users with larger number of

computation bits and lower computation and communication

resources for the user with smaller number of computation bits.

In Fig. 11, we examine the performance of the proposed strate-

gies in terms of enabled network lifetime for a given number of

bits bi to be computed per task. The initial battery energy of the

users is distributed randomly (uniform distribution) according to

the values etot = 5 and eratio = 1. As bi increases, the network

lifetime performance decreases for each strategy. This is because

Fig. 12. Network lifetime versus activation probability.

higher values of bi reflects that more bits need to be computed

per task, which results in higher energy consumption at each

time slot. It can be observed that the performance of the local

computation strategy is poor for high values of bi.
In Fig. 12, we analyze the network lifetime performance of

the proposed strategies with the activation probability of the

users in the network. For this purpose, we consider that all the

users have the same activation probability and then we vary the

activation probability of the users and observe network lifetime

performance. As the activation probability increases, more users

become active at each time slot, to compute their tasks, and

therefore energy consumption increases. Thus network lifetime

decreases with the increase in activation probability.

VII. CONCLUSION AND FUTURE WORK

We investigated the lifetime maximization problem in a net-

work where its nodes/users periodically compute their task with

the help of an edge cloud. Aiming to maximize the network

lifetime based on the user task information for the present

time slot only, we have proposed an MEEM strategy to decide

the sharing of tasks between the users and the cloud, and

the allocation of computation and communication resources. We

further investigated network lifetime maximization when future

user task information is available, as well, as an upper bound to

MEEM. Though the optimization problem for MEEM is non-

convex, we have shown that the global optimal solution can be

obtained using feasibility testing and geometric programming.

We have shown that the MEEM strategy performs close to the

optimal network lifetime. For high value of the initial user energy

ratio, MEEM achieves roughly 70% lifetime improvement over

the state-of-the-art and 460% lifetime improvement relative to

local user computation only. For a high value of the maximum

tolerable delay for completing the computation tasks of the

users, MEEM achieves the globally optimal network lifetime

performance. Finally, we have shown that MEEM achieves a sig-

nificant reduction (3X) in variation of enabled network lifetime

over diverse network topologies, compared to state-of-the-art.
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In our approach, we considered quasi-static user mobility and

a linear relationship between required CPU cycles and number

of bits for a computing task. These assumptions are commonly

encountered in practical settings [6], [7], [28]–[31] and enable

analytical tractability and insightful results. Investigating dy-

namic user mobility within a computation offloading period and

non-linear dependencies between required CPU cycles and task

size in bits lie beyond the scope of the present paper and represent

prospective avenues of future work. In particular, when the num-

ber of CPU cycles required for computation at the local device or

the edge cloud can be expressed as a polynomial function of the

task size in bits, a closed-form solution for the related resource

allocation strategies can be obtained following the methods

provided in Sections IV-V. Another prospective avenue of future

work is to consider binary offloading of non-splittable tasks in

our setting, where a task computation cannot be shared across the

edge cloud and a user device. Finally, integrating our analytical

advances into related emerging application settings, such as

decentralized multi-view sensing, cooperative video streaming

and caching, UAV-IoT, and mobile virtual reality [40]–[47]

represents yet another prospective topic of future exploration.

APPENDIX A

PROOF OF PROPOSITION 1

Let (F ,B, b) be a feasible solution point of (17), i.e., the

constraints (17a), (17d) and (17e) are met at this point. If

(F ,B, b) is also a feasible solution of (16), then the value of

S = max
i∈Km,m∈{1,..,T′}

(

βi(m)
(

bi(m)− bEC
i (m)

)

fi
,

βi(m)bEC
i (m)

Fi(m)
+

bEC
i (m)

Bi(m)Ri,b

)

is less than or equal to T
th. If (F ,B, b) is not a feasible solution

of (16), then S > T
th. Therefore ST ′ must be less than or equal

to T
th if there exist a feasible solution of (15).

APPENDIX B

PROOF OF PROPOSITION 2

To obtain the upper bound for the optimal network lifetime,

as given in (15), we consider the following relaxed problem

min
F ,B,b

0,

s.t.
∑

l∈ST′

k

(

γcβk(l)
(

bk(l)− bEC
k (l)

)

f 2
k + Pk

bEC
k (l)

Rk,b

)

≤ ek,

k ∈ {1, ..,K}, (22a)

∑

i∈Km

Bi(m) ≤ B, m ∈ {1, ..,T′}, (22b)

∑

i∈Km

Fi(m) ≤ F, m ∈ {1, ..,T′}. (22c)

The optimal network lifetime according to the above relaxed

problem is an upper bound of the original problem (15). In

case, the value of T
th is high, (15) becomes equivalent to (22).

Since (22a), (22b), and (22c) are independent of each other, the

problem of deciding the optimal share of the task to be offloaded

for every user k ∈ {1, ..,K} reduces to this problem:

min
bEC
k
(l)

(

γcβk(l)
(

bk(l)− bEC
k (l)

)

f 2
k + Pk

bEC
k (l)

Rk,b

)

, (23)

for each l ∈ ST
′

k . The above problem is a linear optimization

problem with a single variable and the optimal solution is

bEC
k (l) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, if γcβk(l)f
2
k ≤

Pk

Rk,b
,

bk(l), if γcβk(l)f
2
k >

Pk

Rk,b
.

(24)

Therefore, the energy consumption for each user k is

εk(l) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

γcβk(l)bk(l)f
2
k , if γcβk(l)f

2
k ≤

Pk

Rk,b
,

Pk
bk(l)

Rk,b
, if γcβk(l)f

2
k >

Pk

Rk,b
.

(25)

If each user k ∈ {1, ..,K} has same task characteristics in every

time slot, i.e., φk = (βk, bk), the energy consumption of each

user k is εk, which is obtained by replacing βk(l) = βk and

bk(l) = bk in (25). Then, the network lifetime for each user k is

ek/εk. Therefore, the optimal network lifetime is upper bounded

according to (21).
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