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Lifetime Maximization in Mobile Edge
Computing Networks

Sabyasachi Gupta

Abstract—Mobile edge computing has emerged as a promising
technology to augment the computational capabilities of mobile
devices. For a multi-user network in which its users periodically
compute their tasks with the help of an edge cloud, we investigate
the network lifetime maximization problem based on present user
task information. We pursue this objective via a minimum energy
efficiency maximization (MEEM) strategy that jointly optimizes
the fraction of user task computations offloaded to the cloud and
the respective allocation of edge computing and network com-
munication resources across the users. We also investigate the
network lifetime maximization problem for the case when the
user task information is available for all future time slots, as well.
This setting represents an upper bound for the MEEM strategy.
Optimal solutions for both investigated strategies are formulated
via feasibility testing and geometric programming. We show that
MEEM can achieve a 70 % lifetime improvement over the state-of-
the-art and 460 % lifetime improvement over the case of local user
task computation only. We also show that for a high value of the
maximum tolerable delay for completing the computation tasks of
the users, MEEM achieves the globally optimal network lifetime
performance. Finally, we show that MEEM achieves a significant
reduction (3X) in variation of enabled network lifetime over diverse
network topologies, relative to the state-of-the-art.

Index Terms—Mobile-edge computing,
lifetime maximization, resource allocation.

energy efficiency,

I. INTRODUCTION

S mobile devices are gaining enormous popularity over
A the last decade, many new applications, e.g., virtual reality,
natural language processing, interactive gaming, speech-to-text,
image processing, have emerged and attracted great attention.
Due to the requirements of high reliability, intensive comput-
ing, and low latency for these applications, the concept of
Mobile-Edge Computing (MEC) has emerged [2]. In MEC based
systems, small-scale cloud-computing facilities are available at
the edge of pervasive radio access networks in close proximity
to the mobile users [2].

Manuscript received June 12, 2019; revised September 16, 2019 and Novem-
ber 22, 2019; accepted December 11, 2019. Date of publication January 10,
2020; date of current version March 12, 2020. This work was supported in part by
NSF Awards CCF-1528030, ECCS-1711592, CNS-1836909, and CNS-1821875
and in part by research gifts and an Adobe Data Science Award from Adobe
Systems. This paper was presented in part at the IEEE Global Communications
Conference, Waikoloa, HI, USA, Dec., 2019 [1]. The review of this article was
coordinated by Dr. S. Misra. (Corresponding author: Sabyasachi Gupta.)

S. Gupta is with the Department Electrical Engineering, Southern Methodist
University, Dallas, TX 75275 USA (e-mail: sabyasachig@smu.edu).

J. Chakareski is with the Ying Wu College of Computing, New Jersey Institute
of Technology, Newark, NJ 07102 USA (e-mail: jacob@ua.edu).

Digital Object Identifier 10.1109/TVT.2020.2965440

and Jacob Chakareski

, Senior Member, IEEE

A. Motivation

In this paper, we investigate joint computing task sharing and
computing and communication resource allocation in mobile
edge computing networks, towards maximizing their lifetime. To
the best of our knowledge, lifetime maximization has not been
explored for such networks before. In particular, though prior
studies have examined energy efficiency in mobile-edge com-
puting networks, they have not considered the residual battery
energy information for the wireless nodes, when allocating com-
puting and communication resources in such networks [2]-[11].
Thus, these studies may not necessarily result in good (long)
network lifetimes. The motivation behind our work is based on
the following observations:

* To improve the lifetime of a network with battery operated
nodes, the decisions on communication and computation
resource allocation for the users need to be made based
on the residual battery energy of their devices. For exam-
ple, a node which has low residual battery energy and a
highly computation-intensive task to complete, should be
allocated high communication and edge cloud computation
resources, so that it can compute its task with low energy
consumption.

* Solving the network lifetime maximization problem re-
quires availability of user task information for all future
time slots, as shown later on. However, task information
for the users may not be available for future time slots.
Therefore, it is important to design a resource allocation
strategy which can operate based on user task information
solely for the present time slot and the current residual
battery energy information for the users.

B. Contributions

The scenario we investigate is illustrated in Fig. 1. Aiming
to maximize the network lifetime, we investigate the joint op-
timization of sharing computation between the users and the
edge cloud, and allocating communication and edge computing
resources for each user. The lifetime of a network is defined as
the time interval during which each of its users can compute his
task within a maximum tolerable delay and none of the users is
depleted of device battery energy. Our main contributions are:

* Aiming to maximize the network lifetime based on user task

information for the present time slot only, we explore a
minimum energy efficiency maximization (MEEM)
strategy for joint optimization of the fraction of user task
computations offloaded to the cloud and the respective
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Fig. 1. System model of the scenario under investigation.

allocation of edge computing and network communication
resources across the users.

* We optimally solve the network lifetime maximization
problem when future user task information is available.
This setting is an upper bound for MEEM. Furthermore,
an upper bound to the optimal network lifetime is obtained
for the case in which the task characteristic for all the users
at each time slot is same.

* We formulate the optimal solutions for the proposed strate-
gies using feasibility testing and geometric programming.
We also discuss the centralized implementation of MEEM
strategy.

* We show that MEEM achieves significant network life-
time improvement over local computation scheme (460%).
Furthermore, we compare our proposed strategy with the
following state-of-the-art methods: i) minimizing the total
energy consumption of the users, and ii) minimizing the
maximum energy consumption across the users and show
that our proposed strategy can achieve 50-70% improve-
ment in network lifetime compared to them.

e We show that MEEM achieves a significant reduction (3X)
in variation of enabled network lifetime over diverse net-
work topologies, relative to the state-of-the-art.

C. Related Work

Since wireless devices have limited battery energy, energy
efficiency is a crucial design parameter for cooperative wireless
networks. Significant effort has been made to date to investigate
maximizing the lifetime of such networks [12]-[22]. Network
lifetime maximization with power allocation and relay selection
for the single-user cooperative network is investigated in [12]-
[19]. It has been shown that the wireless node’s residual battery
energy information must be taken into account in deciding
the transmit power control, relay selection, and channel allo-
cation, so that the overall network lifetime is improved [19].
For multiple-user cooperative network, Himsoon et al. [20] has
studied joint power allocation and relay placement problem for
lifetime maximization. Power allocation and partner selection
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for lifetime maximization in pairwise cooperative network has
been investigated in [22].

For wireless networks in which the nodes have computation-
ally intensive tasks with low latency requirements, offloading
them to the edge cloud may improve the network energy effi-
ciency [2]-[11], [23]-[31]. You et al. [7] investigates a weighted
sum energy consumption minimization scheme in mobile-edge
computing networks, by jointly optimizing the load and com-
munication resource allocation. A joint optimization of the
utilization of radio resources, the transmit precoding matrices
of the users, and the allocation of computational resources is
proposed for MIMO multi-cell systems with the aim of mini-
mizing the overall user energy consumption, while meeting the
latency constraints for each user’s task [8]. For a multi-server
mobile-edge computing network, Tran et al. [10] studies a joint
computation resource allocation, transmit power allocation, and
task offloading decision optimization, to minimize a system
utility casted as a weighted function of the task completion
time and task energy consumption. Cao et al. [11] investigate
computation and communication resource allocation when task
is computed with help of a peer device and edge cloud to
minimize the total energy consumption in the network while
satisfying the users computation latency constraint.

D. Organization of the Paper

The rest of this paper is organized as follows. In Section II,
we describe our system models. The joint optimization of com-
putation task sharing and resource allocation for the proposed
MEEM strategy is formulated in Section III. This section also
includes a formulation of the network lifetime maximization
problem with the availability of future user task information.
We derive the optimal solutions via geometric programming for
all three strategies under investigation in Sections IV-V, respec-
tively. Numerical simulation results are examined in Section VI.
The paper concludes in Section VII.

II. SYSTEM MODEL

Our multiuser network comprises of K users denoted by the
set £ ={1,.., K} and a base station (BS) equipped with an
edge cloud of limited computational capability. Each user k € K
has a computation capability of f; and initial battery energy
er J. The system operates in a time-slotted manner where in
every n seconds, the edge cloud serves a set of users which
have computationally intensive tasks. We consider a quasi-static
scenario where the set of mobile users remains unchanged dur-
ing a computation offloading period, while may change across
different time-slots.

Let IC; C I denote the set of users to be served by the
cloud at slot [ € {1,2,..}. Let user k € K; has a task ¢, (l) =
(Br(1), bx.(1)) to compute at the Ith time slot, where by (1) is the
number of bits to be computed which include program codes,
and input parameters and [ (1) is the required number of CPU
cycles for 1 bit computation of the task. Therefore /3 (1)by (1)
denotes the total CPU cycles required to compute the task ¢ (1).
The method proposed in [32] can be applied to determine by (1)
and S (1). In [33], authors have investigated the value of (1)
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TABLE I
MAJOR NOTATION USED IN THE PAPER

Parameters Definition
K Set of users
fr CPU frequency of user k
ek Initial battery energy of user k
n Duration of slots in sec.
Ky Set of active users at time slot [
or (1) Task of user k at time slot [
Br(l) Number of CPU cycles required for
1 bit computation of task ¢y (1)
bi (1) Number of bits to be computed for
the task ¢y (1)
Tth Maximum tolerable delay for the tasks
Tk (1) Local computation time of user k
at time slot [
bEC(D) Number of bits offloaded to the edge cloud
by user k at time slot [
Ei() Energy consumption for local computation

for user k at time slot [
Ye Effective switched capacitance of the CPU

Ryp Spectral efficiency through the link
between user k£ and BS
Py Transmit power density of user k
kb Large-scale channel gain from user k£ to BS
Ny Noise power spectral density
Trec(l) Delay in offloading b¥C(1) bits for user k
By (1) Bandwidth allocated to user k at time slot [
Tec k(1) Computation time for computing
bEC(1) bits at the edge cloud
Fi.(l) computation resource allocated to
user k at time slot [
e (1) Residual energy of the user k at time slot [

for some of the applications. Similar to [6], [7], [28]-[31],
we consider splittable task and therefore each user can fully
or partially offload its computing tasks to the BS. The tasks
are needed to be executed within a maximum tolerable delay
Tth < n. An example of such network is internet of things (IoT)
networks in which the edge cloud receives periodically splittable
task, e.g., images from the IoT devices for processing. Table I
summarizes the main notation used in the paper.

A. Local Computation

AsshowninFig. 2, user k € K; offloads b€ (1) bits to the edge
cloud and computes by, (1) — bE(1) bits at its own processor at
time slot /. Thus, the local computation time is

_ B (b () — b°(D)
- + :

Following the standard energy consumption model for task
computation in [34], the overall computation energy at user & to
compute by, (1) — bEC(1) bits is

Ey(1) = veBi(l) (b (1) — EE()) f2, )

where 7. is the effective switched capacitance of the CPU.

Ty (1)

ey
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Fig. 2. Task computation of user k assisted by the edge cloud.

B. Computation of Offloaded Tasks

Each user k € K; offloads bE€(1) bits to the edge cloud at
time slot [, and then the edge cloud computes these bits at its
processor and sends back the output of the computed tasks
to the users. Let the bandwidth allocated to user k£ at time
slot [ be By (). The spectral efficiency (in b/s/Hz) of the link
between user k and the base station, for ergodic Rayleigh fading,
is [35]:

Rkb:eXP( Mo ) 1( 0
’ Py grp P grp

where Ej(z) = [[m 'e ®"dm is an exponential integral,
gk 1s the large-scale channel gain from user k to the BS, P, is
the transmit power density of user k, and NN is the noise power
spectral density. Therefore, the delay in offloading bE (1) bits to
the edge cloud becomes

) log, e 3)

bEC (l)
Tk,EC( ) Bk;(l)Rk,b’ ( )
The energy consumption at user £ to offload bE€ (1) bits is
bEC(1
Ell) = Pk;—(). )
k,b

Let the cloud allocate Fy(I) of its computation resource to
user k at time slot /. Thus, to compute the b=C (1) bits for user ,
the edge cloud requires time

Tec k(1) = BilDbie () (Fl)kb(glj(l) . (6)

III. PROBLEM FORMULATION

The overall completion time of task ¢ (1), k € Ky, is
Tk(l) = max (Tk(l), Tk’b(l) + TEC,k(Z)) . @)

We disregard the time spent in sending back the results of the
computation, as the size of the output data tends to be small
relative to the input data [3].

The network lifetime is defined as the time duration for which
all user tasks are executed within a maximum tolerable delay,
while none of the users is depleted of energy. Thus, maximizing
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the lifetime of the network can be expressed as:

max T,
F.B)b
st Y (Bl + &) < e, ke{l,. K},
lesy

Tim) <T", i€ Ky, me{l,., T},

> Bi(m)<B, me{l,.,T}

€K

> Fi(m)<F, me{l,.,T} ®)

i€,

where T denotes the network operating time in number of slots,
SZ denotes the set of time slots when user k is activated within
the network operating time T, B is the total available bandwidth
inthe system and F'is the total processing capability of the cloud.
In turn, B, F, and b are respectively the vectors of all values
of B;(m), F;(m), and b¥¢(m), fori € K,,, m € {1,..,T}. The
first constraint in (8) imposes that the energy consumption of
user k (in local computation and offloading bits) over T be
bounded by its initial battery energy ej. The second constraint
imposes that the task completion time of user ¢ at the time
slot m be bounded by the maximum tolerable delay T*". The
communication and computation resource allocations for the
mobile users and the cloud at each time slot m are restricted by
the total system bandwidth and the cloud’s processing capability,
respectively, as captured by the third and fourth constraints.

The above problem is hard to solve in practice for two rea-
sons. Firstly, to obtain computation and communication resource
allocation based on this strategy, task information for users in
future time slots, 5;(m), b;(m),i € K, m € {1,.., T} needs to
be available which may not be practical. Secondly, the number of
optimization variables is large (proportional to T) in (8). Thus,
finding the optimal solution requires very high computational
complexity. Aiming to maximize the network lifetime based
on user task information for the present time slot only, we
investigate the following optimization problem:

max
F',B' b

st. Te() < T, keky,

st. > Bi)<B, Y F()<F, (9

kek; kek;

where 7, (1) = €, (1)/(Ex(l) + Ex(1)) is the energy efficiency
of user k € K; with e (1) as the residual energy of the user k
at time slot [, and B’, F’, and b’ are respectively the vectors
of all values of By(1), Fi (1), and b¥(1), for k € K;. Minimum
energy efficiency maximization (MEEM) of the network, as given
in (9), aims to balance the residual battery energy available
across all the users at each time slot 1 € {1,.., T} in the fol-
lowing manner: To maximize mingex, €, (1)/(Ex(l) + Ex(1)),
energy consumption of an user with low residual battery energy
would be low, and the energy consumption of an user with high
residual battery energy would be high which is achieved by high
computation and communication resource allocation for the user

min 7 (1),

kek,;
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with low residual battery energy, and low communication and
computation resource allocation for a user with high residual
battery energy. Our experimental results in Section VI verify
this induced property.

To allocate computation and communication resource allo-
cation at each time slot [ € {1, .., T} according to MEEM, only
task information for users in time slots [, 8 (1), bx (1), is required
and therefore this strategy is easy to implement unlike (8).
The optimal network lifetime problem in (8) aims to find the
design variables that maximize network lifetime and therefore
the network lifetime performance based on the solution of this
strategy provides an upper bound to MEEM. Note that (8), or
(9) may be infeasible if the value of T*" is very small. Next, we
investigate solution methodologies for the problems (8), and (9).

IV. MINIMUM ENERGY EFFICIENCY MAXIMIZATION

Let V be a slack variable such that 1/V = mingei, ni(1).
Using (1)—(7), (9) can be expressed as

min V,
F'.B'

biC
st YeBr (be — OFC) f + PkRL <e )V, keky,
kb

Br (b — b;°)
Tk
BrbEC bEC
Ey, By Ry p

ZBkgB, ZFng.

kek kel

<Th keky,

<Th keky,

(10)

We omit the time slot index [ above for notation brevity. The
problem (10) is nonconvex since the third constraint is noncon-
vex. It can be converted to a geometric programming problem via
the single condensation method [36]. According to this method,
for a constraint which is a ratio of posynomials, the denominator
posynomial (say f(x)) can be approximated into a monomial
using the following inequality:

X) = X AX: MM
f()—%jn()zf() 1;[[55] . an

where 6, > 0 and ), 0, = 1. Then, for 6, = f,(x)/f(%X), f(x)
is the best monomial approximation of f(x) near x = x.

We formulate an iterative technique to optimally solve (10).
At each iteration ¢, the first constraint in (10) is converted into a
posynomial using (11) as

(eWW(t))_él(t) (%ﬁkbg%%>62(t>
51 (t) 52(t)

brC(t)
Ryp

: (%ﬁkbkfzf + Py > <1, keky (12)
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Algorithm 1: Algorithm for MEEM.

1:  Sett =1, initialize V' (t), F)(t), Bi(t), b§(), k € K,

such that the feasibility of (10) is preserved.

2:  while true do > infinite loop

3: t=t+1

4:  Calculate 6;(t), 02(t), d3(t) and 04(t)

5:  Find the optimum V' (t), F}(t), By (t), bEC(t),

k € K; by solving (14) using GGPLAB [37]

6: if |[V(t) — V(t—1)| < ethen
7: Break
8
9

end if
end while

where 0;(t), and J,(¢) are obtained from the solution at the
(t — 1)-th iteration as

e,V (t—1)
e (OV(t— 1) +eBebfC(t — 1) 2
e (OV(t— 1) + e BebEC(t — 1) 7

Similarly, at each iteration ¢, the second constraints therein is
converted into a posynomial using (11) as

Tthfk —8(t) 5kbgc(t) —d4(t)
Brbr ( 55(0) ) (W) <1, keky (13)

a(t) =

0 (t) =

where

53(1) = Tth f, B - 1)
T T 4 BRbEC(t — 1) T Tt fi + BebEC(t — 1)

Thus, the overall optimization to be solved at iteration ¢ is

,04(1)

min V(t)
V(t),Fy(t),Br(t)
BEC (1), kek,
s.t. (12), (13)
EC EC

5kbk (t) by, (t) < Tth7 ke
Fi(t)  Br(t)Riy

Z By (t) < B, Z Fp.(t) < F. (14)

kek, kek;

The above optimization problem is geometric programming and
can be solved optimally. The iterative optimization is carried out
until |V(¢) — V(t —1)] < e with 0 < € < 1. An algorithmic
implementation is included in Algorithm 1, which converges
to the global solution of (10). The proof of the convergence of
Algorithm 1 to the global solution of (10) available in [36].
Implementation Of MEEM: The resource allocation accord-
ing to MEEM strategy can be implemented in a centralized
manner. For this purpose, task information of the present time
slot for all the users should be available at the BS which is similar
to the centralized resource allocation strategies in literature [2],
[3], [6]-[10]. Additionally, the BS should also have the residual
energy information of the users to implement the resource allo-
cation. We assume that information of the initial battery energy
of the users is available at the BS, which can be obtained with a
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one-time transmission from the users. Then, the BS can calculate
the energy consumption at each time slot and find the available
residual energy for the next time slot.

Complexity Of Solution Strategy: Since CVX is used to solve
GP sub-problems with the interior point method in step 5, the
number of required iterations is W where |IC;] is
the number of active users at time slot/ and hence 3|KC;| 4+ 2is the
total number of constraints, ¢ is the initial point to approximate
the accuracy of interior point method, 0 < € < 1 is the stopping
criterion for interior point method, and ¢ is used for updating
the accuracy of interior point method [38]. For each iteration,
the number of computations required to convert the non-convex
problems into (12) and (13) is on the order of |X;|. Therefore,

the total number of computations for Algorithm 1 is on the order
log((3|K;|+2 €
of |G| x g(( |101§\;2 )/toe)
Since we have considered ergodic data rate in (3), the pro-

posed solution depends upon large-scale channel gain. If the
users do not change their position significantly from a time slot
to another and the task parameters do not change from a time
slot to another, the resource allocation and data partition remain
unchanged. Therefore, it is not necessary to run the proposed
algorithms in each time slot.

V. OPTIMAL LIFETIME MAXIMIZATION

Using (1)—(7), the problem in (8) can be expressed as

max T,
F,B.b
EC(\) f2 b ()
sty (%ﬁk(l) (bi(1) — BEC(D)) f7 +PkRM) < ek,
lesy ’
ke{l,.,K},
Bi(m) (bi(m) — bEC(m)) < T,
fi
i€ Km,me{l,.. T}
Bilm)ECm)  Wm)
Fl(m) Bi(m)Ri7b - ’

1€ Km,me{l,.. T}
> Bi(m)<B, > Fi(m)<F, me{l,.T}h

1€Km 1€Km

5)

Let T = T’ be a given value of T. The following feasibility test
decides if the network will operate up to T’ time slots:

min 0
F.,B,b
EC
st 30 (mm (b 1)~ HEC() 2+ P b;;?) <o,
lesy ’
ke{l,., K},
Bi(m) (bi(m) — bE(m))

th
<T7

fi
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i€ Kmome {1,.., T,

Bi(m)bi(m) _bE(m) th

i€ Kmyme {1,.,T'},

i€, 1€,

(16)

Thus, problem (15) can be solved in a two-nested search loop
in which we vary the value of T’ in the outer loop, and in the
inner loop, check if (16) is feasible. The maximum value of T,
for which (16) is feasible, is the optimal network lifetime. We
consider the following optimization problem:

min S,
F.B,b
EC 2 bllic(l)
st > (1eBe() (br() — BEW) f7 + P 0 < en,
lesy h
ke{l,. K}, (17a)
Bi(m) (bi(m) — bF(m)) <5
fi
i€ Kpm,me{l,.,T}, (17b)
Bi(m)bi(m) | b(m) _ g
F;(m) B;(m)R;p, —
i€ Kmyme{1,.., T}, (17¢)
> Bi(m)<B, me{l,.,T}, (17d)
1€k
Y Fi(m)<F, me{l,.,T} (17¢)
i€

Proposition 1: The feasibility testing in (16) can be solved
in two steps, first to solve (17) optimally, and then check if the
optimal value of S for 7" time slots, S+ which is obtained by
solving (17), is less than or equal to T*".

Proof: See Appendix B. |

Problem (17) can be converted into geometric programming,
similarly to Section IV. We apply an iterative technique to solve
it. At each iteration ¢, using (11), the first constraint in (17) is
converted into a posynomial as

( i )‘W) 10 (%Bk(j)bg%,t)f,%>‘W
d5(t) e d6; (1)

bEC(l, 1)
3 (eson@m AR <1 ke ry
lesy k.b
(18)
where
d5(t) = o

ek + X est VeBeORC (Lt = 1) f7
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YeBr()DEC (5, t — 1) f2
ek Zlesz’ 'Ycﬁk(l)b%c(lﬂf —1) ]%a

and the second constraint is converted into a posynomial as

dej(t) =

wwﬁj%@(@omw%mivﬁm“
i(m)bi(m ! <1,
g (507 re
i€ Ky me{l,., T}, (19)
where
S(t=1)f
Oy (t) =
o(¢) St —1)fi + Bi(m)bES(m,t — 1)’
Siot) = Bi(m)bEC(m,t -1)
0= St —1)fi + Bi(m)bES(m,t — 1)
Thus, the overall optimization to be solved at time ¢ is:
min S(t)
S(t),Fi(m,t),
Bj(m,t),bE¢ (m,t)
s.t. (18), (19),
BimC(m,t) | BCmt)
Fi(m,t) Bi(m,t)Rip, —
i€ Km,m e {1,.., T},
Z Bi(m,t) < B, me{l,., T}
i€
> Fi(mt)<F, me{l,., T} (20)
1€

The above optimization is geometric programming and can be
solved optimally. Hence, the optimal solution of (17) is obtained
by solving (20) iteratively, following similar steps as given in
Algorithm 1 [36]. Thus, to solve (15), in the inner loop, we check
if the network operates for T’ time slots, by first solving (17),
following the approach as stated above, and then checking the
condition S < T, for the given value of T'. In the outer loop,
we then use the bisection search to find the maximum value
of T’ for which the network operates. The overall procedure is
described in Algorithm 2. The output of the algorithm T, ;1a1
is the optimal network lifetime.

Even though this strategy may not be practically imple-
mentable due to its high computational complexity and the re-
quirement for future user task information, it represents an upper
bound for the performance of the MEEM approach. We show
that in certain settings MEEM achieves the same performance
as the globally optimal network lifetime strategy. The following
proposition provides the upper bound of the optimal network
lifetime when all the users have same task parameters.

Proposition 2: If each user k has the same task characteris-
tics in every time slot, i.e., ¢ (l) = ¢r = (B, b), the optimal
network lifetime which can be obtained by solving (15) is upper
bounded as follows

23

Toptimal < minke{],..,K}a; (21)
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Algorithm 2: Finding the Optimal Network Lifetime.

1: Initialize low and high (lower and upper bounds for
bisection search)

2:  while high > low do
low-+high
3 T — L%J
4: Find S7~ by solving (17)
5: if S < Tt" then
6: low=T +1
7 else
8: high =T’
9: end if
10:  end while
11: Toptimar = low — 1
where
. P
eBRbifE B < 7
o — kb
P,
b . 2 k
PkR:_’}ﬂ lf’YCkak > m
Proof: See Appendix B. [ |

VI. PERFORMANCE EVALUATION

Here we present simulation results that evaluate the network
lifetime performance of the proposed strategies. As a reference,
we will compare our proposed strategies with the following
benchmarks:

* Reference Method 1 This scheme aims to minimize to-
tal energy consumption of all the users, i.e., minimize
> ker, (Bk(l) + & (1)) at each time slot I with the same
constraints of the problem of (9). Many state-of-the-art
the works in literature [7], [8], [10], [11] have considered
sum energy minimization as objective to decide resource
allocation for mobile-edge computing networks.

* Reference Method 2 This scheme aims to minimize the
maximum energy consumption across all the users, i.e.,
minimize maxyex, (Ex (1) + Ex (1)) at each time slot [ with
the same constraints of the problem of (9). Minimizing
maximum energy consumption across all the users at each
time slot aims to provide fairness in energy consumption
across the users to improve network lifetime.

* Local Computation In this scheme, the users compute the
tasks at their own processors.

* Full Offload In this scheme, all the users are allocated equal
computation and communication resources. At each time
slot, all the bits of each user’s task are offloaded to the edge
cloud and computed at the processor of the edge cloud.

The resource allocation for reference methods 1 and 2 can
be solved using geometric programming iteratively with similar
steps as given in Algorithm 1. For the evaluations that follow,
ten users are uniformly distributed in a circular region of radius
50 m with a cloud-associated BS at the center. The simulation
parameters, unless mentioned otherwise, are summarized in
Table II. Each user in the network is activated according to an
activation probability p; which follows the uniform distribution
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TABLE II
SIMULATION PARAMETERS

Parameter Value
fi 0.5 GHz [6,9,33]
Bi Uniform in
[500, 1500] cycles/bit [6]
b; Uniform in
[100, 500] Kb [6,9,38]
P 10~8 W/Hz
B 5 MHz
F 6 GHz [9,33]
Tth 0.15 s [9,33]
Ve 10728 [6]
Ny —147 dBM/Hz
€ 10—°
450 T T
—%—MEEM
400 —— Reference Method 2 |
Reference Method 1
& 350 —B— Local Computation
°
2 300
% 250
E
8 200
5 150
B
Z 100 .
50 &
0 . . . . . . .
1 1.5 2 25 3 35 4 45 5
Initial User Energy Ratio (J)
Fig. 3. Network lifetime versus erqtio for total energy etor = 5 J. Local

computation scheme does not meet the maximum tolerable delay per time slot
and is included here only for illustration.

with [0.3,0.7]. Therefore, the set of users which are activated
at different time slots may be different. The obtained results are
averaged over 500 network realizations.

Note that the local computation and full offload schemes
do not utilize all the resources available in the network and
therefore for these two strategies, the users do not meet the
maximum tolerable delay. The average delay achieved by local
computation and full offload schemes are 0.21 s and 0.20 s,
respectively, as indicated in the following figures.

In Fig. 3, we consider the performance of the proposed
strategy in a network where the initial energy of the users is
not identical. The network has a total of ten users among which
five randomly chosen users have initial energy e; and the other
five users have initial energy e, with e; < e;. We fix the initial
total network energy (i.e., the sum of battery energy of all
users) as e, = 5 J. The network lifetime performance of the
proposed strategies is evaluated when the initial user energy
ratio e,.q4;0 = €1/€, varies from 1 to 5. If e,44,0 = 1, we have
identical initial energy for all the users, i.e., e; = e; = 0.5 ],



GUPTA AND CHAKARESKI: LIFETIME MAXIMIZATION IN MOBILE EDGE COMPUTING NETWORKS

2200 T T T
—%— MEEM
2000 —— Reference Method 2 7
Reference Method 1
. 1800 | 5 Local Computation
[2]
S 1600 b
[}
© 1400 1
[=]
£
< 1200 1
E
3 1000 |
=
X 800 8
s
5 600 4
400, 8
200 [ 1
i:
0 . . .
5 10 15 20 25
Total Initial Energy of Users (J)
Fig. 4. Network lifetime versus total initial energy for the users. Local com-

putation scheme does not meet the maximum tolerable delay per time slot and
is included here only for illustration.

and if e,41,0 = 5, five users have initial energy e¢; = 0.83 and
the other five users have initial energy e; = 0.17. AS €,4ti0 18
increased, e; increases more compared to e, and the energy
balancing decreases in the network. Thus, the network lifetime
decreases for all strategies. Since the MEEM strategy considers
the residual battery energy information to decide on the task
sharing and resource allocation, while the reference methods do
not consider the residual battery energy information to optimize
the system parameters, MEEM achieves significant performance
improvement compared to reference methods for high values of
€ratio- FOr example, if e,.4+;0 = 5, the MEEM strategy achieves
1.73 times longer network lifetime (70% improvement) and
1.53 times longer network lifetime (50% improvement) com-
pared reference methods 1 and 2, respectively. Furthermore, for
eratio = 5, MEEM has 4.6 times higher network lifetime (460%
improvement) compared to the local computation scheme.

Fig. 4 shows the network lifetime performance of the in-
vestigated strategies when the initial total network energy e,
varies from 5 J to 25 J and e,.41, = 1. As €4, increases, the
network lifetime performance improves for each strategy. It can
be observed that the rate of improvement of the MEEM and
reference methods compared to the local computation strategies
is higher. For e;,; = 25 J, the MEEM strategy achieves 1.15,
1.35 and 3.70 times longer network lifetimes compared to the
reference methods 1, 2 and local computation respectively.

Fig. 5 shows the enabled network lifetime when the maximum
tolerable delay T*" increases from 0.15 s to 0.21 s. We have
eratio = 1, etor =5 J. Here, we also show the performance
of the full offload strategy. It can be observed that the full
offload strategy has a higher network lifetime compared to the
local computation strategy since the energy consumption for
the users in offloading the task is lower compared to computing
the task at their processor. However, none of these strategies is a
practical choice, since the tasks can not be completed within the
maximum tolerable delay for these strategies. As T*" increases,
the network lifetime performance for MEEM and reference
methods increases. This is because with an increase in the
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Fig. 5. Network lifetime versus 1" for total energy e;o; =5 J. Local

computation and full offload schemes do not meet the maximum tolerable delay
per time slot and is included here only for illustration.

maximum tolerable delay, the decisions on sharing of tasks and
allocation of computation and communication resources become
more relaxed, and thus the energy consumption decreases for
the users. Moreover, we can observe that for high values of Tth,
MEEM has the same performance as reference methods and full
offload, i.e., they converge. This is because energy consumption
in offloading the task to the edge cloud for task computation is
lower compared to the energy consumption in computing the
task at local processor and at high value of Tt", each task is
completed within maximum tolerable delay by offloading all
the bits of each task at the edge cloud for MEEM and reference
methods.

Next, we study the performance of MEEM and reference
methods compared to the optimal network lifetime strategy
described in Section V. For the latter, the number of optimization
variables is proportional to the number of time slots over which
the network operates. Thus, if the network lifetime is high,
finding the optimal solution of (15) via geometric programming
is challenging with many optimization variables. Hence, we
show the performance of the proposed strategies when e;,; is
low for which the network lifetime is low, and thus the number of
optimization variables is small. In Fig. 6, we obtain the network
lifetime performance of the proposed strategies for e,q¢;o = 1.
We can observe that with local computation providing the worst
performance, followed by reference methods 1, 2 and MEEM,
enabling increasingly longer network lifetime, in the middle,
and the Optimal Network Lifetime strategy providing the best
performance, as expected. Similarly, we can observe that as
etot increases, the network lifetime for all strategies increases,
as expected, as well. The optimal network lifetime strategy
achieves 12—17% higher network lifetime compared to MEEM,
as ey varies, and that MEEM enables a consistent network
lifetime gain of 21-45% relative to reference methods 1 and 2
respectively.

Fig. 7 compares the network lifetime enabled by the investi-
gated strategies, as the computing power of the edge cloud varies
from 5 to 9 GHz, for e¢;,; = 0.5 and e,.44;0 = 1. As the cloud
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here only for illustration.

computing power increases, the network lifetime increases for
all strategies. With an increase in cloud computing power, cloud
computing power allocated to each user increases. Therefore,
the users can offload more bits to the edge cloud, which helps
to reduce the computation energy consumption for each user.
This results in an improvement in the achieved network lifetime.
Particularly, the users k € K; which have tasks with a high value
of B (1), can save high energy by offloading bits to the edge cloud
and not computing at its own processor. Finally, for high cloud
computing power, optimal network lifetime strategy, MEEM and
reference methods have same performance, as observed from
Fig. 7. This is because, at high value of cloud computing power,
each user is allocated high computational resource of the edge
cloud and the task for each user is completed within maximum
tolerable delay by offloading all the bits of each task at the edge
cloud to save energy consumption.
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In Fig. 8, we examine the empirical cumulative distribution
function (CDF) of the network lifetime, achieved by each of
the investigated strategies, for e;,; = 5 and €,.44;0 = 1. A total
of 1000 network realizations have been considered in generat-
ing these results. The expected network lifetime achieved by
local computation, reference methods 1, 2, and MEEM are
108.1, 304.3, 353.8 and 414 time slots, respectively. We note
that these values match with the network lifetime performance
demonstrated by these strategies in Fig. 5, for e;,; =5 J. The
standard deviation of the enabled network lifetime is 12, 34,
12.3, and 14 (in time slots), respectively, for local computation,
reference methods 1, 2, and MEEM, respectively. Thus, MEEM
considerably improves over reference method 1, not only in
enabled expected network lifetime, but, also in its consistency
across different network realizations. In particular, a close to
three times reduction in network lifetime standard deviation
is observed for MEEM compared to reference method 1 from
Fig. 8.

In Figs. 9 and 10, we analyze the computation and commu-
nication resource distribution among the users at a given time
slot. We consider that five users are active at the time slot and
the initial battery energy of the users 1 to 5 are 0.83 J, 0.17 J,
0.83J,0.17 J and 0.83 J, respectively. Similarly, the number of
bits to be computed by the users 1 to 5 are 200 Kb, 400 Kb,
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putation scheme does not meet the maximum tolerable delay per time slot and
is included here only for illustration.

200 Kb, 400 Kb and 200 Kb, respectively. The initial battery
energy and the number of computation bits for each user have
been shown in rectangular box in the figures. The computation
and communication resource allocation are balanced across the
users for reference method 1. However, MEEM allocates higher
computation and communication resources for the users with
lower residual energy, larger number of computation bits, and it
allocates lower computation and communication resources for
the user with higher residual energy, smaller number of com-
putation bits. Therefore, it performs better. Reference method
2 aims to minimize the maximum energy consumption across
the users and therefore it allocates higher computation and
communication resources for the users with larger number of
computation bits and lower computation and communication
resources for the user with smaller number of computation bits.

InFig. 11, we examine the performance of the proposed strate-
gies in terms of enabled network lifetime for a given number of
bits b; to be computed per task. The initial battery energy of the
users is distributed randomly (uniform distribution) according to
the values e;,; = 5 and e,4150 = 1. As b; increases, the network
lifetime performance decreases for each strategy. This is because
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higher values of b; reflects that more bits need to be computed
per task, which results in higher energy consumption at each
time slot. It can be observed that the performance of the local
computation strategy is poor for high values of b;.

In Fig. 12, we analyze the network lifetime performance of
the proposed strategies with the activation probability of the
users in the network. For this purpose, we consider that all the
users have the same activation probability and then we vary the
activation probability of the users and observe network lifetime
performance. As the activation probability increases, more users
become active at each time slot, to compute their tasks, and
therefore energy consumption increases. Thus network lifetime
decreases with the increase in activation probability.

VII. CONCLUSION AND FUTURE WORK

We investigated the lifetime maximization problem in a net-
work where its nodes/users periodically compute their task with
the help of an edge cloud. Aiming to maximize the network
lifetime based on the user task information for the present
time slot only, we have proposed an MEEM strategy to decide
the sharing of tasks between the users and the cloud, and
the allocation of computation and communication resources. We
further investigated network lifetime maximization when future
user task information is available, as well, as an upper bound to
MEEM. Though the optimization problem for MEEM is non-
convex, we have shown that the global optimal solution can be
obtained using feasibility testing and geometric programming.
We have shown that the MEEM strategy performs close to the
optimal network lifetime. For high value of the initial user energy
ratio, MEEM achieves roughly 70% lifetime improvement over
the state-of-the-art and 460% lifetime improvement relative to
local user computation only. For a high value of the maximum
tolerable delay for completing the computation tasks of the
users, MEEM achieves the globally optimal network lifetime
performance. Finally, we have shown that MEEM achieves a sig-
nificant reduction (3X) in variation of enabled network lifetime
over diverse network topologies, compared to state-of-the-art.
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In our approach, we considered quasi-static user mobility and
a linear relationship between required CPU cycles and number
of bits for a computing task. These assumptions are commonly
encountered in practical settings [6], [7], [28]-[31] and enable
analytical tractability and insightful results. Investigating dy-
namic user mobility within a computation offloading period and
non-linear dependencies between required CPU cycles and task
size in bits lie beyond the scope of the present paper and represent
prospective avenues of future work. In particular, when the num-
ber of CPU cycles required for computation at the local device or
the edge cloud can be expressed as a polynomial function of the
task size in bits, a closed-form solution for the related resource
allocation strategies can be obtained following the methods
provided in Sections IV-V. Another prospective avenue of future
work is to consider binary offloading of non-splittable tasks in
our setting, where a task computation cannot be shared across the
edge cloud and a user device. Finally, integrating our analytical
advances into related emerging application settings, such as
decentralized multi-view sensing, cooperative video streaming
and caching, UAV-IoT, and mobile virtual reality [40]-[47]
represents yet another prospective topic of future exploration.

APPENDIX A
PROOF OF PROPOSITION 1

Let (F, B,b) be a feasible solution point of (17), i.e., the
constraints (17a), (17d) and (17e) are met at this point. If
(F, B, b) is also a feasible solution of (16), then the value of
Bi(m) (bi(m) — by (m))

max )
P€Km ,me{l,..,T'} fl

Bi(m)b;< (m)
Fi(m)

S:

b (m)
Bi (m)RLb
is less than or equal to T**. If (F, B, b) is not a feasible solution

of (16), then S > T*". Therefore S7» must be less than or equal
to T*" if there exist a feasible solution of (15).

APPENDIX B
PROOF OF PROPOSITION 2

To obtain the upper bound for the optimal network lifetime,
as given in (15), we consider the following relaxed problem

min 0,
F.,B,b
EC 2 bEC(l)
st > (eBel) (i) = BEC(D) £ + P G < ep,
lesy '

ke{l,. K}, (22a)
> Bi(m)<B, me{l,., T} (22b)
i€
Z Fi(m)<F, me{l,.,T}. (22¢)
1€

The optimal network lifetime according to the above relaxed
problem is an upper bound of the original problem (15). In
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case, the value of T*" is high, (15) becomes equivalent to (22).
Since (22a), (22b), and (22c) are independent of each other, the
problem of deciding the optimal share of the task to be offloaded
for every user k € {1,.., K'} reduces to this problem:

min
bEE(1)

<%ﬁk(l) (bx (1) = BEE(1)) f7 + Pkﬁ(?) . (23)

)

for each [ € ST'. The above problem is a linear optimization
problem with a single variable and the optimal solution is

. P,
0,  ifveBe()f2 <=2,

R
bEC(l) = F—
bi(l), if 7Bk (1) f7 > R—’“.
kb
Therefore, the energy consumption for each user & is
. P
B Db B DI < 5
ex(l) = ' (25)
bi(1) . by
P,—2, if v, Bk () f7 > ——.
kRkb V/Bk()fk Rk;b

s )

Ifeachuser k € {1, .., K} has same task characteristics in every
time slot, i.e., ¢ = (B, br), the energy consumption of each
user k is €, which is obtained by replacing S (l) = Bx and
by (1) = by in (25). Then, the network lifetime for each user k is
er/ €. Therefore, the optimal network lifetime is upper bounded
according to (21).
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