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Abstract
Deep brain stimulation (DBS) is an increasingly used medical treatment for various
neurological disorders. While its mechanisms are not fully understood, experimen-
tal evidence suggests that through application of periodic electrical stimulation DBS
may act to desynchronize pathologically synchronized populations of neurons result-
ing desirable changes to a larger brain circuit. However, the underlying mathematical
mechanisms by which periodic stimulation can engender desynchronization in a
coupled population of neurons is not well understood. In this work, a reduced phase-
amplitude reduction framework is used to characterize the desynchronizing influence
of periodic stimulation on a population of coupled oscillators. Subsequently, optimal
control theory allows for the design of periodic, open-loop stimuli with the capac-
ity to destabilize completely synchronized solutions while simultaneously stabilizing
rotating block solutions. This framework exploits system nonlinearities in order to
strategically modify unstable Floquet exponents. In the limit of weak neural coupling,
it is shown that this method only requires information about the phase response curves
of the individual neurons. The effects of noise and heterogeneity are also consid-
ered and numerical results are presented. This framework could ultimately be used to
inform the design of more efficient deep brain stimulation waveforms for the treatment
of neurological disease.
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1 Introduction

High-frequency deep brain stimulation (DBS) is a well-established treatment to allevi-
ate the movement symptoms in patients with Parkinson’s disease who do not respond
well to medication (Benabid et al. 2009; Perlmutter andMink 2006). However, despite
its widespread use, the therapeutic mechanisms of high-frequency DBS are not well
understood. This issue has hindered the development of more energy efficient and
clinically effective stimulation protocols. While there is no consensus about the fun-
damental mechanisms of high-frequency DBS, it has long been known that relative
to healthy individuals, local field potential recordings from patients with Parkinson’s
disease show a pronounced increase in the beta frequency range (from approximately
13–35 Hz) (Brown et al. 2001; Priori et al. 2004). Investigation of this phenomenon
has led to the hypothesis that pathological synchronization among neurons in the basal
ganglia-cortical loop contribute to both tremors and rigidity observed in patients with
Parkinson’s disease (Levy et al. 2002; Kühn et al. 2009; Kane et al. 2009; Ham-
mond et al. 2007) and that high-frequency DBS actively mitigates the synchronization
(Eusebio et al. 2011; Rosa et al. 2011; Kühn et al. 2008).

While it is still unknown whether excessive synchronization among neurons causes
themovement symptoms of Parkinson’s disease or ismerely correlational, this hypoth-
esis has led to the development of new stimulation strategies. For instance, real-time
measurement of local field potential data has been used successfully in adaptive DBS
stimulation protocols where the stimulation intensity is modulated based on mea-
sured beta power (Rosa et al. 2015; Little et al. 2013). Baseline local field potential
recordings in patients with Parkinson’s disease have also been used to identify suitable
frequencies at which to apply high frequency DBS (Tsang et al. 2012). Additionally,
Tass and colleagues have developed a stimulation protocol known as coordinated reset,
whereby multiple stimulators are used to desynchronize a population of synchronized
oscillators (Tass 2003; Manos et al. 2018); these stimulation protocols have shown
promise as a treatment for Parkinson’s disease in human (Adamchic et al. 2014) and
nonhuman primate studies (Wang et al. 2016; Tass et al. 2012).

Experimental evidence that supports the notion that high-frequency DBS miti-
gates excessive synchronization associated with the symptoms of Parkinson’s disease
has spurred a search for efficient control strategies for achieving this objective. For
instance, by constructing and analyzing stochastic phase maps and computing the
associated Lyapunov exponents, Wilson et al. (2011) and Holt and Netoff (2014) sug-
gest that chaotic desynchronization may occur when applying carefully tuned high
frequency pulsatile stimulation when a nonzero variance is added to the spike times.
Using a similar approach, Wilson and Moehlis (2015) found that for a wide range of
periodic stimulation parameters, populations of neurons with a small amount of noise
tend separate into identical and distinct clusters that are time-locked to the stimula-
tion, a finding that is consistent with experimental observations that individual neural
spikes appear time-locked to DBS pulses (Hashimoto et al. 2003; Bar-Gad et al. 2004;
Cleary et al. 2013). Related studies have found that clustering of oscillator phases can
emerge in populations of uncoupled oscillators subject to noise (Nakao et al. 2007).
Feedback methods for disruption of neural synchronization have also been suggested.
For instance, Matchen and Moehlis (2018) and Monga and Moehlis (2019) investi-
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gate the possibility of using feedback control to actively separate a large population of
synchronized neurons into clusters, Wilson and Moehlis (2014) develops a strategy to
produce a positive finite time Lyapunov to engender chaotic desynchronization, and
Nabi et al. (2013) suggests driving the neural population close to a phaseless set so
that the neurons become desynchronized upon the subsequent relaxation to the limit
cycle. For a detailed overview of phase reduction techniques used in many of the
aforementioned applications, the interested reader is referred to Monga et al. (2019).

Because real-time feedback control on the time scales of individual neural spikes
is not yet clinically possible, in this work attention will be restricted to periodic, open-
loop stimulation. Here, a strategy is presented for finding a periodic DBS stimulus
waveform that can stabilize unstable splay states in an oscillatory population of neu-
rons. In the limit of small coupling and for an identical population of neurons, it is
shown that periodic stimuli can be designed to stabilize rotating block solutions and
splay states using only information about the phase response curves of individual
neurons. The ability of this strategy to desynchronize a population of pathologically
synchronized neurons is tested in both high and low noise environments, with qual-
itatively different results for each case. Additionally, the results to follow suggest
fundamental limits on the number of rotating blocks that can be stabilized using peri-
odic stimulation.

The organization of this paper is as follows: Sect. 2 gives background information
on phase-amplitude reduction strategies that will be used for analysis of populations of
coupled neurons. This background is presented in the context of the coupled oscillator
models considered here. Section 3 presents new results that provide approximations for
the phase-amplitude reduced dynamics for different periodic solutions of the weakly
coupled oscillator models. Full derivations for the results from Sect. 3 are presented
in Appendix A. Section 4 uses the results from Sect. 3 to develop conditions that
can be used to modify the stability of periodic solutions in populations of coupled
oscillators with periodic stimulation (without using state feedback). Appendix B sum-
marizes an optimal control framework that is used to optimally satisfy the stability
conditions from Sect. 4. Section 5 presents numerical results applied to populations
of synaptically coupled neurons, considers the basins of attraction of stabilized peri-
odic solutions, and investigates the stabilization results when non-negligible noise and
oscillator heterogeneity are considered. Section 6 gives concluding remarks.

2 Background: isochrons and isostable coordinates of coupled
oscillator models

This work will consider the behavior of synaptically coupled single-compartment
neural models of the form

V̇i = fV (Vi , si , ni ) + u(t) + gsyn
N

N∑

j=1

s j (Vi − Esyn)

= fV (Vi , si , ni ) + gsynsi (Vi − Esyn)︸ ︷︷ ︸
internal dynamics

+ u(t) + gsyn
N

∑N

j=1
(s j − si )(Vi − Esyn)

︸ ︷︷ ︸
external perturbations

,
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ṡi = fs(Vi , si ),

ṅi = fn(Vi , ni ), (1)

where Vi is the transmembrane voltage of neuron i , si is a synaptic variable, and
ni ∈ R

m are auxiliary variables (i.e., gating variables, ionic concentrations) which
determine the neural dynamics, Esyn is the reversal potential of a given neurotrans-
mitter, gsyn < 0 is the synaptic coupling strength, and u(t) is an external current
identically applied to all neurons so that the neurons fire periodically in steady state.
In the transmembrane voltage equation, a distinction is made between the internal
dynamics and external perturbations. In the absence of external perturbations, it is
assumed that each neuron of the form (1) asymptotically approaches a T -periodic
limit cycle xγ (t). Note that all neurons are assumed to be identical so that there is no
dispersion in their natural frequencies. For a thorough discussion of neural models of
the form (1), the interested reader is referred to Ermentrout and Terman (2010).

In order to aid in the analysis, phase reduction can be used to study (1) in a weakly
perturbed setting (Ermentrout and Terman 2010; Izhikevich 2007; Winfree 2001):

θ̇i = ω + ZV (θ)

⎡

⎣u(t) + gsyn
N

N∑

j=1

(s(θ j ) − s(θi ))(V (θi ) − Esyn)

⎤

⎦ . (2)

Here θi ∈ [0, 2π) denotes the phase of oscillator i giving a sense of the state of the
i th oscillator in reference to its periodic orbit. Here, θi = 0 is chosen to correspond
to the moment neuron i fires. Additionally, ZV (θ) is the phase response curve PRC
of a single neuron in response to voltage perturbations, and ω = 2π/T is the natural
frequency of each neuron. The PRC is calculated with respect to xγ (t). The reduc-
tion (2) is most accurate when the Floquet multipliers associated with the periodic
orbits of the neurons are close to zero so that perturbations rapidly decay to the limit
cycle.

Because θi ∈ S
1, intuitively one can think of the phase of each neuron traveling

around a ring. If the neurons are synchronized, the neurons fire at the same time. It
will be assumed throughout this work that the coupling is such that in the absence of
stimulation, the synchronized state is asymptotically stable. Using the reduced model
(2) as a starting point, strategies will be developed to destabilize a synchronized state
comprised of N identical neurons in favor of the splay state (with phases of all neurons
spread equally around the ring) or rotating block states (having N/G blocks of G
oscillators with the phases of the blocks spread equally around the ring). Figure 1
gives a pictorial example of these states. The reduced model (2) will be used as a
starting point to achieve this control objective.

2.1 Background: phase amplitude reduction of weakly coupled oscillators

Consider a more general form of (2)
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Fig. 1 For splay solutions, the phases of N oscillators are spaced equally around the ring. For synchronized
solutions, all N oscillators have identical phases. For the rotating block solution, each block contains G
oscillators and the blocks are spaced equally around the ring

θ̇i = ω + 1

N
ZV (θi )

N∑

j=1

f (θi , θ j ) + ZV (θi )u(t), (3)

where f (a, b) characterizes the coupling and the network is connected in an all-to-
all manner. Note here that all oscillators and coupling functions are assumed to be
identical so that ZV , ω, and f are the same for all neurons. Additionally, u(t) is
applied identically to each oscillator. Much work has been done on understanding
the collective behavior of a population (3) due to input (Ko and Ermentrout 2009;
Kawamura et al. 2008; Levnajić and Pikovsky 2010; Kotani et al. 2014). Provided (3)
has a periodic solution Xγ (t) = [

θ
γ
1 (t) . . . θ

γ

N (t)
]T
, one commonly used approach

is to apply a secondary phase reduction to (3), transforming it into an equation of the
form

�̇ = � + ZT (�)P(t), (4)

where � is the population phase, Z(�) ∈ R
N is the population PRC, � is the natural

frequency of the collective oscillation, and P(t) = u(t)
[
ZV (θ1) . . . ZV (θN )

]T is
the effective perturbation. Equation (4) is simply a phase reduction performed on
the model (3) when considering each ZV (θi )u(t) as a weak external input. Such a
reduction was considered for general coupling functions (Nakao et al. 2018). The
population phase �, gives a sense of the state of the collective oscillation with respect
to the periodic solution Xγ (t). Note here that the periodic orbit Xγ (t) does not need to
be a synchronized solution. Because f (θi , θ j ) is assumed to be an order ε term, one can
show that� = ω+O(ε). While this reduction approach reduces the dimension of (2)
from N to one making analysis more tractable, a significant drawback is that it ignores
the slow decay of perturbations back to the limit cycle thereby limiting its practical
utility when perturbations become larger. Here, a related approach will be used where
(3) is represented with a phase-amplitude reduction (Wilson and Ermentrout 2018,
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2019),

�̇ = � + ZT (�)P(t) +
β∑

k=1

[
BkT (�)ψk

]
P(t),

ψ̇ j = κ jψ j + ITj (�)P(t) +
β∑

k=1

[
Ck

j
T
(�)ψk

]
P(t),

j = 1, . . . , β. (5)

Above, ψ j are isostable coordinates which give a sense of the distance from the
limit cycle solution, κ j is the corresponding non-zero Floquet exponent (Jordan
and Smith 2007) ordered so that Real(κ1) > Real(κ2) > · · · > Real(κβ), I j (�)

is the population isostable response curve (analogous to the population PRC),
Bk(�), and Ck

j (�) provide second order corrections to the phase and isostable
dynamics, respectively, and β ≤ N − 1 is the number of isostable coordinates
considered in the reduction. Typically, isostable coordinates ψ j with associated
Real(κ j ) � 0 (i.e., those that rapidly decay) are taken to be close enough to
zero so that they can be neglected in the reduction (5) (Wilson and Ermentrout
2018).

As investigated in Wilson and Ermentrout (2019), it is also possible to apply
the phase-amplitude reduction strategy directly to (1) without using the intermedi-
ate reduction (3). The resulting reduction takes the form

�̇ = � + Z(�)u(t) +
β∑

k=1

[Bk(�)ψk
]
u(t),

ψ̇ j = κ jψ j + I j (�)u(t) +
β∑

k=1

[Ckj (�)ψk
]
u(t),

j = 1, . . . , β. (6)

where Z(�) ≡ ∑N
i=1

∂�
∂Vi

, I j (�) = ∑N
i=1

∂ψ j
∂Vi

, Bk(�) ≡ ∑N
i=1

∂2�
∂ψk∂Vi

and

Ckj (�) ≡ ∑N
i=1

∂2ψ j
∂ψk∂Vi

and all partial derivatives are evaluated at phase � on the
periodic orbit. Provided (2) is a good approximation of (1), as illustrated in Wil-
son and Ermentrout (2019), Z(�)u(t) ≈ ZT (�)P(t), I j (�)u(t) ≈ ITj (�)P(t),

Bk(�)u(t) ≈ BkT (�)P(t) and Ckj (�)u(t) ≈ Ck
j
T
(�)P(t). In the sections to follow

it will be shown using (5) that in the limit of small coupling, the terms of the reduction
(5) [and hence the terms of the reduction (6)] can be found with only knowledge of
ZV (θ) in many cases.
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2.2 Background: isochrons, isostables, and Floquet theory

For stable limit cycles, the phase� inEq. (5) gives a sense of the asymptotic behavior of
(2) during its approach to the limit cycle using the notion of isochrons (Guckenheimer
1975; Winfree 2001). Isochrons can be used to extend the notion of phase to the basin
of attraction of the limit cycle and are defined as follows: for an initial condition X(0)
on a limit cycle of (3) the corresponding isochron is the set of all Y(0) such that

lim
t→∞ ||X(t) − Y(t)|| = 0, (7)

where || · || can be any norm. In this work, unstable limit cycles will also be of interest,
requiring the nonstandard definition of phase used in Wilson (2019b). This definition
is only valid near the T -periodic limit cycle solution xγ (t) where the dynamics can
be approximated as

d
x(t)

dt
= J (xγ (t))
x + O(|
x|2). (8)

Here 
x(t) = x(t) − xγ (t) with x(t) ≡ [θ1(t) . . . θN (t)]T and J (xγ (t)) represents
the Jacobian of (2) evaluated at xγ (t). Because xγ (t) is periodic to leading order in

x, the solutions of (8) can be characterized using Floquet theory (Grimshaw 1993;
Jordan and Smith 2007) according to

x(t) = xγ (t) +
N−1∑

j=1

c j exp(κ j t)q j (t), (9)

Here c j are constants chosen to satisfy initial conditions, κ j are the non-zero Floquet
exponents, and q j (t) are T -periodic functions. Note that the term cN qN (t) (corre-
sponding by definition to Floquet exponent κN = 0) is absorbed into xγ (t). As in
Wilson (2019b), (9) can be used to provide an alternate definition of phase, where the
� = 0 level set, �0 is defined as

�0 =
⎧
⎨

⎩x ∈ R
n|x = xγ (0) +

N−1∑

j=1

c jq j (0)

⎫
⎬

⎭ . (10)

Consequently, phase at all locations near the periodic orbit will be defined by

�(x) = 2π(T − t�)

T
, (11)

where t� is the time atwhich�0 is first crossed under the fully nonlinear flow.Likewise,
isostable coordinates can be defined for unstable periodic orbits according to

ψ j (x) = wT
j (x� − x0) exp(−κ j t�), (12)
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where x� is the location at which �0 is first crossed under the fully nonlinear flow and
w j is defined such that wT

j qi (0) = 1 for i = j and 0 otherwise. As shown in Wilson

(2019b) when using the definition (11) there is an order |
x|2 discontinuity in the
phase and isostable coordinates across the �0 level set which can be ignored provided
x(t) is close enough to the periodic orbit.

Using the definition (12) and the approximate solution (9), one can show that to
leading order in |
x|, the constant c j is equivalent to ψ j (x). This allows (9) to be
written in terms of the phase and isostable coordinates (cf. Wilson 2019b; Wilson and
Ermentrout 2018)

x(t) = xγ (θ(t)) +
N−1∑

j=1

ψ jq j (θ(t)). (13)

In this work, the definitions (11) and (12) will be used in the phase-amplitude reduc-
tions. Functions Z(�), I j (�), Bk(�), andCk

j (�) (in addition toZ(�),I j (�),Bk(�)

and Ckj (�)) can be computed numerically using methods detailed in Wilson (2019a).

2.3 Background: stabilization and destabilization using periodic stimulation

The stability of periodic solutions of (3) is determined by the Floquet exponents. One
Floquet exponent will always be equal to zero due to periodicity of solutions. If the
remaining κ j have real components that are strictly less than zero the periodic orbit
is stable, otherwise, it is unstable. Wilson (2019b) provides a strategy to modify the
Floquet exponents using periodic stimulation with results summarized here.

Starting with the phase-amplitude reduction (5) suppose that P(t) is a Tp-periodic
perturbation. Additionally, changing to a rotating reference frame with the relation
η = � − �pt where �p = 2π/Tp yields

η̇ = 
� + ZT (η + �pt)P(t) +
β∑

k=1

[
BkT (η + �pt)ψk

]
P(t),

ψ̇ j = κ jψ j + ITj (η + �pt)P(t) +
β∑

k=1

[
Ck

j
T
(η + �pt)ψk

]
P(t),

j = 1, . . . , β. (14)

where
� ≡ �−�p and is assumed to be anO(ε) term. Equation (14) is Tp-periodic
and of the general form ẏ = εQ( y, t) so that the method of averaging can be used
(Sanders et al. 2007; Guckenheimer andHolmes 1983) allowing for the approximation
of (14) as

Ḣ = 
� + ρ(H) +
β∑

k=1

�kζk(H)
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ẏ = (D + E(H)) y + q(H), (15)

where

y =

⎡

⎢⎢⎢⎣

�1
�2
...

�β

⎤

⎥⎥⎥⎦ , D =

⎡

⎢⎢⎢⎣

κ1
κ2

. . .

κβ

⎤

⎥⎥⎥⎦ , E(H) =

⎡

⎢⎢⎢⎣

ν1,1(H) ν1,2(H) . . . ν1,β (H)

ν2,1(H) ν2,2(H) . . . ν2,β (H)

...
...

. . .
...

νβ,1(H) νβ,1(H) . . . νβ,β(H)

⎤

⎥⎥⎥⎦ ,

q(H) =

⎡

⎢⎢⎢⎣

μ1(H)

μ2(H)

...

μβ(H)

⎤

⎥⎥⎥⎦ ,

and ρ(H) = 1
Tp

∫ Tp
0 ZT (H + �pt)P(t)dt , ζk(H) = 1

Tp

∫ Tp
0 Bk(H + �pt)P(t)dt ,

ν j,k(H) = 1
Tp

∫ Tp
0 Ck

j (H +�pt)P(t)dt , and μk(H) = 1
Tp

∫ Tp
0 Ik(H +�pt)P(t)dt .

Fixed points of (15) correspond to periodic orbits of (14) with the same stability
(Sanders et al. 2007; Guckenheimer and Holmes 1983).

As investigated in Wilson (2019b), (15) has a stable fixed point provided some H0
exists for which

ρ(H0) = −
�, (16)

dρ/dH |H0 < 0, (17)

μi (H0) = 0 for i = 1, . . . , β, (18)

�(D + E(H0)) < 0, (19)

where �(R) is the maximum real component of any eigenvalue of the matrix R.
Consequently, these conditions were used in Wilson (2019b) as design parameters to
stabilize unstable periodic orbits. Condition (19) can be rewritten assuming that the
matrix E(H) is a small perturbation and that the eigenvalues of matrix D are not
repeated. With these assumptions, as shown in Wilson (2019b), condition (19) can be
rewritten as

real(κi + νi,i ) < 0 for i = 1, . . . , β. (20)

As will be shown here, more detailed analysis of the averaged equations (15) can be
used to design periodic inputs that can either stabilize or destabilize periodic solutions
of (2) as desired. In Appendix B it is shown how any combination of conditions (16)–
(18) and (20) can be satisfied in an energy-optimal manner. Finally, note that identical
conditions for stabilization of periodic orbits of (6) can be determined by repeating
the above arguments using Z(�)u(t), I j (�)u(t),Bk(�)u(t) and Ckj (�)u(t) in place

of ZT P(t), ITj (�)P(t), BkT (�)P(t) and Ck
j
T
(�)P(t), respectively.

For large populations of coupled oscillators, the dimensionality of the phase-
amplitude reduced equations (5) can still be quite high. Directly attempting to use
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this strategy to satisfy (16)–(19) would be a difficult task. However, as shown in the
analysis below, a greatly simplified set of conditions can be derived for some general
categories of periodic solutions of (3). Furthermore, as will be shown in the follow-
ing sections, stabilization (and destabilization) of periodic solutions can be achieved
solely with knowledge of the PRC of the individual oscillators (i.e., ZV (θ)).

3 Approximation of phase-amplitude reduced equations for weakly
coupled oscillators

In this work, the primary concern is understanding how periodic, nonfeedback stimu-
lation can modify the stability of periodic solutions of (2). From conditions (16)–(19),
this can be done with knowledge of Z(�), Ik(θ), and Ck

j (θ) from the reduction (14).
In general, these reduced functions can be derived using methods given in Wilson
(2019a). However, as newly shown in this work, in the limit of weak coupling many
of these terms can be related directly to ZV (θ), the PRCs of the individual oscillators.

To do so, consider a periodic solution θ
per
k (t) of (3) that emerges when u(t) = 0 for

which θ
per
k (t) = θ

per
k (t +T ) for some T = 2π/� for all k. By assuming that coupling

f (θi , θ j ) is an order ε termwhere 0 < ε � 1 asymptotic expansion in powers of ε can
be used to show that θperi (t) = θ

per
i (0) + ωt +O(ε). Thus, θperj = θ

per
i + ηi, j +O(ε)

where η j,i is a constant. Under these assumptions, as shown in Appendix A, the
population response curves take the form:

ZT (�)P(t) = u(t)

wT
N1

N∑

j=1

[
ZV (θ

per
j (�))w

j
N

]
, (21)

ITj (�)P(t) =
N∑

i=1

[
wi

j ZV (θ
per
i (�))

]
u(t), (22)

Ck
j
T
(�)P(t) =

N∑

i=1

[
wi

jv
i
k Z

′
V (θ

per
i (�))

]
u(t), (23)

wherew j , v j , and λ j are left eigenvectors, right eigenvectors, and eigenvalues, respec-
tively of

M = 1

N

⎡

⎢⎢⎢⎣

A1 + B(0) B(η1,2) . . . B(η1,N )

B(η2,1) A2 + B(0) . . . B(η2,N )
...

. . .
...

B(ηN ,1) B(ηN ,2) . . . AN + B(0)

⎤

⎥⎥⎥⎦ (24)

where,

Ai ≡ 1

T

∫ T

0

[
Z ′
V (ωt)

N∑

j=1

f (ωt, ωt + ηi, j ) + ZV (ωt)
N∑

j=1

fa(ωt, ωt + ηi, j )

]
dt,

123



Optimal open-loop desynchronization of neural oscillator…

B(ηi, j ) ≡ 1

T

∫ T

0

[
ZV (ωt) fb(ωt, ωt + ηi, j )

]
dt .

Afull derivation of (21)–(23) is presented inAppendixAwhere it is also shown that the
eigenvalues of the matrix M correspond directly to the Floquet exponents from (9). In
the subsections to follow, relationships (21)–(23) are examined specifically for splay,
synchronous, and rotating block solutions. The resulting simplifications will serve as
a foundation to investigate stability conditions for periodic input in the sections to
follow.

3.1 Reduced equations for specific periodic solutions

Splay state solutions One solution of general interest is the splay state, for which the
phases of all oscillators are spaced equally as shown in Fig. 1. For such a solution, as
shown Appendix A.1 some useful simplifications are possible

ZT (�)P(t) = u(t)

N

N∑

j=1

[
ZV

(
� + 2( j − 1)π

N

)]
, (25)

C j
j

T
(�)P(t) = u(t)

N

N∑

i=1

[
Z ′
V

(
� + 2( j − 1)π

N

)]
. (26)

The isostable response curves do not admit any significant simplifications beyond (22)
for splay state solutions.
Synchronous solutionsFor a periodic synchronous solution, the phases of all oscillators
are equal. For such a solution, as shown in Appendix A.2

ZT (�)P(t) = u(t)ZV (�), (27)

ITj (�)P(t) = 0, (28)

Ck
j
T
(�)P(t) =

{
u(t)Z ′

V (�), if j = k,

0, otherwise.
(29)

Rotating block solutions For a large population of oscillators, the full splay state may
be difficult to stabilize. In this case, rotating block solutions are of interest, whereby
N/G blocks of G oscillators are spaced equally in phase (see, for example, Fig. 1).
As shown in Appendix A.3 reduced equations of the rotating block solutions with 2
blocks are markedly similar to those of the splay solution when only 2 oscillators are
considered with the following reduced equations

ZT (�)P(t) = u(t)

2

[
ZV (�) + ZV (� + π)

]
, (30)

ITk (�)P(t) =
{
u(t)

√
N

2

[
ZV (�) − ZV (� + π)

]
, if k = 1,

0, otherwise.
(31)
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Ck
j
T
(�)P(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u(t)
2 Z ′

V (�) + u(t)
2 Z ′

V (� + π), if j = k = 1,

u(t)Z ′
V (�), if j = k and 2 ≤ j ≤ N/2,

u(t)Z ′
V (� + π), if j = k and N/2 + 1 ≤ j ≤ N − 1,

0, otherwise.

(32)

4 Necessary conditions for stabilization of population oscillations
using periodic input

Stabilizationof a periodically forcedoscillator canbe achievedby satisfying conditions
(16)–(19) which use the phase-amplitude reduction as a starting point (5). As shown
below, many of these conditions are redundant, and ultimately, relatively few are
necessary even for large oscillator populations. Additionally, using equations (25)–
(32) from the previous section, these stabilization conditions can be written solely in
terms of the phase response curves of the individual oscillators, the phase differences
in steady state, and the unstable Floquet exponents. The stabilization conditions given
below are valid in the limit that the magnitude of periodic input is small and do not
contain any explicit information about the basins of attraction of stabilized solutions.
Nevertheless, in numerical results presented in Sect. 5 these conditions provide a
strong foundation from which to design inputs that modify the stability of periodic
solutions as desired. Results presented in Sect. 5.1 investigate modifications to the
resulting basins of attraction of stabilized orbits in response to periodic forcing.

As an important side note, previous work illustrated that for an identical and uncou-
pled population of oscillators, input applied when the derivative of the phase response
curve is large can exponentially desynchronize the population-the results fromSect. 4.2
show this result also holds when weak coupling is explicitly included in the analysis.

4.1 Stabilization of splay state solutions

As mentioned earlier, the nonzero eigenvalues of (24) are good approximations to the
Floquet exponents, κi , of the periodic orbit from (9). As shown in Wilson (2019b),
when each κi is unique, stabilization can be achieved by designing a stimulus for which

(16)–(18) and (20) are all satisfied. From (26), however, note that each C i
i (�)

T
P(t)

is identical to leading order for all i so that νi,i from (20) are identical. With this
information, condition (20) can be simplified to

max
i

(real(κi )) + real(νi,i (H0)) < 0. (33)

Equation (33) states that focusing solely on the largest magnitude Floquet multiplier,
all unstable modes of the splay state can be stabilized regardless of the number of
oscillators. Furthermore, as can be seen from (25) and (26), d

d�

(
ZT (�)P(t)

) =
C i
i (�)

T
P(t). Recalling the definition of νi,i , this implies that condition (17) is already

satisfied when (33) is satisfied. Taken together, only a subset of the requirements (16)–
(18) and (20) must be satisfied to stabilize the splay state:
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ρ(H0) = −
�,

μi (H0) = 0 for i = 1, . . . , β,

max
i

(real(κi )) + real(νi,i (H0)) = κ
targ
1 < 0. (34)

Here, κ
targ
1 is a target value of the real component of the largest magnitude Floquet

multiplier for the periodically perturbed system. Using the approximations for the
reduced equations from (22), (25), and (26), the stability conditions above can be
approximated by

1

Tp

∫ Tp

0

(
u(t)

N

N∑

i=1

[
ZV

(
H0 + 2( j − 1)π

N
+ �pt

)])
dt = −
�,

1

Tp

∫ Tp

0

(
u(t)

N∑

i=1

[
wi
k ZV

(
H0 + 2( j − 1)π

N
+ �pt

)])
dt = 0 for k = 1, . . . , β,

max
i

(real(κi )) + 1

Tp

∫ Tp

0

(
u(t)

N

N∑

i=1

[
Z ′
V

(
H0 + 2( j − 1)π

N
+ �pt

)])
dt = κ

targ
1 < 0.

(35)

4.2 Destabilization of synchronous solutions

For stable synchronous solutions (i.e., with ηi, j = 0 for all i and j), as shown
in Appendix A.2, the associated matrix M from (24) has N − 1 repeated nonzero
eigenvalues with λk = A/N . Considering the conditions given in Sect. 2.3, a stable
synchronous solution (i.e., with real(κk) < 0 for all k), can be destabilized provided
there exists some H0 for which

ρ(H0) = −
�, (36)

μi (H0) = 0 for i = 1, . . . , β, (37)

�(D + E(H0)) > 0. (38)

Note that in contrast to (19), condition (38) requires some Floquet multiplier of the
periodically forced synchronized orbit to be positive, thereby making it unstable. Con-
dition (37) is guaranteed for the synchronous solution from any stimulus by (28) which
states that isostable response curves arewell approximated by zero.Additionally, using
(29), one finds that D + E(H0) as defined in (15) is simply diagonal

D + E(H0) =
⎡

⎢⎣
κ1 + ν1,1(H0)

. . .

κN−1 + νN−1,N−1(H0)

⎤

⎥⎦ . (39)

Furthermore, recall κ j ≈ λ j and that κ j are identical for all j . Additionally, from (29),

ν j, j (H0) is well approximated by 1
Tp

∫ Tp
0 Z ′

V (H0 + �pt)u(t)dt for all j . Therefore,
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(38) can be satisfied provided κ1 + ν1,1(H0) > 0. To summarize, the synchronous
state can be destabilized provided there exists some H0 for which only two conditions
are satisfied:

ρ(H0) = −
�,

κ1 + ν1,1(H0) = κ
targ
1 > 0. (40)

Additionally, from (27) and (29), in the limit that coupling is small, the above condi-
tions are well approximated by

1

Tp

∫ Tp

0

(
u(t)ZV

(
H0 + �pt

))
dt = −
�,

κ1 + 1

Tp

∫ Tp

0

(
u(t)Z ′

V

(
H0 + �pt

))
dt = κ

targ
1 > 0. (41)

In other words, Floquet multipliers of the coupled system of oscillators can be manip-
ulated by applying a stimulus that is proportional to the derivative of the PRC of the
individual oscillators. Previous work (Wilson and Moehlis 2014) yielded a related
result through analysis of uncoupled, identical oscillators receiving the same inputs,
i.e., that stimulation applied when the derivative of the PRC is large can exponen-
tially desynchronize a pathologically synchronized population of neurons. The results
here show that when coupling is explicitly included in the analysis, the derivative of
the PRC still characterizes whether a stimulus will be effective at desynchronizing a
pathologically synchronized population.

4.3 Stabilization of rotating block solutions

As will be shown here, the control objective of stabilizing a rotating block solution
is a hybrid between stabilization of splay solutions and stabilization of synchronous
solutions. Beginning with the stability requirements (16)–(19), suppose the goal is to
stabilize the 2-block solution. Using (31), all but one isostable response curve is well
approximated by zero, so that (18) can be satisfied by simply requiring μ1(H0) = 0.
In Appendix A.3 it is shown that the eigenvalues λ2 through λN−1 of the matrix M
from (24) are identical so that κ2 through κN−1 are also identical to leading order.
Considering Ck

j (�)P(t) from (32), the matrix D + E(H0) is diagonal with specific
elements given by

[D + E(H0)] j, j

=

⎧
⎪⎪⎨

⎪⎪⎩

κ1 + 1
Tp

∫ Tp
0

[
u(t)
2 Z ′

V (H0 + �pt) + u(t)
2 Z ′

V (H0 + �pt + π)
]
dt, if j = 1,

κ2 + 1
Tp

∫ Tp
0

[
u(t)Z ′

V (H0 + �pt)
]
dt, if 2 ≤ j ≤ N/2,

κ2 + 1
Tp

∫ Tp
0

[
u(t)Z ′

V (H0 + �pt + π)
]
dt, if N/2 + 1 ≤ j ≤ N − 1,

(42)

where [D+ E(H0)] j, j denotes the j th term on the diagonal of the matrix D+ E(H0).
Therefore, conditions (16)–(19) for the 2-block solution are satisfied provided the
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simplified conditions below are satisfied for some H0:

1

Tp

∫ Tp

0

(
u(t)

2

[
ZV

(
H0 + �pt

)+ ZV
(
H0 + �pt + π

)])
dt = −
�,

1

Tp

∫ Tp

0

(
u(t)

2

[
ZV

(
H0 + �pt

)− ZV
(
H0 + �pt + π

)])
dt = 0,

κ1 + 1

Tp

∫ Tp

0

(
u(t)

2

[
Z ′
V

(
H0 + �pt

)+ Z ′
V

(
H0 + �pt + π

)])
dt = κ

targ
1 < 0,

κ2 + 1

Tp

∫ Tp

0

(
u(t)

[
Z ′
V

(
H0 + �pt

)])
dt = κ

targ
2 < 0,

κ2 + 1

Tp

∫ Tp

0

(
u(t)

[
Z ′
V

(
H0 + �pt + π

)])
dt = κ

targ
2 < 0,

(43)

where, κ targ
1 and κ

targ
2 are target values of the each Floquet multiplier under the appli-

cation of the periodic stimulus. The first three conditions of (43) are identical to the
stabilization conditions for the 2-oscillator splay stabilization. The remaining two
conditions ensure that the rotating blocks themselves are stable. One can show that
this general pattern persists for rotating block solutions with larger than 2 blocks by
generalizing the arguments presented here and in Appendix A.3.

5 Numerical results

To illustrate the theoretical results presented above a population model of spiking
thalamic neurons with synaptic coupling will be considered (Rubin and Terman 2004).
Other forms of coupling [such as electrotonic coupling (Johnston andWu 1995)] could
also be considered provided the dynamical equations can be written in the same form
as Eq. (3). The model equations are given by

CV̇i = −IL(Vi ) − INa(Vi , hi ) − IK(Vi , hi ) − IT(Vi , ri )

+ ISM − gsyn
N

N∑

j=1

s j (Vi − Esyn) + u(t),

ḣi = (h∞(Vi ) − hi )/τh(Vi ),

ṙi = (r∞(Vi ) − ri )/τr (Vi ),

ṡi = a(1 − s)

1 + exp(−(Vi − VT )/σT )
− bsi . (44)

Here, N represents the number of neurons in the population, Vi , si , hi , and ri are
the transmembrane voltage, synaptic variable, and two gating variables of neuron i ,
respectively, gsyn is a constant conductance that determines the coupling strength,
Esyn = − 100 mV is the reversal potential of the neurotransmitter so that the
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Fig. 2 Panel A shows the unstable splay orbit for N = 10 neurons. Unstable rotating block orbits with 5
and 2 blocks are shown in panels B and C, respectively. The stable synchronized state is shown in panel D.
The rate of growth or decay of perturbations from these periodic orbits can be determined from the principal
Floquet multiplier, κ1

coupling is inhibitory, u(t) is an injected current which is identical for all neu-
rons, C = 1µF/cm2 is the membrane capacitance, and ISM is a baseline current
taken to be 5 µA/cm2. Specific parameters that determine the synaptic current are
a = 3, Vt = − 20mV, σT = 0.8mV, and β = 0.2. The reader is referred to Rubin
and Terman (2004) for a full explanation of the remaining functions that determine
the ionic currents and the behavior of the gating variables.

For this neural model, taking gsyn = 0.015mS/cm2 and u(t) = 0 the synchronized
state is stable for all choices of N , with unstable periodic orbits corresponding to both
the rotating block and splay states. Figure 2 shows these different periodic orbits for
N = 10 neurons with unstable splay and rotating block orbits shown in panels A–C
and the synchronized state shown in panel D. Each of the splay and rotating block
states has similar principal Floquet exponent with Real(κ1) ≈ 0.002 (recall that κ1 is
the Floquet exponent with the largest real component that determines the stability of
the periodic orbit).

For each of the periodic orbits shown in Fig. 2, the population phase response curve
from the reduction (6) is computed numerically and shown in the top panels of Fig. 3.
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Fig. 3 Top and bottom panels show Z(�) and C11 (�) for each periodic orbit from Fig. 2. Thin lines are
computed numerically and the gray lines are approximations based solely on the phase response curves
ZV (θ) of the individual neurons

Additionally, the function C11(�) (which is used to design stimuli to modify stability
of these orbits) is shown in the bottom panels. Thin lines show curves calculated
numerically using methods described in Wilson (2019a), and thick, gray lines show
approximations based on the phase response curves of a single neuron ZV (θ) using
relationships derived in Sect. 3 that are valid in the limit of small coupling. The curves
calculated directly from (44) are nearly identical to those approximated from the PRCs
of the individual neurons.

In Fig. 3, notice that for periodic orbits containing more blocks, the magnitude

of C11(�) becomes smaller and smaller. Recalling that C11(�)u(t) ≈ C1
1
T
(�)P(t),

intuitively this occurs because at larger values of N the relationship (26) can be written

as C j
j

T
(�)P(t) ≈ u(t)

N

∑N
i=1

[
Z ′
V

(
� + 2( j−1)π

N

)]
≈ u(t)

2π

∫ 2π
0 Z ′

V (�)d� = 0.

In Fig. 4 stabilization of splay states is investigated for the population in (44) with
gsyn = 0.03mS/cm2 for various numbers of neurons. Using methods described in
Appendix B, periodic stimuli are designed to stabilize the unstable splay states by
satisfying the stabilization conditions (34). Panels A and B show the resulting optimal
periodic stimuli (black lines) for stabilizing the splay state with 2 (resp., 5) neurons
when choosing the target value of κ1 to be −0.005. For reference, sinusoidal stimuli
with period T /2 and T /5 are shown as dashed gray lines. The sinusoidal stimuli for
stabilizing the splay states are very close to optimal. Panel C shows how the principal
Floquet multipliers of the splay states change when sinusoidal perturbation with an
appropriate frequency is applied to (44) for different values of N . Larger magnitude
sinusoidal perturbations are required to stabilize the splay state as N becomes larger.
To explain this behavior, notice that the magnitude of C11(�) shrinks as N becomes

larger. Recalling that Ckj (�)u(t) ≈ Ck
j
T
(�)P(t), from the stabilization conditions
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Fig. 4 Panels A and B show optimal periodic stimuli for stabilizing the splay states of (44) as black lines
with N = 2 and N = 5 neurons, respectively. For each, the target Floquet multiplier is −0.005. Both
stimuli are successful at stabilizing the splay states. For N = 2 (resp., 5) the actual Floquet multiplier is
−0.0048 (resp., −0.0031) with an average energy usage of 1

T

∫
u2dt = 0.046 (resp., 0.64). For reference,

sinusoidal perturbations with period T /N are shown as gray dashed lines. In each case, they result in a
Floquet exponent identical to the one obtained using the optimal stimulus but use more energy; for these
stimuli, 1

T

∫
u2dt = 0.075 and 0.71 for N = 2 and 5, respectively. Panel C gives a plot of κ1 for the

unstable splay state for different values of N when sinusoidal perturbation with period T /N is applied. As
expected from the numerical calculations of C1

1 (�) and corresponding analytical results, more energy is
required to stabilize the splay state as N increases (color figure online)

from Sect. 4, smaller values of C j
j (�)will require larger magnitude perturbations u(t)

to yield comparable values of νi,i . The values of νi,i determine the Floquet exponents
of periodically perturbed solutions and because the splay and rotating block solutions
have comparable Floquet exponents it is expected to require larger magnitude external
input to stabilize periodic orbits with more blocks. For this particular example, when
N = 8, the splay state cannot be stabilized for any magnitude of perturbation. At this
point, the magnitude of the perturbations required becomes large enough invalidate
the phase-amplitude reduction (5).

5.1 Open loop desynchronization with negligible noise and heterogeneity

The previous section investigated stabilizing splay state solutions with no consider-
ation of their basin of attraction. Here, the problem of destabilizing a synchronous
solution in favor of a splay state solution will be considered. To accomplish this goal,
additional factors will need to be considered when the initial conditions are near the
stable synchronized state. Related control objectives were considered in Monga and
Moehlis (2019) and Matchen and Moehlis (2018) with the goal of splitting a synchro-
nized population into multiple clusters using feedback. Here, however, this objective
is completed without state feedback. Clustering of uncoupled oscillators subject to
noise was also considered in Nakao et al. (2007).
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Fig. 5 Each of the reduced curves from (45) for the periodic orbits of (44) corresponding to the synchronous
and splay states are shown in the panels above. All of these curves must be used to satisfy the conditions
(46) to appropriately modify the stability of the asynchronous and synchronous state in response to periodic
stimulation

To begin, consider N = 2 neurons with a stable synchronized solution and an
unstable splay state. Each of these periodic solutions has reduced equations of the
form (6)

�̇S = �S + ZS(�S)u(t) + BS(�S)ψSu(t),

ψ̇S = κSIS(�S)u(t) + CS(�S)ψSu(t),

�̇A = �A + ZA(�A)u(t) + BA(�A)ψAu(t),

ψ̇A = κAIA(�A)u(t) + CA(�A)ψAu(t). (45)

In the above equation the synchronized and splay (asynchronous) states have different
reduced equations and coordinateswith the subscript S and A denote the reduced terms
associated with the synchronized and splay states, respectively. Additionally, because
N = 2, there is only one isostable coordinate for each periodic orbit and the numerical
subscripts and superscripts have been dropped for notational convenience. The curves
from (45) using themodel (44) are calculated numerically using gsyn = 0.015mS/cm2

and shown in Fig. 5. For this choice of parameters, κA = 0.0021 and −κS = 0.0067
indicating that the splay and synchronized states are unstable and stable, respectively.

The goal here will be to determine a periodic stimulus that simultaneously destabi-
lizes the synchronous solution and stabilizes the splay state. This can be achieved by
designing a single Tp-periodic stimulus (with natural frequency �p = 2π/Tp) that
satisfies both (34) and (40) such that there exists some H1 and H2 for which

ρA(H1) = −(�A − �p),

μA(H1) = 0,

real(κA) + νA(H1) = κ
targ
A < 0,

ρS(H2) = −(�S − �p),

κS + νS(H2) = κ
targ
S > 0. (46)

In the above equation, ρX (H) = 1
Tp

∫ Tp
0 ZX (H + �pt)u(t)dt , νX (H) =

1
Tp

∫ Tp
0 CT

X (H +�pt)u(t)dt , and μA(H) = 1
Tp

∫ Tp
0 IA(H +�pt)u(t)dt with X = A
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and S. As illustrated in Appendix B, conditions (46) can be written in the general
form (B1) and optimal solutions can be found for arbitrary choices of κ

targ
S and κ

targ
A .

Additionally, �p is taken to be identical to �A. This procedure is implemented using
the numerically calculated curves from Fig. 5 with resulting stimuli shown in panels B
and D of Fig. 6 for two different values of κ

targ
A and κ

targ
S with H1 and H2 chosen to be

5π/3 and 0, respectively. To investigate the desynchronizing ability of these resulting
stimuli the preliminary reduction (3) will be analyzed in a rotating and averaged refer-
ence frame. Starting from the equation describing the reduced and coupled oscillators
(3) and letting ri = θi − �pt for i = 1, 2 one finds

ṙ1 = ω − �p + ZV (r1 + �pt)
[
u(t) + gsyn

2

(
s(r2 + �pt) − s(r1 + �pt)

)(
V (r1

+ �pt) − Esyn
)]

,

ṙ2 = ω − �p + ZV (r2 + �pt)
[
u(t) + gsyn

2

(
s(r1 + �pt) − s(r2 + �pt)

)(
V (r2

+ �pt) − Esyn
)]

. (47)

Provided�p −ω is order ε, and assuming the influence of synaptic coupling is also an
order ε term, (47) is periodic and in the general form ẏ = εQ( y, t) so that the method
of averaging can be employed (Sanders et al. 2007; Guckenheimer and Holmes 1983)
to approximate (47) by

Ṙ1 = ω − �p + fav(R1, R2),

Ṙ2 = ω − �p + fav(R2, R1), (48)

where fav(x, y) = 1
Tp

∫ Tp
0 ZV (x+�pt)

[
u(t)+ gsyn

2

(
s(y+�pt)−s(x+�pt)

)(
V (x+

�pt) − Esyn
)]
dt . Panels A and C of Fig. 6 show individual trajectories of (48) with

initial conditions starting near the fixed point at R1 = R2 = 0 using the stimuli from
panels B and D, respectively. The initial conditions for these trajectories are taken
from a circle of radius 0.05 centered at the origin. While both stimuli destabilize the
the fixed point corresponding to synchronous solutions, the basins of attraction of
each the splay states are significantly different. For instance, in panel A, a very small
proportion of initial conditions end up in the splay state, with the remainder shifting
to a different synchronized fixed point. This is because κ

targ
S is chosen to be relatively

small and initial conditions are pushed more strongly along unstable eigendirections
towards fixed points of synchronized states. Conversely, many more initial conditions
end up in the splay state in simulations from panel C. In these simulations, κ

targ
S is

much larger so that initial differences in phase are amplified more rapidly resulting in
a larger basin of attraction of the splay state.

Finally, this general strategy is used to design a periodic stimulus to split a popula-
tion of synchronized neurons into separate clusters. This is accomplished by finding a
stimulus to satisfy the conditions (46) optimally using the methods from Appendix B
for two neurons from (44)with gsyn = 0.03mS/cm2. Recalling the results fromFig. 6,
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Fig. 6 PanelA (resp.,C), shows individual trajectories of (48) under the application of the periodic stimulus
from panel B (resp., D). Initial conditions are chosen near the unstable fixed point at R1 = R2 = 0. In
panelsA andB, black dots indicate fixed points of (48). Stimuli in panelsB andD are designed to destabilize

the fixed point at the origin and stabilize the splay state. For larger values of κ
targ
S (which determines the

Floquet exponent of the synchronous state) the basin of attraction of the splay state is increased (color figure
online)

the basin of attraction of the splay state is increased as κ
targ
S (resp., κ targ

A ) is increased

(resp., decreased). The values of κ
targ
A and κ

targ
S chosen for the optimization are −0.06

and 0.02, respectively, with H1 = 5π/3 and H2 = 0.
The resulting stimuli is applied to a population of 1000 identical neurons from

(44). In these simulations, independent and identically distributed zero mean white
noise with intensity 0.02 is added to the voltage variable of each neuron. This noise
intensity is small relative to the coupling strength so that in steady state with u = 0,
synchronous behavior results with only a small difference between the phases of each
neuron. In Fig. 7, the optimal periodic stimulus is turned on at t = 0 ms and shown
in Panel B. Panel A shows traces of the transmembrane voltage of individual neurons
along with the average voltage in black. Provided the stimulus is turned on close
to the moment that the synchronized neurons spike, they will gradually be separated
until two nearly identical clusters form in steady state. As an additional tool to evaluate
synchronization, theKuramoto order parameter (Kuramoto 1984) defined according to
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Fig. 7 Simulations of (44) with periodic control applied to both destabilize the synchronized state and
stabilize the two-block rotating solution. Colored lines in panel A show individual voltage traces with the
black line showing the average voltage of the population. The periodic stimulation is turned on at t = 0 ms
and maintained throughout the rest of the simulation. As illustrated by the order parameter in Panel C, two
separate clusters emerge in steady state after approximately 100 ms (color figure online)

R = 1

N

∣∣∣∣∣

N∑

k=1

eiθk

∣∣∣∣∣ , (49)

is shown in panel C for this simulation. While the order parameter is not a perfect
measure of synchronization, it does give a good sense of how well the control objec-
tive is achieved with values near 1 corresponding to the synchronized state and values
near 0 corresponding to the rotating block solution.

The strategies illustrated above indicate that the methods presented in Sect. 4 can
be applied to modify the stability of synchronized, splay, and rotating block states
simultaneously. Such strategies are most useful when noise and heterogeneity is neg-
ligible relative to the size of the coupling so that the synchronous state needs to be
actively desynchronized. As will be shown in the sections to follow, when noise and
heterogeneity are larger, simply designing stimuli to stabilize the underlying splay
states can be sufficient to disrupt synchronous behavior.

5.2 Desynchronization with non-negligible noise and heterogeneity

Here, Equation (44) will now be considered when incorporating noise and heterogene-
ity that cannot be neglected. Each simulation shown below contains 1000 neurons,
each with the baseline current, ISM, of the kth neuron equal to 4.95 + 0.0001k with
resulting natural periods ranging from 8.34–8.45 ms in the absence of synaptic cou-
pling.Additionally, all neurons have independent and identically distributed zeromean
white noise with intensity 0.05 is added to the voltage variable and gsyn is taken to be
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0.03mS/cm2. All other parameters are identical to those given as part of the definition
of (44).

Using the conditions from (34) for stabilizing splay states, optimal stimuli are
designed for various values of κ targ

1 . Panel A of Fig. 8 shows optimal stimuli calculated

with κ
targ
1 = − 0.045 for different values of N . As mentioned earlier, the magnitude

of C1
1(�) shrinks as N increases which results in an increase in the magnitude of u.

In panels C-E, a periodic stimulus is designed using κ
targ
1 = − 0.04 and N = 3 and

applied to the neural population (44). Panel C shows the distribution directly before
and after the stimulus is turned on at t = 0ms.As time progresses, the population tends
to split into three distinct clusters, with steady state behavior shown in panel D. Panel
E gives the order parameter for this simulation, calculated according to (49) indicating
that the population is split into 3 nearly identical clusters approximately 700 ms after
the stimulus is turned on. Optimal stimuli are calculated formany different values of N
and κ

targ
1 . Starting from a synchronized state at t = 0 ms, these stimuli are applied for

3500 ms, which is long enough for transient behavior to die out. The steady state order
parameter Rss is calculated for each trial by averaging the order parameter R over
the final 1000 ms. Results are shown in panel B. In these simulations, the periodic
stimuli are designed solely to stabilize the splay states, with no consideration for
destabilizing the synchronized state. Nevertheless, once κ

targ
1 becomes large enough,

separation of the neurons into different clusters starts to occur for simulations with
N = 3, 4, and 5. Additionally, the initial time that the stimulation is turned on does not
qualitatively influence the steady state behavior. A related problem was considered in
Wilson andMoehlis (2015), where it was shown high frequency stimuli could reliably
and predictably separate uncoupled neurons intomultiple equal clusters in the presence
of noise using an argument based on deterministic maps.

Finally to investigate whether the stabilization of the underlying splay states is
important in desynchronization observed in Fig. 8, qualitatively different stimuli are
applied to (44). Parameters are identical to those used in simulations shown in Fig. 8
and the resulting population behavior is considered. Here three types of stimuli are
used. First, stimuli which optimally stabilize the splay state for N = 3 are considered,
with an example for κ

targ
1 = − 0.04 shown in blue in panel A of Fig. 9. Additionally,

sinusoidal stimuli of the form u(t) = c sin
( 2π t
Tsp/3.5

)
are considered, where Tsp is the

natural frequency of the unstable splay state for N = 3 and c is a constant. This form
of stimulus is chosen to yield a mismatch between the natural frequency of the splay
state and the the stimulation so that no locking, and hence, no stabilization of the splay
state will occur. The final stimulus takes u(t) to be changing randomly at each time
step 
t according to

u(t + 
t) =
{

−u(t), if r < 6
t
Tsp

,

u(t), otherwise.
(50)

where r is a random number between 0 and 1 chosen independently at each time step
from a uniform distribution. The particular choice of (50) ensures that on average,
there will be 6 expected transitions between positive and negative values every Tsp
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Fig. 8 In panel A, optimal stimuli designed to stabilize the splay state of (44) with a resulting κ
targ
1 =

− 0.045 are shown for various values of N . Panels C-E show simulation results using a stimulus for which

κ
targ
1 = − 0.04 and N = 3. Here, stimulation is first applied starting at t = 0 ms. The neurons are initially
synchronized, but gradually separate into multiple, nearly equal clusters. The order parameter in panel E
shows that the separation of the neurons happens gradually over the course of approximately 700 ms. Panel

B shows the steady state order parameter in simulations with various choices of N and κ
targ
1 (color figure

online)

milliseconds just like for the optimal stimulus. Panel A of Fig. 9 shows examples of
each of these stimuli, each with an identical energy consumption calculated according
to 1

T

∫ T
0 u2dt . The stimuli frompanelA are applied to (44)with the resultingKuramoto

order parameter given in panel B for one representative trial. While the stimulus
designed to optimally stabilize the splay state does indeed separate the population into
separate clusters, the sinusoidal perturbation has little effect on the order parameter.
The random perturbation chosen according to (50) is able to transiently reduce the
order parameter, but on average the resulting population ismore synchronized than it is
without this random input. Panels C through E of Fig. 9 give traces of 25 representative
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Fig. 9 Panel A shows three different types of stimuli considered in simulations of (44). The blue stimulus
is determined by optimally stabilizing the splay state for N = 3. The red stimulus is sinusoidal and the
yellow stimulus is randomly generated according to (50). Panel B shows the Kuramoto order parameter
plotted for each stimulus type from panel A. Panels C through E show voltages traces of representative
neurons (black lines) from the simulations from panel B. The green lines show the average transmembrane
voltage for the population. In panel F, optimal, sinusoidal, and random perturbations with different energy
consumption are applied and plotted against the steady state order parameter (color figure online)

neurons from the simulations from panel B. Three distinct clusters emerge under the
application of the optimal input while the sinusoidal stimulation yields a distributions
with a single cluster. In general, the random input has a synchronizing influence
on the distribution, however, sometimes this random input does result in transient
desynchronization.

Panel F of Fig. 9 gives a comparison of energy consumption versus Rss, the steady
state order parameter taken as the average value of R over the final 1000 ms (after
transient behavior is allowed to die out). For the optimal stimuli, energy consumption
is controlled through the choice of κ

targ
1 when solving the optimization problem. For

the other stimuli, energy consumption is controlled by changing the magnitude of
the applied stimulus. At almost all values of power consumption, the sinusoidal and
random perturbations yield stronger synchronization. Despite the fact that none of
the other stable periodic solutions of (44) are considered in the design of the optimal
stimuli from Figs. 8 and 9 neurons tends to end up in rotating block states when
external perturbation designed to stabilize the corresponding splay states is applied.

6 Discussion and conclusion

This work investigates the ability of open-loop periodic stimulation to manipulate the
stability of synchronized, splay, and rotating block solutions in populations of period-
ically firing neurons. Using Floquet theory as a backdrop for this analysis, stable and
unstable modes of periodic solutions of coupled oscillator models are identified. Sub-
sequent analysis of the nonlinear phase-amplitude reduced dynamics yields a strategy
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to design optimal stimuli to modify the stability of these modes in a weakly perturbed
setting. Surprisingly, in the weakly coupled limit, the phase response curve and natural
frequency of individual neurons are the only information required to design appropri-
ate stimuli to stabilize the splay states. Additionally, this strategy can be used to design
stimuli that destabilize a synchronized solution in favor of a rotating block solution.

When the noise is small and oscillators are homogeneous, desychronization can
only be achieved by designing a stimulus which actively destabilizes the synchro-
nized solution while simultaneously stabilizing a chosen rotating block solution. This
strategy was effective when attempting to split a synchronized population of neurons
into two rotating blocks, but was difficult to implement in the full model (44) when
attempting to separate into three or more rotating blocks. If desynchronization is the
ultimate goal of periodic forcing, separation into more blocks would ultimately be
better. For example, even though the order parameter drops close to zero after the
two-block solution is stabilized in Fig. 7, the individual populations are still synchro-
nized. Separation into more blocks (with fewer neurons in each block) would reduce
the overall level of coherence. In a low noise and low heterogeneity setting it may
be possible to separate a population into a larger number of rotating blocks in stages,
for instance, by first splitting a population into two blocks, and then using a second
stimulus to perform a secondary splitting. This will be the subject of future work.

While the design strategy presented here does not explicitly take into account
noise or heterogeneity in the system parameters, numerical simulations reveal that
these features tend to aid in the transition from a synchronized solution to a rotating
block solution. Additionally, when stimulation was applied with a mismatch between
the splay state natural frequency and the stimulation frequency, synchronization was
enhanced in numerical simulations. The results presented here are consistent with the
clinically observed frequency dependent efficacy of deep brain stimulation. While
DBS can be effective as a treatment for Parkinson’s disease when applied at a wide
range of frequencies ranging from 70 to 1000 Hz (Moro et al. 2002; Benabid et al.
1991), most patients respond better to certain combinations of frequencies and stim-
ulation intensities. This necessitates a time-intensive tuning process that generally
culminates in a therapeutic range of about 130–180 Hz (Volkmann et al. 2002; Kuncel
and Grill 2004). It may be the case that the particular frequency and stimulation com-
binations that are effective at treating DBS are those that stabilize one of the rotating
block states for a population of neurons resulting in a less synchronous state. If this is
the case, the results presented in this work suggest that higher frequency DBS would
take larger magnitude stimulation to be effective since higher frequencies correspond
to more rotating blocks.

The results of this study have numerous limitations. Foremost, the computational
neurons considered here are relatively simple. Each neuron is modeled as a single
compartment with no spatial component. Additionally, each neuron receives direct
charge injection which is not clinically possible. When DBS is applied in a clinical
setting, there is a complicated relationship between the electric field generated by
DBS, the spatial geometry of each neuron, and the activation of the soma, axons and
dendrites (Anderson et al. 2018; McIntyre et al. 2004). In order to fully understand
the effect of DBS on a population of neurons, these spatial features would need to
be taken into account. Additionally, the results here only consider the behavior of a
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single population of pathologically synchronized neurons. In reality, the symptoms of
DBS result from interactions within the basal ganglia-cortical loop and the impacts
of desynchronization on the components of this circuit have not been considered.
Furthermore, the analytical derivations in this work do not include heterogeneity in
the parameters of each neuron or in the effective perturbation felt by each neuron.
While including heterogeneity in the neural parameters does not change the qualitative
behavior of these simulations, it would be of interest to extend these analytical results
to explicitly account for heterogeneity in the model. Finally, while this study only
considers the behavior of periodically firing neurons, there is evidence that correlated
neural bursting may be a contributing factor to Parkinson’s disease (Hahn et al. 2008;
Ammari et al. 2011). Each of these considerations would need to be addressed before
the methods presented here could be used to inform design of DBS waveforms for
Parkinson’s disease treatment.

Results presented here suggest the possibility of designing periodic, open-loop
stimulation that can destabilize a synchronized population of oscillators in favor of a
splay or rotating block state. Nonfeedbackmethods like the one presented here are par-
ticularly important because real-time feedback control on the time scale of individual
neural spikes is not yet possible in a clinical setting. These results represent a starting
point which could ultimately aid in the design ofmore efficient DBSwaveforms for the
treatment of Parkinson’s disease. Related results were obtained inWilson andMoehlis
(2015), where it was shown that a noisy, uncoupled, and large population of oscillators
was guaranteed to separate into nearly equal clusters when stimulation was applied at
certain frequencies. The results in this work were derived for coupled and finite, but
noiseless populations of neural oscillators. While the methods presented here can be
used to separate a population of synchronized neurons into multiple rotating blocks,
numerical results suggest that this task can be aided when noise and heterogeneity are
considered. It would be of interest to extend these results to explicitly include noise
which could, for instance, be accomplished through the analysis of the Fokker-Planck
equation (Gardiner 2004) in the limit as the number of neurons approaches infinity to
understand this observed behavior greater detail.

Acknowledgements Funding was provided by National Science Foundation (Grant No. CMMI-1933583).

Appendix A Derivation of simplified response curves for population
oscillations

In this Appendix, full derivations for the simplified reduced order equations from
Sect. 3 are presented. To begin, Eq. (3) from the main text will be analyzed when
u(t) = 0. Consider a periodic solution θ

per
k (t) of (3) for which θ

per
k (t) = θ

per
k (t + T )

for some T = 2π/� for all k. For an identical population of oscillators, many of
these solutions are guaranteed to exist (e.g., splay state, rotating block, synchronized
solutions), however, not all of these solutions will be stable (Ashwin and Swift 1992;
Brown et al. 2004). For the remainder of of this derivation, assume that the state is
close to one of these periodic solutions. Asymptotic expansion about such a periodic
solution yields to leading order
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θ̇i = ω + 1

N
ZV (θ

per
i )

N∑

j=1

f (θperi , θ
per
j ) + 1

N
Z ′
V (θ

per
i )

N∑

j=1

f (θperi , θ
per
j )
θi

+ 1

N
ZV (θ

per
i )

N∑

j=1

fb(θ
per
i , θ

per
j )
θ j + 1

N
ZV (θ

per
i )

N∑

j=1

fa(θ
per
i , θ

per
j )
θi .

(A1)

Here, 
θk(t) ≡ θk(t) − θ
per
k (t) for all k, fb ≡ ∂ f /∂b, fa ≡ ∂ f /∂a and ′ ≡ d/dθ .

Noting that since the periodic solution θ
per
i satisfies the relationship θ̇

per
i = ω +

1
N ZV (θ

per
i )

∑N
j=1 f (θperi , θ

per
i ), Eq. (A1) can be rewritten as


θ̇i = 1

N
Z ′
V (θ

per
i )

N∑

j=1

f (θperi , θ
per
j )
θi + 1

N
ZV (θ

per
i )

N∑

j=1

fb(θ
per
i , θ

per
j )
θ j

+ 1

N
ZV (θ

per
i )

N∑

j=1

fa(θ
per
i , θ

per
j )
θi . (A2)

By assuming that f (θi , θ j ) is an order ε term where 0 < ε � 1 asymptotic
expansion in powers of ε can be used to show that θ

per
i (t) = θ

per
i (0) + ωt + O(ε).

Thus, θperj = θ
per
i + ηi, j + O(ε) where η j,i is a constant. Additionally, fa(a, b) and

fb(a, b) are assumed to be order ε terms. Using this information, (A2) can be rewritten
to leading order as


θ̇i = 1

N
Z ′
V (α + ωt)

N∑

j=1

f (α + ωt, α + ωt + ηi, j )
θi

+ 1

N
ZV (α + ωt)

N∑

j=1

fb(α + ωt, α + ωt + ηi, j )
θ j

+ 1

N
ZV (α + ωt)

N∑

j=1

fa(α + ωt, α + ωt + ηi, j )
θi , (A3)

where α ≡ θ
per
i (0) and is defined for notational convenience. Notice that (A3) is

T -periodic and in the general form ẏ = εQ( y, t) so that the method of averaging
(Sanders et al. 2007; Guckenheimer and Holmes 1983) can be employed, thereby
approximating (A3) with a system of linear equations

d

dt

⎡

⎢⎢⎢⎣

φ1
φ2
...

φN

⎤

⎥⎥⎥⎦ = 1

N

⎡

⎢⎢⎢⎣

A1 + B(0) B(η1,2) . . . B(η1,N )

B(η2,1) A2 + B(0) . . . B(η2,N )
...

. . .
...

B(ηN ,1) B(ηN ,2) . . . AN + B(0)

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

φ1
φ2
...

φN

⎤

⎥⎥⎥⎦ , (A4)
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where,

Ai ≡ 1

T

∫ T

0

[
Z ′
V (ωt)

N∑

j=1

f (ωt, ωt + ηi, j ) + ZV (ωt)
N∑

j=1

fa(ωt, ωt + ηi, j )

]
dt,

B(ηi, j ) ≡ 1

T

∫ T

0

[
ZV (ωt) fb(ωt, ωt + ηi, j )

]
dt . (A5)

According to averaging theory (Sanders et al. 2007), φi is a close approximation to

θi . Additionally, fixed points of (A4) correspond to periodic solutions of (A3) with
the same stability.

The averaged equation (A4) can be written as a linear time invariant system

�̇ = M�, (A6)

where � = [φ1 . . . φN ]T . For such a system, notice that the sum of row i is

Ai +
N∑

j=1

B(ηi, j ) = 1

ωNT

∫ T

0

⎛

⎝
N∑

j=1

d

dt

[
ZV (α + ωt) f (α + ωt, α + ωt + ηi, j )

]
⎞

⎠ dt

= 0, (A7)

where equivalence in thefirst line canbe shownbydirect differentiation and subsequent
manipulation of the right hand side and the second line follows because Z(θi ) f (θi , θ j )

is 2π -periodic. Thus, the matrix M always has a zero eigenvalue with corresponding
eigenvector [1 . . . 1]T .

The representation (A6) is particularly useful because the eigenvalues, λi , and
corresponding left and right eigenvectors of M denoted by wi and vi characterize the
behavior of solutions near the fixed point. Ultimately, this characterization will allow
the terms of the reduced population Eq. (5) from the main text to be represented in
terms of the reduction of the individual oscillators (2). To proceed, the solution of
(A6) can be written as (Hespanha 2018)

�(t − t0) =
N∑

j=1

[
wT

j �(t − t0)vi exp(λ j (t − t0))
]
. (A8)

Recalling that φi is well approximated by 
θi and the definitions x(t) ≡
[θ1(t) . . . θN (t)] and xγ ≡ [θper1 (t) . . . θ

per
N (t)] one can write

x(t − t0) ≈ xγ (t − t0) +
N∑

j=1

[
wT

j (x(t − t0) − xγ (t − t0))vi exp(λ j (t − t0))
]
,

(A9)

Equation (A9) provides a good approximation for the behavior near the splay state
solution. Note also that (A9) has a similar structure to (9), i.e., it is an approxima-
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tion to the solution obtained from Floquet theory where the eigenvalues of the matrix
M correspond directly to the Floquet exponents from (9). Considering the definition
of the phase � used in (10) and (11), Eq. (A9) implies that to a good approxima-
tion, ∂�/∂x (i.e., Z(�)) is orthogonal to all vk for which κk �= 0. In other words,
Z(�) must be proportional to wN , defined to be the left eigenvector corresponding
to λN = 0. Finally the phase response curve is subject to the normalizing condition
[ZT (�(t))][ dxdt |xγ (�(t))] = � (cf. Wilson 2019b; Brown et al. 2004; Kuramoto 1984;
Monga et al. 2019). This normalization stems from the fact that in the absence of input,
d�
dt = d�

dx
dx
dt = �. From (3), dx

dt |xγ (�(t)) = ω1 + O(ε) = �1 + O(ε) where 1 is an
appropriately sized vector of ones. Therefore, Z(�) is well approximated by 1

wT
N 1

wN .

Finally, with the definition of P(t) from (4),

ZT (�)P(t) = u(t)

wT
N1

N∑

j=1

[
ZV (θ

per
j (�))w

j
N

]
(A10)

is a good approximation to the effective phase response curve from the perturbation
u(t) where w

j
N is the j th element of wN .

A similar strategy can also be used to determine an approximation of the functions
I j (�) and Ck

j (�). To do so, consider a small perturbation ∂x to a trajectory x(t) at
time t0. From the definition of isostable coordinates (12) and the approximate solution
(A9), one can show that the resulting perturbation to the isostable coordinate ψk is
well approximated by

δψ j = wT
j δx. (A11)

Additionally comparing (9) and (A9), vi is a good approximation for qi (θ(t)). Con-
sidering both (9) and (13), this implies

x(t) ≈ xγ (θ) +
N−1∑

k=1

ψkvk . (A12)

From (3), for a perturbation u(t) lasting δt milliseconds

δx =
⎡

⎢⎣
ZV (θ

per
1 +∑N−1

k=1 (ψkv
1
k ))

...

ZV (θ
per
N +∑N−1

k=1 (ψkv
N
k ))

⎤

⎥⎦ u(t)δt

=
⎡

⎢⎣
ZV (θ

per
1 ) + Z ′

V (θ
per
1 )

∑N−1
k=1 (ψkv

1
k )

...

ZV (θ
per
N ) + Z ′

V (θ
per
N )

∑N−1
k=1 (ψkv

N
k ),

⎤

⎥⎦ u(t)δt . (A13)
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Above, vik denotes the i th element of the vector vk and order ψ2 terms have been
neglected. Finally, combining (A11) and (A13)

δψ j =
N∑

i=1

[
wi

j ZV (θ
per
i )

]
u(t)δt +

N−1∑

k=1

[
ψk

N∑

i=1

[
wi

jv
i
k Z

′
V (θ

per
i )

]]
u(t)δt .

(A14)

Directly comparing (A14) to the result of the change in isostable coordinate mandated
by (5) from the same perturbation, one finds that

ITj (�)P(t) =
N∑

i=1

[
wi

j ZV (θ
per
i (�))

]
u(t),

Ck
j
T
(�)P(t) =

N∑

i=1

[
wi

jv
i
k Z

′
V (θ

per
i (�))

]
u(t). (A15)

A.1 Reduction of splay state solutions

One solution of general interest is the splay state, for which the phases of all oscillators
are spaced equally. For such a solution, M from (A6) is a circulant matrix specified by
the vector 1

N [A + B(0) B(2π/N ) B(4π/N ) . . . B(2π(N − 1)/N )]T . Note here
that the index on A is dropped because the entries on the diagonal are all identical.
In the previous section it was shown that vN = 1√

N
[1 . . . 1]T is an eigenvector

of M with corresponding eigenvalue λN = 0. Because M is circulant, the remaining
eigenvectors and eigenvalues are known exactly and are specified for k = 1, . . . , N−1
by Kra and Simanca (2012)

λk = 1

N

⎡

⎣A +
N−1∑

j=0

B (2π j/N ) γ
j
k

⎤

⎦ , (A16)

vk = 1√
N

[1 γk γ 2
k . . . γ N−1

k ]T , (A17)

where γk = exp
(
2πk

√−1/N
)
. The eigenvectors (A17) form an orthonormal basis

(Kra and Simanca 2012), so that the left eigenvector wk = v∗
k where ∗ denotes the

complex conjugate.
The remaining eigenvalues can be approximated in the limit as N approaches infin-

ity using (A16). To do so, first consider the value of A/N as N becomes large. Starting
with (A5),

A/N = 1

NT

∫ T

0

[
Z ′
V (ωt)

N∑

j=1

f (ωt, ωt + ηi, j ) + ZV (ωt)
N∑

j=1

fa(ωt, ωt + ηi, j )

]
dt
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≈ 1

T N

∫ T

0
N Z ′

V (ωt) f̄ (ωt) + N ZV (ωt) f̄ ′(ωt)dt

= 1

Tω

∫ T

0

d

dt

[
ZV (ωt) f̄ (ωt)

]
dt

= 0. (A18)

In the second line above, for large N , the relationship
∑N

j=1 f (θ, θ + 2π j/N ) ≈
N f̄ (θ) is used where f̄ (θ) ≡ 1

2π

∫ 2π
0 f (θ, θ + x)dx . The last line follows from

the fact that Z(ωt) f̄ (ωt) is T -periodic. Thus, for large N , the eigenvalues are well
approximated by

λk ≈ 1

N

N−1∑

j=0

B

(
2π j

N

)
exp

(
2πk

√−1

N

)

≈ 1

2π

∫ 2π

0

[
B(θ) exp(θ

√−1)
]
dθ. (A19)

In other words, in the large N limit, the eigenvalues are well approximated by the
Fourier coefficients of B(θ) and do not change significantly as N increases. Note that
while (A19) is valid in the limit of large N , these eigenvalues can still be calculated
directly from (A16) for any N .

For the splay state, the PRC can be simplified further from (A10). Recalling that the
vk from (A17) form an orthonormal basis, considering the left eigenvector associated
with the zero eigenvalue wN = 1√

N
1 one finds from (A10)

ZT (�)P(t) = u(t)

N

N∑

j=1

[
ZV (θ

per
j (�))

]

= u(t)

N

N∑

j=1

[
ZV

(
� + 2( j − 1)π

N

)]
. (A20)

Above, the relationship θ
per
1 = � is used, with all other oscillators spaced equally

around the ring. Additionally, noting that wi
jv

i
j = 1/N this offers the simplification

to (A15)

C j
j

T
(�)P(t) = u(t)

N

N∑

i=1

[
Z ′
V (θ

per
i (�))

]

= u(t)

N

N∑

i=1

[
Z ′
V

(
� + 2( j − 1)π

N

)]
. (A21)
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A.2 Reduction of synchronous solutions

For a periodic synchronous solution, the phases of all oscillators are equal. Thus,
ηi, j = 0 for all i and j . In this instance, (24) becomes

d

dt

⎡

⎢⎢⎢⎣

φ1
φ2
...

φN

⎤

⎥⎥⎥⎦ = 1

N

⎡

⎢⎢⎢⎣

A + B(0) B(0) . . . B(0)
B(0) A + B(0) . . . B(0)

...
. . .

...

B(0) B(0) . . . A + B(0)

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

φ1
φ2
...

φN

⎤

⎥⎥⎥⎦ . (A22)

Above, the index on A is dropped for notational convenience since the diagonal entries
are identical. Much like for periodic splay solutions, the matrix from (24) is circulant
so that the eigenvalues and eigenvectors can be found using (A16) and (A17). Recall
from (A7) that the row sums are equal to zero so that λN = 0 corresponding to
vN = 1√

N
[1 . . . 1]. All remaining eigenvalues, λk = A

N for k = 1, . . . , N − 1

can be found using (A16) and by noting that
∑N−1

j=0 exp(2πk j
√−1/N ) = 0 for

1 ≤ k ≤ N − 1. The corresponding eigenvectors vk can be found from (A17).
Using the above information, for small coupling, equation (A10) can be used to

determine the phase response curve as

ZT (�)P(t) = u(t)ZV (�). (A23)

Note that above, the relationship θ
per
i (�) = � is used because all oscillators have

identical phases. From (A15), one finds that

ITj (�)P(t) = u(t)ZV (�)

N∑

k=1

wk
j = 0. (A24)

Equation (A24) is simplified in its final step by noting thatw j is orthogonal to a vector
of all ones. Therefore, the isostable response curves are well approximated by zero
for the synchronized solution. Additionally, using (A15)

Ck
j
T
(�)P(t) =

N∑

i=1

[
wi

jv
i
k Z

′
V (θ

per
i (�))

]
u(t)

= Z ′
V (�)u(t)

N∑

i=1

[
wi

jv
i
k

]
(A25)

In the above equation, wT
j v j = 1 for j = k and zero otherwise. Therefore

Ck
j
T
(�)P(t) =

{
u(t)Z ′

V (�), if j = k,

0, otherwise.
(A26)
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A.3 Reduction of rotating block solutions

For a large population of oscillators, the full splay state may be difficult to stabilize.
In this case, rotating block solutions may be easier to stabilize, whereby N/G blocks
of G oscillators are spaced equally in phase (see, for example, Fig. 1). Here it will
be shown that the reduced equations of the rotating block solutions with 2 blocks are
markedly similar to those of the splay solution when only 2 oscillators are considered.

For clarity of notation and of the analysis, a 2-block solution (i.e., two rotating
blocks, each with N/2 oscillators) will be considered, but note that the general argu-
ment to follow can be repeated for any number of blocks with analogous results. In
this example, the oscillators can be ordered so that M from (A6) can be written with
a block circulant structure

M = 1

N

[
ϒ Q1
Q1 ϒ

]
, (A27)

where ϒ ∈ R
N
2 × N

2 and Q1 ∈ R
N
2 × N

2 is given by

ϒ =

⎡

⎢⎢⎢⎣

A + B(0) B(0) . . . B(0)
B(0) A + B(0) . . . B(0)

...
. . .

...

B(0) B(0) . . . A + B(0)

⎤

⎥⎥⎥⎦ , Q1 =
⎡

⎢⎣
B (π) . . . B (π)

...
. . .

...

B (π) . . . B (π)

⎤

⎥⎦ ,

(A28)

and A and B are defined in (A5) and the subscripts on A are dropped for notational
convenience because they are all identical. To identify the eigenvalues and eigenvectors
of (A27), note that ϒ is a circulant matrix with eigenvalues and eigenvectors given by
(A16) and (A17), respectively. Let vϒ,k correspond to the kth eigenvector of ϒ found
according to (A17). One can then verify that because there are N

2 − 1 eigenvectors of
ϒ in the null space of Q1, M has N − 2 eigenvectors of the form

v2 =
[

vϒ,1
0

]
, . . . , v N

2
=
[

v
ϒ, N2 −1

0

]
, v N

2 +1 =
[

0
vϒ,1

]
, . . . , vN−1 =

[
0

v
ϒ, N2 −1

]
,

(A29)

where 0 is an appropriately sized vector of zeros. For each of the eigenvectors in
(A29), the corresponding eigenvalue is λk = A

N for k = 2, . . . , N −1 (identical to the
corresponding eigenvalues of ϒ). M has an additional eigenvector

v1 = 1√
N

[
1

−1

]
, (A30)

with corresponding eigenvalue λ1 = A
N + 1

2 B(0) − 1
2 B(π).

Recalling from (A7) that the row sums of M are equal to zero, the final eigenvector
is vN = 1√

N
[1 | 1]T with a corresponding eigenvalue of 0. The eigenvectors of M
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form an orthonormal set so that wk = vk for all k. With this information, one can
now use the relationships (A10) and (A15) to approximate the terms of the reduction
(5) for the rotating block solutions. From (A10), the phase response curve is well
approximated by

ZT (�)P(t) = u(t)

N

N∑

j=1

[
ZV (θ

per
j (�))

]
,

= u(t)

2
[ZV (�) + ZV (� + π)] . (A31)

In the second line above, the relationship θ
per
j = � for i ≤ N/2 and θ

per
j = � + π

otherwise has been used. Considering the isostable coordinates associated with v1,
using (A15) and simplifying yields a relationship of the form

ITk (�)P(t) =

⎧
⎪⎨

⎪⎩

u(t)
√
N

2 [ZV (�) − ZV (� + π)] , if k = 1,

ZV (�)vTϒ,k−11, if k = 2 ≤ k ≤ N/2,

ZV (� + π)vTϒ,k−N/21, if k = N/2 + 1 ≤ k ≤ N − 1.

(A32)

Evaluating (A32) by recalling that the eigenvectors vϒ, j are orthogonal to 1 for j =
1, . . . , N

2 − 1, one finds

ITk (�)P(t) =
{

u(t)
√
N

2 [ZV (�) − ZV (� + π)] , if k = 1,

0, otherwise.
(A33)

Note here that the IT1 (�)P(t) is identical for both the 2-rotating block solution and
the 2-oscillator splay state. Additionally from (A15) one finds

Ck
j
T
(�)P(t) = u(t)Z ′

V (�)

N/2∑

i=1

[
wi

jv
i
k

]
+ u(t)Z ′

V (� + π)

N∑

i=N/2+1

[
wi

jv
i
k

]
.

(A34)

Due to the structure of the eigenvectors in (A29) and (A30), recalling that wk is
equivalent to vk , both sums from (A34) are zero for all j �= k. The remaining sums
can be evaluated to find

Ck
j
T
(�)P(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u(t)
2 Z ′

V (�) + u(t)
2 Z ′

V (� + π), if j = k = 1,

u(t)Z ′
V (�), if j = k and 2 ≤ j ≤ N/2,

u(t)Z ′
V (� + π), if j = k and N/2 + 1 ≤ j ≤ N − 1,

0, otherwise.

(A35)
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A.3.1 Similarity between rotating block and splay state solutions

The 2-rotating block solutions have similar reduced dynamics as the N = 2 splay
solution. Comparing (A31) and (A20), the 2-rotating block state has a PRC that is
identical to that of the 2-oscillator splay state. Additionally, considering λ1 of the
rotating block state:

λ1 = A

N
+ 1

2
B(0) − 1

2
B(π)

= 1

2T

∫ T

0

[
Z ′
V (ωt) f (ωt, ωt) + ZV (ωt) fa(ωt, ωt) + Z ′

V (ωt) f (ωt, ωt + π)

+ ZV (ωt) fa(ωt, ωt + π)

]
dt + 1

2
B(0) − 1

2
B(π), (A36)

which comparing with (A16) is the same as the principal eigenvalue of the 2-oscillator
splay state. The associated functions IT1 P(t) = 0 and C1T

1 P(t) are also identical.
The main difference between the N = 2 splay solution and the 2-rotating block
state is addition of dynamics for neurons within each block. These reduced equations
themselves are similar to the behavior of the synchronized solutions, e.g., with the
value of ITk P(t) = 0 for k ≥ 2 (all modes associated with the individual blocks)

and CkT
j P(t) being proportional to the first derivative of the PRCs of the individual

neurons in the second and third lines of (A35).

Appendix BOptimally achieving stabilization anddestabilization con-
ditions

Section 4 gives sets of conditions (34), (40), and (43) required to stabilize splay and
rotating block solutions and destabilize synchronous solutions, respectively. Here, a
method is given to illustrate how to achieve these conditions optimally. This method
is adapted from a methodology presented in Wilson (2019b).

To begin, all constraints given in (34), (40), and (43) can be written in the general
form

xi + 1

Tp

∫ Tp

0
gi (H0 + �pt)u(t)dt = yi , for i = 1, . . . , n, (B1)

where gi is a general function, yi , xi ,�p, and H0 are constants, and n is the number of
constraints to be satisfied. Constraints of the form (B1) can be rewritten as differential
equations

Ẇi = gi (H0 + �pt)u(t), (B2)

subject to boundary conditionsWi (0) = 0 andWi (Tp) = (yi − xi )Tp. In this context,
finding an energy-optimal stimulus which satisfies the n conditions from (B1) can be
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posed as a calculus of variations problem (Kirk 1998) by finding the stimulus u(t)
which minimizes the functional

M[W1, . . . ,Wn, Ẇ1, . . . , Ẇn, u(t)]

=
∫ Tp

0

(
u2(t) +

n∑

i=1

Li
[
Ẇi − gi (H0 + �pt)u(t)

]
)
dt, (B3)

where Li are Lagrange multipliers which force the dynamics to satisfy (B2). As in
Kirk (1998), Euler–Lagrange equations are

∂M
∂u

= d

dt

(
∂M
∂ u̇

)
, (B4)

∂M
∂Wi

= d

dt

(
∂M
∂Ẇi

)
, i = 1, . . . , n. (B5)

Optimal solutions of the functional (B3) will satisfy these Euler–Lagrange equations
with boundary conditions given just after (B2). Direct evaluation of (B5) shows that
the time derivatives of all Lagrange multipliers are zero which implies Li (t) = Li (0)
for all i and t . Subsequent evaluation of (B4) shows that the optimal stimulus takes
the form

u(t) =
n∑

i=1

(
Li gi (H0 + �pt)

2

)
, (B6)

Additionally, from evaluation of the Euler–Lagrange equations, all optimal stimuli
will satisfy (B2). As in Wilson (2019b), substituting (B6) into (B2) and manipulating
yields n linear equations of the form

⎡

⎢⎣
y1 − x1

...

yn − xn

⎤

⎥⎦ = 1

2Tp

⎡

⎢⎣
〈g1, g1〉 . . . 〈g1, gn〉

...
...

〈 fn, f1〉 . . . 〈 fn, fn〉

⎤

⎥⎦

⎡

⎢⎣
L1
...

Ln

⎤

⎥⎦ , (B7)

with 〈 fi , f j 〉 ≡ ∫ Tp
0 fi (�pt) f j (�pt)dt . Once the Lagrange multiplers have been

determined by solving (B7), the optimal stimulus can be computed from (B6).
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