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Adaptive Isostable Reduction of Nonlinear PDEs
With Time Varying Parameters

Dan Wilson and Seddik M. Djouadi

Abstract—Isostable reduction is a powerful technique for
characterizing the transient behavior of a weakly forced,
nonlinear dynamical systems in relation to a stable attrac-
tor. Practically, this reduction strategy requires small mag-
nitude inputs so that the state remains close to the under-
lying attractor; when inputs become too large the reduction
becomes unusable. Here, we develop an adaptive isostable
coordinate framework that is valid for a continuous family
of system parameters. Relations are derived that capture
changes to the isostable coordinates in response to param-
eter changes. This information is subsequently used to
define a reduction strategy valid for large magnitude but
slowly varying inputs. The proposed reduction framework
is compared to well-established linear and nonlinear proper
orthogonal decomposition (POD) reduction techniques for
simulations of the 1-dimensional nonlinear Burgers’ equa-
tion with time-varying Dirichlet boundary conditions. In
numerical simulations the proposed reduction strategy
only requires a single mode to accurately capture system
behavior. By contrast, the linear POD reduction performs
poorly while the nonlinear POD strategy requires several
modes to achieve comparable performance.

Index Terms—Model/controller reduction, fluid flow
systems.

I. INTRODUCTION

T IME-VARYING partial differential equations (PDEs)
govern a wide variety of physical phenomenon with

applications including fluid flows [1], chemical processes [2],
and biological systems [3]. In general, these systems are high-
dimensional making them difficult to work with directly. As
such, model reduction is often a necessary first step in the
implementation and analysis of control algorithms.

The development of model reduction techniques for PDEs
has been an active research area in recent years. Many
reduction strategies are currently available such as proper
orthogonal decomposition (POD) [4], balanced POD [5],
empirical balanced truncation [6], dynamic mode decompo-
sition (DMD) [7], Koopman decomposition [8], and global
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linear stability reduction [9]. While these reduction tech-
niques work well in many applications, they can be dif-
ficult to apply to PDEs with dominant nonlinear terms.
This becomes particularly apparent in fluid flow appli-
cations at high Reynolds numbers, where the nonlinear
terms begin to dominate the behavior of the Navier-Stokes
equations. In some nonlinear fluid flow applications, this
difficulty can be overcome by explicitly considering the
parametric dependence on the resulting reduced order mod-
els to enlarge the set of solutions that can accurately be
considered [10], [11].

In this letter, we derive and investigate a new reduced
modeling framework based on isostable coordinates. Isostable
coordinates can be formally defined as level sets of Koopman
eigenfunctions [12] and give a sense of the infinite time
decay of an initial condition in the fully nonlinear basin
of attraction of a stable attractor. This reduction frame-
work has been applied to analyze and control dynamical
systems near limit cycle [13], [14] and fixed point attrac-
tors [12], [15], [16]. Prior work has focused on using a
single attractor to define isostable coordinates–by contrast
this letter considers an extended isostable coordinate space
that is valid for a family of stable attractors that emerge
as nominal system parameters are changed. By considering
this extended family of attractors, larger magnitude inputs
can be considered making the proposed technique particu-
larly attractive for systems with dominant nonlinear terms.
This reduction framework is related to the strategy stud-
ied in [17], [18], whereby an extended phase space can
be used to study the infinite time behavior of limit cycle
oscillators in response to slowly varying inputs in ordi-
nary differential equation models. By contrast, this letter is
focused on understanding the transient behavior of PDEs
near an underlying fixed point attractor. The existence of
a set of fixed point attractors is essential for the proposed
methodology–in situations where a stationary solution is not
present techniques such as spectral POD or DMD may be
more useful.

The organization of this letter is as follows: Section II
provides necessary background on the notion of isostable coor-
dinates as applied to PDEs. Section III details the proposed
adaptive isostable reduction methodology. Section IV com-
pares results using the proposed reduction strategy to a
well-established POD reduction framework, and Section V
gives concluding remarks.
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NOTATION

Let R and C be the sets of real and complex numbers,
respectively. Let Rn denote the space of n×1 vectors with real
entries. � denotes the domain of the PDEs considered, and ∂�
represents its boundary. r denotes the spatial location, and t
represents time. L2 denotes the space of Lebesgue measurable
and square integral functions defined on � or time depending
on the context, with inner product 〈·, ·〉. If A denotes a linear
operator its adjoint is denoted by A†. ∇(·) denotes the gradient
of its argument.

II. BACKGROUND ON ISOSTABLE COORDINATES

Isostable coordinate frameworks have been used to char-
acterize the decay of transient solutions to a stationary
solution in nonlinear dynamical systems [12], [13], [14].
These isostable coordinates are formally related to level sets
of Koopman eigenfunctions [12], [19], which can be used
to analyze the infinite time behavior of a fixed point or
limit cycle attractor in terms of an infinite set of exponen-
tially decaying functions. An isostable reduction retains a
subset of the slowly decaying Koopman eigenfunctions and
truncates the rest. Here we provide a brief background on
the use of isostable coordinates as applied to the reduction
of PDEs.

To begin, consider a general PDE on the bounded domain
�. Let X(r, t) ∈ R

β denote the state of the system at location
r. We will consider separable Dirichlet boundary conditions of
the form X(r, t) = ∑N

j=1(pj(t)ηj(r)) on ∂�, i.e., the boundary
conditions can be written as a linear combination of N linearly
independent functions ηj(r). Such a decomposition that arbi-
trarily closely approximates the terms of functions of separable
variables t and r is always possible for finite energy solutions
or control inputs by Hilbert-Schmidt theory [20]. Note that
Neumann or mixed boundary conditions could also be used
with straightforward modifications to the derivation to follow.
This setup could, for instance, be used in aerodynamic flow
control, e.g., to control flow separation with a finite number
of actuators [21]. Defining p = [

p1 . . . pN
]T ∈ R

N , let
the dynamics of the PDE follow

∂

∂t
X(r, t) = F(X(r, t), p(t)), (1)

where F gives the dynamics as a function of the state
and the (potentially) time-varying boundary conditions. For
the purposes of this letter, Equation (1) is subject to the
following assumptions: Assumption A) Equation (1) is well-
posed; Assumption B) For any allowable boundary conditions
Equation (1) has a stable stationary solution Xss(r, p) for
which F(Xss(r, p), p) = 0; Assumption C) The state X(r, t)
remains in the basin of attraction of Xss(r, p) for all time;
Assumption D) For all allowable boundary conditions, the
operator J(r, p) ≡ ∇F(Xss(r, p), p) (i.e., the local lineariza-
tion) exists as well as J†(r, p) where † denotes the adjoint
associated with 〈·, ·〉, the L2 inner product; Assumption E) J
has a discrete spectrum (this is guaranteed if J is a compact
operator) so that near Xss(r, p) a linearized solution to (1)

can be written with a basis of eigenfunctions νj(r, p) and
corresponding eigenvalues λj(p) as

ξ(t,X(r), p)− Xss(r, p) =
∞∑

j=1

sj(X(r))νj(r, p)eλj(p)t. (2)

Above, ξ(t,X(r), p) represents the flow of (1) at time t
for a fixed p with initial state X(r), and sj(X(r)) gives the
coordinate of the eigenfunction basis for the initial state;
Assumption F) Each pi takes values on a continuous and
bounded domain; Assumption G) Each λj(p) is a continu-
ously varying function of p. By convention, we will sort these
so that 0 > max

p
(Re(λj(p))) ≥ max

p
(Re(λj+1(p))) where the

maximum is taken over all allowable values of p. With this
choice of ordering, λ1(p) is the eigenvalue corresponding to
the eigenfunction with the slowest possible rate of decay. As
done in [15], [16], [22], the spectrum of the linearized oper-
ator J can be used to define a basis of isostable coordinates.
For a given value of p, for each |λj(p)| that is small enough
compared to |λ1(p)| (see [23]), one can define an associated
isostable coordinate ψj that maps the state space to C (i.e.,
X 
→ ψj(X, p)) according to the infinite time convergence to
the stationary solution

ψj(X, p)

= lim
t→∞ e−λjt

∫

�

QT
j (r, p)(ξ(t,X(r), p)− Xss(r, p))dr, (3)

where Qj(r, p) projects the solution onto νj(r, p) so that

∫

�

QT
j (r, p)νk(r, p)dr =

{
1, if k = j,
0, otherwise,

(4)

where T denotes the vector transpose. The isostable coordinate
definition given in (3) characterizes the limiting behavior as
the solution approaches the stationary solution. More rapidly
decaying isostable coordinates can be defined implicitly as
level sets of Koopman eigenfunctions [19]. As illustrated
in [15], [16], taking the time derivative of a given isostable
coordinate for a solution that evolves under the flow of (1)
(noting that ψj is a function of the time-varying state) each
isostable coordinate decays exponentially according to dψj

dt =
λj(p)ψj when p is held constant. Additionally, neglecting the
nonlinear terms of the PDE (1) near the stationary solution,
substituting (2) into (3) yields ψj(X, p) = sj(X(r)) so that
taking t = 0 in (2) one finds


X(r, p) ≡ X(r)− Xss(r, p) =
∞∑

j=1

ψj(X, p)νj(r, p). (5)

Note that in contrast with previous work on isostable coor-
dinates, in the following sections we will consider how the
isostable coordinates themselves depend on the parameter
set p. This explicit dependence on the parameters will be
exploited to define an adaptive isostable reduced coordinate
framework.
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III. AN ADAPTIVE REDUCTION FRAMEWORK BASED

ON ISOSTABLE COORDINATES

A. Isostable Dynamics in Response to Parameter
Changes

We provide the following derivation subject to the following
assumption: Assumption H) For all allowable p both Xss(r, p)
and each ψj(X, p) are continuously differentiable with respect
to r and p. Here, we consider the evolution of isostable coor-
dinates along solutions of (1) with potentially nonstatic values
of p. Changing to isostable coordinates using the chain rule
for the functional derivatives, we have

dψj

dt
= 〈∇ψj, ∂X/∂t〉 +

N∑

i=1

∂ψj

∂pi

dpi

dt
, (6)

where ∇ψj denotes the gradient of ψj evaluated at X(r, t) when
using the parameter set p. In order to simplify (6) further, recall
that when p is held constant, dψj

dt = λj(p)ψj for all j. Using
this fact, (6) implies

〈∇ψj, ∂X/∂t〉 = λj(p)ψj. (7)

For the remaining terms of (6), recalling the definition of 
X
from (5) we can write

∂ψj

∂pi
=

〈[
∂ψj
∂
X1

. . .
∂ψj
∂
Xβ

]T
, ∂
X/∂pi

〉

= 〈∇ψj, ∂
X/∂pi〉. (8)

In the above equation, ∂
X/∂pi characterizes the change in

X resulting from a change in the parameter pi, and the second
line is obtained by noting that for a fixed pi, changes in X are
identical to changes in 
X. Additionally, changing pi does not
change the state X(r, t) itself, but rather shifts Xss(r, p), i.e., the
steady state reference. Therefore, from the definition (5) we
can write

∂
X

∂pi
= lim

dpi→0

Xss(r, p)|pi − Xss(r, p)|pi+dpi

dpi
, (9)

with the other pk taken at their nominal values for k �= i.
Substituting Equations (7)–(9) into (6), we can write

dψj

dt
= λj(p)ψj +

N∑

i=1

[

〈∇ψj, ∂
X/∂pi〉dpi

dt

]

. (10)

In order to arrive at a reduction, we note that any isostable
coordinates associated with large magnitude λj will decay
rapidly to zero when excited by input; the most rapidly decay-
ing isostable coordinates will be truncated by taking ψj = 0
for j > σ . This general truncation strategy has been used
in previous work on PDEs [15], [16], [22] as well as when
using isostable coordinates for describing systems of ordinary
differential equations (ODEs) [14], [24], [25].

A final assumption will be made to relate the gradi-
ent of the isostable coordinates to the underlying equations:
Assumption I) Each dpi/dt is small for all i so that the non-
truncated isostable coordinates (with dynamics that evolve
according to (10)) remain small. With this assumption 
X is
small so that the gradient of each isostable coordinate ∇ψj

can be well-approximated by its evaluation at the station-
ary solution Xss(r, p). The truncated isostable dynamics and
corresponding output can then be written in the following form

d�

dt
= 
(p)� + B(p)ṗ,

X(r, t) = Xss(r, p)+
σ∑

j=1

νj(r, p)ψj(t), (11)

where � ≡ [
ψ1 . . . ψσ

]T , 
(p) is a diagonal matrix
comprised of the eigenvalues λj(p), and B(p) ∈ R

σ×N with
jth row and ith column equal to 〈∇ψj, ∂
X/∂pi〉 where ∇ψj

is evaluated at Xss(r, p) and ∂
X/∂pi is evaluated according
to (9). Here, the output equation in (11) is simply a truncated
version of (5).

B. Computation of the Gradient of the Isostable
Coordinates

The term ∇ψj is necessary to compute the reduced
dynamical equations as part of (11). An equation for com-
puting this gradient can be derived using a strategy similar to
the one presented in [16] (which is itself based on a related
strategy for PDEs with stable limit cycle solutions [26]). The
following derivation takes a constant value for p. Consider
some initial condition X(r, t) = Xss(r, p) + 
X(r, t, p), with

X(r, t, p) small. The dynamics can be written to leading
order as

∂
X

∂t
= J(r, p)
X(r, t, p)+ O(||
X(r, t, p)||2). (12)

Above, recall that J(r, p) represents a local linearization
with respect to Xss(r, p). Also, to leading order the isostable
coordinate can be described as

ψj = 〈∇ψj,
X(r, t, p)〉 + O(||
X(r, t, p)||2), (13)

with ∇ψj being a function of both r and p with the gradient
evaluated at Xss(r, p). Noting that Xss(r, p) does not depend
on time, taking the time derivative of (13) yields to leading
order

dψj

dt
=

〈

∇ψj,
∂
X(r, t, p)

∂t

〉

, (14)

which can be simplified to

λj(p)ψj = 〈∇ψj, J(r, p)
X(r, t, p)〉
= 〈J(r, p)†∇ψj,
X(r, t, p)〉. (15)

To arrive at the second line in the above equation, recall above
that † denotes the adjoint. Substituting (13) into the left hand
side of (15) and simplifying yields

0 = 〈(J†(r, p)− λj(p)Id)∇ψj,
X(r, t, p)〉, (16)

where Id is an appropriately sized identity matrix. Since

X(r, t, p) is arbitrary, the following relation must hold:

0 = (J†(r, p)− λj(p)Id)∇ψj. (17)

In other words, ∇ψj is an eigenfunction of J†(r, p) associ-
ated with λj(p). Recalling the relationship between each νj,
its associated ψj and 
X, along with (13), one can show that

〈∇ψj, νj(r, p)〉 = 1 (18)
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is an appropriate normalization. For simple PDEs, it will some-
times be possible to write the adjoint explicitly in terms of
F(X(r, t), p(t)) (see [26]). More commonly however, it will
be necessary to first discretize (1) into a system of ODEs with
appropriate boundary conditions [27]. Using this strategy, the
system adjoint is simply the Hermitian transpose of the local
Jacobian.

IV. REDUCTION OF THE 1-D NONLINEAR

BURGERS’ EQUATION

To illustrate the proposed reduction methodology, we con-
sider the 1-D nonlinear Burgers’ equation with a convective
nonlinearity similar to that of the Navier-Stokes momentum
equations:

∂w

∂t
= 1

Re

∂2w

∂x2
− w

∂w

∂x
, (19)

where x ∈ [0, 1] is the domain, w is the state, and Re = 50
is a viscosity term that is analogous to the Reynolds num-
ber from the Navier-Stokes equation. Koopman analysis has
recently been applied to the Burgers’ equation [28], [29] and
has also been used in the solutions of related optimal control
problems [30]. The present application extends on these ideas
by explicitly considering the influence of changing boundary
conditions on the level sets of the slowest decaying Koopman
eigenfunctions (i.e., the isostable coordinates). As a final note,
while Equation (19) itself is not particularly complicated (in
fact, the Cole-Hopf transformation [31], [32] can be used
to find an exact solution) it is often used as a test bed for
development of reduced order modeling strategies.

To implement the model simulations, the domain is dis-
cretized into 202 elements using a central-space scheme.
The resulting system of equation is simulated using the
ode15s scheme in MATLAB. For this model, we let p(t) =[
wL(t) wR(t)

]T where wL(t) and wR(t) are time-varying
boundary conditions at x = 0 and x = 1, respectively. Steady
state solutions Xss, decay rates of the eigenvalues, and corre-
sponding eigenfunctions are computed numerically by taking
constant values of wL ∈ [−0.2, 0.2] and wR ∈ [−0.2, 0.2].
Likewise, gradients of the isostable coordinates are com-
puted numerically by identifying the required eigenfunctions
from (17) after discretizing the operator. Panel A of Figure 1
shows how the principle eigenvalues change for different
values of wL when wR is set to zero. Panel B shows the
corresponding steady state solutions. Panel C gives the cor-
responding values of dψ1/dwL and dψ1/dwL that comprise
B(p) from (11) calculated when wR = 0. Panel D shows how
the state changes as a function of the principle isostable coor-
dinate, ψ1, for a given set of boundary conditions when all
other isostable coordinate are taken to be zero.

A. Comparison to Proper Orthogonal Reduction
Strategies

A POD strategy will be compared to the adaptive isostable
reduction strategy (11). The POD framework attempts to
extract a small set of reduced order modes from a rep-
resentative set of solution snapshots [1], [4]. Provided the

Fig. 1. Illustration of terms of the adaptive isostable reduced equa-
tions (11) for the 1-D Burgers’ equation. Panels A, B, and C illustrate the
principle eigenvalues, steady state solutions, and terms of B(p) taking
wR = 0 and varying wL. Taking wL = 0.09 and wR = 0, panel D shows
Xss + ψ1v1 giving a sense of how the state depends on the principle
isostable coordinate.

underlying PDE model is known, the POD modes can be used
to generate a dynamical model. Briefly, to generate data snap-
shots for the POD based model, Equation (19) is simulated
for 18000 time units with left boundary condition wL(t) =
0.15 sin(2π t/(300 + 0.05t)) for t < 6000, wL(t) = 0 for
6000 ≤ t < 12000 and wL(t) = 0.15 sin(2π t/(300 + 0.05(t −
12000))) for 12000 ≤ t < 18000. Likewise, the right bound-
ary condition is taken to be wR(t) = 0.15 sin(2π t/(300+0.1t))
for t < 6000, wR(t) = 0.15 sin(2π t/(300+0.1(t −6000))) for
6000 ≤ t < 12000 and wR(t) = 0 for 12000 ≤ t < 18000.
These oscillating boundary conditions are chosen to provide a
representative sample of data from which to construct the POD
basis. Snapshots xi ∈ R

202 are taken every 0.01 time units and
stacked side-by-side into the matrix X = [

x1 x2 . . .
]
. A

POD basis is extracted by finding the eigenvalues and eigen-
vectors of the covariance matrix XXT . The eigenvectors of XXT

are the POD modes, φi, and those with the largest correspond-
ing eigenvalues λPOD

i (not to be confused with the eigenvalues
characterizing the decay of isostable coordinates) capture more
of the temporal fluctuations in the data set. A reduced POD
model can be obtained by choosing the order ζ such that

χ ≡
ζ∑

j=1

λPOD
j /

202∑

j=1

λPOD
j ≈ 1. (20)

Left panels of Figure 2 show the first four resulting POD
modes. When taking ζ = 4, χ is computed to be 0.99975
(i.e., the basis contains 99.975 percent of the total energy)
indicating that these four modes provide an adequate represen-
tation of the snapshot data. Indeed, as illustrated in the right
panels of Figure 2, simulating the full model (19) according to
wL(t) = 0.15 sin(2π t/350) and wR(t) = 0.075 sin(2π t/200),
the POD basis accurately captures the spatial structure of the
resulting data when using 4 modes. Note that the right panels
of Figure 2 show a projection of w(x, t) onto the POD basis,
i.e., using �(�Tw(x, t)) where � = [

φ1 φ2 φ3 φ4
]
.

This projection is not computed according to any reduced
model dynamics.
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Fig. 2. The left panels show the principle modes of the POD basis
obtained using the strategy described in the text. The right panels show
a projection of the solution w(x , t) onto a 4 mode POD basis.

A dynamical model can be derived using a strategy detailed
in [33], [34] by letting w(t, x) ≈ ∑ζ

j=1 αj(t)φj(x) where αj

denotes the coefficient of the jth POD mode. Taking the inner
product of each φi with both sides of the PDE (19), integrating
over the domain, and exploiting the orthogonality of the POD
modes, the dynamics of the αj coefficients evolve according to

α̇ = Aα + Bp + μ(α),

w(x, t) =
ζ∑

j=1

φj(x)αj(t), (21)

where α = [
α1 . . . αζ

]T , A ∈ R
ζ×ζ , and B ∈ R

ζ×2 char-
acterize the linear terms of the reduction, μ(α) contains terms
that are quadratic in the POD coefficients, and p was defined
earlier. The terms of A,B, and μ are explained in [34] along
with full details of the derivation of (21). The results from the
adaptive isostable reduction (11) will be compared to both the
fully nonlinear POD model (21) and the linearization of (21)
about its stationary solution.

B. Comparison Between Reduced Adaptive Isostable
and POD Model Dynamics

The adaptive isostable (11), nonlinear POD reduction (21),
and the linearized POD reduction are compared in terms of
their abilities to replicate the full system behavior of the 1-
D Burgers’ equation (19). Trials using two separate sets of
inputs are used. The first inputs are wL(t) = 0.15 sin(2π t/350
and wR(t) = 0.075 sin(2π t/200) with results shown in pan-
els A-E of Figure 3. Panels C-E show the L2 error defined
as E(t) = ∫

�
(wred(x, t) − wfull(x, t))2dx where wfull(x, t) is

the full solution simulated according to (19) and wred(x, t)
is the reduced model output. For the second set of simula-
tions, the inputs are wL(t) = 0.01I1(t) and wR(t) = 0.01I2(t),
where I1(t) and I2(t) are independently generated outputs of
the variable x from simulations of the chaotic Lorenz equa-
tion [35], ẋ = 10(y − x)/600, ẏ = (x(28 − z) − y)/600, and
ż = (xy−8z/3)/600. The temporal scaling in the Lorenz equa-
tions is included so that the inputs vary sufficiently slowly.

Fig. 3. Panels A and B show the sinusoidally time-varying Dirichlet
boundary conditions. The resulting full model output is compared to
the reduced model outputs in panels C-E. Panels F and G show time-
varying boundary conditions that are determined from independently
generated outputs of the Lorenz equations. Panels H-J compare the
resulting reduced and full model outputs. In each simulation, the adap-
tive isostable reduced model only requires a single mode and achieves
better performance than the other reduced models considered.

The inputs for the second set of trials are shown in Panels
F and G of Figure 3. Panels C-E show the L2 error of the
reduced models. In each simulation, the single mode adaptive
isostable reduced strategy significantly outperforms the linear
POD reduction framework. Additionally, the adaptive isostable
reduced method requires several modes to achieve compara-
ble results to capture the behavior in response to the sinusoidal
stimulation–for input based on the Lorenz model output, the
single mode adaptive isostable reduced model still performs
better than the nonlinear POD strategy that uses 10 modes.

It is important to emphasize here that while the POD reduc-
tion strategy provides an optimal orthogonal basis (in an
energy sense) for representing the output from the underly-
ing model (19), the POD framework does not perfectly match
the dynamics. When using ten modes, the amount of energy
captured according to (20) is χ = 0.99999998, in other words,
the 10 mode POD basis captures virtually all of the energy.
Nevertheless, the resulting linearized version of (21) performs
poorly while the nonlinear version does not perform as well
as the single mode adaptive isostable reduced model.

V. CONCLUSION

In this letter, we proposed an adaptive isostable reduction
strategy that is valid for slowly varying model inputs. This
framework is an extension of the isostable coordinate frame-
work [12], [13], [16] which characterizes the infinite-time
decay of solutions towards an attractor. The adaptive isostable
strategy illustrated here considers the isostable reduced coor-
dinates for a continuous family of system parameters; by
understanding how parameter changes influence these isostable
coordinates, a reduced order model can be obtained that is
more accurate than the nonlinear POD strategy used for com-
parison purposes. While the specific model (19) is relatively
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simple, this methodology could be applied straightforwardly
to more complicated systems provided the necessary terms of
the reduction (11) can be computed.

In contrast to other recently developed isostable reduction
strategies, [15], [16], [22], the proposed reduction framework
is valid for arbitrarily large inputs. This can be particu-
larly useful for systems with dominant nonlinear terms where
large inputs drive the state far from the underlying attractor.
The proposed isostable reduction strategy is related to the
framework given in [17] which studied an extended phase
space in ODE models of limit cycle oscillators to charac-
terize the timing of oscillations subject to large magnitude
but slowly-varying inputs. In contrast to [17], this letter is
focused on understanding the temporal decay of solutions
to a steady state solution in order to characterize the state
dynamics.

There are many opportunities for extension of the proposed
method. It may be possible to leverage strategies from [25]
to compute the necessary terms of (11) to higher order accu-
racy in the isostable coordinates thereby giving a better picture
of the behavior as the magnitude of the time derivative of
the input becomes larger. Additionally, while continuously
changing boundary conditions are considered here, many prac-
tical applications have boundary conditions that vary discretely
and it would be worthwhile to consider how to extend the
proposed method for use in these situations. A drawback of the
proposed adaptive reduction presented here is that it requires
knowledge of the full system equations in order to compute
the adjoint of the local linearization from (12). Even if the
full equations are known, it may be computationally difficult
to compute the adjoint for more complicated problems. By
contrast, POD and DMD can still be implemented without
knowledge of the full model equations using snapshot data. It
would be useful to develop strategies to infer the necessary
terms of the adaptive isostable reduced equations from simi-
lar snapshot data. These issues will be the subject of future
investigation.
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