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Abstract

The exchange of carbon between the Earth’s atmosphere and biosphere influences the atmospheric
abundances of carbon dioxide (CO,) and methane (CH,). Airborne eddy covariance (EC) can quantify
surface-atmosphere exchange from landscape-to-regional scales, offering a unique perspective on
carbon cycle dynamics. We use extensive airborne measurements to quantify fluxes of sensible heat,
latent heat, CO,, and CH, across multiple ecosystems in the Mid-Atlantic region during September
2016 and May 2017. In conjunction with footprint analysis and land cover information, we use the
airborne dataset to explore the effects of landscape heterogeneity on measured fluxes. Our results
demonstrate large variability in CO, uptake over mixed agricultural and forested sites, with fluxes
ranging from —3.4 4 0.7to —11.5 + 1.6 umolm™ s~ for croplandsand —9.1 + 1.5to

—22.7 4+ 3.2 umolm™ %5~ for forests. We also report substantial CH, emissions of 32.3 + 17.0to
76.1 & 29.4nmolm™*s~ ' from a brackish herbaceous wetland and 58.4 + 12.0t0 181.2 +

36.8 nmolm 2

s~ ! from a freshwater forested wetland. Comparison of ecosystem-specific aircraft

observations with measurements from EC flux towers along the flight path demonstrate that towers
capture ~30%—75% of the regional variability in ecosystem fluxes. Diel patterns measured at the tower
sites suggest that peak, midday flux measurements from aircraft accurately predict net daily CO,
exchange. We discuss next steps in applying airborne observations to evaluate bottom-up flux models
and improve understanding of the biophysical processes that drive carbon exchange from landscape-

to-regional scales.

1. Introduction

The terrestrial biosphere plays a dynamic role in the
global carbon cycle, removing an estimated 25%—30%
of the carbon dioxide (CO,) emitted from human
activity (Ciais et al 2013, Le Quéré et al 2018).

However, the prognosis for this sink remains poorly
constrained due to uncertain climate feedbacks on the
atmosphere-biosphere cycling of CO, (Cox et al 2013,
Wenzel et al 2016, Bond-Lamberty et al 2018). In
addition, the land biosphere acts as a net source of
methane (CH,) (Saunois et al 2016, Tian et al 2016),

© 2020 The Author(s). Published by IOP Publishing Ltd
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with large uncertainties (>20 Tgyr ') in magnitudes
and ecosystem-dependent responses to climate state
(Turner et al 2019). Thus, it is critical to accurately
determine CO, and CH, fluxes, and their associated
sensible and latent heat fluxes, from landscape-to-
regional scales to better constrain the global carbon
budget.

Several approaches exist for quantifying terrestrial
carbon exchange. Top-down methods use a combina-
tion of observed atmospheric mixing ratios, transport
models, and prior emissions estimates to infer fluxes
of CO, (Houweling ef al 2015, Wang et al 2018) and
CH,4 (Bousquet et al 2011) on regional to global scales.
These atmospheric inversion models provide a useful
constraint on flux but offer limited attribution infor-
mation on the underlying biophysical factors driving
the carbon cycle. Bottom-up methods, in contrast, rely
on biomass inventories (e.g. Pacala et al 2001, Pan et al
2011), surface flux tower networks (Baldocchi et al
2001, Jung et al 2011), or biophysical process models
(e.g. Schaefer et al 2008) to extrapolate flux from local
to global scales. However, inventory-based estimates
have large associated uncertainties of up to 75%
(Hayes et al 2018), and discrepancies persist between
different modeling approaches (Huntzinger et al 2012,
Melton et al 2013) and model-tower data comparisons
(Schwalm et al 2010, Schaefer et al 2012). Tower-based
flux observations can provide benchmark information
and a basis for validation, but their spatial representa-
tiveness is very limited at regional to continental scales
(Villarreal etal 2018).

Airborne eddy covariance (EC) provides near-
direct measurements of surface-atmosphere exchange
over landscape-to-regional scales (e.g. Lenschow et al
1981, Desjardins et al 1982, 1989, Crawford et al 1996,
Sellers et al 1997, Gioli et al 2004, Sayres et al 2017,
Wolfe et al 2018). Such observations have successfully
been used to evaluate CH, emissions inventories (Hil-
ler et al 2014) and to scale up tower- or aircraft-based
fluxes via empirically-derived environmental response
functions (Miglietta et al 2007, Metzger et al 2013,
Zulueta et al 2013). Airborne EC has also been applied
to validate regional-scale flux inversions (Lauvaux
et al 2009), light-use efficiency models of carbon and
energy fluxes (Kustas et al 2006, Anderson et al 2008),
and biophysical process models of forest carbon
exchange (Maselli et al 2010).

Attribution of airborne fluxes requires knowledge
of the spatial contribution of surface fluxes to the mea-
surement at aircraft altitude: the flux footprint
(Leclerc and Thurtell 1990, Schuepp et al 1990). In
conjunction with surface information (e.g. thematic
land cover), footprint analysis enables the allocation of
fluxes to the underlying surface state. For example, the
flux fragment method decomposes fluxes using the
subset of observations that have a homogeneous foot-
print in the EC calculation (Kirby et al 2008, Dobosy
et al 2017, Sayres et al 2017). While this method is
highly reliable, it is best suited to regions with
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sufficient homogeneity to capture enough single-foot-
print observations, or to aircraft flying low enough to
minimize the footprint size. More complex algorithms
incorporate footprint-weighted land cover informa-
tion to decompose observed fluxes using numerical or
regression analysis (Chen et al 1999, Ogunjemiyo et al
2003, Wang et al 2006, Hutjes et al 2010). Such meth-
ods are more practical for data sets with mixed under-
lying terrain.

Here, we utilize an extensive airborne flux dataset
to explore the effects of surface heterogeneity on the
land-atmospheric exchange of sensible and latent
energy, CO,, and CH,. Footprint analysis in conjunc-
tion with thematic land classification maps demon-
strates that airborne fluxes can resolve spatial
heterogeneity in land type at the 1-2 km? scale. We
highlight campaign results for two case studies: a pre-
dominantly agricultural area between Maryland and
Delaware, and a wetland forest located in coastal
North Carolina. We further evaluate campaign mea-
surements against flux observations from several tow-
ers and explore whether empirical time trends from
towers yield a means of scaling airborne flux samples
to net daily CO, exchange. Finally, we discuss next
steps in utilizing airborne observations to calibrate
and evaluate modeled flux products.

2. Methods

2.1. Airborne flux campaign and data

The NASA Carbon Airborne Flux Experiment (CAR-
AFFE) platform, payload, and data processing are
described in detail by Wolfe et al (2018). The data
presented here were collected during two CARAFE
deployments in September 2016 and May 2017. Flights
spanned the Mid-Atlantic states and targeted a variety
of land-use and ecosystem types, including forests,
agricultural lands, and wetlands. Flux transects
(figure 1) cumulatively comprise ~7000 km of linear
distance, with typical altitudes of 80-300 m. EC fluxes
of sensible heat (H), latent heat (LE), CO, (Fco5), and
CH, (Fcras) were determined via continuous wavelet
transforms (Torrence and Compo 1998), as detailed in
Wolfe et al (2018) and summarized in section S1.1,
available online at stacks.iop.org/ERL/15/035008/
mmedia. 1 Hz processed flux data from the CARAFE
campaigns, in addition to supporting scalar and winds
data, are publicly available: https://air.larc.nasa.gov/
missions/carafe/index.html.

2.2. Flux tower data

CARAFE flights included ~50 overpasses of flux
towers (figure 1). Table 1 lists key information for each
tower. The USDA Choptank (USDA-Chop) tower is
situated in the Choptank River watershed, an agricul-
tural area of predominantly soy and corn crops on the
eastern shore of the Chesapeake Bay (Sun et al 2017).
The remaining four towers are part of the larger
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Figure 1. Map of the NASA CARAFE flux transects from September 2016 (red) and May 2017 (cyan). All flights were based out of
Wallops Flight Facility (WFF) in Wallops, VA. The locations of five flux towers situated beneath the flight tracks are indicated by white
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Table 1. Summary of flux towers underlying CARAFE flight tracks. The primary NLCD 2016 land class is also listed.

Tower Description Lat, Long Land class Measurements Overfly date
US-Ced Cedar Bridge, NJ 39.8379°N Evergreen forest H, LE, Fcon 20160914
74.3791°W 20160923
20170509
US-Slt Silas Little, NJ 39.9138°N Deciduous forest H, LE, Fco, 20160914
74.5960° W 20160923
20170509
US-NC4 Alligator River, NC 35.7879°N Woody wetlands H, LE, Fco, 20160924
75.9038° W Fcra 20170515
20170526
US-StJ St. Jones, DE 39.0882°N Herbaceous wetlands H, LE, Fcos 20160912
75.4372°W Fena 20170504
20170518
USDA-Chop Choptank, MD 39.0587°N Cultivated crops H, LE, Fcon 20160912
75.8513° W 20170504
20170518

AmeriFlux network. The St. Jones tower (US-StJ)
samples the St. Jones Reserve tidal marsh in south-
eastern Delaware (Capooci et al 2019). The Cedar
Bridge tower (US-Ced) and the Silas Little tower (US-
Slt) are both located in the Pinelands National Reserve
in southern New Jersey, with mostly pitch pine-
dominated stands near US-Ced and mixed oak stands
near US-SIt (Clark et al 2018). The US-NC4 tower is

located in the Alligator River National Wildlife Refuge,
a forested swamp in North Carolina (Miao et al 2017).
Tower sites processed EC flux data according to
standardized AmeriFlux procedures, as summarized
in section S1.2, and AmeriFlux data are publicly
available: https://ameriflux.Ibl.gov. All towers report
H, LE, and Fcpy, while the US-St] and US-NC4
locations additionally report Fcpyy. With the inclusion
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Figure 2. A single flux transect from the 18 May, 2017 flight over the Choptank/St. Jones region, overlaid on the NLCD 2016 land
cover map. The grey shading indicates the cumulative footprint for all observation points along the leg. The inset box shows a single
2D footprint calculated using the Kljun et al (2015) parameterization, with black contours depicting weighted contributions to the
observed flux from 10% to 90% in 10% increments. The white arrow denotes the mean horizontal wind direction, and the magenta
circle indicates the 200 m radius around the USDA-Choptank tower.
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of a small storage correction (typically <10%), towers
also report net ecosystem exchange (NEE). Note that
NEE is opposite in sign to Fco,. The tower fetch across
all sites ranges from 100 to 2500 m.

2.3. Flux decomposition by land class

2.3.1. Land classification

Land cover information was taken from the National
Land Cover Database (NLCD 2016), a high-resolution
(30 m x 30 m) map based on Landsat imagery (Yang
etal 2018). The CARAFE domain includes 14 of the 20
NLCD land classes. Dominant land classifications
sampled during CARAFE include woody wetlands
(45%), cultivated crops (22%), and dry forests (ever-
green, deciduous, and mixed classes) (21%). The
remaining types are developed land (open, low,
medium, and high density), open water, emergent
herbaceous wetlands (hereafter herbaceous wetlands),
shrubs, pastures, and grasslands, which individually
make up less than 5% of the cumulative footprint.

2.3.2. 2D flux footprint analysis
The flux footprint relates the spatial distribution of
fluxes at the surface (E) to the observed flux (Fy;,)

measured at coordinates x,, y, and measurement
height z,, (Horstand Weil 1992, Schmid 1994):

Eps(Xms 9,0 zm)=ff_ 1 s zm)E(x, y, 0) dx dy,
(1

where, x and y are arbitrary horizontal coordinates and
f is the flux footprint function, which expresses the
contribution of each upwind unit surface element to
Eyps. We use the two-dimensional Flux Footprint
Prediction (2D-FFP) developed by Kljun et al (2015), a
parameterization based on a Lagrangian stochastic
particle dispersion model (Kljun et al 2002) that is
applicable to many turbulence regimes and measure-
ment heights. The parameterization utilizes the fol-
lowing inputs: measurement height z,, the mean
horizontal wind speed U, the planetary boundary layer

height z;, the Obukhov length Lo, the standard
deviation of the lateral (crosswind) velocity fluctua-
tions 0y, and the friction velocity u*. We derive o, from
the wavelet variances of the horizontal wind velocity
vectors.

We calculate the 2D-FFP for all 1 Hz data points
(~75 m distance at typical flight speed) along all flux
transects below 200 m. Each data point has an asso-
ciated z,,, but leg-average values of the micro-meteor-
ological variables (i.e. U, u*, 0,, Log) are used as the
FFP is based on a mean flow parameterization, and
point-to-point momentum fluxes exhibit significant
variability. We estimate the boundary layer height
from vertical profiles before and after each set of flux
transects as described in Wolfe et al (2018). Note that
even a 20% error in zp) has less than a 0.5% impact on
the size and distribution of the footprint, except in
highly stable conditions (Kljun et al 2015) atypical
during the CARAFE flights. Once calculated, the 2D-
FFP was rotated into the mean wind direction and
transformed into the geographic coordinate space of
the measurement, generating a gridded map of the
footprint function associated with each flux observa-
tion. Figure 2 depicts an example of a single footprint
for a flux measurement from the 18 May, 2017 flight to
Choptank, MD superimposed on the NLCD 2016 land
cover map. For all flux observations from the 2016 and
2017 campaigns below 200 m in altitude, the 90%
upwind extent for calculated footprints ranged from
1.5to 10 km.

2.3.3. Disaggregation into component fluxes

To derive fluxes representative of a single land class,
we use the Disaggregation combining Footprint analy-
sis and Multivariate Regression (DFMR) methodology
described by Hutjes et al (2010). DEMR relies on the
flux footprint and land cover to estimate a weighted
contribution of each land class to the flux measure-
ment. The observed flux, F,;,, can be written as a linear
summation of component fluxes from each of n land

4
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classes within the footprint:

n
By =Y GiFy @)
k=1

where C; is the fractional area of the kth land class
within the footprint and Fj is the corresponding
component flux, or the mean land-class flux for a
given set of observations (i.e. a single flight). The
values Gy can be determined using the flux footprint
function f to weight the relative contributions of land
cover patches within the footprint, as patches closer to
the sensor influence the measurement more heavily
than patches farther away (equations (S1) and (S2)).

The multiple linear regression (equation (S3)) was
performed on a flight-by-flight basis to derive land-
class component fluxes for each flight. A grid of 2D-
FFP values was superimposed onto the NLCD 2016
map to generate the weighted fractional area of each
land class in every footprint (see figure 2). Although
NLCD displayed 14 land classes in our sampling
region, we down-selected for land classes that con-
stituted more than 20% of the footprint-weighted area
in at least 4 km of cumulative (but not necessarily con-
secutive) flux observations. This screening criterion,
which was optimized via comparison with flux sub-
samples from homogeneous footprints (figure S1),
ensured that selected land types were sampled enough
to provide a meaningful average.

In addition to residual error, random and systema-
tic measurement errors (see Wolfe et al 2018) were
propagated through the regression, and errors were
summed in quadrature to yield the total uncertainty
for each component flux. Uncertainties in a priori sur-
face characterization and footprint extent are not
included. While the footprint calculation should
introduce minimal error (barring significant changes
to the fractional areas), mischaracterization of the sur-
face cover could introduce significant biases. Correc-
tions for vertical flux divergence are likewise not
included due to large uncertainties in the correction
factors (see Wolfe et al 2018). The flights all took place
near midday and targeted fair-weather conditions.
However, the data are not screened for the presence of
clouds, and such variations may contribute another
source of flux variability in addition to those discussed
below.

3. Results and discussion

3.1. Disaggregated fluxes by region

3.1.1. Choptank watershed and St. Jones Reserve
CARAFE deployments included three flights to the
Choptank agricultural area (12 September 2016, 4
May 2017, and 18 May 2017). Flux transects spanned
the Delmarva peninsula from the Chesapeake Bay to
the Atlantic Ocean (typical length 60 km) and included
overflights of the USDA-Chop and US-St] towers
(figure 1). This region had mixed terrain, with six land
classes meeting the down-selection criteria described
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Table 2. Summary of land cover contributions for the
Choptank/St.Jones and Alligator River case studies. FP-
weighted area is the mean for all flights to that region.

Region Land class FP-area
Choptank/St. Jones Cultivated crops 56%
Woody wetlands 21%
Deciduous forest 6%
Developed-Open 6%
Herbaceous <5%
wetlands <5%
Open water
Alligator River Woody wetlands 83%
Open water 10%
Cultivated crops <5%
Herbaceous <5%
wetlands

in section 2.3.3. Table 2 summarizes footprint-
weighted contributions of each land class.

Disaggregated fluxes highlight the variability in car-
bon dynamics between land classes and over time
(figure 3). Of particular interest, cultivated crops (e.g.
annual crops such as soybean or corn) and forested
lands (e.g. woody wetlands and deciduous forest)
display substantial differences in Fco, for the sampling
periods. The CO, uptake from cultivated crops ranged
from —3.4 4+ 0.7 to —11.5 £ 1.6 pmol m 2 s
whereas deciduous and wetland forests display a
much larger uptake, ranging from —12.1 & 3.9 to
—22.7439 pmol m? s' and —9.1+15 to
—22.7 4 3.2 umol m™ %5 ', respectively. Forest uptake
of CO, also dominates that by croplands in other
regions with substantial cropland fraction (figures S2,
S3). While the difference in CO, uptake between crop-
lands and forest will be strongly dependent on crop type
and phenology (Lokupitiya et al 2009), crops in the
CARAFE region are typically in their early growth stages
in May and undergoing senescence in September.
Developed open lands, which comprise mostly lawn
grasses and vegetation with <20% impervious surface
area, also draw down substantial CO, (~—13 to
—30 umol m~?s~ ") during the May sampling period.

Choptank data also exhibit a general antic-
orrelation between Fco, and LE, expected for vege-
tated land surfaces where transpiration and stomatal
control is a major contributor to evapotranspiration.
The sampling is too limited to infer much about seaso-
nal flux response for the various land types, but fores-
ted lands are comparably photosynthetically active
during the growing season between May and
September.

The disaggregation methodology also illustrates
Fcpy variability with land type. Fcpy observations
were at or below the detection limit for most CARAFE
flights, and uncertainties are large due to poorly con-
strained regression results. However, it is known that
soils from forested ecosystems represent a weak CH,4
sink (Subke et al 2018), whereas tree stems represent a
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Figure 3. Disaggregated fluxes by land class for flights to the Choptank Watershed region: (a) sensible heat flux; (b) latent heat flux;
(c) CO, flux; and (d) CH, flux. Land class fluxes are grouped by fractional area and ordered by flight date from left to right. Note that
September dates are from the 2016 campaign and May dates are from 2017. Error bars represent +-2¢ uncertainty in the component
flux, which includes systematic and random error propagated through the regression analysis, in addition to the regression residuals.
CARAFE was not sampling fast CH, measurements on May-18, and no Fcyy4 data are available on this date.

weak CH, source (Vargas and Barba 2019) that may
counterbalance ecosystem scale CH, fluxes in upland
forested ecosystems. In contrast, herbaceous wetlands,
located primarily on the Eastern end of the track near
the St. Jones tower, exhibit relatively strong CH, emis-
sions of 76.1 4 29.4 nmol m > s~' on Sep-12 and
32.3 + 17.0nmol m™*s™ ' on May-04. This region has
a mix of herbaceous wetlands that extend across a
salinity gradient, where lower CH, emissions may be
associated with wetlands in brackish waters and
larger CH, emissions with freshwater wetlands
(Poffenbarger etal 2011, Capoociet al 2019).

3.1.2. Alligator river

Three flights over the Alligator River region took place
during the CARAFE deployments on 24 September
2016, 15 May 2017, and 26 May 2017. Flux transects

spanned the Alligator River National Wildlife Refuge
in the N-S direction, with the US-NC4 tower located
near the middle of the flight transects (see figure 1).
The dominant land cover contributions included
woody wetlands, open water, and some minor areas of
cultivated crops and herbaceous wetlands. Table 2
contains a summary of the land-cover contributions to
the footprint for Alligator River region.

The component fluxes from Alligator River display
significant variability with land type (figure 4). For
example, the open water component of H is at or near
zero for all flights, and evaporation dominates the sur-
face energy fluxes for this class, as displayed by LE values
generally greater than 200 W m 2. Note that although
classified as open water in the NLCD, the coastal waters
sampled near Choptank and Alligator River are actually
comprised of estuarine waters and tidal mudflats. We

6
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observed occasional CO, emissions from these waters of
6.2+ 22 pmol m? s over the Alligator River
(Sep-24, figure 4) and 6.4 & 3.7 ymol m > s~ " in the
Choptank region (May-18, figure 3). Both regions
also display positive fluxes of CH,, with means of
40.5 + 12.2 nmol m s~ " over the Alligator River and
20.5 4 10.1 nmol m s~ ! in Choptank. These values
are within the range of prior flux estimates, which can be
up to ~10 pzmol CO, m 2 s~ " in low salinity estuarine
waters, and ~30-35 nmol CH, m % s™ ! in tidal mudflats
(Abril and Borges 2005).

The woody wetlands land class, a freshwater fores-
ted swamp in the Alligator River region, also displays
persistent, large CH, emissions ranging from
58.4 4+ 12.0 to 181.2 4 36.8 nmol m 2 s~ '. These
remarkably high values are recurrent and consistent
over long periods at this site (Mitra et al 2019a), which
has recorded among the highest CH, emissions from
wetlands globally, including tropical wetlands. Other

temperate swamplands exhibit mean CH, emissions
of ~35 nmol m > s~ (Turetsky et al 2014), but few
global observational records exist for wetland
ecosystems.

3.2. Comparison to tower flux observations
Direct comparison of aircraft and tower flux observa-
tions is challenging in heterogeneous landscapes, as
the two platforms often sample different terrain due to
the mismatch in footprint size (on the order of ~100 m
for towers and ~3 km for CARAFE flights). During the
CARAFE campaign, most flights contained numerous
land cover types within a single footprint (figure 2),
resulting in an amalgamated signal from land-use and
ecosystem states with varied carbon fluxes. In contrast,
each tower sampled the local surface state with
footprints that were typically homogeneous.

For each flight, tower data are averaged over the
duration of the flight and compared to the aircraft

7
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1:1 reference, and the solid grey line indicates the best fit, with slope and intercept reported with 95% confidence intervals. The towers
sample the following land classes: evergreen forest (US-CED), deciduous forest (US-Slt), cultivated crops (USDA-Chop), woody
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disaggregated component flux corresponding to the
tower’s primary land class (figure 5). Note that the air-
craft component flux is derived using data from the
entire flight region, and thus we are comparing a mean
regional land-class flux to the site-specific land-class
flux at the tower location. The correlation between air-
craft and tower fluxes varies between species, with H
exhibiting the strongest correlation (r* = 0.76,
figure 5(a)) and the tightest fit NRMSE = 15%). The
slope of 0.58 £ 0.21 indicates a low bias in the aircraft
fluxes, which may stem from the vertical flux diver-
gence, which has not been included in the disaggrega-
tion. Divergence corrections typically range from
~10% to 60% with uncertainties of greater than 30%
in the correction factors. LE fluxes display a slightly
weaker correlation (* = 0.53, figure 5(c)) with nota-
bly more scatter between the aircraft and tower obser-
vations (NRMSE = 30%). Fco, demonstrates similar
scatter between the aircraft component fluxes and
tower observations (NRMSE = 30%) but shows a
weaker overall correlation (¥ = 0.30) that may be
skewed by a couple of outlying points in the US-Slt
comparison (figure 5(b)). The slopes for both LE

(0.74 + 0.31) and Fcp, (0.68 & 0.31) contain sub-
stantial uncertainty in magnitude. The limited num-
ber of tower Fcyy observations make quantitative
comparison with the aircraft fluxes difficult, and the
correlation is not statistically significant, with a p-
value > 0.05 (figure 5(d)). Nonetheless, aircraft data
overrepresent CH, fluxes at US-St] and under-
represent CH, fluxes at US-NC4.

Comparisons between the aircraft and tower
observations suggest that local tower measurements
capture 30%-76% of the variance in regional ecosys-
tem-dependent fluxes. The larger scatter (and weaker
correlation) in observations of LE and Fcg, as com-
pared to H could in part stem from errors in source
area attribution. For example Kustas et al (2006) and
Bertoldi et al (2013) found that footprint extents can
differ between active (e.g. T) and passive scalars (e.g.
H,0, CO,) in heterogeneous landscapes. A full quan-
tification of the source contribution error requires
computationally expensive boundary layer flow simu-
lations outside the scope of this study.

Despite potential footprint inconsistencies, varia-
bility in the underlying drivers of carbon exchange
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Figure 6. Linear fits of the daily—NEE versus peak—NEE for the five tower sites in 2016 (a). The fits are colored by the tower land
class: US-Ced (deciduous forest), US-Slt (mixed forest), US-NC4 (woody wetland), USDA-Chop (cultivated crops), US-StJ
(herbaceous wetlands). Monthly mean diurnal CO, fluxes for US-Ced and US-St] during August 2016 (b). The shaded area indicates
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within a land type expectedly results in discrepancies
between aircraft and tower observations. In the Chop-
tank watershed, where cultivated crops dominate the
footprint, the disaggregation could be further refined
based on crop type or land-use inventories to better
quantify the effect of these parameters on CO, uptake
(e.g. Zhang et al 2015). Additionally, forested classes
dominate several regions in the CARAFE domain,
including the Alligator River and Pocomoke Forest
(table S2). Combining land cover with maps of forest
canopy structure (Hurtt et al 2004) or metrics of pho-
tosynthetic activity, such as solar-induced fluores-
cence or vegetation indices (Frankenberg et al 2011),
could provide additional observational constraints on
the regional heterogeneity in the CO, sink.

In wetland regions, the underlying biogeochem-
ical factors that control CH, emissions are not implicit
with land class, and in some circumstances, CH, fluxes
can be highly episodic and localized (Whalen 2005).
For example, CH, fluxes in the brackish herbaceous
wetlands near the US-St] site depend on flooding and
drying conditions that change salinity gradients across
the tidal zone (Capooci et al 2019). In the freshwater
forested wetlands near US-NC4, Mitra et al (2019b)
found that methanogen substrate availability pro-
duced via photosynthesis largely controls CH, flux,
whereas water-table depth and surface temperature
played a non-causal role in emissions. The complexity
of the underlying controls of CH, fluxes stresses the
need for continued regional-scale studies of these
important yet understudied wetland ecosystems.

Although the observed variability in flux cannot be
fully attributed to land class, the results emphasize the
utility of spatially distributed observations in probing
carbon cycle dynamics across heterogeneous regions.
Typically, flux tower networks are used as ground-
truth observations to evaluate carbon exchange in pro-
cess models (Friend et al 2007, Raczka et al 2013) and
to inform a priori errors in atmospheric inversions
(Chevallier et al 2006). However, individual tower sites

are limited in regional representativeness (this work,
Villarreal et al 2018), and aircraft EC can provide a
valuable supplement with which to examine land-
scape-scale changes in the underlying drivers of car-
bon exchange.

3.3. Upscaling with tower temporal trends

Tower flux observations offer a long-term record of
local carbon cycle dynamics, of which aircraft observa-
tions only capture a brief subsample. Here, we explore
whether the temporal record of NEE from towers can
inform the extrapolation of local fluxes to regional,
daily-integrated values using aircraft observations.

The tower sites included in the CARAFE domain
demonstrate a distinct correlation between daily- and
peak-NEE for the 2016 annual datasets (figure S5). We
define peak-NEE as the mean CO, exchange between
11:00 and 15:00 local, the time of day in which max-
imum CO, uptake by the biosphere is usually
observed. Most CARAFE flights took place within this
time frame. Daily-NEE is the 24 h integral of half-
hourly or hourly tower measurements. Figure 6(a)
depicts the linear least squares fits of daily- versus
peak-NEE for each individual tower site colored by
land class, and the fit parameters and uncertainties are
summarized table 3. Note that this analysis does not
account for inter-annual variability.

Four of the five tower sites display similar relation-
ships between peak and daily exchange, with a mean
slope of 0.30 £ 0.02, excluding US-StJ. The St. Jones
tower samples a variable footprint, creating more scat-
ter in the daily- versus peak-NEE (see figure S5,
table 3), and this site is strongly influenced by tides,
which are known to affect diel patterns of NEE (Kathi-
lankal et al 2008). Furthermore, mean diurnal NEE
profiles for the month of August 2016 shown in
figure 6(b) reveal a larger ecosystem respiration from
this land class as compared to other tower sites,
accounting for the shallower slope of 0.21 £ 0.02.
Nonetheless, the generally high correlations suggest
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Table 3. Linear regression parameters for daily NEE versus peak-
NEE both in units of zmol m s ™! calculated using the flux tower
observations from 2016. Slope and intercept are listed with 95%
confidence intervals.

Tower Slope Intercept I RMSE*
US-Ced 0.31 £0.02 —0.64 £0.16 0.78 0.90
US-Slt 0.30 £0.02 —0.84 £0.15 0.81 1.04
US-NC4 0.30 £0.02 —0.44 £0.11 083 0.73
US-StJ 0.21 £0.02  —1.10 £0.30  0.54 1.95
USDA-Chop  0.27 £0.01 —0.36 £0.12  0.88 0.89

@ Units: gmol m ™25~ 2.

that peak-NEE is predictive of net daily exchange
across land types in the CARAFE domain, and peak
CO, fluxes observed during the midday CARAFE
flights encapsulate 50%—-90% of the day-to-day varia-
bility in carbon exchange. The temporal relationships
observed at the tower sites thus provide a mechanism
for inferring regional daily carbon exchange via air-
borne sampling.

Despite the similar relationships between daily-
and peak-NEE across tower sites, ecosystem-depen-
dent variability still results in large differences in car-
bon exchange, within and across individual days (e.g.
figures 3 and 4). A full assessment of the relationships
between peak-NEE and longer-term trends is beyond
the scope of this work. However, Zscheischler et al
(2016) have shown that observations of annual NEE
from several tower sites in temperate forests, including
US-Ced and US-Slt, demonstrate a strong correlation
with the number of days having ecosystem fluxes
above a high percentile. These analyses indicate that
such temporal relationships can provide an empirical
proxy for the climatic factors driving longer-term
variability in carbon exchange. Furthermore, extract-
ing longer-term information from airborne fluxes can
facilitate comparison with flux inversions and process
models, which often lack fine-timescale resolution.

4, Conclusions

We demonstrate that airborne fluxes, when combined
with footprint and land cover information, resolve
spatial heterogeneity in landscape flux. During the
September and May sampling periods, results often
show substantial differences in Fco, with land type,
and forests typically display a larger CO, uptake than
croplands. This likely stems from the fact that in May
most crops are typically still in early development and
by September they are undergoing senescence heading
towards harvest, whereas forests are consistently
photosynthetically active during this time frame. We
also observe a small but significant source of CH, from
estuarine waters and tidal mudflats. Larger CH,
emissions of up to ~75 nmol m > s~ !
near the St. Jones Reserve, a brackish herbaceous

are observed

P Letters

wetland, and up to ~180 nmol m s~ " in the Alligator
River Refuge, a freshwater woody wetland.

Our results also suggest that the tower sites located
along the flight path capture ~30%-75% of the regio-
nal variability in ecosystem-dependent fluxes of H, LE,
and Fco,, but the limited number of tower sites with
Fcpg4 observations makes quantitative comparison dif-
ficult. Diversity in the underlying biophysical drivers
of flux within land classes likely accounts for the
observed regional-scale ecosystem variability. More-
over, the underlying biogeochemical controls of CH,
flux in wetlands are often not directly tied to land class,
including such factors as substrate availability, salinity,
and water table depth. The persistently high CH,4
emissions observed during CARAFE at the local US-
StJ and US-NC4 tower sites emphasize the need to fur-
ther test the representativeness of these understudied
and heterogeneous ecosystems.

Although towers offer limited regional representa-
tiveness both within and across ecosystem states, tower
observations complement airborne EC by providing a
long-term record of ecosystem-dependent carbon
cycling. The tower sites in the CARAFE domain display
nearly consistent relationships between peak- and
daily-CO, exchange (within uncertainty), suggesting a
means of upscaling to regional daily carbon cycle dynam-
ics via airborne measurements.

While this study focused on thematic land cover, a
wealth of remote sensing data yields unique opportu-
nities to assess model-derived fluxes and quantify uncer-
tainties in regional flux products. Potential future work
includes extending the disaggregation methodology to
derive relationships between observed fluxes and surface
parameters such as canopy height, solar-induced chlor-
ophyll fluorescence, or normalized difference vegetation
index that initialize model- and satellite-derived fluxes
(e.g. Hurtt et al 2004, Zhang et al 2014), thus enabling
direct evaluation. Additionally, the spatially-distributed
fluxes from airborne EC provide the unique capability of
evaluating landscape-scale flux maps derived from
remote sensing models (Anderson et al 2008) as well as
gaining a greater understanding of boundary layer
dynamics affecting flux footprint and source area model-
ing using large eddy simulations (Bertoldi et al 2013).

The importance of terrestrial ecosystems in the glo-
bal CO, and CH, budgets motivates the need for
continued measurements over regions where large
uncertainties in carbon exchange persist, such as natural
wetlands and areas of rapid environmental and land-use
change. Incorporating remote-sensing surface informa-
tion could further focus such studies, exploiting the full
potential of airborne flux observations in constraining
carbon cycle dynamics.
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