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Abstract—Event cameras are bio-inspired sensors that differ from conventional frame cameras: Instead of capturing images at a fixed
rate, they asynchronously measure per-pixel brightness changes, and output a stream of events that encode the time, location and sign
of the brightness changes. Event cameras offer attractive properties compared to traditional cameras: high temporal resolution (in the
order of µs), very high dynamic range (140 dB vs. 60 dB), low power consumption, and high pixel bandwidth (on the order of kHz)
resulting in reduced motion blur. Hence, event cameras have a large potential for robotics and computer vision in challenging scenarios
for traditional cameras, such as low-latency, high speed, and high dynamic range. However, novel methods are required to process the
unconventional output of these sensors in order to unlock their potential. This paper provides a comprehensive overview of the
emerging field of event-based vision, with a focus on the applications and the algorithms developed to unlock the outstanding
properties of event cameras. We present event cameras from their working principle, the actual sensors that are available and the
tasks that they have been used for, from low-level vision (feature detection and tracking, optic flow, etc.) to high-level vision
(reconstruction, segmentation, recognition). We also discuss the techniques developed to process events, including learning-based
techniques, as well as specialized processors for these novel sensors, such as spiking neural networks. Additionally, we highlight the
challenges that remain to be tackled and the opportunities that lie ahead in the search for a more efficient, bio-inspired way for
machines to perceive and interact with the world.

Index Terms—Event Cameras, Bio-Inspired Vision, Asynchronous Sensor, Low Latency, High Dynamic Range, Low Power.
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1 INTRODUCTION AND APPLICATIONS

“THE brain is imagination, and that was exciting to me; I
wanted to build a chip that could imagine something1.”

that is how Misha Mahowald, a graduate student at Caltech
in 1986, started to work with Prof. Carver Mead on the
stereo problem from a joint biological and engineering per-
spective. A couple of years later, in 1991, the image of a cat in
the cover of Scientific American [1], acquired by a novel “Sil-
icon Retina” mimicking the neural architecture of the eye,
showed a new, powerful way of doing computations, ignit-
ing the emerging field of neuromorphic engineering. Today,
we still pursue the same visionary challenge: understanding
how the brain works and building one on a computer chip.
Current efforts include flagship billion-dollar projects, such
as the Human Brain Project and the Blue Brain Project
in Europe and the U.S. BRAIN (Brain Research through
Advancing Innovative Neurotechnologies) Initiative.
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1. https://youtu.be/FKemf6Idkd0?t=67

This paper provides an overview of the bio-inspired
technology of silicon retinas, or “event cameras”, such as [2],
[3], [4], [5], with a focus on their application to solve classical
as well as new computer vision and robotic tasks. Sight
is, by far, the dominant sense in humans to perceive the
world, and, together with the brain, learn new things. In
recent years, this technology has attracted a lot of attention
from academia and industry. This is due to the availability
of prototype event cameras and the advantages that they
offer to tackle problems that are difficult with standard
frame-based image sensors (that provide stroboscopic syn-
chronous sequences of pictures), such as high-speed motion
estimation [6], [7] or high dynamic range (HDR) imaging [8].

Event cameras are asynchronous sensors that pose a
paradigm shift in the way visual information is acquired. This
is because they sample light based on the scene dynamics,
rather than on a clock that has no relation to the viewed
scene. Their advantages are: very high temporal resolution
and low latency (both in the order of microseconds), very
high dynamic range (140 dB vs. 60 dB of standard cameras),
and low power consumption. Hence, event cameras have
a large potential for robotics and wearable applications in
challenging scenarios for standard cameras, such as high
speed and high dynamic range. Although event cameras
have become commercially available only since 2008 [2], the
recent body of literature on these new sensors2 as well as
the recent plans for mass production claimed by companies,
such as Samsung [5] and Prophesee3, highlight that there
is a big commercial interest in exploiting these novel vision
sensors for mobile robotic, augmented and virtual reality
(AR/VR), and video game applications. However, because

2. https://github.com/uzh-rpg/event-based vision resources [9]
3. http://rpg.ifi.uzh.ch/ICRA17 event vision workshop.html

https://youtu.be/FKemf6Idkd0?t=67
https://github.com/uzh-rpg/event-based_vision_resources
http://rpg.ifi.uzh.ch/ICRA17_event_vision_workshop.html
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event cameras work in a fundamentally different way from
standard cameras, measuring per-pixel brightness changes
(called “events”) asynchronously rather than measuring “ab-
solute” brightness at constant rate, novel methods are re-
quired to process their output and unlock their potential.

Applications of Event Cameras: Typical scenarios where
event cameras offer advantages over other sensing modal-
ities include real-time interaction systems, such as robotics
or wearable electronics [10], where operation under uncon-
trolled lighting conditions, latency, and power are impor-
tant [11]. Event cameras are used for object tracking [12],
[13], surveillance and monitoring [14], and object/gesture
recognition [15], [16], [17]. They are also profitable for depth
estimation [18], [19], structured light 3D scanning [20],
optical flow estimation [21], [22], HDR image reconstruc-
tion [8], [23], [24] and Simultaneous Localization and Map-
ping (SLAM) [25], [26], [27]. Event-based vision is a growing
field of research, and other applications, such as image
deblurring [28] or star tracking [29], [30], will appear as
event cameras become widely available [9].

2 PRINCIPLE OF OPERATION OF EVENT CAMERAS

In contrast to standard cameras, which acquire full images
at a rate specified by an external clock (e.g., 30 fps), event
cameras, such as the Dynamic Vision Sensor (DVS) [2], [31],
[32], [33], [34], respond to brightness changes in the scene
asynchronously and independently for every pixel (Fig. 1b).
Thus, the output of an event camera is a variable data-
rate sequence of digital “events” or “spikes”, with each
event representing a change of brightness (log intensity)4

of predefined magnitude at a pixel at a particular time5

(Fig. 1b) (Section 2.4). This encoding is inspired by the
spiking nature of biological visual pathways (Section 3.3).

Each pixel memorizes the log intensity each time it
sends an event, and continuously monitors for a change of
sufficient magnitude from this memorized value (Fig. 1a).
When the change exceeds a threshold, the camera sends
an event, which is transmitted from the chip with the x, y
location, the time t, and the 1-bit polarity p of the change
(i.e., brightness increase (“ON”) or decrease (“OFF”)). This
event output is illustrated in Figs. 1b, 1e and 1f.

The events are transmitted from the pixel array to pe-
riphery and then out of the camera using a shared digital
output bus, typically by using address-event representation
(AER) readout [37], [38]. This bus can become saturated,
which perturbs the times that events are sent. Event cameras
have readout rates ranging from 2 MHz [2] to 1200 MHz [39],
depending on the chip and type of hardware interface.

Event cameras are data-driven sensors: their output de-
pends on the amount of motion or brightness change in the
scene. The faster the motion, the more events per second

4. Brightness is a perceived quantity; for brevity we use it to refer to
log intensity since they correspond closely for uniformly-lighted scenes.

5. Nomenclature: “Event cameras” output data-driven events that
signal a place and time. This nomenclature has evolved over the past
decade: originally they were known as address-event representation
(AER) silicon retinas, and later they became event-based cameras. In
general, events can signal any kind of information (intensity, local
spatial contrast, etc.), but over the last five years or so, the term “event
camera” has unfortunately become practically synonymous with the
particular representation of brightness change output by DVS’s.

Figure 1. Summary of the DAVIS camera [4], comprising an event-based
dynamic vision sensor (DVS [2]) and a frame-based active pixel sensor
(APS) in the same pixel array, sharing the same photodiode in each
pixel. (a) Simplified circuit diagram of the DAVIS pixel (DVS pixel in
red, APS pixel in blue). (b) Schematic of the operation of a DVS pixel,
converting light into events. (c)-(d) Pictures of the DAVIS chip and USB
camera. (e) A white square on a rotating black disk viewed by the DAVIS
produces grayscale frames and a spiral of events in space-time. Events
in space-time are color-coded, from green (past) to red (present). (f)
Frame and overlaid events of a natural scene; the frames lag behind
the low-latency events (colored according to polarity). Images adapted
from [4], [35]. A more in-depth comparison of the DVS, DAVIS and ATIS
pixel designs can be found in [36].

are generated, since each pixel adapts its delta modulator
sampling rate to the rate of change of the log intensity signal
that it monitors. Events are timestamped with microsecond
resolution and are transmitted with sub-millisecond latency,
which make these sensors react quickly to visual stimuli.

The incident light at a pixel is a product of scene illu-
mination and surface reflectance. If illumination is approxi-
mately constant, a log intensity change signals a reflectance
change. These changes in reflectance are mainly the result
of the movement of objects in the field of view. That is why
the DVS brightness change events have a built-in invariance
to scene illumination [2].

Comparing Bandwidths of DVS Pixels and Frame-
based Camera: Although DVS pixels are fast, like any
physical transducer, they have a finite bandwidth: if the
incoming light intensity varies too quickly, the front-end
photoreceptor circuits filter out the variations [40]. The rise
and fall time that is analogous to the exposure time in
standard image sensors is the reciprocal of this bandwidth.
Fig. 2 shows an example of measured DVS pixel frequency
response (DVS128 in [2]). The measurement setup (Fig. 2a)
uses a sinusoidally-varying generated signal to measure the
response. Fig. 2b shows that, at low frequencies, the DVS
pixel produces a certain number of events per cycle. Above
some cutoff frequency, the variations are filtered out by the
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Figure 2. “Event transfer function” from a single DVS pixel in response
to sinusoidal LED stimulation. The background events cause additional
ON events at very low frequencies. The 60 fps camera curve shows the
transfer function including aliasing from frequencies above the Nyquist
frequency. Figure adapted from [2].

photoreceptor dynamics, and thus the number of events
per cycle drops. This cutoff frequency is a monotonically
increasing function of light intensity. At the brighter light
intensity, the DVS pixel bandwidth is about 3 kHz, equiva-
lent to an exposure time of about 300 µs. At 1000× lower
intensity, the DVS bandwidth is reduced to about 300 Hz.
Even when the LED brightness is reduced by a factor of
1000, the frequency response of DVS pixels is ten times
higher than the 30 Hz Nyquist frequency from a 60 fps image
sensor. Also, the frame-based camera aliases frequencies
above the Nyquist frequency back to the baseband, whereas
the DVS pixel does not due to the continuous time response.

2.1 Event Camera Designs

This section presents the most common event camera de-
signs. The actual devices (commercial or prototype cameras
such as the DAVIS240) are summarized in Section 2.5.

The first silicon retina was developed by Mahowald and
Mead at Caltech during the period 1986-1992, in Ph.D. thesis
work [41] that was awarded the prestigious Clauser prize6.
Mahowald and Mead’s sensor had logarithmic pixels, was
modeled after the three-layer Kufler retina, and produced
as output spike events using the AER protocol. However,
it suffered from several shortcomings: each wire-wrapped
retina board required precise adjustment of biasing poten-
tiometers; there was considerable mismatch between the
responses of different pixels; and pixels were too large to
be a device of practical use. Over the next decade the neu-
romorphic community developed a series of silicon retinas.
These developments are summarized in [36], [38], [42], [43].

The DVS event camera [2] had its genesis in a frame-based
silicon retina design where the continuous-time photorecep-
tor was capacitively coupled to a readout circuit that was
reset each time the pixel was sampled [44]. More recent
event camera technology has been reviewed in the elec-
tronics and neuroscience literature [10], [36], [38], [45], [46],
[47]. Although surprisingly many applications can be solved
by only processing DVS events (i.e., brightness changes),
it became clear that some also require some form of static
output (i.e., “absolute” brightness). To address this short-
coming, there have been several developments of cameras
that concurrently output dynamic and static information.

6. http://www.gradoffice.caltech.edu/current/clauser

The Asynchronous Time Based Image Sensor (ATIS) [3],
[48] has pixels that contain a DVS subpixel (called change
detection CD) that triggers another subpixel to read out the
absolute intensity (exposure measurement EM). The trigger
resets a capacitor to a high voltage. The charge is bled away
from this capacitor by another photodiode. The brighter the
light, the faster the capacitor discharges. The ATIS intensity
readout transmits two more events coding the time between
crossing two threshold voltages, as in [49]. This way, only
pixels that change provide their new intensity values. The
brighter the illumination, the shorter the time between these
two events. The ATIS achieves large static dynamic range
(>120 dB). However, the ATIS has the disadvantage that
pixels are at least double the area of DVS pixels. Also, in
dark scenes the time between the two intensity events can
be long and the readout of intensity can be interrupted by
new events ( [50] proposes a workaround to this problem).

The widely-used Dynamic and Active Pixel Vision Sensor
(DAVIS) [4], [51] illustrated in Fig. 1 combines a conven-
tional active pixel sensor (APS) [52] in the same pixel with
DVS. The advantage over ATIS is a much smaller pixel size
since the photodiode is shared and the readout circuit only
adds about 5 % to the DVS pixel area. Intensity (APS) frames
can be triggered at a constant frame rate or on demand,
by analysis of DVS events, although the latter is seldom
exploited7. However, the APS readout has limited dynamic
range (55 dB) and like a standard camera, it is redundant if
the pixels do not change.

Since the ATIS and DAVIS pixel designs include a DVS
pixel (change detector) [36] we often use the term “DVS” to
refer to the binary-polarity event output or circuitry, regard-
less of whether it is from a DVS, ATIS or DAVIS design.

2.2 Advantages of Event cameras
Event cameras offer numerous potential advantages over
standard cameras:

High Temporal Resolution: monitoring of brightness
changes is fast, in analog circuitry, and the read-out of the
events is digital, with a 1 MHz clock, i.e., events are detected
and timestamped with microsecond resolution. Therefore,
event cameras can capture very fast motions, without suf-
fering from motion blur typical of frame-based cameras.

Low Latency: each pixel works independently and there
is no need to wait for a global exposure time of the frame:
as soon as the change is detected, it is transmitted. Hence,
event cameras have minimal latency: about 10 µs on the lab
bench, and sub-millisecond in the real world.

Low Power: Because event cameras transmit only bright-
ness changes, and thus remove redundant data, power is
only used to process changing pixels. At the die level, most
cameras use about 10 mW, and there are prototypes that
achieve less than 10 µW. Embedded event-camera systems
where the sensor is directly interfaced to a processor have
shown system-level power consumption (i.e., sensing plus
processing) of 100 mW or less [17], [53], [54], [55].

High Dynamic Range (HDR). The very high dynamic
range of event cameras (>120 dB) notably exceeds the 60 dB
of high-quality, frame-based cameras, making them able to

7. https://github.com/SensorsINI/jaer/blob/master/src/eu/
seebetter/ini/chips/davis/DavisAutoShooter.java

http://www.gradoffice.caltech.edu/current/clauser
https://github.com/SensorsINI/jaer/blob/master/src/eu/seebetter/ini/chips/davis/DavisAutoShooter.java
https://github.com/SensorsINI/jaer/blob/master/src/eu/seebetter/ini/chips/davis/DavisAutoShooter.java
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acquire information from moonlight to daylight. It is due
to the facts that the photoreceptors of the pixels operate
in logarithmic scale and each pixel works independently,
not waiting for a global shutter. Like biological retinas, DVS
pixels can adapt to very dark as well as very bright stimuli.

2.3 Challenges Due To The Novel Sensing Paradigm

Event cameras represent a paradigm shift in acquisition
of visual information. Hence, they pose the challenge of
designing novel methods (algorithms and hardware) to
process the acquired data and extract information from it in
order to unlock the advantages of the camera. Specifically:

1) Coping with different space-time output: The output of
event cameras is fundamentally different from that of stan-
dard cameras: events are asynchronous and spatially sparse,
whereas images are synchronous and dense. Hence, frame-
based vision algorithms designed for image sequences are
not directly applicable to event data.

2) Coping with different photometric sensing: In contrast to
the grayscale information that standard cameras provide,
each event contains binary (increase/decrease) brightness
change information. Brightness changes depend not only
on the scene brightness, but also on the current and past
relative motion between the scene and the camera.

3) Coping with noise and dynamic effects: All vision sensors
are noisy because of the inherent shot noise in photons
and from transistor circuit noise, and they also have non-
idealities. This situation is especially true for event cameras,
where the process of quantizing temporal contrast is com-
plex and has not been completely characterized.

Therefore, new methods need to rethink the space-time,
photometric and stochastic nature of event data. This poses
the following questions: What is the best way to extract
information from the events relevant for a given task? and
How can noise and non-ideal effects be modeled to better
extract meaningful information from the events?

2.4 Event Generation Model

An event camera [2] has independent pixels that respond
to changes in their log photocurrent L .

= log(I) (“bright-
ness”). Specifically, in a noise-free scenario, an event ek

.
=

(xk, tk, pk) is triggered at pixel xk
.
= (xk, yk)> and at

time tk as soon as the brightness increment since the last
event at the pixel, i.e.

∆L(xk, tk)
.
= L(xk, tk)− L(xk, tk −∆tk), (1)

reaches a temporal contrast threshold ±C (Fig. 1b), i.e.,

∆L(xk, tk) = pk C, (2)

where C > 0, ∆tk is the time elapsed since the last event at
the same pixel, and the polarity pk ∈ {+1,−1} is the sign
of the brightness change [2].

The contrast sensitivity C is determined by the pixel
bias currents [56], [57], which set the speed and threshold
voltages of the change detector in Fig. 1 and are generated
by an on-chip digitally-programmed bias generator. The
sensitivity C can be estimated knowing these currents [56].
In practice, positive (“ON”) and negative (“OFF”) events
may be triggered according to different thresholds, C+, C−.

Typical DVS’s [2], [5] can set thresholds between 10 %–50 %
illumination change. The lower limit on C is determined by
noise and pixel-to-pixel mismatch (variability); setting C too
low results in a storm of noise events, starting from pixels
with low values of C. Experimental DVS’s with higher
photoreceptor gain are capable of lower thresholds, e.g.,
1 % [58], [59], [60]; however these values are only obtained
under very bright illumination and ideal conditions. Funda-
mentally, the pixel must react to a small change in the pho-
tocurrent in spite of the shot noise present in this current.
This shot noise limitation sets the relation between threshold
and speed of the DVS under a particular illumination and
desired detection reliability condition [60], [61].

Events and the Temporal Derivative of Brightness:
Eq. (2) states that event camera pixels set a threshold on
magnitude of the brightness change since the last event
happened. For a small ∆tk, such an increment (2) can be
approximated using Taylor’s expansion by ∆L(xk, tk) ≈
∂L
∂t (xk, tk)∆tk, which allows us to interpret the events as

providing information about the temporal derivative:

∂L

∂t
(xk, tk) ≈ pk C

∆tk
. (3)

This is an indirect way of measuring brightness, since
with standard cameras we are used to measuring absolute
brightness. Note that DVS events are triggered by a change
in brightness magnitude (2), not by the brightness deriva-
tive (3) exceeding a threshold. The above interpretation may
be taken into account to design physically-grounded event-
based algorithms, such as [7], [23], [24], [28], [62], [63], [64],
[65], as opposed to algorithms that simply process events as
a collection of points with vague photometric meaning.

Events are Caused by Moving Edges: Assuming con-
stant illumination, linearizing (2) and using the brightness
constancy assumption one can show that events are caused
by moving edges. For small ∆t, the intensity increment (2)
can be approximated by8:

∆L ≈ −∇L · v∆t, (4)

that is, it is caused by a brightness gradient ∇L(xk, tk) =
(∂xL, ∂yL)> moving with velocity v(xk, tk) on the image
plane, over a displacement ∆x

.
= v∆t.

Probabilistic Event Generation Models: Equation (2) is
an idealized model for the generation of events. A more
realistic model takes into account sensor noise and transistor
mismatch, yielding a mixture of frozen and temporally
varying stochastic triggering conditions represented by a
probability function, which is itself a complex function of
local illumination level and sensor operating parameters.
The measurement of such probability density was shown
in [2] (for the DVS128), suggesting a normal distribution
centered at the contrast threshold C. The 1σ width of the
distribution is typically 2-4% temporal contrast. This event
generation model can be included in emulators [73] and
simulators [74] of event cameras, and in event processing
algorithms [24], [66]. Other probabilistic event generation
models have been proposed, such as: the likelihood of event

8. Eq. (4) can be shown [66] by substituting the brightness constancy
assumption (i.e., optical flow constraint) ∂L

∂t
(x(t), t) + ∇L(x(t), t) ·

ẋ(t) = 0, with image-point velocity v ≡ ẋ, in Taylor’s approximation
∆L(x, t)

.
= L(x, t)− L(x, t−∆t) ≈ ∂L

∂t
(x, t)∆t.
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Table 1
Comparison of commercial or prototype event cameras. Values are approximate since there is no standard measurement testbed.

Supplier iniVation Prophesee Samsung CelePixel Insightness
Camera model DVS128 DAVIS240 DAVIS346 ATIS Gen3 CD Gen3 ATIS Gen 4 CD DVS-Gen2 DVS-Gen3 DVS-Gen4 CeleX-IV CeleX-V Rino 3

Year, Reference 2008 [2] 2014 [4] 2017 2011 [3] 2017 [67] 2017 [67] 2020 [68] 2017 [5] 2018 [69] 2020 [39] 2017 [70] 2019 [71] 2018 [72]

Se
ns

or
sp

ec
ifi

ca
ti

on
s

Resolution (pixels) 128× 128 240× 180 346× 260 304× 240 640× 480 480× 360 1280× 720 640× 480 640× 480 1280× 960 768× 640 1280× 800 320× 262
Latency (µs) 12µs @ 1klux 12µs @ 1klux 20 3 40 - 200 40 - 200 20 - 150 65 - 410 50 150 10 8 125µs @ 10lux
Dynamic range (dB) 120 120 120 143 > 120 > 120 > 124 90 90 100 90 120 > 100
Min. contrast sensitivity (%) 17 11 14.3 - 22.5 13 12 12 11 9 15 20 30 10 15
Power consumption (mW) 23 5 - 14 10 - 170 50 - 175 36 - 95 25 - 87 32 - 84 27 - 50 40 130 - 400 20-70
Chip size (mm2) 6.3 × 6 5 × 5 8 × 6 9.9 × 8.2 9.6 × 7.2 9.6 × 7.2 6.22 × 3.5 8 × 5.8 8 × 5.8 8.4 × 7.6 15.5 × 15.8 14.3 × 11.6 5.3 × 5.3
Pixel size (µm2) 40 × 40 18.5 × 18.5 18.5 × 18.5 30 × 30 15 × 15 20 × 20 4.86 × 4.86 9 × 9 9 × 9 4.95 × 4.95 18 × 18 9.8 × 9.8 13 × 13
Fill factor (%) 8.1 22 22 20 25 20 > 77 11 12 22 8.5 8 22
Supply voltage (V) 3.3 1.8 & 3.3 1.8 & 3.3 1.8 & 3.3 1.8 1.8 1.1 & 2.5 1.2 & 2.8 1.2 & 2.8 1.8 & 3.3 1.2 & 2.5 1.8 & 3.3
Stationary noise (ev/pix/s) at 25C 0.05 0.1 0.1 - 0.1 0.1 0.1 0.03 0.03 0.15 0.2 0.1
CMOS technology (nm) 350 180 180 180 180 180 90 90 90 65/28 180 65 180

2P4M 1P6M MIM 1P6M MIM 1P6M 1P6M CIS 1P6M CIS BI CIS 1P5M BSI 1P6M CIS CIS 1P6M CIS

Grayscale output no yes yes yes no yes no no no no yes yes yes
Grayscale dynamic range (dB) NA 55 56.7 130 NA > 100 NA NA NA NA 90 120 50
Max. frame rate (fps) NA 35 40 NA NA NA NA NA NA NA 50 100 30

C
am

er
a Max. Bandwidth (Meps) 1 12 12 - 66 66 1066 300 600 1200 200 140 20

Interface USB 2 USB 2 USB 3 USB 3 USB 3 USB 3 USB 2 USB 3 USB 3 USB 2
IMU output no 1 kHz 1 kHz no 1 kHz 1 kHz no no 1 kHz no no no 1 kHz

generation being proportional to the magnitude of the im-
age gradient [75] (for scenes where large intensity gradients
are the source of most event data), or the likelihood being
modeled by a mixture distribution to be robust to sensor
noise [7]. Future even more realistic models may include
the refractory period (i.e., the duration in time that the pixel
ignores log brightness changes after it has generated an
event; the larger the refractory period the fewer events are
produced by fast moving objects), and bus congestion [76].

2.5 Event Camera Availability

Table 1 summarizes the most popular or recent cameras. The
numbers therein are approximate since they were not mea-
sured using a common testbed. Event camera characteristics
are considerably different from other CMOS image sensor
(CIS) technology, and so there is a need for an agreement
on standard specifications to be better used by researchers.
As Table 1 shows, since the first practical event camera [2]
there has been a trend mainly to increase spatial resolution,
increase readout speed, and add features, such as: gray level
output (in ATIS and DAVIS), integration with an Inertial
Measurement Unit (IMU) [77] and multi-camera timestamp
synchronization [78]. IMUs act as a vestibular sense that
may improve camera pose estimation, as in visual-inertial
odometry. Only recently has the focus turned more towards
the difficult task of reducing pixel size for economical mass
production of sensors with large pixel arrays. In this respect,
3D wafer stacking fabrication has the biggest impact in
reducing pixel size and increasing the fill factor.

Pixel Size: The most widely used event cameras have
quite large pixels: 40 µm (DVS128), 30 µm (ATIS), 18.5 µm
(DAVIS240, DAVIS346) (Table 1). The smallest published
DVS pixel [68] is 4.86 µm; while conventional global shutter
industrial APS are typically in the range of 2 µm–4 µm. Low
spatial resolution is certainly a limitation for application,
although many of the seminal publications are based on
the 128 × 128 pixel DVS128 [2]. The DVS with largest
published array size has only about 1 Mpixel spatial reso-
lution (1280 × 960 pixels [39]). Event camera pixel size has
shrunk pretty closely following feature size scaling, which
is remarkable considering that a DVS pixel is a mixed-signal
circuit, which generally do not scale following technology.
However, achieving even smaller pixels is difficult and may

require abandoning the strictly asynchronous circuit design
philosophy that the cameras started with [79]. Camera cost
is constrained by die size (since silicon costs about $5-
$10/cm2 in mass production), and optics (designing new
mass production miniaturized optics to fit a different sensor
format can cost tens of millions of dollars).

Fill Factor: A major obstacle for early event camera mass
production prospects was the limited fill factor of the pixels
(i.e., the ratio of a pixel’s light sensitive area to its total
area). Because the pixel circuit is complex, a smaller pixel
area can be used for the photodiode that collects light.
For example, a pixel with 20 % fill factor throws away
4 out of 5 photons. Obviously this is not acceptable for
optimum performance; nonetheless, even the earliest event
cameras could sense high contrast features under moonlight
illumination [2]. Early CIS sensors dealt with this problem
by including microlenses that focused the light onto the
pixel photodiode. What is probably better, however, is to use
back-side illumination technology (BSI). BSI flips the chip so
that it is illuminated from the back, so that in principle the
entire pixel area can collect photons. Nearly all smartphone
cameras are now back illuminated, but the additional cost
of BSI fabrication has meant that only recently BSI event
cameras were demonstrated [39], [68], [69], [80]. BSI also
brings problems: light can create additional ‘parasitic’ pho-
tocurrents that lead to spurious ‘leak’ events [56].

Cost: Currently, a practical obstacle to adoption of event
camera technology is the high cost of several thousand
dollars per camera, similar to the situation with early time
of flight, structured lighting and thermal cameras. The high
costs are due to non-recurring engineering costs for the
silicon design and fabrication (even when much of it is
provided by research funding) and the limited samples
available from prototype runs. It is anticipated that this price
will drop precipitously once this technology enters mass
production, as shown by the “Samsung SmartThings Vi-
sion” consumer-grade home monitoring device: it contains
an event camera [5] and sells for 100 dollars.

3 EVENT PROCESSING

One of the key questions of the paradigm shift posed by
event cameras is how to extract meaningful information
from the event data to fulfill a given task. This is a very
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Figure 3. Several event representations (Section 3.1) of the slider depth sequence [81]. From let to right: events in space time, colored according
to polarity (positive in blue, negative in red). Event frame (brightness increment image ∆L(x)). Time surface with last timestamp per pixel (darker
pixels indicate recent time), only for negative events. Interpolated voxel-grid (240 × 180 × 10 voxels), colored according to polarity, from dark
(negative) to bright (positive). Motion-compensated event image [82] (sharp edges obtained by event accumulation are darker than pixels with no
events, in white). Reconstructed intensity image by [8]. Grid-like representations are compatible with conventional computer vision methods [83].

broad question, since the answer is application dependent,
and it drives the algorithmic design of the task solver.

Event cameras acquire information in an asynchronous
and sparse way, with high temporal resolution and low
latency. Hence, the temporal aspect, specially latency, plays
an essential role in the way events are processed. Depending
on how many events are processed simultaneously, two
categories of algorithms can be distinguished: (i) methods
that operate on an event-by-event basis, where the state of
the system (the estimated unknowns) can change upon the
arrival of a single event, thus achieving minimum latency,
and (ii) methods that operate on groups or packets of events,
which introduce some latency. Discounting latency consid-
erations, methods based on groups (i.e., temporal windows)
of events can still provide a state update upon the arrival
of each event if the window slides by one event. Hence, the
distinction between both categories is more subtle: an event
alone does not provide enough information for estimation,
and so additional information, in the form of past events or
extra knowledge, is needed. We review this categorization.

Orthogonally, depending on how events are processed,
we can distinguish between model-based approaches and
model-free (i.e., data-driven, machine learning) approaches.
Assuming events are processed in an optimization frame-
work, another classification concerns the type of objec-
tive or loss function used: geometric- vs. temporal- vs.
photometric-based (e.g., a function of the event polarity or
the event activity). Each category presents methods with
advantages and disadvantages and current research focuses
on exploring the possibilities that each method can offer.

3.1 Event Representations
Events are processed and often transformed into alternative
representations (Fig. 3) that facilitate the extraction of mean-
ingful information (“features”) to solve a given task. Here
we review popular representations of event data. Several of
them arise from the need to aggregate the little information
conveyed by individual events in the absence of additional
knowledge. Some representations are simple, hand-crafted
data transformations whereas others are more elaborate.

Individual events ek
.
= (xk, tk, pk) are used by event-

by-event processing methods, such as probabilistic filters
and Spiking Neural Networks (SNNs) (Section 3.3). The
filter or SNN has additional information, built up from past
events or given by additional knowledge, that is fused with
the incoming event asynchronously to produce an output.
Examples include: [7], [24], [62], [84], [85].

Event packet: Events E .
= {ek}Ne

k=1 in a spatio-temporal
neighborhood are processed together to produce an output.

Precise timestamp and polarity information is retained by
this representation. Choosing the appropriate packet sizeNe

is critical to satisfy the assumptions of the algorithm (e.g.,
constant motion speed during the span of the packet), which
varies with the task. Examples are [18], [19], [86], [87].

Event frame/image or 2D histogram: The events in a
spatio-temporal neighborhood are converted in a simple
way (e.g., by counting events or accumulating polarity
pixel-wise) into an image (2D grid) that can be fed to image-
based computer vision algorithms. Some algorithms may
work in spite of the different statistics of event frames
and natural images. Such histograms can provide a natural
activity-driven sample rate; see [88] for methods to accumu-
late such frames for computing flow. However, this practice
is not ideal in the event-based paradigm because it quantizes
event timestamps, can discard sparsity (but see [89]), and
the resulting images are highly sensitive to the number of
events used. Nevertheless the high impact of event frames in
the literature [23], [26], [64], [88], [90], [91] is clear because (i)
they are a simple way to convert an unfamiliar event stream
into a familiar 2D representation containing spatial infor-
mation about scene edges, which are the most informative
regions in natural images, (ii) they inform not only about
the presence of events but also about their absence (which
is informative), (iii) they have an intuitive interpretation
(e.g., an edge map, a brightness increment image) and (iv)
they are the data structure compatible with conventional
computer vision.

Time surface (TS): A TS is a 2D map where each pixel
stores a single time value (e.g., the timestamp of the last
event at that pixel [92], [93]). Thus events are converted
into an image whose “intensity” is a function of the motion
history at that location, with larger values corresponding
to a more recent motion. TSs are called Motion History
Images in classical computer vision [94]. They explicitly
expose the rich temporal information of the events and can
be updated asynchronously. Using an exponential kernel,
TSs emphasize recent events over past events. To achieve
invariance to motion speed, normalization is proposed [95],
[96]. Compared to other grid-like representations of events,
TSs highly compress information as they only keep one
timestamp per pixel, thus their effectiveness degrades on
textured scenes, in which pixels spike frequently. To make
TSs less sensitive to noise, each pixel value may be com-
puted by filtering the events in a space-time window [97].
More examples include [21], [98], [99], [100].

Voxel Grid: is a space-time (3D) histogram of events,
where each voxel represents a particular pixel and time
interval. This representation preserves better the temporal
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information of the events by avoiding to collapse them on
a 2D grid (Fig. 3). If polarity is used the voxel grid is an
intuitive discretization of a scalar field (polarity p(x, y, t)
or brightness variation ∂L(x, y, t)/∂t) defined on the image
plane, with absence of events marked by zero polarity. Each
event’s polarity may be accumulated on a voxel [101], [102]
or spread among its closest voxels using a kernel [8], [103],
[104]. Both schemes quantize event timestamps but the latter
(interpolated voxel grid) provides sub-voxel accuracy.

3D point set: Events in a spatio-temporal neighborhood
are treated as points in 3D space, (xk, yk, tk)∈R3. Thus the
temporal dimension becomes a geometric one. It is a sparse
representation, and is used on point-based geometric pro-
cessing methods, such as plane fitting [21] or PointNet [105].

Point sets on image plane: Events are treated as an
evolving set of 2D points on the image plane. It is a popular
representation among early shape tracking methods based
on mean-shift or ICP [106], [107], [108], [109], [110], where
events provide the only data needed to track edge patterns.

Motion-compensated event image [111], [112]: is a rep-
resentation that depends not only on events but also on mo-
tion hypothesis. The idea of motion compensation is that, as
an edge moves on the image plane, it triggers events on the
pixels it traverses; the motion of the edge can be estimated
by warping the events to a reference time and maximizing
their alignment, producing a sharp image (i.e., histogram)
of warped events (IWE) [112]. Hence, this representation
(IWE) suggests a criterion to measure how well events fit
a candidate motion: the sharper the edges produced by
warping events, the better the fit [82]. Moreover, the result-
ing motion-compensated images have an intuitive meaning
(i.e., the edge patterns causing the events) and provide a
more familiar representation of visual information than the
events. In a sense, motion compensation reveals a hidden
(“motion-invariant”) map of edges in the event stream. The
images may be useful for further processing, such as feature
tracking [64], [113]. There are motion-compensated versions
of point sets [114], [115] and time surfaces [116], [117].

Reconstructed images: Brightness images obtained by
image reconstruction (Section 4.5) can be interpreted as a
more motion-invariant representation than event frames or
TSs, and be used for inference [8] yielding first-rate results.

A general framework for converting event data into
some of the above grid-based representations is presented
in [83]. It also studies how the choice of representation
passed to an artificial neural network (ANN) affects task
performance and consequently proposes to automatically
learn the representation that maximizes such performance.

3.2 Methods for Event Processing

Event processing systems consist of several stages: pre-
processing (input adaptation), core processing (feature ex-
traction and analysis) and post-processing (output creation).
The event representations in Section 3.1 may occur at differ-
ent stages: for example, in [111] an event packet is used at
pre-processing, and motion-compensated event images are
the internal representation at the core processing stage.

The methods used to process events are influenced by
the choice of representation and hardware platform avail-
able. These three factors influence each other. For example,

it is natural to use dense representations and design algo-
rithms accordingly that are executed on standard processors
(e.g., CPUs or GPUs). At the same time, it is also natural to
process events one-by-one on SNNs (Section 3.3) that are
implemented on neuromorphic hardware (Section 5.1), in
search for more efficient and low-latency solutions. Major
exponents of event-by-event methods are filters (determin-
istic or probabilistic) and SNNs. For events processed in
packets there are also many methods: hand-crafted feature
extractors, deep neural networks (DNNs), etc. Next, we
review some of the most common methods.

Event-by-event–based Methods: Deterministic filters,
such as (space-time) convolutions and activity filters have
been used for noise reduction, feature extraction [118],
image reconstruction [62], [119] and brightness filtering
[63], among other applications. Probabilistic filters (Bayesian
methods), such as Kalman- and particle filters have been
used for pose tracking in SLAM systems [7], [24], [25],
[75], [84]. These methods rely on the availability of addi-
tional information (typically “appearance” information, e.g.,
grayscale images or a map of the scene), which may be
provided by past events or by additional sensors. Then, each
incoming event is compared against such information and
the resulting mismatch provides innovation to update the
filter state. Filters are a dominant class of methods for event-
by-event processing because they naturally (i) handle asyn-
chronous data, thus providing minimum processing latency,
preserving the sensor’s characteristics, and (ii) aggregate
information from multiple small sources (e.g., events).

The other dominant class of methods takes the form of a
multi-layer ANN (whether spiking or not) containing many
parameters which must be computed from the event data.
Networks trained with unsupervised learning typically act
as feature extractors for a classifier (e.g., SVM), which still
requires some labeled data for training [15], [93], [120].
If enough labeled data is available, supervised learning
methods such as backpropagation can be used to train a
network without the need for a separate classifier. Many
approaches use packets of events during training (deep
learning on frames), and later convert the trained network
to an SNN that processes data event-by-event [121], [122],
[123], [124], [125]. Event-by-event model-free methods have
mostly been applied to classify objects [15], [93], [121], [122]
or actions [16], [17], [126], and have targeted embedded
applications [121], often using custom SNN hardware [15],
[17] (Section 5.1). SNNs trained with deep learning typically
provide higher accuracy than those relying on unsupervised
learning for feature extraction, but there is growing interest
in finding efficient ways to implement supervised learning
directly in SNNs [126], [127] and in embedded devices [128].

Methods for Groups of Events: Because each event car-
ries little information and is subject to noise, several events
are often processed together to yield a sufficient signal-to-
noise ratio for the problem considered. Methods for groups
of events use the above representations (event packet, event
frame, etc.) to gather the information contained in the events
in order to estimate the problem unknowns, usually with-
out requiring additional data. Hence, events are processed
differently depending on their representation.

Many representations just perform data pre-processing
to enable the re-utilization of image-based computer vision



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2020.3008413, IEEE
Transactions on Pattern Analysis and Machine Intelligence

8

tools. In this respect, event frames are a practical represen-
tation that has been used by multiple methods on various
tasks. In [90], [129] event frames allow to re-utilize tradi-
tional stereo methods, providing modest results. They also
provide an adaptive frame rate signal that is profitable
for camera pose estimation [26] (by image alignment) or
optical flow computation [88] (by block matching). Event
frames are also a simple yet effective input for image-
based learning methods (DNNs, SVMs, Random Forests)
[22], [91], [130], [131]. Few works design algorithms taking
into account their photometric meaning (4). This was done
in [23], showing that such a simple representation allows to
jointly compute several visual quantities of interest (optical
flow, brightness, etc.). Intensity increment images (4) are
also used for feature tracking [64], image deblurring [28]
or camera tracking [65].

Because time surfaces (TSs) are sensitive to scene edges
and the direction of motion they have been utilized for
many tasks involving motion analysis and shape recogni-
tion. For example, fitting local planes to the TS yields optical
flow information [21], [132]. TSs are used as building blocks
of hierarchical feature extractors, similar to neural networks,
that aggregate information from successively larger space-
time neighborhoods and is then passed to a classifier for
recognition [93], [97]. TSs provide proxy intensity images
for matching in stereo methods [100], [133], where the pho-
tometric matching criterion becomes temporal: matching
pixels based on event concurrence and similarity of event
timestamps across image planes. Recently, TSs have been
probed as input to convolutional ANNs (CNNs) to compute
optical flow [22], where the network acts both as feature
extractor and velocity regressor. TSs are popular for corner
detection using adaptations of image-based methods (Har-
ris, FAST) [95], [98], [99] or new learning-based ones [96].
However, their performance degrades on highly textured
scenes [99] due to the “motion overwriting” problem [94].

Methods working on voxel grids include variational opti-
mization and ANNs (e.g., DNNs). They require more mem-
ory and often more computations than methods working
on lower dimensional representations but are able to pro-
vide better results because temporal information is better
preserved. In these methods voxel grids are used as an
internal representation [101] (e.g., to compute optical flow)
or as the multichannel input/output of a DNN [103], [104].
Thus, voxel grids are processed by means of convolutions
[103], [104] or the operations derived from the optimality
conditions of an objective function [101].

Once events have been converted to grid-like represen-
tations, countless tools from conventional vision can be
applied to extract information: from feature extractors (e.g.,
CNNs) to similarity metrics (e.g., cross-correlation) that
measure the goodness of fit or consistency between data and
task-model hypothesis (the degree of event alignment, etc.).
Such metrics are used as objective functions for classification
(SVMs, CNNs), clustering, data association, motion estima-
tion, etc. In the neuroscience literature there are efforts to
design metrics that act directly on spikes (e.g., event stream),
to avoid the issues that arise due to data conversion.

Deep learning methods for groups of events consist of a
deep neural network (DNN). Sample applications include
classification [134], [135], image reconstruction [8], [102],

Figure 4. Events in a space-time volume are converted into an inter-
polated voxel grid (left) that is fed to a DNN to compute optical flow
and ego-motion in an unsupervised manner [103]. Thus, modern tensor-
based DNN architectures are re-utilized using novel loss functions (e.g.,
motion compensation) adapted to event data.

steering angle prediction [91], [136], and estimation of op-
tical flow [22], [103], [137], depth [137] or ego-motion [103].
These methods differentiate themselves mainly in the repre-
sentation of the input and in the loss functions optimized
during training. Several representations have been used,
such as event images [91], [131], TSs [22], [117], [137],
voxel grids [103], [104] or point sets [105] (Section 3.1).
While loss functions in classification tasks use manually
annotated labels, networks for regression tasks from events
may be supervised by a third party ground truth (e.g., a
pose) [91], [131] or by an associated grayscale image [22] to
measure photoconsistency, or be completely unsupervised
(depending only on the training input events) [103], [137].
Loss functions for unsupervised learning from events are
studied in [82]. In terms of architecture, most networks have
an encoder-decoder structure, as in Fig. 4. Such a structure
allows the use of convolutions only, thus minimizing the
number of network weights. Moreover, a loss function can
be applied at every spatial scale of the decoder.

Finally, motion compensation is a technique to estimate the
parameters of the motion that best fits a group of events. It
has a continuous-time warping model that allows to exploit
the fine temporal resolution of events (Section 3.1), and
hence departs from conventional image-based algorithms.
Motion compensation can be used to estimate ego-motion
[111], [112], optical flow [103], [112], [114], [138], depth
[19], [82], [112], motion segmentation [116], [138], [139] or
feature motion for VIO [113], [115]. The technique in [87]
also has a continuous-time motion model, albeit not used
for motion compensation but rather to fuse event data with
IMU data. To find the parameters of the continuous-time
motion models [82], [87], standard optimization methods,
e.g., conjugate gradient or Gauss-Newton, may be applied.

The number of events per group (i.e., size of the spatio-
temporal neighborhood) is an important hyper-parameter
of many methods. It highly depends on the processing
algorithm and the available resources, and accepts multiple
selection strategies [11], [88], [102], [111], such as constant
number of events, constant observation time (i.e., constant
frame rate), or more adaptive ones (thresholding the num-
ber of events in regions of the image plane) [88]. Utilizing a
constant number of events fits naturally with the camera’s
output rate but it does not account for spatial variations of
the rate. A constant frame rate selects a varying number of
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events, which may be too few or too many, depending on
the scene. Criteria more adapted to the scene dynamics (in
time and space) are often preferred but nontrivial to design.

3.3 Biologically Inspired Visual Processing

Biological principles and computational primitives drive
the design of event camera pixels and some of the event-
processing algorithms (and hardware), such as Spiking Neu-
ral Networks (SNNs).

Visual pathways: The DVS [2] was inspired by the func-
tion of biological visual pathways, which have “transient”
pathways dedicated to processing dynamic visual informa-
tion in the so-called “where” pathway. Animals ranging
from insects to humans all have these transient pathways. In
humans, the transient pathway occupies about 30 % of the
visual system. It starts with transient ganglion cells, which
are mostly found in retina outside the fovea. It continues
with magno layers of the thalamus and particular sublayers
of area V1. It then continues to area MT and MST, which are
part of the dorsal pathway where many motion selective
cells are found [45]. The DVS corresponds to the part of the
transient pathway(s) up to retinal ganglion cells. Similarly,
the grayscale (EM) events of the ATIS correspond to the
“sustained” or “what” pathway through the parvo layers of
the brain [36], [43].

Event processing by SNNs: Artificial neurons, such
as Leaky-Integrate and Fire or Adaptive Exponential, are
computational primitives inspired in neurons found in the
mammalian’s visual cortex. They are the basic building
blocks of artificial SNNs. A neuron receives input spikes
(“events”) from a small region of the visual space (a re-
ceptive field), which modify its internal state (membrane
potential) and produce an output spike (action potential)
when the state surpasses a threshold. Neurons are con-
nected in a hierarchical way, forming an SNN. Spikes may
be produced by pixels of the event camera or by neurons of
the SNN. Information travels along the hierarchy, from the
event camera pixels to the first layers of the SNN and then
through to higher (deeper) layers. Most first layer receptive
fields are based on Difference of Gaussians (selective to
center-surround contrast), Gabor filters (selective to oriented
edges), and their combinations. The receptive fields become
increasingly more complex as information travels deeper
into the network. In ANNs, the computation performed by
inner layers is approximated as a convolution. One common
approach in artificial SNNs is to assume that a neuron will
not generate any output spikes if it has not received any
input spikes from the preceding SNN layer. This assumption
allows computation to be skipped for such neurons. The
result of this visual processing is almost simultaneous with
the stimulus presentation [140], which is very different from
traditional CNNs, where convolution is computed simulta-
neously at all locations at fixed time intervals.

Tasks: Bio-inspired models have been adopted for sev-
eral low-level visual tasks. For example, event-based optical
flow can be estimated by using spatio-temporally oriented
filters [92], [118], [141] that mimic the working principle of
receptive fields in the primary visual cortex [142], [143]. The
same type of oriented filters have been used to implement a
spike-based model of selective attention [144] based on the

biological proposal from [145]. Bio-inspired models from
binocular vision, such as recurrent lateral connectivity and
excitatory-inhibitory neural connections [146], have been
used to solve the event-based stereo correspondence prob-
lem [41], [147], [148], [149], [150] or to control binocular ver-
gence on humanoid robots [151]. The visual cortex has also
inspired the hierarchical feature extraction model proposed
in [152], which has been implemented in SNNs and used
for object recognition. The performance of such networks im-
proves the better they extract information from the precise
timing of the spikes [153]. Early networks were hand-crafted
(e.g., Gabor filters) [53], but recent efforts let the network
build receptive fields through brain-inspired learning, such
as Spike-Timing Dependent Plasticity (STDP), yielding bet-
ter recognition rates [120]. This research is complemented
by approaches where more computationally inspired types
of supervised learning, such as back-propagation, are used
in deep networks to efficiently implement spiking deep
convolutional networks [127], [154], [155], [156], [157]. The
advantages of the above methods over their traditional
vision counterparts are lower latency and higher efficiency.

4 ALGORITHMS / APPLICATIONS

In this section, we review several works on event-based
vision, presented according to the task addressed. We start
with low-level vision on the image plane, such as feature
detection, tracking, and optical flow estimation. Then, we
discuss tasks that pertain to the 3D structure of the scene,
such as depth estimation, visual odometry (VO) and histor-
ically related subjects, e.g., intensity image reconstruction.
Finally, we consider motion segmentation, recognition and
coupling perception with control.

4.1 Feature Detection and Tracking

Feature detection and tracking on the image plane are
fundamental building blocks of many vision tasks such as
visual odometry, object segmentation and scene understand-
ing. Event cameras make it possible to track asynchronously,
adapted to the dynamics of the scene and with low latency,
high dynamic range and low power (Section 2.2). Thus, they
allow to track in the “blind” time between the frames of a
standard camera. To do so, the methods developed need to
deal with the unique space-time and photometric charac-
teristics of the visual signal: events report only brightness
changes, asynchronously (Section 2.3).

Challenges: Since events represent brightness changes,
which depend on motion direction, one of the main chal-
lenges of feature detection and tracking with event cameras
is overcoming the variation of scene appearance caused by
such motion dependency (Fig. 5). Tracking requires the es-
tablishment of correspondences between events (or features
built from the events) at different times (i.e., data associa-
tion), which is difficult due to the varying appearance. The
second main challenge consists of dealing with sensor noise
and possible event clutter caused by the camera motion.

Literature Review: Early event-based feature methods
were very simple and focused on demonstrating the low-
latency and low-processing requirements of event-driven
vision systems. Hence they assumed a stationary camera
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(a) (b) (c)

Figure 5. The challenge of data association. Panels (a) and (b) show
events from a scene (c) under two different motion directions: (a) diago-
nal and (b) up-down. Intensity increment images (a) and (b) are obtained
by accumulating event polarities over a short time interval: pixels that
do not change intensity are represented in gray, whereas pixels that
increased or decreased intensity are represented in bright and dark,
respectively. Clearly, it is not easy to establish event correspondences
between (a) and (b) due to the changing appearance of the edge
patterns in (c) with respect to the motion. Image adapted from [64].

scenario and tracked moving objects as clustered blob-like
sources of events [6], [12], [14], [106], [158], circles [159] or
lines [54]. Only pixels that generated events needed to be
processed. Simple Gaussian correlation filters sufficed to
detect blobs of events, which could be modeled by Gaus-
sian Mixtures [160]. For tracking, each incoming event was
associated to the nearest existing blob/feature and used to
asynchronously update its parameters (location, size, etc.).
Circles [159] and lines [54] were treated as blobs in the
Hough transform space. These methods were used in traffic
monitoring and surveillance [14], [106], [160], high-speed
robotic tracking [6], [12] and particle tracking in fluids [158]
or microrobotics [159]. However, they worked only for a
limited class of object shapes.

Tracking of more complex, high-contrast user-defined
shapes has been demonstrated using event-by-event adap-
tations of the Iterative Closest Point (ICP) algorithm [107],
gradient descent [108], Mean-shift and Monte-Carlo meth-
ods [161], or particle filtering [162]. The iterative methods
in [107], [108] used a nearest-neighbor strategy to associate
incoming events to the target shape and update its trans-
formation parameters, showing very high-speed tracking
(200 kHz equivalent frame rate). Other works [161] handled
geometric transformations of the target shape (aka “kernel”)
by matching events against a pool of rotated and scaled ver-
sions of it. The predefined kernels tracked the object without
overlapping themselves due to a built-in repulsion mecha-
nism. Complex objects, such as faces or human bodies, have
been tracked with part-based shape models [163], where
objects are represented as a set of basic elements linked
by springs [164]. The part trackers simply follow incoming
blobs of events generated by ellipse-like shapes, and the
elastic energy of this virtual mechanical system provides
a quality criterion for tracking. In most tracking methods
events are treated as individual points (without polarity)
and update the system’s state asynchronously, with minimal
latency. The performance of the methods strongly depends
on the tuning of several model parameters, which is done
experimentally according to the object to track [161], [163].

The previous methods require a priori knowledge or
user input to determine the objects to track. This restriction
is valid for scenarios like tracking cars on a highway or
balls approaching a goal, where knowing the objects greatly
simplifies the computations. But when the space of objects
becomes larger, methods to determine more realistic features
become necessary. The features proposed in [109], [114] con-

sist of local edge patterns that are represented as point sets.
Incoming events are registered to them by means of some
form of ICP. Other methods [27], [113] proposed to re-utilize
well-known feature detectors [165] and trackers [166] on
patches of motion-compensated event images (Section 3.1),
providing good results. All these methods allowed to track
features for cameras moving in natural scenes, hence en-
abling ego-motion estimation in realistic scenarios [110],
[113], [115]. Features built from motion-compensated events
(in image form [113] or point-set form [114]) provide a use-
ful representation of edge patterns. However, they depend
on motion direction, and, therefore, trackers suffer from drift
as event appearance changes over time [64]. To track with
no drift, motion-invariant features are needed.

Combining Events and Frames: Data association (Fig. 5)
simplifies if the absolute intensity of the pattern to be
tracked (Fig. 5c, i.e., a motion-invariant representation or
“map” of the feature) is available. This is the approach
followed by works that leverage the strengths of a com-
bined frame- and event-based sensor (à la DAVIS [4]). The
algorithms in [64], [109], [110] automatically detect arbitrary
edge patterns (features) on the frames and track them asyn-
chronously with events. The feature location is given by the
Harris corner detector [165] and the feature descriptor is
given by the edge pattern around the corner: [109], [110]
convert Canny edges to point sets used as templates for ICP
tracking, thus they assume events are mostly triggered at
strong edges. In contrast, the edge pattern in [64] is given
by the frame intensities, and tracking consists of finding
the motion parameters that minimize the photometric error
between the events and their frame prediction using a
generative model (4). A comparison of five feature trackers
is provided in [64], showing that the generative model is
most accurate, with sub-pixel performance, albeit it is com-
putationally expensive. Finally, [64] also shows the interest-
ing fact that an event-based sensor suffices: frames can be
replaced by images reconstructed from events (Section 4.5)
and still achieve similar detection and tracking results.

Corner Detection and Tracking: Since event cameras
naturally respond to edges in the scene, they shorten the
detection of lower-level primitives such as keypoints or
“corners”. Such primitives identify pixels of interest around
which local features can be extracted without suffering
from the aperture problem, and therefore provide reliable
tracking information. The method in [167] computes corners
as the intersection of two moving edges, which are obtained
by fitting planes in the space-time stream of events. To deal
with event noise, least-squares is supplemented by a sam-
pling technique similar to RANSAC. This method of fitting
planes locally to time surfaces has also been profitable to
estimate optical flow [21] and “event lifetime” [132], which
are obtained from the coefficients of the planes. Recently,
extensions of popular frame-based keypoint detectors, such
as Harris [165] and FAST [168], have been developed for
event cameras [95], [98], [99], by operating on time surfaces
(TSs) as if they were natural intensity images. In [98] the TS
is binarized before applying the derivative filters of Harris’
detector. To speed up detection, [99] replaces the derivative
filters with pixelwise comparisons on two concentric circles
of the TS around the current event. Moving corners produce
local TSs with two clearly separated regions: recent vs. old
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Table 2
Classification of several optical flow methods according to their output
and design. Some methods provide full motion flow (F) whereas others
only its component normal to the local brightness edge (N). The output
may be a dense (D) flow field (i.e., optical flow for every pixel at some

time) or sparse (S) (i.e., flow computed at selected pixels). According to
their design, methods may be model-based or model-free (Artificial

Neural Network - ANN), and neuro-biologically inspired or not.

Reference N/F? S/D? Model? Bio?

Delbruck [92], [171] Normal Sparse Model Yes
Benosman et al. [171], [172] Full Sparse Model No
Orchard et al. [141] Full Sparse ANN Yes
Benosman et al. [21], [171] Normal Sparse Model No
Barranco et al. [173] Normal Sparse Model No
Brosch et al. [118] Normal Sparse Model Yes
Bardow et al. [101] Full Dense Model No
Liu et al. [88] Full Sparse Model No
Gallego [112], Stoffregen [138] Full Sparse Model No
Haessig et al. [174] Normal Sparse ANN Yes
Zhu et al. [22], [103] Full Dense ANN No
Ye et al. [137] Full Dense ANN No
Paredes-Vallés [85] Full Sparse ANN Yes

events. Hence, corners are obtained by searching for arcs of
contiguous pixels with higher TS values than the rest. The
method in [95] improves the detector in [99] and proposes
a strategy to track the corners. Assuming corners follow
continuous trajectories on the image plane and the detected
event corners are accurate, these are threaded by proximity
along trajectories, following a tree-based hypothesis graph.
The above TS-based hand-crafted corner detectors suffer
from variations of the TS due to changes in motion direction.
To overcome them, [96] proposes a data-driven method
to learn the TS appearance of intensity-image corners. To
this end, a grayscale input (from DAVIS or ATIS camera)
provides the supervisory signal to label the corners. As
a trade-off between accuracy and speed, a random forest
classifier is used. Event corners find multiple applications,
such as visual odometry or ego-motion segmentation [169];
yet there are only a few demonstrations.

Opportunities: In spite of the abundance of detection
and tracking methods, they are rarely evaluated on common
datasets for performance comparison. Establishing bench-
mark datasets [170] and evaluation procedures will foster
progress in this and other topics. Also, in most algorithms,
parameters are defined experimentally according to the
tracking target. It would be desirable to have adaptive
parameter tuning to increase the range of operation of
the trackers. Learning-based feature detection and tracking
methods also offer considerable room for research.

4.2 Optical Flow Estimation

Optical flow estimation is the problem of computing the
velocity of objects on the image plane without knowledge
about the scene geometry or motion. The problem is ill-
posed and thus requires regularization to become tractable.

Event-based optical flow estimation is challenging be-
cause of the unfamiliar way in which events encode vi-
sual information (Section 2). In conventional cameras op-
tical flow is obtained by analyzing two consecutive im-
ages. These provide spatial and temporal derivatives that
are substituted in the brightness constancy assumption
(p. 4), which together with smoothness assumptions provide
enough equations to solve for the flow at each image pixel.

In contrast, events provide neither absolute brightness nor
spatially continuous data. Each event does not carry enough
information to determine flow, and so events need to be
aggregated to produce an estimate, which leads to the
unusual question of where in the x-y-t-space of the image
plane spanned by the events is flow computed. Ideally
one would like to know the flow field over the whole
space, which deems computationally expensive. In practice,
optical flow is computed only at specific points: at the event
locations, or at images with artificially-chosen times. Nev-
ertheless, computing flow from events is attractive because
they represent edges, which are the parts of the scene where
flow estimation is less ambiguous, and because their fine
timing information allows measuring high speed flow [11].
Finally, another challenge is to design a flow estimation
algorithm that is biologically plausible, i.e., compatible with
what is known from neuroscience about early processing
in the primate visual cortex, and that can be implemented
efficiently in neuromorphic processors.

Literature Review: Table 2 lists some event-based optical
flow methods, categorized according to different criteria.
Early works [172] tried to adapt classical approaches in
computer vision to event-based data (Fig. 6b). These are
based on the brightness constancy assumption [166], and
discussion focused on whether events carried enough infor-
mation to estimate flow with such approaches [118]. Events
allow to estimate the temporal derivative of brightness (3),
and so additional assumptions were needed to approximate
the spatial derivative ∇L in order to apply such classical
methods [166]. However, due to the potentially very small
number of events generated at each pixel as an edge crosses
over it, it is difficult to estimate derivatives (∇L, ∂L/∂t) reli-
ably [118], which leads gradient-based methods like [172] to
inconclusive flow estimates. Approaches that consider the
local distribution of events in the x-y-t-space, as in [21], are
more robust and therefore preferred.

The method in [21] reasons about the local distribution
of events geometrically, in terms of time surfaces and planar
approximations. As an edge moves it produces events that
resemble points on a surface in space-time (the time surface,
Section 3). The surface slopes in the x-t and y-t cross sections
encode the edge motion, thus optical flow is estimated by
fitting planes to the surface and reading the slopes from the
plane coefficients. In spite of providing only normal flow
(i.e., the component of the optical flow perpendicular to the
edge), the method works even in the case of only a few
generated events. Of course, the goodness of fit depends on
the size of the spatio-temporal neighborhood (this remark
generalizes to other methods). If the neighborhood is too
small then the plane fit may become arbitrary. If the neigh-
borhood is too large then the event stream may not be well
approximated by a local plane.

A hierarchical architecture for optical flow estimation
building on experimental findings of the primate visual
system is proposed in [118]. It applies a set of spatio-
temporal filters on the event stream to yield selectivity to
different motion speeds and directions (à la Gabor filters)
while maintaining the sparse representation of events. Such
filters are formally equivalent to spatio-temporal correlation
detectors. Other biologically-inspired methods [85], [141]
can also be interpreted as filter banks sampling the event
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(a) (b) (c)

Figure 6. Two optical flow estimation examples. (a) and (b): indoor flying
scene [175]. In (a), events (polarity shown in red/blue) are overlaid on
a grayscale frame from a DAVIS. (b) shows the sparse optical flow
(colored according to magnitude and direction) computed using [166] on
brightness increment images. (c) A different scene: dense optical flow of
a fidget spinner spinning at 750 ◦/s in a dark environment [103]. Events
enable the estimation of optical flow in challenging scenarios.

stream along different spatio-temporal orientations; [141]
and [118] define hand-crafted filters, whereas [85] learns
them from event data using a novel STDP rule. The SNN
in [141] detects motion patterns by delaying events through
synaptic connections and employing neurons as coincidence
detectors. Its neurons are sensitive to 8 speeds and 8 di-
rections (i.e., 64 velocities) over receptive fields of 5 × 5
pixels. These methods are implementable in neuromorphic
hardware, offering low-power, efficient computations.

Methods like [23], [101] estimate optical flow jointly with
other quantities, notably image intensity, so that the quanti-
ties involved bring in well-known equations and boost each
other towards convergence. Knowing image intensity, or
equivalently (∇L, ∂L/∂t), is desirable since it can be used
on the brightness constancy law to provide constraints on
the optical flow. In this respect, [101] combines multiple
equations ((2), brightness constancy, smoothness priors, etc.)
as penalty terms into an objective function that is optimized
via calculus of variations. The method finds the optical flow
and image intensity on the image plane that minimizes the
objective function, i.e., that best explains the distribution
of events in the x-y-t-space (using a voxel grid). Thus, it
outputs a dense flow (i.e., flow at every pixel). Flow vectors
at pixels where no events were produced (i.e., regions of
homogeneous brightness) are due to the smoothness priors,
thus they are less reliable than those computed at pixels
where events were triggered (i.e., at edges).

The method in [88] estimates optical flow by computing
event frames (Section 3) at an adaptive rate and applying
video coding techniques (block matching). It can be inter-
preted as finding the optical flow vector that best matches
the distributions of events within two cuboids (collapsed
into event frames). Thus, the optical flow problem is posed
as that of finding event correspondences, i.e., events trig-
gered by the same scene point (at different times). The
method defines two sets of events (“blocks”) and a similarity
metric to compare them. It is assumed that the appearance
of event frames do not change significantly for short times
and hence simple metrics, such as sum of absolute distances,
suffice to compare them. The method can be implemented
in FPGA, trading off efficiency for accuracy.

The framework in [82], [112], [138] computes optical flow
by maximizing the sharpness of image patches obtained by
warping cuboids of events, producing motion-compensated
images (Section 3). It can be interpreted as applying an
adaptive filter to the events, where the filter coefficients

define the spatio-temporal direction that maximizes the
filter’s response. Motion compensation was also used to
compute flow in [114], albeit using point sets.

Recently, deep learning methods have emerged [22],
[103], [137]. These are based on the availability of large
amounts of event data paired with an ANN. In [22], an
encoder-decoder CNN is trained using a self-supervised
scheme to estimate dense optical flow. The loss func-
tion measures the error between DAVIS grayscale images
aligned using the flow produced by the network. The
trained network is able to accurately predict optical flow
from events only, passed as time surfaces and event frames.
The work [137] presents the first monocular ANN architec-
ture to estimate dense optical flow, depth and ego-motion
(i.e., learning structure from motion) from events only. The
input to the ANN consists of events over multiple time
slices, given as event frames and time surfaces with average
timestamps. This reduces event noise and preserves the
structure of the event stream better than [22]. The network
is trained unsupervised, measuring the photometric error
between the events in neighboring time slices aligned using
the estimated flow. Later, [22] was extended to unsupervised
learning of flow and ego-motion in [103] using a motion-
compensation loss function in terms of time surfaces.

Evaluation: Optical flow estimation is computationally
expensive. Some methods [22], [101], [103], [137] require
a GPU, while other approaches are more lightweight [88],
albeit not as accurate. Few algorithms [21], [88], [118], [141]
have been pushed to hardware logic circuits that offload
CPU and minimize latency. The review [171] compared
some early event-based optical flow methods [21], [92],
[172], but only on flow fields generated by a rotating camera,
i.e., lacking motion parallax and occlusion. For newer meth-
ods, there are multiple trade offs (accuracy vs. efficiency vs.
latency) that have not been properly quantified yet.

Opportunities: Comprehensive datasets with accurate
ground truth optical flow in multiple scenarios (varying
texture, speed, parallax, occlusions, illumination, etc.) and
a common evaluation methodology would be essential to
assess progress and reproducibility in this paramount low-
level vision task. Providing ground truth event-based optical
flow in real scenes is challenging, especially for moving
objects not conforming to the motion field induced by the
camera’s ego-motion. A thorough quantitative comparison
of existing event-based optical flow methods would help
identify key ideas to develop improved methods.

4.3 3D reconstruction. Monocular and Stereo

Depth estimation with event cameras is a broad field. It can
be divided according to the considered scenario and camera
setup or motion, which determine the problem assumptions.

Instantaneous Stereo: Most works on depth estimation
with event cameras target the problem of “instantaneous”
stereo, i.e., 3D reconstruction using events on a very short
time (ideally on a per-event basis) from two or more syn-
chronized cameras that are rigidly attached. Being syn-
chronized, the events from different image planes share
a common clock. These works follow the classical two-
step stereo solution: first solve the event correspondence
problem across image planes (i.e., epipolar matching) and
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then triangulate the location of the 3D point [176]. The
main challenge is finding correspondences between events;
it is the computationally intensive step. Events are matched
(i) using traditional stereo metrics (e.g., normalized cross-
correlation) on event frames [129], [177] or time surfaces
[133] (Section 3), and/or (ii) by exploiting simultaneity and
temporal correlations of the events across sensors [133],
[178], [179]. These approaches are local, matching events
by comparing their neighborhoods since events cannot be
matched based on individual timestamps [154], [180]. Ad-
ditional constraints, such as the epipolar constraint [181],
ordering, uniqueness, edge orientation and polarity may be
used to reduce matching ambiguities and false correspon-
dences, thus improving depth estimation [18], [154], [182].
Event matching can also be done by comparing local context
descriptors [183], [184] of the spatial distribution of events
on both stereo image planes.

Global approaches produce better depth estimates (i.e.,
less sensitive to ambiguities) than local approaches by con-
sidering additional regularity constraints. In this category,
we find extensions of Marr and Poggio’s cooperative stereo
algorithm [146] for the case of event cameras [41], [148],
[149], [150], [185]. These approaches consist of a network
of disparity sensitive neurons that receive events from both
cameras and perform various operations (amplification, in-
hibition) that implement matching constraints (uniqueness,
continuity) to extract disparities. They use not only the
temporal similarity to match events but also their spatio-
temporal neighborhoods, with iterative nonlinear opera-
tions that result in an overall globally-optimal solution. A
discussion of cooperative stereo is provided in [43]. Also
in this category are [186], [187], [188], which use Belief
Propagation on a Markov Random Field or semiglobal
matching [189] to improve stereo matching. These meth-
ods are primarily based on optimization, trying to define
a well-behaved energy function whose minimizer is the
correct correspondence map. The energy function incor-
porates regularity constraints, which enforce coupling of
correspondences at neighboring points and therefore make
the solution map less sensitive to ambiguities than local
methods, at the expense of computational effort. A table
comparing different stereo methods is provided in [190];
however, it should be interpreted with caution since the
methods were not benchmarked on the same dataset.

Recently, brute-force space-sweeping using dedicated
hardware (a GPU) has been proposed [191]. The method is
based on ideas similar to [19], [112]: the correct depth mani-
fests as “in focus” voxels of displaced events in the Disparity
Space Image [19], [192]. In contrast, other approaches pair
event cameras with neuromorphic processors (Section 5.1)
to produce fully event-based low-power (100 mW), high-
speed stereo systems [149], [190]. There is an efficiency
vs. accuracy trade-off that has not been quantified yet.

Most of the methods above are demonstrated in scenes
with static cameras and few moving objects, so that cor-
respondences are easy to find due to uncluttered event
data. Event matching happens with low latency, at high
rate (∼1 kHz) and consuming little power, which shows that
event cameras are promising for high-speed 3D reconstruc-
tions of moving objects or in uncluttered scenes.

Monocular Depth Estimation: Depth estimation with a

(a) (b)

Figure 7. Example of monocular depth estimation with a hand-held event
camera. (a) Scene, (b) semi-dense depth map, pseudo-colored from red
(close) to blue (far). Image courtesy of [19].

single event camera has been shown in [19], [25], [112]. It is a
significantly different problem from previous ones because
temporal correlation between events across multiple image
planes cannot be exploited. These methods recover a semi-
dense 3D reconstruction of the scene (i.e., 3D edge map)
by integrating information from the events of a moving
camera over time, and therefore require knowledge of cam-
era motion. Hence they do not pursue instantaneous depth
estimation, but rather depth estimation for SLAM [193].

The method in [25] is part of a pipeline that uses three
filters operating in parallel to jointly estimate the motion of
the event camera, a 3D map of the scene, and the intensity
image. Their depth estimation approach requires using an
additional quantity—the intensity image—to solve for data
association. In contrast, [19] (Fig. 7) proposes a space-sweep
method that leverages the sparsity of the event stream to
perform 3D reconstruction without having to establish event
matches or recover the intensity images. It back-projects
events into space, creating a ray density volume [194], and
then finds scene structure as local maxima of ray density. It
is computationally efficient and used for VO in [26].

Opportunities: Although there are many methods for
event-based depth estimation, it is difficult to compare their
performance since they are not evaluated on the same
dataset. In this sense, it would be desirable to (i) provide
a comprehensive dataset and testbed for event-based depth
evaluation and (ii) benchmark many existing methods on
the dataset, to be able to compare their performance.

4.4 Pose Estimation and SLAM

Addressing the Simultaneous Localization and Mapping
(SLAM) problem with event cameras has been difficult
because most methods and concepts developed for conven-
tional cameras (feature detection, matching, iterative image
alignment, etc.) are not applicable or were not available;
events are fundamentally different from images. The chal-
lenge is therefore to design new SLAM techniques that are
able to unlock the camera’s advantages (Sections 2.3 and
2.2), showing their usefulness to tackle difficult scenarios for
current frame-based cameras. Historically, the design goal of
such techniques has focused on preserving the low-latency
nature of the data, i.e., being able to produce a state estimate
for every incoming event (Section 3). However, each event
does not contain enough information to estimate the state
from scratch (e.g., the six degrees of freedom (DOF) pose of a
calibrated camera), and so the goal becomes that each event
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Table 3
Event-based methods for pose tracking and/or mapping with an event
camera. The type of motion is noted with labels “2D” (3-DOF motions,
e.g., planar or rotational) and “3D” (free 6-DOF motion in 3D space).
Columns indicate whether the method performs tracking (“Track”) and

depth estimation (“Depth”) using only events (“Event”), the type of
scene considered (“Scene”), and any additional requirements. Only

[25], [26] address the most general scenario using only events.

Reference Dim Track Depth Scene Event Additional requirements

Cook [23] 2D 3 7 natural 3 rotational motion only
Weikersdorfer [196] 2D 3 7 B&W 3 scene parallel to motion
Kim [24] 2D 3 7 natural 3 rotational motion only
Gallego [111] 2D 3 7 natural 3 rotational motion only
Reinbacher [86] 2D 3 7 natural 3 rotational motion only
Censi [75] 3D 3 7 B&W 7 attached depth sensor
Weikersdorfer [197] 3D 3 3 natural 7 attached RGB-D sensor
Mueggler [198] 3D 3 7 B&W 3 3D map of lines
Gallego [7] 3D 3 7 natural 7 3D map of the scene
Rebecq [19] 3D 7 3 natural 3 pose information
Kueng [110] 3D 3 3 natural 7 intensity images
Kim [25] 3D 3 3 natural 3 image reconstruction
Rebecq [26] 3D 3 3 natural 3 −

be able to asynchronously update the state of the system.
Probabilistic (Bayesian) filters [195] are popular in event-
based SLAM [7], [24], [75], [196] because they naturally
fit with this description. Their main adaptation for event
cameras consists of designing sensible likelihood functions
based on the event generation process (Section 2.4).

Since events are caused by the apparent motion of inten-
sity edges, the majority of maps emerging from SLAM sys-
tems naturally consist only of scene edges, i.e., semi-dense
maps (Fig. 8 and [19]). However, note that an event cam-
era does not directly measure intensity gradients but only
temporal changes (2), and so the presence, orientation and
strength of edges (on the image plane and in 3D) must be
estimated together with the camera’s motion. The strength
of the intensity gradient at a scene point is correlated with
the firing rate of events corresponding to that point, and it
enables reliable tracking [86]. Edge information for tracking
may also be obtained from gradients of brightness maps [7],
[24], [25] used in generative models (Section 2.4).

The event-based SLAM problem in its most general set-
ting (6-DOF motion and natural 3D scenes) is a challenging
problem that has been addressed step-by-step in scenarios
with increasing complexity. Three complexity axes can be
identified: dimensionality of the problem, type of motion
and type of scene. The literature is dominated by methods
that address the localization subproblem first (i.e., motion
estimation) because it has fewer degrees of freedom to
estimate. Regarding the type of motion, solutions for con-
strained motions, such as rotational or planar (both being
3-DOF), have been investigated before addressing the most
complex case of a freely moving camera (6-DOF). Solutions
for artificial scenes in terms of photometry (high contrast)
and/or structure (line-based or 2D maps) have been pro-
posed before focusing on the most difficult case: natural
scenes (3D and with arbitrary photometric variations). Some
proposed solutions require additional sensing (e.g., RGB-D)
to reduce the complexity of the problem. This, however,
introduces some of the bottlenecks present in frame-based
systems (e.g., latency and motion blur). Table 3 classifies the
related work using these complexity axes.

Tracking and Mapping: Let us focus on methods that
address the tracking-and-mapping problem. Cook et al. [23]
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Figure 8. Event-based SLAM. (a) Reconstructed scene from [81], with
the reprojected semi-dense map colored according to depth and over-
laid on the events (in gray), showing the good alignment between the
map and the events. (b) Estimated camera trajectory (several methods)
and semi-dense 3D map (i.e., point cloud). Image courtesy of [87].

proposed a generic message-passing algorithm within an
interacting network to jointly estimate ego-motion, image
intensity and optical flow from events. However, the system
was restricted to rotational motion. Joint estimation is ap-
pealing because it allows to employ as many equations as
possible relating the variables (e.g., (4) and rotational prior)
in the hope of finding a better solution to the problem.

An event-based 2D SLAM system was presented in [196]
by extension of [84], and thus it was restricted to planar
motion and high-contrast scenes. The method used a par-
ticle filter for tracking, with the event likelihood function
inversely related to the the reprojection error of the event
with respect to the map. The map of scene edges was
concurrently built; it consisted of an occupancy map [195],
with each pixel representing the probability that the pixel
triggered events. The method was extended to 3D in [197],
but it relied on an external RGB-D sensor attached to the
event camera for depth estimation. The depth sensor intro-
duced bottlenecks, which deprived the system of the low
latency and high-speed advantages of event cameras.

The filter-based approach in [24] showed how to simulta-
neously track the 3D orientation of a rotating event camera
and create high-resolution panoramas of natural scenes. It
operated probabilistic filters in parallel for both subtasks.
A panoramic gradient was built using per-pixel Kalman
filters, each one estimating the orientation and strength of
the scene edge at its location. This gradient map was then
upgraded to an absolute intensity one with super-resolution
and HDR properties by Poisson integration. SLAM during
rotational motion was also presented in [86], where camera
tracking was performed by minimization of a photometric
error at the event locations given a probabilistic edge map.
The map was simultaneously built, and each map point
represented the probability of events being generated at that
location [196]. Hence it was a panoramic occupancy map
measuring the strength of the scene edges.

Recently, solutions to the full problem of event-based 3D
SLAM for 6-DOF motions and natural scenes, not relying on
additional sensing, have been proposed [25], [26] (Table 3).
The approach in [25] extends [24] and consists of three
interleaved probabilistic filters to perform pose tracking as
well as depth and intensity estimation. However, it suffers
from limited robustness (especially during initialization)
due to the assumption of uncorrelated depth, intensity
gradient, and camera motion. Furthermore, it is computa-
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tionally intensive, requiring a GPU for real-time operation.
In contrast, the semi-dense approach in [26] shows that
intensity reconstruction is not needed for depth estimation
or pose tracking. The approach has a geometric founda-
tion: it performs space sweeping for 3D reconstruction [19]
and edge-map alignment (non-linear optimization with few
events per frame) for pose tracking. The resulting SLAM
system runs in real-time on a CPU.

Trading off latency for efficiency, probabilistic filters [24],
[25], [196] can operate on small groups of events. Other
approaches are natively designed for groups, based for
example on non-linear optimization [26], [111], [112], and
run in real time on the CPU. Processing multiple events
simultaneously is also beneficial to reduce noise.

Opportunities: The above-mentioned SLAM methods
lack loop-closure capabilities to reduce drift. Currently, the
scales of the scenes on which event-based SLAM has been
demonstrated are considerably smaller than those of frame-
based SLAM. However, trying to match both scales may not
be a sensible goal since event cameras may not be used to
tackle the same problems as standard cameras; both sensors
are complementary, as argued in [7], [27], [64], [75]. Stereo
event-based SLAM is another unexplored topic, as well as
designing more accurate, efficient and robust methods than
the existing monocular ones. Robustness of SLAM systems
can be improved by sensor fusion with IMUs [27], [193].

4.5 Image Reconstruction
Events represent brightness changes, and so, in ideal con-
ditions (noise-free scenario, perfect sensor response, etc.)
integration of the events yields “absolute” brightness. This
is intuitive, since events are just a non-redundant (i.e.,
“compressed”) per-pixel way of encoding the visual content
in the scene. Event integration or, more generically, image
reconstruction (Fig. 9) can be interpreted as “decompress-
ing” the visual data encoded in the event stream. Due to
the very high temporal resolution of the events, brightness
images can be reconstructed at very high frame rate (e.g.,
2 kHz–5 kHz [8], [199]) or even continuously in time [62].

As the literature reveals, the insight about image recon-
struction from events is that it requires regularization. Event
cameras have independent pixels that report brightness
changes, and, consequently, per-pixel integration of such
changes during a time interval only produces brightness
increment images. To recover the absolute brightness at
the end of the interval, an offset image (i.e., the brightness
image at the start of the interval) would need to be added
to the increment [81], [200]. Surprisingly, some works have
used spatial and/or temporal smoothing [62], [119], [199],
[201] to reconstruct brightness starting from a zero initial
condition, i.e., without knowledge of the offset image. Other
forms of regularization, using learned features from natural
scenes [8], [102], [104], [199] are also effective.

Literature Review: Image reconstruction from events
was first established in [23] under rotational camera motion
and static scene assumptions. These assumptions together
with the brightness constancy (4) were used in a message-
passing algorithm between pixels in a network of visual
maps to jointly estimate several quantities, such as scene
brightness. Also under the above motion and scene as-
sumptions, [24] showed how to reconstruct high-resolution

(a) Tunnel scene (b) Exploding mug

Figure 9. Image Reconstruction. In the scenario of a car driving out of
a tunnel the frames from a consumer camera (Huawei P20 Pro) (Left)
suffer from under- or over-exposure, while events capture a broader
dynamic range of the scene, which is recovered by image reconstruction
methods (Middle). Events also enable the reconstruction of high-speed
scenes, such as a exploding mug (Right). Images courtesy of [8], [202].

panoramas from the events, and they popularized the idea
of event-based HDR image reconstruction. Each pixel of
the panoramic image used a Kalman filter to estimate the
brightness gradient (based on (4)), which was then inte-
grated using Poisson reconstruction to yield absolute bright-
ness. The method in [203] exploited the constrained motion
of a platform rotating around a single axis to reconstruct
images that were then used for stereo depth estimation.

Motion restrictions were then replaced by regularizing
assumptions to enable image reconstruction for generic
motions and scenes [101]. In this work, image brightness
and optical flow were simultaneously estimated using a
variational framework that contained several penalty terms
(on data fitting (1) and smoothness of the solution) to best
explain a space-time volume of events discretized as a
voxel grid. This method was the first to show reconstructed
video from events in dynamic scenes. Later [119], [199],
[201] showed that image reconstruction was possible even
without having to estimate motion. This was done using a
variational image denoising approach based on time sur-
faces [119], [201] or using sparse signal processing with
a patch-based learned dictionary that mapped events to
image gradients, which were then Poisson-integrated [199].
Concurrently, the VO methods in [25], [26] extended the
image reconstruction technique in [24] to 6-DOF camera
motions by using the computed scene depth and poses: [25]
used a robust variational regularizer to reduce noise and
improve contrast of the reconstructed image, whereas [26]
showed image reconstruction as an ancillary result, since
it was not needed to achieve VO. Recently, [62] proposed
a temporal smoothing filter for image reconstruction and
for continuously fusing events and frames. The filter acted
independently on every pixel, thus showing that no spatial
regularization on the image plane was needed to recover
brightness, although it naturally reduced noise and arte-
facts at the expense of sacrificing some real detail. More
recently, [8], [104] has presented a deep learning approach
that achieves considerable gains over previous methods
and mitigates visual artefacts. Reflecting back on earlier
works, the motion restrictions or hand-crafted regularizers
that enabled image reconstruction have been replaced by
perceptual, data-driven priors from natural scenes that con-
sequently produced more natural-looking images. Note that
image reconstruction methods used in VO or SLAM [23],
[24], [25] assume static scenes, whereas methods with weak
or no motion assumptions [8], [62], [101], [104], [119], [199],



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2020.3008413, IEEE
Transactions on Pattern Analysis and Machine Intelligence

16

[201] are naturally used to reconstruct videos of arbitrary
(e.g., dynamic) scenes.

Besides image reconstruction from events, another cat-
egory of methods tackles the problem of fusing events
and frames (e.g., from the DAVIS [4]), thus enhancing the
brightness information from the frames with high temporal
resolution and HDR properties of events [28], [62], [200].
These methods also do not rely on motion knowledge and
are ultimately based on (2). The method in [200] performs
direct event integration between frames, pixel-wise. How-
ever, the fused brightness becomes quickly corrupted by
event noise (due to non-ideal effects, sensitivity mismatch,
missing events, etc.), and so fusion is reset with every
incoming frame. To mitigate noise, events and frames are
fused in [62] using a per-pixel, temporal complementary
filter that is high-pass in the events and low-pass in the
frames. It is an efficient solution that takes into account
the complementary sensing modality of events and frames:
frames carry slow-varying brightness information (i.e., low
temporal frequency), whereas events carry “change” infor-
mation (i.e., high frequency). The fusion method in [28]
exploits the high temporal resolution of the events to ad-
ditionally remove motion blur from the frames, producing
high frame-rate, sharp video from a single blurry frame
and events. It is based on a double integral model (one
integral to recover brightness and another one to remove
blur) within an optimization framework. A limitation of the
above methods is that they still suffer from artefacts due
to event noise. These might be mitigated if combined with
learning-based approaches [8].

Applications: Image reconstruction implies that, in prin-
ciple, it is possible to convert the events into brightness im-
ages and then apply mature computer vision algorithms [8],
[104], [204]. This can have a high impact on both, event-
and frame-based communities. The resulting images cap-
ture high-speed motions and HDR scenes, which may be
beneficial in some applications, but it comes at the expense
of computational cost, latency and power consumption.

Despite image reconstruction having been useful to sup-
port tasks such as recognition [199], SLAM [25] or optical
flow estimation [101], there are also works in the literature,
such as [97], [103], [112], [137], showing that it is not needed
to fulfill such tasks. One of the most valuable aspects of im-
age reconstruction is that it provides scene representations
(e.g., appearance maps [7], [24]) that are more invariant to
motion than events and also facilitate establishing event cor-
respondences, which is one of the biggest challenges of some
event data processing tasks, such as feature tracking [64].

4.6 Motion Segmentation
Segmentation of moving objects viewed by a stationary
event camera is simple because events are solely imputable
to the motion of the objects (assuming constant illumination)
[106], [108], [161]. The challenges arise in the scenario of a
moving camera because events are triggered everywhere on
the image plane [13], [116], [139] (Fig. 10), produced by mov-
ing objects and the static scene (whose apparent motion is
induced by the camera’s ego-motion) and the goal is to infer
this causal classification for each event. However, each event
carries very little information, and therefore it is challenging
to perform the mentioned per-event classification.

Figure 10. The iCub humanoid robot from IIT has two event cameras
in the eyes. Here, it segments and tracks a ball under event clutter
produced by the motion of the head. Right: space-time visualization of
the events on the image frame, colored according to polarity (positive in
green, negative in red). Image courtesy of [162].

Overcoming these challenges has been done by tackling
segmentation scenarios of increasing complexity, obtained
by reducing the amount of additional information given
to solve the problem. Such additional information adopts
the form of known object shape or known motion, i.e., the
algorithm knows “what object to look for” or “what type of
motion it expects” and objects are segmented by detecting
(in-)consistency with respect to the expectation. The less
additional information is provided, the more unsupervised
the problem becomes (e.g., clustering). In such a case, seg-
mentation is enabled by the key insight that moving objects
produce distinctive traces of events on the image plane
and it is possible to infer the trajectories of the objects that
generate those traces, yielding the segmented objects [139].
Like clustering, this is a joint optimization problem in the
motion parameters of the objects (i.e., the “clusters”) and
the event-object associations (i.e., the segmentation).

Literature Review: Considering known object shape,
[13] presents a method to detect and track a circle in the
presence of event clutter caused by the moving camera.
It is based on the Hough transform using optical flow in-
formation extracted from temporal windows of events. The
method was extended in [162] using a particle filter to im-
prove tracking robustness: the duration of the observation
window was dynamically selected to accommodate for sud-
den motion changes due to accelerations of the object. More
generic object shapes were detected and tracked by [169]
using event corners (Section 4.1) as geometric primitives.
In this method, additional knowledge of the robot joints
controlling the camera motion was required.

Segmentation has been addressed by [116], [138], [139]
under mild assumptions leveraging the idea of motion-
compensated event images [111] (Section 3). Essentially
this technique associates events that produce sharp edges
when warped according to a motion hypothesis. The sim-
plest hypothesis is a linear motion model (i.e., constant
optical flow), yet it is sufficiently expressive: for short
times, scenes may be described as collections of objects
producing events that fit different linear motion models.
Such a scene description is what the cited segmentation
algorithms seek for. Specifically, the method in [138] first
fits a linear motion-compensation model to the dominant
events, then removes these and fits another linear model
to the remaining events, greedily. Thus, it clusters events
according to optical flow, yielding motion-compensated
images with sharp object contours. Similarly, [116] detects
moving objects in clutter by fitting a motion-compensation
model to the dominant events (i.e., the background) and
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detecting inconsistencies with respect to it (i.e., the objects).
They test the method in challenging scenarios inaccessi-
ble to standard cameras (HDR, high-speed) and release a
dataset. The work in [139] proposes an iterative clustering
algorithm that jointly estimates the event-object associations
(i.e., segmentation) and the motion parameters of the objects
(i.e., clusters) that produce sharpest motion-compensated
event images. It allows for general parametric motion mod-
els [112] to describe each object and produces better results
than greedy methods [116], [138]. In [117] a learning-based
approach for segmentation using motion-compensation is
proposed: ANNs are used to estimate depth, ego-motion,
segmentation masks of independently moving objects and
object 3D velocities. An event-based dataset is provided
for supervised learning, which includes accurate pixel-wise
motion masks of 3D-scanned objects that are reliable even
in poor lighting conditions and during fast motion.

Segmentation is a paramount topic in frame-based vi-
sion, yet it is rather unexplored in event-based vision. As
more complex scenes are addressed and more advanced
event-based vision techniques are developed, more works
targeting this challenging problem are expected to appear.

4.7 Recognition

Algorithms: Recognition algorithms for event cameras have
grown in complexity, from template matching of simple
shapes to classifying arbitrary edge patterns using either
traditional machine learning on hand-crafted features or
modern deep learning methods. This evolution aims at
endowing recognition systems with more expressibility (i.e.,
approximation capacity) and robustness to data distortions.

Early research with event-based sensors began with
tracking a moving object using a static sensor. An event-
driven update of the position of a model of the object shape
was used to detect and track objects with a known simple
shape, such as a blob [6], circle [53], [205] or line [54]. Simple
shapes can also be detected by matching against a pre-
defined template, which removes the need to describe the
geometry of the object. This template matching approach was
implemented using convolutions in early hardware [53].

For more complex objects, templates can be used to
match low level features instead of the entire object, after
which a classifier can be used to make a decision based on
the distribution of features observed [93]. Nearest Neighbor
classifiers are typically used, with distances calculated in
feature space. Accuracy can be improved by increasing fea-
ture invariance, which can be achieved using a hierarchical
model where feature complexity increases in each layer.
With a good choice of features, only the final classifier needs
to be retrained when switching tasks. This leads to the
problem of selecting which features to use. Hand-crafted
orientation features were used in early works, but far better
results are obtained by learning the features from the data
itself. In the simplest case, each template can be obtained
from an individual sample, but such templates are sensitive
to noise in the sample data [15]. One may follow a gener-
ative approach, learning features that enable to accurately
reconstruct the input, as was done in [122] with a Deep
Belief Network (DBN). More recent work obtains features by
unsupervised learning, clustering the event data and using

(a) Event camera and IBM TrueNorth (b) Poker-DVS

Figure 11. Recognition of moving objects. (a) A DAVIS240C sensor with
FPGA attached tracks and sends regions of events to IBM’s TrueNorth
NS1e evaluation platform for classification. Results on a street scene
show red boxes around tracked and classified cars. (b) In [121] very
high speed object recognition (browsing a full deck of 52 cards in just
0.65 s) was illustrated with event-driven convolutional neural networks.

the center of each cluster as a feature [93]. During inference,
each event is associated to its closest feature, and a classifier
operates on the distributions of features observed. With the
rise of deep learning in frame-based computer vision, many
have sought to leverage deep learning tools for event-based
recognition, using back-propagation to learn features. This
approach has the advantage of not requiring a separate
classifier at the output, but the disadvantage of requiring
far more labeled data for training. Image recognition with
events also suffers from the practical problem of the avail-
ability of training data in the event domain [206]. In [207] the
authors use wormhole learning, a semi-supervised approach
in which, starting from a detector in the RGB domain, one is
able to train a detector in the event domain; moreover, in a
second phase the teacher becomes the student, and some of
the illumination invariance of the event sensor is transferred
to the RGB-only detector.

Most learning-based approaches convert events/spikes
into (dense) tensors, a convenient representation for image-
based hierarchical models, e.g., ANNs (Fig 11). There are
different ways the value of each tensor element can be com-
puted (Section 3.1). Simple methods use the time surfaces,
or event histogram frames. A more robust method uses
time surfaces with exponential decay [93] or with average
timestamps [97]. Image reconstruction methods (Section 4.5)
may also be used. Some recognition approaches rely on
converting spikes to frames during inference [134], [199],
while others convert the trained ANN to an SNN which
can operate directly on the event data [121]. Similar ideas
can be applied for tasks other than recognition [22], [91].
As neuromorphic hardware advances (Section 5.1), there is
increasing interest in learning directly in SNNs [127] or even
directly in the neuromorphic hardware itself [128].

Tasks: Early tasks focused on detecting the presence of
a simple shape (such as a circle) from a static sensor [6],
[53], [205], but soon progressed to the classification of more
complex shapes, such as card pips [121] (Fig. 11b), block
letters [15] and faces [93], [199]. A popular task throughout
has been the classification of hand-written digits. Inspired
by the role it has played in frame-based computer vision,
a few event-based MNIST datasets have been generated
from the original MNIST dataset [58], [208]. These datasets
remain a good test for algorithm development, with many
algorithms now achieving over 98 % accuracy on the task
[97], [126], [127], [209], [210], [211], but few would pro-
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pose digit recognition as a strength of event-based vision.
More difficult tasks involve either more difficult objects,
such as the Caltech-101 and Caltech-256 datasets (both of
which are still considered easy by computer vision) or
more difficult scenarios, such as recognition from on-board
a moving vehicle [97]. Very few works tackle these tasks
so far, and those that do typically fall back on generating
event frames and processing them using a traditional deep
learning framework.

A key challenge for recognition is that event cameras re-
spond to relative motion in the scene (Section 2.3), and thus
require either the object or the camera to be moving. It is
therefore unlikely that event cameras will be a strong choice
for recognizing static or slow moving objects, although little
has been done to combine the advantages of frame- and
event-based cameras for these applications. The event-based
appearance of an object is highly dependent on the above-
mentioned relative motion (Fig. 5), thus tight control of the
camera motion could be used to aid recognition [208].

Since the camera responds to dynamic signals, obvious
applications include recognizing objects by the way they
move [212], or recognizing dynamic scenes such as gestures
or actions [16], [17]. These tasks are typically more challeng-
ing than static object recognition because they include a time
dimension, but this is exactly where event cameras excel.

Opportunities: Event cameras exhibit many alluring
properties, but event-based recognition has a long way to
go if it is to compete with modern frame-based approaches.
While it is important to compare event- and frame-based
methods, one must remember that each sensor has its own
strengths. The ideal acquisition scenario for a frame-based
sensor consists of both the sensor and object being static,
which is the worst possible scenario for event cameras.
For event-based recognition to find widespread adoption,
it will need to find applications which play to its strengths.
Such applications are unlikely to be similar to well estab-
lished computer vision recognition tasks which play to the
frame-based sensor’s strengths. Instead, such applications
are likely to involve resource constrained recognition of
dynamic sequences, or recognition from on-board a moving
platform. Finding and demonstrating the use of event-based
sensors in such applications remains an open challenge.

Although event-based datasets have improved in quality
in recent years, there is still room for improvement. Data
collection and annotation is a tiresome and thankless task,
but developing an easy-to-use pipeline for collecting and
annotating event-based data would be a significant contri-
bution to the field, especially if the tools can mature to the
stage where the task can be outsourced to laymen.

4.8 Neuromorphic Control
In living creatures, most information processing happens
through spike-based representation: spikes encode the sen-
sory data; spikes perform the computation; and spikes trans-
mit actuator “commands”. Therefore, biology shows that the
event-based paradigm is, in principle, applicable not just to
perception and inference, but also to control.

Neuromorphic-vision-driven Control Architecture: In
this type of architecture (Fig. 12), there is a neuromorphic
sensor, an event-based estimator, and a traditional con-
troller. The estimator computes a state, and the controller
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Figure 12. Control architectures based on neuromorphic events. In
a neuromorphic-vision-driven control architecture (a), a neuromorphic
sensor produces events, an event-based perception system produces
state estimates, and a traditional controller is called asynchronously to
compute the control signal. In a native neuromorphic-based architecture
(b), the events generate directly changes in control. Finally, (c) shows an
architecture in which the task informs the events that are generated.

computes the control based on the provided state. The con-
troller is not aware of the asynchronicity of the architecture.

Neuromorphic-vision-driven control architectures have
been demonstrated since the early days of neuromorphic
cameras, and they have proved the two advantages of low
latency and computational efficiency. The earliest demon-
strators were the spike-based convolutional target tracking
demo in the CAVIAR project [53] and the “robot goalie”
described in [6], [12]. Another early example was the pencil-
balancing robot [54]. In that demonstrator two DVS’s ob-
served a pencil as inverted pendulum placed on a small
movable cart. The pencil’s state in 3D was estimated in
below 1 ms latency. A simple hand tuned PID controller kept
the pencil balanced upright. It was also demonstrated on an
embedded system, thereby establishing the ability to run on
severely constrained computing resources.

Event-based Control Theory: Event-based techniques
can be motivated from the perspective of control and de-
cision theory. Using a biological metaphor, event-based con-
trol can be understood as a form of what economics calls
rational inattention [213]: more information allows for better
decisions, but if there are costs associated to obtaining or
processing the information, it is rational to take decisions
with only partial information available.

In event-based control, the control signal is changed
asynchronously [214]. There are several variations of the
concept depending on how the “control events” are gen-
erated. One important distinction is between event-triggered
control and self-triggered control [215]. In event-based control
the events are generated “exogenously” based on certain
condition; for example, a “recompute control” request might
be triggered when the trajectory’s tracking error exceeds a
threshold. In self-triggered control, the controller decides by
itself when is the next time it should be called based on the
situation. For example, a controller might decide to “sleep”
for longer if the state is near the target, or to recompute the
control signal sooner if it is required.

The advantages of event-based control are usually jus-
tified considering a trade-off between computation / com-
munication cost and control performance. The basic con-
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sideration is that, while the best control performance is
obtained by recomputing the control infinitely often (for
an infinite cost), there are strongly diminishing returns. A
solid principle of control theory is that the control frequency
depends on the time constant of the plant and the sensor: it
does not make sense to change the control much quicker
than the new incoming information or the speed of the
actuators. This motivates choosing control frequencies that
are comparable with the plant dynamics and adapt to the
situation. For example, one can show that an event-triggered
controller achieves the same performance with a fraction of
the computation; or, conversely, a better performance with
the same amount of computation. In some cases (scalar
linear Gaussian) these trade-offs can be obtained in closed
form [216], [217]. (Analogously, certain trade-offs can be
obtained in closed form for perception [218].)

Unfortunately, the large literature in event-based con-
trol is of restricted utility for the embodied neuromor-
phic setting. Beyond the superficial similarity of dealing
with “events” the settings are quite different. For example,
in network-based control, one deals with typically low-
dimensional states and occasional events—the focus is on
making the most of each single event. By contrast, for
an autonomous vehicle equipped with event cameras, the
problem is typically how to find useful signals in potentially
millions of events per second. Particularizing the event-
based control theory to the neuromorphic case is a relatively
young avenue of research [219], [220], [221], [222]. The
challenges lie in handling the non-linearities typical of the
vision modality, which prevents clean closed-form results.

Open questions in Neuromorphic Control: Finally, we
describe some of open problems in this topic.

Task-driven sensing: In animals, perception has value be-
cause it is followed by action, and the information collected
is actionable information that helps with the task. A significant
advance would be the ability for a controller to modulate
the sensing process based on the task and the context.
In current hardware there is limited software-modulated
control for the sensing processing, though it is possible to
modulate some of the hardware biases. Integration with
region-of-interest mechanisms, heterogeneous camera bias
settings, etc. would provide additional flexibility and more
computationally efficient control.

Thinking fast and slow: Existing research has focused
on obtaining low-latency control, but there has been lit-
tle work on how to integrate this sensorimotor level into
the rest of an agent’s cognitive architecture. Using again
a bio-inspired metaphor, and following Kahneman [223],
the fast/instinctive/“emotional” system must be integrated
with the slower/deliberative system.

5 EVENT-BASED SYSTEMS AND APPLICATIONS

5.1 Neuromorphic Computing
Neuromorphic engineering tries to capture some of the un-
paralleled computational power and efficiency of the brain
by mimicking its structure and function. Typically this re-
sults in a massively parallel hardware accelerator for SNNs
(Section 3.3), which is how we will define a neuromorphic
processor. Since the neuron spikes within such a processor
are inherently asynchronous, a neuromorphic processor is

Table 4
Comparison between selected neuromorphic processors,

ordered by neuron model type.

Processor SpiNNaker TrueNorth Loihi DYNAP Braindrop
Reference [224] [225] [226] [227] [228]

Manufacturer U. Manchester IBM Intel aiCTX Stanford U.
Year 2011 2014 2018 2017 2018
Neuron model Software Digital Digital Analog Analog
On-chip learning Yes No Yes No No
CMOS technol. 130 nm 28 nm 14 nm 180 nm 28 nm
Neurons/chip 4 k* 1024 k 131 k 1 k 4 k
Neurons/core 255* 256 1024 256 4096
Cores/chip 16* 4096 128 4 1
Synapses/chip 16 M 268 M 130 M 128 k 16 M
Boards 4- or 48-chip 1- or 16-chip 4- or 8-chip, 1-chip 1-chip
Software stack sPyNNaker CPE/Eedn Nengo cAER Nengo

PACMAN NSCP Nx SDK libcAER

the best computational partner for an event camera. Neuro-
morphic processors act on the events injected by the event
camera directly, without conversion, and offer better data-
processing locality (spatially and temporally) than standard
architectures such as CPUs, yielding low power and low
latency computer vision systems.

Neuromorphic processors may be categorized by their
neuron model implementations (Table 4), which are broadly
divided between analog neurons (Neurogrid, BrainScaleS,
ROLLS, DYNAP-se), digital neurons (TrueNorth, Loihi,
ODIN) and software neurons (SpiNNaker). Some ar-
chitectures also support on-chip learning (Loihi, ODIN,
DYNAP-le). When evaluating a neuromorphic processor for
an event-based vision system, the following criteria should
be considered in addition to the processor’s functionality
and performance: (i) the software development ecosystem:
a minimal toolchain includes an API to compose and train
a network, a compiler to prepare the network for the
hardware, and a runtime library to deploy the network in
hardware, (ii) event-based vision systems typically require
that a processor be available as a standalone system suitable
for mobile applications, and not just hosted in a remote
server, (iii) the availability of neuromorphic processors.

Several developments are necessary to enable a more
widespread use of these processors, such as: (i) developing a
more user-friendly ecosystem (an easier way to program the
desired method for deployment in hardware), (ii) enabling
more processing capabilities of the hardware platform, (iii)
increasing the availability of devices beyond early access
programs targeted at selected partners.

The following processors (Table 4) have the most mature
developer workflows, combined with the widest availability
of standalone systems. More details are given in [229], [230].

SpiNNaker (Spiking Neural Network Architecture)
uses general-purpose ARM cores to simulate biologically
realistic models of the human brain [231]. SpiNNaker imple-
ments neurons as software running on the cores, sacrificing
hardware acceleration to maximize model flexibility. The
SpiNNaker has been coupled with event cameras for stereo
depth estimation [149], [232], optic flow computation [232],
[233], and for object tracking [234] and recognition [235].

TrueNorth uses digital neurons to perform real-time
inference. Each chip simulates 1 M (million) neurons and
256 M synapses, distributed among 4096 neurosynaptic
cores. There is no on-chip learning, so networks are trained
offline using a GPU or other processor [236].
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(a) (b)

Figure 13. (a) Embedded DVS128 on Pushbot as standalone closed-
loop perception-computation-action system, used in navigation and
obstacle-avoidance tasks [240]. (b) Drone with a down-looking DAVIS,
used for autonomous flight [27]. The high speed and dynamic range of
events are leveraged to operate in difficult illumination conditions. The
same visual-inertial odometry algorithm [27] is also demonstrated on
high-speed scenarios, such as an event camera spinning tied to a rope.

TrueNorth has been paired with event cameras to pro-
duce end-to-end, low power and low-latency event-based
vision systems for gesture recognition [17], stereo recon-
struction [190] and optical flow estimation [174].

Loihi uses digital neurons to perform real-time inference
and online learning. Each chip simulates up to 131 thousand
spiking neurons and 130 M synapses. A learning engine in
each neuromorphic core updates each synapse using rules
that includes STDP and reinforcement learning [226]. Non-
spiking networks can be trained in TensorFlow and approx-
imated by spiking networks for Loihi using the Nengo Deep
Learning toolkit from Applied Brain Research [237].

DYNAP: The Dynamic Neuromorphic Asynchronous
Processor has two variants, one optimized for scalable infer-
ence (Dynap-se), and another for online learning (Dynap-le).

Braindrop prototypes a single core of the 1 M-
neuron Brainstorm system [228]. It is programmed us-
ing Nengo [238] and implements the Neural Engineering
Framework [239].

5.2 Applications in Real-Time On-Board Robotics

As event-based vision sensors often produce significantly
less data per time interval compared to traditional cameras,
multiple applications can be envisioned where extracting
relevant vision information can happen in real-time within
a simple computing system directly connected to the sensor,
avoiding USB connection. Fig 13 shows an example of
such, where a dual-core ARM micro controller running at
200 MHz with 136 kB on-board SRAM fetches and processes
events in real-time. The combined embedded system of
sensor and micro controller here operate a simple wheeled
robot in tasks such as line following, active and passive ob-
ject tracking, distance estimation, and simple mapping [240].

A different example of near-sensor processing (“edge
computing”) is the Speck SoC9, which combines a DVS
and the Dynap-se neuromorphic CNN processor. Its peak
power consumption is less than 1 mW and latency is less
than 30 ms. Application domains are low-power, continuous
object detection, surveillance, and automotive systems.

9. https://www.speck.ai/

Event cameras have also been used on-board quadrotors
with limited computational resources, both for autonomous
landing [241] or flight [27] (Fig. 13b), in challenging scenes.

6 DISCUSSION

Event-based vision is a topic that spans many fields, such as
computer vision, robotics and neuromorphic engineering.
Each community focuses on exploiting different advantages
of the event-based paradigm. Some focus on the low power
consumption for “always on” or embedded applications on
resource-constrained platforms; others favor low latency to
enable highly reactive systems, and others prefer the avail-
ability of information to better perceive the environment
(high temporal resolution and HDR), with fewer constraints
on computational resources.

Event-based vision is an emerging technology in the
era of mature frame-based camera hardware and software.
Comparisons are, in some terms, unfair since they are not
carried out under the same maturity level. Nevertheless
event cameras show potential, able to overcome some of the
limitations of frame-based cameras, reaching new scenarios
previously inaccessible. There is considerable room for im-
provement (research and development), as pointed out in
numerous opportunities throughout the paper.

There is no agreement on what is the best method
(and representation) to process events, notably because it
depends on the application. There are different trade-offs
involved, such as latency vs. power consumption and accu-
racy, or sensitivity vs. bandwidth and processing capacity.
For example, reducing the contrast threshold and/or in-
creasing the resolution produces more events, which will be
processed by an algorithm and platform with finite capacity.
A challenging research area is to quantify such trade-offs
and to develop techniques to dynamically adjust the sensor
and/or algorithm parameters for optimal performance.

Another big challenge is to develop bio-inspired systems
that are natively event-based end-to-end (from perception
to control and actuation) that are also more efficient and
long-term solutions than synchronous, frame-based sys-
tems. Event cameras pose the challenge of rethinking per-
ception, control and actuation, and, in particular, the current
main stream of deep learning methods in computer vision:
adapting them or transferring ideas to process events while
being as top-performing. Active vision (pairing perception
and control) is specially relevant on event cameras because
the events distinctly depends on motion, which may be due
to the actuation of a robot.

Event cameras can be seen as an entry point for more
efficient, near-sensor processing, such that only high-level,
non-redundant information is transmitted, thus reducing
bandwidth, latency and power consumption. This could be
done by pairing an event camera with hardware on the
same sensor device (Speck in Section 5.2), or by alternative
bio-inspired imaging sensors, such as cellular processor
arrays [242] which every pixel has a processor that allows to
perform several types of computations with the brightness
of the pixel and its neighbors.

https://www.speck.ai/
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7 CONCLUSION

Event cameras are revolutionary sensors that offer many
advantages over traditional, frame-based cameras, such as
low latency, low power, high speed and high dynamic range.
Hence, they have a large potential for computer vision
and robotic applications in challenging scenarios currently
inaccessible to traditional cameras. We have provided an
overview of the field of event-based vision, covering per-
ception, computing and control, with a focus on the working
principle of event cameras and the algorithms developed to
unlock their outstanding properties in selected applications,
from low-level vision to high-level vision. Neuromorphic
perception and control are emerging topics; and so, there are
plenty of opportunities, as we have pointed out throughout
the text. Many challenges remain ahead, and we hope that
this paper provides an introductory exposition of the topic,
as a step in humanity’s longstanding quest to build intelli-
gent machines endowed with a more efficient, bio-inspired
way of perceiving and interacting with the world.
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ETH Zürich. He received the Ph.D. in Control & Dynamical Systems from
California Institute of Technology in 2012. From 2013 to 2017 he was a
postdoctoral researcher at the Laboratory for Information and Decision
Systems, Massachusetts Institute of Technology, Cambridge, MA, USA.

Stefan Leutenegger is Senior Lecturer in Robotics at Imperial College
London, UK, in the Department of Computing. He received the PhD in
Mechanical Engineering from ETH Zurich, Switzerland, in 2014, at the
Autonomous Systems Lab. Since 2014 he leads the Smart Robotics
Lab at Imperial College London and co-leads research in the Dyson
Robotics Lab together with Prof. A. Davison. He is co-founder of the
startup SLAMcore.

Andrew Davison is Professor of Robot Vision and Director of the Dyson
Robotics Laboratory at Imperial College London. His research focus is
on SLAM and its evolution towards general “Spatial AI”. He has also
had strong involvement in taking this technology into real applications, in
particular through his work with Dyson and as co-founder of SLAMcore.
He was elected Fellow of the Royal Academy of Engineering in 2017.

Jörg Conradt is Associate Professor at the KTH in Stockholm, Swe-
den, in the School of Electrical Engineering and Computer Science.
Before joining KTH, he was W1 Professor at the Technische Universität
München, Germany. He holds a Ph.D. in Physics / Neuroscience from
ETH Zurich, Switzerland. He is an IEEE Senior Member, and was
the founding director of the Elite Master Program NeuroEngineering at
Technische Universität München.

Kostas Daniilidis is the Ruth Yalom Stone Professor of Computer and
Information Science at the University of Pennsylvania where he has
been faculty since 1998. He is an IEEE Fellow. He was the director of
the interdisciplinary GRASP laboratory from 2008 to 2013, Associate
Dean for Graduate Education from 2012-2016, and Director of Online
Learning since 2016. He obtained his PhD in Computer Science from
the University of Karlsruhe, 1992. His main interest today is in deep
learning of 3D representations, data association, event-based cameras,
semantic localization and mapping, and vision based manipulation.

Davide Scaramuzza is Associate Professor of Robotics and Perception
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