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ABSTRACT 
Social robots have varied effectiveness when interacting with 
humans in different interaction contexts. A robot programmed 
to escort individuals to a different location, for instance, may 
behave more appropriately in a crowded airport than a quiet 
library, or vice versa. To address these issues, we exploit ideas 
from program synthesis and propose an approach to transform­
ing the structure of hand-crafted interaction programs that uses 
user-scored execution traces as input, in which end users score 
their paths through the interaction based on their experience. 
Additionally, our approach guarantees that transformations to 
a program will not violate task and social expectations that 
must be maintained across contexts. We evaluated our ap­
proach by adapting a robot program to both real-world and 
simulated contexts and found evidence that making informed 
edits to the robot’s program improves user experience. 

Author Keywords 
Human-robot interaction, interaction adaptation, program 
repair, model checking 

CCS Concepts 
•Human-centered computing → Systems and tools for in­
teraction design; •Software and its engineering → Auto­
matic programming; Model checking; 

INTRODUCTION 
As consumer products, robots that are designed for human 
interaction will be introduced to a wide range of environments. 
For example, a delivery robot might be introduced to hotels, 
hospitals, or corporate offices; an information desk attendant 
robot might be used in doctors’ offices, corporate buildings, 
or airports; and a security robot might be deployed in banks, 
parking structures, or shopping malls. Each application might 
be designed for a broad range of contexts, such as a generic 
delivery robot, rather than a specific one, or it might be de­
signed for a particular context but brought into a different one. 
Both design scenarios result in poor fit between the application 
and the social context due to variations in physical properties, 
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Figure 1. In this paper, we present a novel method that borrows from 
program synthesis to iteratively adapt robot programs to social context 
based on user input provided during an initial deployment stage. 

task characteristics, and user preferences across settings. For 
instance, a delivery robot will face different levels of traffic, 
available space for navigation, user profiles, and types of de­
livery requests between a hotel and a hospital, or between two 
hotel chains where it is deployed. 

Failure to design for contextual variability might result in inef­
fective and inappropriate user interactions. Prior research in 
human-robot interaction has shown that delivery robots pro­
grammed to repeatedly announce their presence until being 
acknowledged are not suited for workplaces with low inter­
ruptibility, such as in the emergency rooms of hospitals, but 
can otherwise be seen as being effective and a welcome addi­
tion to the social environment [18], and humorous robots that 
fail to consider an individual’s sense of humor may be less 
amusing [34]. Furthermore, regardless of the context that a 
robot is placed in, the robot must adhere to various correctness 
guarantees that ensure that task expectations and universal 
social norms are met. For designers, creating interaction pro­
grams that are both correct with respect to these guarantees 
and optimal with respect to fitting a particular interaction con­
text is challenging, often involving rigorous, iterative design 
processes and both domain and programming expertise. 

How can robot developers close the gap between implemen­
tation and deployment or across deployments in robot pro­
grams due to changes in context, while ensuring that their 
applications achieve design goals across contexts? In existing 
approaches to designing for multiple contexts, the robot will 
automatically adapt its low-level behaviors to its users and en­
vironments. We argue that in addition to modifying low-level 
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behaviors, incorporating contextual knowledge into a program 
can be achieved by modifying the structure, and thus control 
flow, of the program itself in order to improve a robot’s ability 
to make decisions within different contexts, such as deciding 
what to do if the human ignores the robot, eliminating useless 
behaviors or adding useful ones, and controlling the overall 
pace of the interaction. In existing approaches to adaptation, 
however, making heavy changes to the structure of a program 
may sacrifice its adherence to context-free task expectations 
and social norms, or its correctness. 

We propose a lightweight approach informed by program syn­
thesis and formal verification to transforming the structure 
of complex human-robot interaction designs based on social 
context. In our approach, depicted in Figure 1, the correctness 
of programs is maintained as they are transformed over the 
course of multiple cycles, or epochs, of users interacting with 
a robot. In Step 1, on any given epoch, we record example 
execution traces of end users interacting with the robot as 
paths through the interaction program. Upon completion of a 
trace, the user is asked to score the trace based on the quality 
of their experience. Rather than assigning values to individual 
states based on individual robot decisions, entire sequences of 
robot decisions are scored. Thus, our approach complements 
existing methods of adapting interactions to social contexts 
that optimize a robot’s low-level behaviors within a static in­
teraction program (e.g., [33, 17, 8]). Additionally, collecting a 
single score provided by the user instead of passively sensing 
user experience makes our approach easy to deploy on any 
robot and mitigates many of the privacy concerns that arise 
from video and audio data collection in public settings. 

In Step 2, we perform automatic program repair by search­
ing for an edited, or transformed, interaction that maximizes 
acceptance of positive traces and exclusion of negative traces 
within the interaction. During the search, we employ model 
checking [9] to ensure that the transformed program adheres 
to a baseline set of social norm and task expectation proper­
ties expressed in temporal logic [20], thus maintaining quality 
and functionality guarantees. In Step 3, e.g., on the next day, 
additional traces are collected and further edits to the interac­
tion can be made. Our method to transforming an interaction 
presents a number of challenges: (1) a large search space, or 
the large space of possible transformations; (2) sparse input, 
or a small number of examples with limited labelling to in­
dicate quality that we must use to inform edits; and (3) the 
need to carefully perform edits to always result in functional, 
high-quality interactions. Over time, however, our approach 
creates interactions of potentially better quality than their cor­
responding original interactions while adhering to guarantees 
for not violating basic social norms and task expectations. 

In addition to our technical approach and its implementation, 
we present the design of and findings from two studies: an 
online study that assessed whether interaction designs that 
are adapted by our approach are seen as improvements by 
third-party evaluators and a field study that tested how user 
evaluations of an adaptive information desk attendant robot 
changed over the course of 12 days. The online study utilized 
a novel method, called interaction vignettes, that represents 

interactions at a high level of abstraction, in the form of play 
scripts, to enable third-party evaluators to assess the appropri­
ateness of an interaction for a given context. Our field study 
assessed the effectiveness of the transformations performed 
by our approach in improving user experience and contextual 
fit in a real-world setting over multiple epochs. 

Our contributions include: 

•	 A novel method for transforming human-robot interaction 
programs to physical and social contexts based on sparse 
input from humans interacting with the robot (§3); 

• An open-source implementation of our adaptation approach1 

as a program synthesis and repair algorithm (§3); 

•	 A two-part empirical evaluation of our approach, which 
includes (1) a validation of the potential of our approach 
under the controlled conditions of an online user study, and 
(2) an evaluation of the effectiveness of our approach in 
real-world settings through a field experiment (§4). 

RELATED WORK 
Human-Robot Interaction Design—Designing interactions as 
state-transition systems is a familiar concept within HRI, used 
in visual programming environments (VPE’s) such as Interac­
tion Composer [6], RoboStudio [5], Choregraphe [21], Inter­
action Blocks [26], and RoVer [20]. In many of these VPE’s, 
the states of an interaction represent subroutines involving a 
behavior or set of behaviors performed by the robot, and a 
response from the user. In RoVer, these subroutines are called 
microinteractions. Despite the potential to create robust inter­
action designs using a VPE, interactions will potentially fail to 
generalize to different contexts due to factors such as culture 
[14, 15, 31], education [16], humor and user preferences [34], 
and environmental factors [18]. 

Interaction Adaptation—Adapting intelligent agents, includ­
ing robots, to social context is a well-studied problem. Dialog 
systems, for instance, employ various techniques such as rein­
forcement learning [29] or memory models [23] to adapt to the 
needs and preferences of users. Within social robotics, much 
of the existing work on adaptive systems involves modifying 
the behaviors of a robot to improve extended interactions with 
a single user [1, 32]. For instance, reinforcement learning was 
used to adapt a humorous robot to the different humor levels 
of an audience [34], as well as the linguistic style of a robot 
to suit the preferences of those with whom it interacts [22]. 
Prior work on adaptive robots meant to have short-term inter­
actions with multiple human partners includes a bartending 
robot that uses reinforcement learning to select its responses 
to customers [13] and autonomous vehicles that use inverse 
reinforcement learning to adapt their driving to the behaviors 
of other vehicles on a road [24]. Work on adaptive robotic 
platforms extends to collaboration as well, where similar to 
our approach to adapting interactions, a robot deployed in 
the field adapts its execution of a manipulation task based on 
training labels provided by observers [28]. While reinforce­
ment learning and inverse reinforcement learning are effective 
1An open-source implementation of our technical approach is avail­
able at https://github.com/Wisc-HCI/interaction-transformation 
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in assigning reward to state, we propose assigning values to 
whole paths based on minimal input from the human. 

Program Synthesis and Repair—To perform interaction adap­
tation, we build on the ideas of automatic program repair and 
synthesis from the software engineering and formal methods 
communities. Given a logical specification of a program and 
a set of allowable modifications, automated repair involves 
uncovering a modified program that satisfies the specification 
[10]. The primary distinction between our method and existing 
repair techniques like that of [10] is that our repair objective 
contains both weighted trajectories (examples) as well as tem­
poral logic formulas. Thus, reactive synthesis algorithms and 
tools do not apply in our setting. 

Our method for interaction adaptation is based on a version 
of the counterexample-guided inductive synthesis loop [30], 
in which an adapted interaction is iteratively synthesized to 
exclude undesirable behavior. During an iteration of synthesis, 
some possible ways to perform the automatic creation of a 
new system are through enumerative searches [19] or Markov 
Chain Monte Carlo (MCMC) [27, 7]. In the MCMC approach, 
the acceptance criteria for a modification is based on both 
the change in performance of the program after the edit is 
made and the change in correctness according to the program 
specification. Other work in program synthesis through ge­
netic programming also uses the correctness of the program to 
create a fitness function that guides modification [11, 12, 35]. 
In the genetic programming approach, modifications to the 
program are first proposed and then either accepted or rejected 
based on the results from model checking [2] or testing, in 
which program properties are checked for violation. We also 
use model checking to accept or reject proposed modifications. 

Our approach of modifying the transition system is also rem­
iniscent of techniques for repairing probabilistic systems, 
which modify transition probabilities in order to satisfy a 
probabilistic property of the system [4, 3]. 

TECHNICAL APPROACH 
Our goal is to transform an interaction program to fit a partic­
ular context, while ensuring that it satisfies a set of baseline 
properties. In this section, we (1) formalize the interaction 
adaptation problem and (2) present an algorithm for solving it 
inspired by work on automated program repair and synthesis. 

Preliminaries: Interactions and Traces 
We will formalize an interaction program I as a state transi­
tion system, where states are represented by behaviors that 
the robot may perform, and actions are represented by the 
responses that the robot can recognize from the human. For 
instance, the set of responses may be {Ready, Ignore}, which 
correspond to whether the human has acknowledged the robot 
at the end of the behavior or is ignoring the robot. As 
with prior work, states may be represented by microinter­
actions [20]—lower-level modularized interaction transition 
systems—effectively allowing us to incorporate proceduraliza­
tion into our representation of interactions. 

Formally, an interaction I is a tuple (S,Act,→,s0), where S is 
the set of states within the system; Act is the set of allowable 

Arrive Announce Goodbye
ready
ignore

ignore

ready

Interaction Program

Correctness Properties

a)

b)

G [ (Announce    ending    ready)     ¬F (Announce    beginning)  ]

At some point in the interaction, the robot must make an
announcement

�e robot must not make the announcement again if already
acknowledged

F Announce

beginning ending

Figure 2. An interaction transition system: a robot arrives at a location 
and makes an announcement. Transition labels represent human actions. 
Correctness properties describe task-related rules and social norms to 
which the robot must adhere. 

(expected) human actions; → ⊆ S × Act × S is the transition 
relation, representing how the state of the robot changes in 
response to human actions; and s0 ∈ S is the initial state. We 
denote states with no outgoing transitions as accepting (sink) 
states. In practice, states may have additional labels, which 
we omit here for brevity. The representation of interaction I in 
Figure 2 is an example of a transition system, where the initial 
state is Arrive and the accepting state is Goodbye. 

A trace t through interaction I is a sequence of states and 
actions starting in s0 and ending in an accepting state. We 

a0 a1 a2 an−2represent a trace as s0 −→ s1 −→ s2 −→ ... −−→ sn−1. Within 
ready

the interaction in Figure 2, an example trace is Arrive −−−→ 
ready

Announce −−−→ Goodbye. Intuitively, a trace is an execution 
of the interaction program exercised by a human and the robot. 

The Adaptation Problem 
After having observed a set of traces T , defining multiple 
human–robot interactions, we aim to transform, or repair, the 
interaction so as to improve its quality. At the end of recording 
a particular trace t, the human will be asked to rate the quality 
of the trace, which will be converted to a score in the real-
valued interval [−1, 1] and stored with the trace. Given trace t, 
we will use w(t) to indicate its score. 

The adaptation problem can be stated as the following opti­
mization problem, where our goal is to construct a repaired 
interaction R(I) that aims to eliminate low-scoring traces. 

Find a repair R(I) that (1) maximizes ∑t∈T ∩R(I) w(t) and 
(2) satisfies a set of baseline correctness properties. 

Here T ∩ R(I) denotes all traces in T that are accepted by 
R(I). Therefore, the optimization problem aims to eliminate 
negatively scored traces and maintain positively scored ones. 

We now define what we mean by baseline correctness prop­
erties. These are hard constraints added to ensure that the 
interaction does not break down after a repair, e.g., not fulfill 
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Figure 3. Overview of our adaptation process. Given an interaction model and set of baseline correctness properties, each round of adaptation records 
execution traces and searches for repairs until an interaction that increases human experience and adheres to the baseline properties is found. 

its intended task or violate social norms. Our approach is 
inspired by the work on RoVer [20], where correctness prop­
erties are encoded in logic and checked with an automated 
prover, namely, a model checker [2]. Figure 2(b) shows two 
properties in linear temporal logic (LTL) along with their de­
scription. We refer the reader to Baier et al.’s [2] book for a 
formal introduction to LTL and Rover [20] for more examples 
of interaction properties encoded in LTL. For our purposes 
here, the English-language description will suffice. For ex­
ample, in Figure 2, the property G [ (Announce ∧ ending ∧ 
ready) → ¬F (Announce ∧ beginning) ] specifies that if the 
robot is ending its announcement and has been acknowledged 
by the human, then it will not initiate future announcements. 

The Adaptation Algorithm 
Our approach to adaptation, illustrated in Figure 3, is seg­
mented into two distinct components: (1) trace collection and 
(2) solving the adaptation problem, which are iterated upon 
indefinitely or until stopping criteria is met. We refer to a cycle 
of trace collection and repair as an epoch. Below, we describe 
the components of an epoch and process for iterating epochs. 

Collecting traces 
In this step of an epoch, the interaction is deployed in a robot, 
and the robot interacts with humans. For each human that 
interacts with it, the robot will record traces as the sequence of 

a0 a1 a2 an−2n steps through the interaction s0 −→ s1 −→ s2 −→ ... −−→ sn−1. 
To ensure that traces with sufficient variability are collected, 
the robot may also generate a sequence of steps at runtime 
that satisfy the baseline properties but are not accepted by the 
interaction. For instance, if a particular state does not exist 
in the interaction, the robot may artificially include that state 
in the trace experienced by a user. We refer to the process of 
generating traces not accepted by the interaction as mutation. 

Solving the Repair Problem 
In this step of an epoch, we solve the adaptation problem 
based on the traces we have collected. The difficulty here 
is that the optimization problem results in a combinatorial 
explosion of possible modifications to I, and, to make matters 
worse, we have to ensure that the new, repaired interaction 
R(I) satisfies correctness properties—an expensive process 
involving a model checker. 

We define a possible repair R(I) as a sequence of edits that ma­
nipulate the states and transitions of I. Some examples of edits 
may include, but are not limited to, swapping the robot’s be­
havior within a particular state, redirecting a transition, adding 
a new state, and removing an added state. 

Our repair algorithm searches for a repair by applying a se­
quence of edits e1, . . . ,en to the original interaction I. Specifi­
cally, it searches the space of edits in a breadth-first fashion, 
from the shortest to the longest (up to a fixed maximum length). 
For every sequence of edits, e1, . . . ,en, it (1) constructs a new 
interaction R(I), (2) computes the score ∑t∈T ∩R(I) w(t), and (3) 
checks if R(I) satisfies the baseline properties using a model 
checker. To avoid weighting frequently-seen traces more heav­
ily, we consolidate and average the scores for duplicate traces 
into a single unique trace. Finally, the algorithm returns the re­
paired interaction R(I) that has the highest score and satisfies 
the correctness properties. 

One outcome of edits is the removal of negatively-rated, or bad, 
traces from being accepted by the interaction while attempting 
to maintain acceptance of positively-rated, or good, traces. 
Through the removal of bad traces, possibly unrated traces in 
the interaction are introduced as a side-effect. For instance, 
in redirecting a transition to remove a bad trace, a new path 
through the interaction may be introduced that would not be 
accepted by the starting interaction. Mutations are another 
mechanism through which potentially unrated traces can be 
introduced. If a mutated trace is rated positively, then edits 
may be made to include it in the repaired interaction. 

Iteration of Epochs 
After obtaining an optimized interaction with a highest score, 
the resulting interaction will serve as input to a subsequent 
iteration of adaptation. The modified interaction will be de­
ployed into a robot, and a new set of traces will be collected 
that will be appended to the set of previously collected traces. 
Thus, potentially unrated traces introduced in previous epochs 
may be experienced by users and rated positively, neutrally, 
or negatively. These new traces will be scored and used as 
input to the optimization algorithm. If at any point no further 
iterations of adaptation are desired, the interaction will be 
returned and the adaptation process will halt. Otherwise, the 
adaptation cycle can continue indefinitely. 
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Key Algorithm Optimizations 
We now describe two key optimizations that make our algo­
rithm’s implementation practical. 

Reducing Model Checker Calls 
As the depth of search increases, the number of interactions 
that need their score calculated and correctness verified in­
creases exponentially. A reader who is familiar with model 
checking will note that frequent calls to the model checker can 
significantly slow down the search. Therefore, in each call 
to the model checker, we collect counterexamples that show 
paths through the proposed interaction that lead to property 
violations. Before invoking the model checker next time, we 
first check whether the proposed interaction includes one of 
the discovered counterexamples, in which case calling the 
model checker is unneeded. Thus, the model checker is only 
called if the program is deemed correct with respect to the 
set of counterexamples. This idea of using counterexamples 
to avoid calling an expensive verifier has appeared in various 
guises in the program synthesis literature [7]. 

Potential and Fault Localization 
To reduce the search space of edits, we perform potential and 
fault localization, a process that involves searching user traces 
for transitions and states that, if changed, would most likely 
increase human experience. In our approach, we perform fault 
localization by ranking transitions and states based on their 
frequency in bad traces, and potential localization by rank­
ing transitions and states based on whether, if changed, they 
would match a transition or state that is frequently observed in 
good traces. After a ranking is assembled, we determine an 
“editable” set of transitions and states that is some percentage 
of the size of the interaction. For instance, fault and potential 
localization of 30% would search for the 30% of transitions 
and states within the whole interaction that, if changed, would 
most likely increase the score of the interaction. 

EVALUATION 
To evaluate our approach to transforming human-robot inter­
actions, we employed an online study conducted using the 
Amazon Mechanical Turk (MTurk) marketplace and a field 
study involving a real-world, long-term deployment of two 
robots at a university building accessible to the public. The 
purpose of the MTurk study was to test the efficacy of our ap­
proach under optimal interaction conditions—a high number 
of users and ratings per individual trace, and mutations that 
require few edits to be accepted in the interaction. Our eval­
uation utilized a novel evaluation method, called interaction 
vignettes, that asked MTurk users (Turkers) to rate conversa­
tional transcripts of simulated interactions. With Turkers, the 
interaction context shifts to include their preferences for how 
the robot should act. The field study aimed to demonstrate 
the efficacy of our approach in real-world settings by adapting 
a human-robot interaction program to a specific context over 
the course of 12 days. Using the data collected from the field 
study, we additionally performed a qualitative analysis of user 
emotions and attitudes towards the robot and present several 
themes resulting from this analysis that inform future iterations 
of our approach to transforming interaction programs. 

In both studies, we test our hypothesis that transforming in­
teractions through our approach will improve the quality of 
end-users’ experience when interacting with the robot (H1). 
We also test our hypothesis that our approach will improve 
the contextual fit of the interaction, or users’ perception of 
how effective the robot is at interacting with people within 
the context that it is placed in (H2). We will first describe the 
human-robot interaction program and task criteria that were 
used in each study, followed by the results from the online 
study and the results from our field study. 

Starting Interaction 
Both studies focused on a robot who sits at a welcome desk 
in a large research institution and whose job is to answer 
questions about both the building and itself. Figure 4 (top-left) 
describes all potentially necessary behaviors for the robot, and 
Figure 4 (top-right) describes the responses from the human 
that the robot can recognize. Using this interaction space, 
we designed an initial interaction by hand containing seven 
states within which are assigned the robot behaviors Greeting, 
ListOut, Prompt, Validate, Answer, ReferToDesk, and Farewell. 
Beginning at the state with the Greeting behavior, the state 
transitions of the initial interaction are defined below: 

1. Goodbye always leads to the state with Farewell. 
2.	 UnsatRequest always leads to the state with Refer-

ToDesk. 
3. RequestInfo always leads to the state with Validate. 
4.	 AskClarify or General statements always lead to the 

state with ListOut. 
5. Ignore always leads to the state with Prompt. 
6.	 If in the state with the Validate behavior, an Affirm leads 

to the state with the Answer behavior. Otherwise, Affirm 
leads to the state with the ListOut behavior. 

7.	 If in the state with the Validate behavior, a Deny leads 
to the state with the Prompt behavior. Otherwise, Deny 
leads to the state with the ListOut behavior. 

In the starting design, we introduced various structural partic­
ularities intended to allow room for the interaction to improve. 
Specifically, the robot overuses ListOut to constantly remind 
users of the questions it can answer. Additionally, when ig­
nored, the robot “demands attention” [18] with the Prompt 
behavior. Lastly, the starting interaction intentionally excluded 
potentially entertaining behaviors such as TellJoke. 

Our starting design is also subject to the baseline properties 
shown in Figure 4 (bottom). We refer to one of the properties 
as a job requirement, or a rule required by the staff members 
working at the welcome desk. The remaining properties are 
rules that the robot should adhere to for the interaction to make 
sense. Subject to these properties, we allow edits to be made 
that (a) swap the robot’s behavior within a particular state, and 
(b) redirect transitions to other states. 

Online User Study 
Our first evaluation assessed whether interactions adapted 
using our approach better fit their context and improved user 
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LTL Form

F Farewell

¬(AnswerQuestion | Validate) U RequestInfo

G (A�rm      Validate)       X AnswerQuestion

G RequestInfo       X (AnswerQuestion | Validate) 

G Goodbye        X Farewell

Job Requirement: If the human makes an unsatis�able request, the robot must refer them to the desk.

Whenever the human says goodbye, the robot must respond by saying farewell.

�e robot must say farewell at some point.

�e robot cannot answer or clarify a question unless the human asks a question.

G UnsatRequest        X ReferToDesk

G Farewell        X END �e interaction must end a�er the robot says farewell.

�e robot must answer the most recently asked question if the human a�rms that the robot heard correctly.

When the human asks a question, the robot must respond by answering or clarifying the question.

Correctness Properties

Available Robot Behaviors

Property Description

Recognizable User Responses

Greeting

ReferToDeskListOut

Prompt

Validate

Answer

Farewell

Listen

FunFact

AskToRepeat

Help

TellJoke

Apologize

A request for information in the form of
a question.

An a�rmation, such as “yes.”
Greet the user.

List everything
the robot can do
to the user.

Prompt the user
to ask a question.

Ask the user if
the robot heard
correctly.

Answer the
user’s question.

Refer the user to
the sta� working
at the desk.

Listen without
saying anything
to the user.

Tell a fun fact
about the building
to the user.

Ask the user to
repeat themselves.

O�er advice for
interacting with
the robot.

Apologize for
hearing the user
incorrectly.

Tell a joke to
the user.

Bid the user
farewell.

A denial, such as “no.”

An unsatis�able request, or one that the 
robot is not allowed to handle.

A request for clari�cation from the robot.

A signal to end the conversation.

Indicates unintelligible speech from the
user.

Indicates absence of speech from the user.

RequestInfo

A�rm

Deny

UnsatRequest

Clarify

Goodbye

General

Ignore

Figure 4. (top-left) The robot behaviors that are available in our interaction space. (top-right) The user responses that the robot can recognize within 
our interaction space. (bottom) The correctness properties in LTL that interactions in our interaction space are subject to. 

experience. Below, we describe our evaluation approach, study 
design, and findings. 

Interaction Vignettes 
To test our approach with a large number of users in a short 
amount of time, we devised a novel method that involves 
generating interaction vignettes in the form of play scripts, 
describing the speech of all parties in a hypothetical interaction. 
The generated vignettes represent interactions at a level of 
abstraction that enables the judgment of the appropriateness 
of the interaction for a given context and lacks details that 
might mask the high-level behaviors that our approach targets 
and that would be costly to design. These vignettes were 
probabilistically generated, including the content of the human-
user speech, from observations in the field about what users 

Robot: Hey there!
Human: Where can I eat around here?
Robot: Did you want to know the dining options in
       the building?
Human: Yes, please.
Robot: If you’re looking for lunch, try the
       mediterranean restaurant on the far-east
       side of the building! There is also a
       coffee shop right behind me.
Human: Okay, thank you.
Robot: See you later!
Human: (leaves interaction)

Figure 5. A sample interaction vignette between a human and a robot, 
similar to what Turkers saw in our online user study. 

are most likely to do in response to specific behaviors. A 
sample vignette is provided in Figure 5. 

Study Design 
To establish the effectiveness of our approach in improving 
the appropriateness of interactions for a given context, we 
designed a 2 × 1 within-participants study that manipulated 
whether interactions were adapted or non-adapted and that 
measured the user experience and fit of an interaction to its 
context as the dependent variables. 

Measures 
Our subjective measures aimed to measure how participants 
perceived the behaviors of a robot, as presented in an inter­
action vignette, given the context and included eight items. 
The first item measures the score of the interaction from the 
perspective of a third-party observer using a three-point Likert 
scale with the question “How did the interaction go?” The 
score of a vignette is meant to indicate the quality of the trace 
that generated the vignette, but is not meant to measure user 
experience or contextual fit. Subsequently, a seven-point Lik­
ert scale was used for four items measuring the perceived user 
experience of the human in the vignette (Cronbach’s α = 0.92) 
and three items measuring the perceived contextual fit of the 
interaction (Cronbach’s α = 0.85). The items measuring user 
experience focused on the effectiveness of the responses and 
the flexibility of the robot, as well as the naturalness of the 
interaction and perceived user satisfaction. The items mea­
suring contextual fit focused on the appropriateness and goal­
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Figure 6. Interaction score, user experience, and contextual fit from the MTurk (left) and field (right) studies. “*” denotes statistically significant results. 

supporting ability of the robot, and whether it was suited to its 
surrounding environment. We randomized the order in which 
the items measuring user experience and fit appeared. 

Procedure 
Our online study involved two phases. In the first phase, 
we created and deployed 100 interaction vignettes from the 
starting interaction onto MTurk. Half of these vignettes were 
mutated by treating non-mutated traces as templates. Mutated 
traces were identical to their non-mutated counterparts except 
for one or two changes entailing the insertion or deletion of a 
state or the modification of an existing state or transition. 

After the completion of the first phase, we used the scores 
for each trace provided by Turkers to transform the interac­
tion program with fault/potential localization set to 30%. We 
performed a second BFS search starting from the interaction 
program returned from the first search, simulating the comple­
tion of two epochs in the first phase of our user study. In the 
second phase of our study, we created and deployed another 
50 interaction vignettes from the updated interaction, and 50 
from the starting interaction, onto MTurk. 

The study followed a protocol that was reviewed and approved 
by our Institutional Review Board (IRB). Participants first 
reviewed and signed a consent from. They were then provided 
with a description of the interaction context and information on 
the task. Next, participants reviewed six interaction vignettes 
and responded to a questionnaire for each vignette that in­
cluded our subjective measures. They received compensation 
upon approval of their work. 

Participants 
We recruited 55 participants from the MTurk online market­
place for each phase of our study, for a total of 110 participants. 
We discarded data from seven of these participants because 
either data was missing from their responses, or because they 
failed our “attention check” question, in which we asked par­
ticipants to answer a question in a specific way. The primary 
language of each participant was English. The participants 
were paid $6 USD/hour, and each participant received $1.25 
USD for participating for approximately 10–15 minutes. 

Results 
Transformations—The final interaction accepted a set of good 
and neutral traces with four mutations: (1) from Greeting 
the Ignore response will cause the robot to transition to the 
state with ListOut, (2) from Validate the General response 
will cause the robot transition to the state with Answer, (3) 
from Validate the Ignore response will also cause the robot to 
transition to the state with Answer, and (4) from Answer the 
Affirm response will cause the robot to transition to the state 
with Farewell. In removing bad traces, the final interaction 
accepted an edit in which from Greeting the Affirm response 
will cause the robot to transition to the state with Prompt. 

Interaction Scores, User Experience, & Contextual Fit—We 
tested our results from the second phase of our MTurk study 
for significance with a repeated measures analysis of variance 
(ANOVA). The interaction score for the transformed interac­
tion (M = 1.02, SD = 0.82) was significantly higher than the 
score provided for the starting interaction (M = 0.75, SD = 
0.76) (F(1,46.79) = 7.655, p < 0.01). Perceived user experi­
ence for the transformed interaction (M = 3.28, SD = 1.60) 
was also significantly higher than the perceived user expe­
rience of the starting interaction (M = 2.83, SD = 1.56) 
(F(1,45.27) = 7.5346, p < 0.01). Lastly, we did not find 
a significant difference in perceived contextual fit between 
the transformed interaction (M = 3.88, SD = 1.33) and the 
starting interaction (M = 3.56, SD = 1.44). 

Field Study 

Study Context and Implementation 
Our field study took place in a research institute located on the 
campus of a large university. The building occupants include 
researchers and research support staff, but the ground floor 
includes a more diverse population that is open to the public 
and features public events and dining options. The ground 
floor also contains a welcome desk for assisting visitors. 

The setup for our field study is shown in Figure 7. We de­
ployed two Softbank Robotics Nao robots2 on either side of 

2https://www.softbankrobotics.com/us/NAO 
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Figure 7. Our study setup. (a) Each robot was placed on a cocktail table 
and equipped with an external microphone and a touch-screen computer 
for participant consent and input. (b) The two robots were placed on the 
two sides of an information desk in a research institute building. 

the welcome desk. One robot ran the initial interaction pro­
gram throughout the study, while the other ran an interaction 
program that had been adapted from the traces collected thus 
far on both robots. At the start of the experiment, both robots 
ran the initial interaction program. On each day of the study, 
we randomized the placement of the robot running the adapted 
interaction to minimize bias resulting from robot location. 

Measures 
We measured user experience and contextual fit with a nine-
item questionnaire presented to users at the end of their in­
teraction with the robot. The first item measured the users’ 
interaction experience as the score of an interaction trace and 
uses a three-point Likert scale with the question “How was 
your experience?” Thus, unlike the MTurk study, the quality 
of the trace is tied to user experience. Subsequently, we used 
a five-point Likert scale for four items measuring the users 
experience in greater depth (Cronbach’s α = 0.90) and four 
items measuring the perceived contextual fit of the interaction 
(Cronbach’s α = 0.83). The items were similar to those in the 
MTurk study, with an extra item for contextual fit for whether 
the robot aligned with user preferences. We randomized the 
order in which the five-point Likert scale items were presented. 

We analyzed the video recordings following a modified emo­
tion coding process [25], in which we coded the videos for 
participant facial expressions and speech utterances that in­
dicated basic emotions or attitudes toward the robot. For 
each participant, we noted the timestamps at which facial ex­
pressions or speech utterances occurred that differed from a 
“neutral” state, extracting a coding scheme comprised of a set 
of in-vivo codes from the timestamps. To determine reliability, 
a secondary coder trained on the coding scheme was asked to 
code 15% of the timestamps (Cohen’s κ = 0.78). 

Procedure 
We ran our study between 8 o’clock am and 5:30 pm over the 
course of twelve days. The study setup was fully self-run in 
that passersby interested in interacting with a robot could initi­

ate the study themselves. The touch-screen computer placed 
in front of the robot (shown in Figure 7) guided participants 
through providing informed consent. Upon providing consent, 
the robot initiated the interaction. At any point during the 
study, participants could terminate the interaction prematurely 
by pressing a button on the screen. After the interaction ended 
either by the button-press or through an exchange of farewells 
by the participant or robot, the participant was guided through 
the nine-item questionnaire on the touch-screen computer. Mu­
tations were made at runtime for under one quarter of users 
and were more drastic than in the MTurk study, ranging from 
inserting, deleting, and modifying states and redirecting tran­
sitions to generating multiple steps in a trace at random. 

After a day of collecting data, we performed a union of the set 
of traces collected on that day with the set of existing traces 
collected on previous days to create a newly combined set of 
traces. The new set of traces then served as input into the trans­
formation algorithm, which was run overnight for between 
nine and twelve hours. In order to promote hill-climbing, we 
parallelized the algorithm such that one core ran the algorithm 
with the most up-to-date interaction as input, while another 
core ran the algorithm with the original interaction as input. 
Thus, edits made on a previous day could easily be undone if 
the core running the algorithm with the original interaction as 
input returned the better interaction. 

Participants 
A total of 70 participants (69 unique individuals, and 1 indi­
vidual who interacted with the robot twice) provided informed 
consent to interact with the robots over the course of 12 days 
(5 epochs). We discarded 31 participants because they fell into 
one of the following three categories: (1) the video showed 
or there was a strong reason to believe that a minor interacted 
with the robot or was present during an interaction; (2) the 
video showed a separate party other than the person who con­
sented to participate assuming responsibility for answering 
some or all questions on the questionnaire; and (3) the partic­
ipant did not answer any questions on the questionnaire. 26 
discarded data points were observed on the day of a nearby 
children’s event during which many minors interacted with 
the robot. Discards were much less frequent on other days of 
the study. Of the 39 participants remaining, all successfully 
completed and scored the interaction. Of these participants, 
three did not provide their gender, and five did not provide 
their age. Of the participants who provided this information, 
22 were male and 14 were female, and the average age of par­
ticipants was 30.1 (SD = 13.3), ranging from 18 to 61. Lastly, 
the video equipment failed with two participants, restricting 
our video analysis to the remaining 37 participants. 

Results 
Transformations—Edits to the interaction occurred without 
accepting any mutated traces. Beginning at the starting inter­
action, we observed one edit made in the first epoch. In the 
second epoch, the previous edit was undone and three new 
edits were introduced. In the third epoch, the changes from 
the previous epoch were undone and two new edits were in­
troduced. In the fourth epoch, the changes from the previous 
epoch were kept, namely (1) from ListOut the Ignore input 
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causes the robot to transition to the state with ReferToDesk, 
and (2) from Validate the Ignore response will cause the robot 
to transition to the state with Farewell. In the new edit, from 
Greeting hearing RequestInfo will cause the robot to immedi­
ately answer the human’s question by transitioning to the state 
with the Answer behavior. No further changes were made. 

Despite not accepting mutations, the repair algorithm accepted 
a limited number of new traces into the interaction. Of the 39 
users that interacted with the robot, three experienced traces 
that can only be accepted by the final interaction, one assign­
ing a positive score to their trace, while the others assigning a 
neutral score. More data from a longer-term study can enable 
more definitive conclusions about the ability of our approach 
to introduce novel good traces. Other edits were performed to 
remove edits with a net negative score from the final interac­
tion. Fifteen users experienced traces that are only accepted 
by the starting interaction, eight assigning a negative score, 
while seven assigning a neutral score to their interaction. 

User Experience & Contextual Fit—We performed one-tailed 
t-tests to compare user experience and contextual fit between 
the adaptive (n = 7) and the non-adaptive (n = 6) condi­
tions in the final epoch of our field study. Users’ scores 
in the adaptive condition (M = 1.57,SD = 0.53) were sig­
nificantly higher than those in the non-adaptive condition 
(M = 0.33,SD = 0.52), t(11) = 4.23, p < 0.01. However, 
user experience did not significantly differ between the adap­
tive (M = 2.63,SD = 1.01) and non-adaptive conditions (M = 
2.13,SD = 1.02). Contextual fit also did not significantly 
differ between the adaptive (M = 2.88, SD = 1.08) and non­
adaptive conditions (M = 2.54,SD = 0.84). 

Video Analysis 
Nine codes arose from our analysis of participant videos: en­
joying, impressed, distracted, confused, startled, irritated, 
uneasy, disappointed, and disapproving. We defined codes 
based on distinct facial features and vocalizations emitted 
by participants, such as “fidgeting, a nervous smile or laugh, 
quickly shifting gaze looking around at no-one in particular 
or people outside of the study area” for uneasy. We present 
four themes from our analysis and their implications for future 
iterations of our approach, identifying participants as P1-37. 

Theme 1: Ambiguous Responses to Robot—We observed par­
ticipants rate their interaction negatively despite their video 
data indicating enjoyment. For instance, when P7 asked the 
robot, “Where is the parking,” the robot did not recognize her 
speech and responded by prompting her to ask a question. P7 
responded with laughter despite her most recent query and 
all of her other queries not being fulfilled, but still assigned 
a low score to her trace. Conversely, we also observed some 
participants, such as P24, weigh their interaction positively 
despite being startled and exhibiting unease because of the 
robot. In both cases, either the behaviors or the trace ratings of 
P7 and P24 misrepresented their actual experience. Thus, fu­
ture iterations of our approach must utilize more sophisticated 
methods for both capturing and inferring user experience. 

Theme 2: Diminishing Experience—We observed across mul­
tiple participants that the positive-valence codes enjoying and 

impressed were observed in the beginning of their interaction 
with the robot, while negative-valence codes dominated the 
rest of their interaction. For instance, at the beginning of her 
interaction with the robot, P2 expressed enjoyment in the form 
of excitement when the robot said “Hello,” followed by dis­
appointment, irritation, and disapproval. Other participants 
exhibited the same pattern of initially expressing enjoyment or 
being impressed, followed by negative reactions to the robot. 
The implications of this finding are that users’ expectations of 
the quality of the interaction are being broken early-on. Fu­
ture iterations of our approach should thus collect information 
about exactly where in a trace the quality of the interaction 
shifts and then perform targeted edits to the interaction. 

Theme 3: Startling the User—We observed four participants 
being startled by the robot’s “Hello” and then exhibiting signs 
of unease, sometimes resulting in the interaction being termi­
nated early. For instance, after being startled by the robot, P24 
turned to the staff members sitting behind the welcome desk 
and asked “Am I allowed to do this?” After exhibiting more 
uneasy behavior—namely standing in a stiff manner, looking 
behind her, and putting her hand in front of her face—P24 
ended the interaction, not having said a word to the robot. 
This case, combined with other instances of participants being 
startled or uneasy at the beginning of the interaction, demon­
strates the critical role that the start of the interaction plays in 
shaping user experience. Our approach would benefit from 
being able to target edits to the start of the interaction when 
user experience is initially poor. 

Theme 4: Breaking Correctness Properties—We observed 
multiple participants prematurely ending the interaction, often 
immediately after expressing irritation, disapproval, or other 
negative emotions and attitudes. This finding describes an in­
stance in which users’ goals—wanting to end the interaction— 
conflicted with a model checking property. In this case, the 
robot immediately ends the interaction, breaking the property 
F Farewell. Our approach can be improved to handle such 
conflicts. One possible solution is to model leaves interaction 
as a recognizable human response. Another possible solution 
could be to modify the property itself in the event of a conflict. 

DISCUSSION 
We discuss the effectiveness of our approach in increasing user 
experience and contextual fit, finding improved interactions, 
and making informed modifications. 

Overall Effectiveness 
We hypothesized that our approach to transforming robot pro­
grams would increase user experience (H1) and the perceived 
contextual fit (H2) of the interaction. Under the controlled 
conditions of the MTurk study, we found that the perceived 
user experience of the interaction increased over data collected 
in one epoch. Additionally, in the field study, we found a sig­
nificant increase in the final interaction scores over five epochs. 
Although it is possible that these significant differences arose 
due to poor quality of the initial interaction, our baseline cor­
rectness properties are purposefully non-restrictive such that 
numerous edits could potentially make the interaction worse, 
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such as the robot issuing multiple greetings within the interac­
tion. Regardless, we found no significant difference in the the 
four-item measure of user experience in the field study. Thus, 
H1 is only partially supported. In both studies, there was no 
significant difference in contextual fit between the starting and 
the final interactions. Thus, H2 is not supported. 

In the MTurk study, we believe that the lack of difference in 
contextual fit is partially due to Turkers being removed from 
the interaction context, thus hindering their ability to accu­
rately gauge whether the robot behaves appropriately. In the 
field study, we believe the lack of difference in both measures 
is partially due to the small amount of data that we collected. 
Collecting more data over more epochs would further charac­
terize sequences of robot behavior, induce further edits, and 
potentially heighten the differences in user experience and 
contextual fit. Other factors such as the loudness of the robot 
and deficiencies in speech recognition and parsing that are not 
fixed in our approach to transforming interactions may dilute 
improvements made to the structure of the interaction, thus 
limiting improvements to user experience and contextual fit. 

Algorithm Effectiveness 
The findings of our evaluation suggest that our approach is 
able to remove bad traces from interactions over time. While 
the MTurk study demonstrated the ability to generate novel 
good traces through mutations, the field study showed that 
more work is necessary to uncover the ability of our approach 
to generate novel good traces under realistic conditions. Ad­
ditionally, the brute-force nature of our approach restricts its 
scalability. However, we believe BFS to be similarly effective 
to state-of-the-art MCMC approaches for overnight computa­
tional time frames. Recent work has shown that enumeration 
can be often more effective than MCMC [19]. Our experience 
has been similar, and we therefore opted for a BFS approach, 
as it is simple to implement and debug. Lastly, we found our 
approach to making mutations in the field study to be largely 
ineffective. The large random changes made to the robot’s be­
havior at runtime were often too drastic to be up-taken within 
an overnight run of the repair algorithm. Conversely, our 
MTurk study shows that smaller positively rated mutations, 
such as redirecting a single transition, are more easily taken up 
by our transformation algorithm, as four of the five edits made 
to the interaction in the MTurk study resulted from mutations. 

Making Informed Edits 
Transformations to interactions that remove bad traces, main­
tain good traces, and include positive mutations are directly 
informed by user feedback. These edits inadvertently cause 
new, possibly unrated traces to become available for future 
end-users to experience, which may be removed or maintained 
in future epochs due to further user feedback. Although user 
feedback is based on interaction quality, there is little evidence 
for how each individual edit is tied to context. Some edits 
intuitively increase interaction quality more than others. In 
particular, the edit in the field study in which from Greeting the 
RequestInfo response causes the robot to transition to Answer, 
as well as the edits in the MTurk study in which from Validate 
the General or Ignore responses cause the robot to transition 
to Answer all increase the chance that the robot will answer 

questions. However, whether or not these edits are situated in 
the context of their respective interactions is unclear. 

Limitations and Future Work 
The scalability of our BFS approach is our primary algorith­
mic limitation, hindering convergence to a globally optimal 
interaction. Under short computational time frames, larger 
interactions and restrictive sets of properties will cause our 
approach to experience even greater difficulty in hill-climbing, 
and in a worst-case scenario, continue to return the original 
interaction. Although our approach is effective within an 
overnight time frame, future work should improve our repair 
algorithm to scale better and hasten convergence. The inability 
to edit parameters within specific robot behaviors, such as the 
robot’s speech volume or gesturing and gaze behaviors, is 
another algorithmic limitation of our approach. Future work 
should investigate how our approach can work in tandem with 
existing adaptation approaches to adapt both the structure of an 
interaction and the parameters for individual robot behaviors. 

Our evaluation also has a number of limitations. Primarily, 
we did not evaluate whether our approach can target edits to 
different contexts or how individual edits are tied to context. 
Given the practical challenges of administering field studies 
in parallel, future work may test whether and how adaptations 
can be targeted to simulated contexts within a laboratory envi­
ronment. The amount of data collected and epochs performed 
present another limitation to our evaluation. The data collected 
in the field study remained sparse over the course of all five 
epochs, restricting the ability of our approach to effectively 
address the large variation in user profiles that are common 
in the field. Our MTurk study collected much more data, but 
all within a single epoch. Further epochs may still introduce 
novel negative traces into the interaction that would require 
even more epochs to remove. Furthermore, a different set of 
mutations would have likely introduced a different set of edits 
into the interaction, potentially affecting user experience or 
contextual fit. Thus, future evaluations must include more data 
and more epochs to study convergence within our approach. 

CONCLUSION 
We present an approach to transforming the structure of human-
robot interaction programs while adhering to guarantees about 
the robot’s behavior. Our approach involves recording execu­
tion traces of end-user interactions with the robot and asking 
users to score the traces based on the quality of their interac­
tion. We then edit the program using breadth-first search such 
that execution traces with good scores are accepted by the 
interaction program, while execution traces with bad scores 
are not accepted. Our evaluation shows evidence that our ap­
proach to transforming interactions improves user experience, 
but does not show that our approach improves contextual fit. 
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