
Authr: A Task Authoring Environment
for Human-Robot Teams

Andrew Schoen, Curt Henrichs, Mathias Strohkirch, Bilge Mutlu
University of Wisconsin–Madison, Madison, Wisconsin, USA

{schoen,cdhenrichs,strohkirch,bilge}@cs.wisc.edu

Model current task Collaboratively perform taskAllocate steps to human and robot

Figure 1. We present a novel workflow and a software environment, called Authr, that enable engineers to translate single-person, work-related tasks in
domains ranging from manufacturing to logistics into tasks that can be performed by human-robot teams.

ABSTRACT
Collaborative robots promise to transform work across many
industries and promote “human-robot teaming” as a novel
paradigm. However, realizing this promise requires the under-
standing of how existing tasks, developed for and performed
by humans, can be effectively translated into tasks that robots
can singularly or human-robot teams can collaboratively per-
form. In the interest of developing tools that facilitate this
process we present Authr, an end-to-end task authoring en-
vironment that assists engineers at manufacturing facilities
in translating existing manual tasks into plans applicable for
human-robot teams and simulates these plans as they would
be performed by the human and robot. We evaluated Authr
with two user studies, which demonstrate the usability and
effectiveness of Authr as an interface and the benefits of assis-
tive task allocation methods for designing complex tasks for
human-robot teams. We discuss the implications of these find-
ings for the design of software tools for authoring human-robot
collaborative plans.

Author Keywords
Human-robot teaming; human-robot collaboration; authoring;
robot programming; visual programming; task allocation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
UIST ’20, October 20–23, 2020, Virtual Event, USA
© 2020 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7514-6/20/10 ...$15.00.
http://dx.doi.org/10.1145/3379337.3415872

CCS Concepts
•Human-centered computing → Graphical user inter-
faces; Collaborative interaction; User interface program-
ming; •Computing methodologies → Multi-agent planning;
Robotic planning; •Computer systems organization → Ex-
ternal interfaces for robotics;

INTRODUCTION
The introduction of robots into industrial environments to au-
tomate physical work has been a paradigm shift for many
industries, including manufacturing and logistics, increasing
productivity and efficiency. To achieve these goals, highly
capable, but inherently human-unsafe, robots had to be se-
questered, separating work that can be automated with robots
from manual work performed by people. The emergence of
collaborative robots (cobots), i.e., under-actuated robots de-
signed to be human-safe and easy-to-use, is signaling another
paradigm shift toward more flexible, collaborative workspaces
with the potential to improve productivity and safety [36].

The prospect of human-robot teaming, where humans and
robots collaboratively perform parts of the task that they are
best suited to perform, holds considerable promise for im-
proving industrial work, but significant hurdles still remain in
capitalizing on that promise [10]. An ethnographic approach
has indeed shown that there is a discrepancy between the tra-
ditional robot programming approaches used by developers
and engineers who integrate robots into industrial environ-
ments and the needs of collaborative interaction design [29].
Put another way, the task of specifying collaborative tasks
requires a different approach than what is afforded by standard
non-interactive robot programming approaches. The result
of this discrepancy is that most cobots today are still used as

mailto:schoen@cs.wisc.edu
mailto:cdhenrichs@cs.wisc.edu
mailto:strohkirch@cs.wisc.edu
mailto:bilge@cs.wisc.edu
http://dx.doi.org/10.1145/3379337.3415872
mailto:permissions@acm.org

traditional robots, but without the protective cages surround-
ing them. Overcoming this discrepancy requires answering
a number of questions. For example, how can a user, e.g.,
an engineer, take an existing task, e.g., assembling a toy, and
turn it into a human-robot plan? How can the user implement
the robot’s portion of the plan? How can the user know that
the plan best utilizes the skills of human and robot workers?
Although robot programming tools enable users to quickly
program collaborative robots through demonstration, e.g., the
programming by demonstration (PbD) approach developed by
Skoglund et al. [40], or using visual programming environ-
ments (VPEs), e.g., CoSTAR [34], no tools exist to support
users in the entire process of translating existing human tasks
to those that human-robot teams can perform within the manu-
facturing context. In this paper, we outline the technical chal-
lenges involved in authoring human-robot plans and present
our authoring environment, Authr, as a solution.

Our work addresses four key technical challenges involved in
human-robot teaming: (1) representation: representing work
for both human interpretation and robot execution; (2) task-
skill matching: creating human-robot plans that match task
elements with worker skills while achieving task goals; (3)
robot programming: implementing task elements for collabo-
rative robots in a way that supports exploration of task plans
across robot platforms; and (4) authoring pipeline: facilitating
intuitive and effective translation of manual work into human-
robot plans. Building on methods and tools from ergonomics,
robotics, and human-computer interaction, we address these
challenges by (a) formalizing a task- and action-level repre-
sentation that is human-interpretable and robot-executable,
(b) utilizing a multi-agent allocation algorithm that generates
plans that match worker skills to task elements within task con-
straints, (c) developing a software stack which converts plans
into robot-executable actions built on an extendable Robot Op-
erating System (ROS) [37] infrastructure, and (d) designing an
intuitive software environment that enables users to effectively
create human-robot plans.

In the remainder of the paper, we discuss these technical chal-
lenges in more detail, describe our solutions for each chal-
lenge, present the system design and implementation of Authr,
describe two user studies that evaluated different facets of
human-robot teaming using Authr, and discuss our findings
and their implications for the design of tools which support
the authoring of human-robot collaborative plans. The contri-
butions of this work include:

• A novel workflow to translate manual human tasks to human-
robot tasks;

• Novel representations and formalizations for modeling,
planning, simulation, and implementation;

• The design of an authoring environment that supports users
in following this approach;

• An open-source implementation of the environment for pub-
lic use and further development;1

• Empirical evaluations of the approach and the authoring
environment through a series of user studies.

1https://github.com/Wisc-HCI/authr

RELATED WORK
A great deal of prior work has focused on the development of
visual programming environments (VPEs) to enable easy pro-
gramming of tasks. A primary example is the student-oriented
Scratch interface, which uses a block design to indicate con-
ventional programming constructs [27]. This approach has in-
spired a number of VPEs such as Hammer, a robotics-focused,
android-based programming tool allowing novice users to de-
sign programs for robot arm movement and tool use [28], and
Code3, a drag-and-drop system built for the PR2 robot [18],
among others. Another influential VPE, LEGO Mindstorms
NXT Programming Environment, focused on education and
robotics [21, 22]. Flow designs have also been investigated:
Roboflow embeds pre- and post-conditions into flow struc-
tures, focusing on a low-level specification of behaviors for
robotics [2]; and ROSco (ROS Commander), a tool created
for the PR2 Robot, uses hierarchical finite state machines and
low-level building blocks to specify spatially-situated actions
[33]. While all these interfaces contributed substantially in a
variety of ways, they generally focused on specifying robot
behavior, as opposed to human-robot collaboration.

The space of human-robot collaboration specification is still
quite new. The ROBO-PARTNER project has helped by artic-
ulating the needs and requirements of such systems, namely
user-friendly interfaces, planners that allow the creation of ef-
ficient human-robot collaboration task plans, robot instruction
libraries that allow for easy generation and modification of
robot programs, and continual attention to safety concerns [30,
31]. In an attempt to begin addressing these requirements, the
CoSTAR system was developed, which integrates perception
and reasoning into behavior trees [34, 35]. While the interface
was successful in allowing users to specify complex programs,
users had difficulties understanding the types and intentions
of the robots’ actions. RAZER was designed for task-level
programming to allow shop-floor operators to leverage lower-
level actions developed by experts, and it was later extended
to support programming by demonstration [43, 42]. They
compared their solution with systems such as CoSTAR and
Scratch, finding RAZER to be easier to understand by non-
experts. Graphical representation of the workspace to assist
users in creating task graphs have also been explored [38].

In an effort to improve the efficiency of human-robot plans,
research into multi-agent task planning has been explored with
works such as Tercio [14] and multi-abstraction search ap-
proach (MASA) [48]. Tercio takes inspiration from real-time
processor scheduling for multi-robot hierarchical problems.
The objective is to assign tasks to agents and schedule tasks
with the goal of minimizing change in agent assignment and
minimize number of spatial interfaces between tasks assigned
to different robots. MASA uses a multi-level optimization ap-
proach with three phases: finding an initial solution for agent
placement, hill-climbing to minimize maximum makespan,
and finally refinement to the solution. While both approaches
work well for optimizing agent allocation, there is a relatively
high planning time. Another consideration is prioritization of
various goals such as maximal efficiency and minimal strain,
as shown by Pearce et al. [36]. They found that tasks that ben-
efited most from the goal of minimizing time and ergonomic

https://github.com/Wisc-HCI/authr

strain were ones which enabled parallel work, were repetitive,
and utilized robot-performable actions.

Researchers have started to address how to leverage agent al-
location in human-robot-collaborative authoring environments
with systems such as Sharedo [19] and WeBuild [12]. Sharedo
functions as a structured to-do list for daily tasks where multi-
ple agents (human, robots, virtual-assistants) coordinate based
on their capabilities. WeBuild provides allocation of tasks for
multiple humans with varying capabilities in order to offload
group coordination. Our work, drawing from the related lit-
erature, addresses the challenges of authoring human-robot
collaboration within the manufacturing context.

TECHNICAL APPROACH

Technical Challenges
Translating manual tasks into human-robot task plans involves
a number of technical challenges. We discuss these challenges
in this section and detail our solutions in the next section.

1. Representing tasks for humans and robots
Translating tasks that are currently performed manually by
human workers into human-robot plans requires representing
them in a way that is both interpretable by a human, so that
they can be trained on the task and their performance can be
assessed, and executable by a robot. Tasks describing manual
work in manufacturing settings are generally represented as
written natural-language lists of mid-level descriptions of task
actions. Although this representation is human-interpretable,
implementing tasks into robots based on these descriptions
is challenging [35]. Furthermore, users without the neces-
sary experience in developing collaborative applications may
generate implementations which are not generalizable across
robot platforms and are ill-suited for task-level analysis of
plan efficiency or safety. Therefore, we need a representation
that enables the user to capture task elements from natural-
language descriptions or from qualitative observations of the
task and to specify task elements for humans and robots to
perform.

2. Matching task elements with worker skills
Answering the question of which aspects of the task that robots
and humans should perform is critical to realizing the promise
of human-robot teaming for improved productivity and worker
safety. This requires effectively matching human and robot
skills to elements of the task, considering the cost of the human
or the robot performing the elements. Furthermore, while a
simple matching can determine whether a specific task element
can be performed by a human or a robot, it does not help the
user determine whether it should be performed by a human
or a robot given specific task expectations and requirements,
such as speed (a robot that can perform a task element may
be too slow) and ergonomic safety (a task element that a
human worker can perform much more efficiently may be
ergonomically unsafe for the human worker). Hence, there is
a need to match task elements to the skills and capabilities of
human workers while considering outcomes such as efficiency
and safety at a task level.

3. Supporting exploration across robot platforms
When engineers in industry are considering converting a man-
ual process into one involving a collaborative robot, either as
automation performed by the robot or collaboration between
the robot and a human operator, they are faced with the deci-
sion of using manufacturer-provided software environments
(e.g., Universal Robots Polyscope2), utilizing third-party tools
(e.g., Artiminds3), or developing a custom software solution
built on top of low-level APIs. Compounding the problem of
making an informed choice is a potential lack of experience
in developing collaborative human-robot teaming applications
[29]. Therefore, we need to provide a tool that enables users
to quickly and easily evaluate their tasks for multiple robot
platforms before purchasing a particular robot. For example,
an engineer interested in understanding whether a Universal
Robots UR5 robot or a Franka Emika Panda robot would
better fit into a given task would likely have to implement
the same task for both robots using different programming
tools or setups, as highlighted by the creators of the CoSTAR
robot programming environment [16]. Furthermore, if the en-
gineer is interested in seeing alternative task plans in action to
further refine them, the user must program each plan individu-
ally. Users should be provided visual or demonstration-based
robot programming tools in order to easily program robots and
integrated planning tools to easily handle skill-based task allo-
cation. Thus we need to enable the user to quickly and easily
develop, deploy, view, and modify task plans for end-to-end
exploration across multiple collaborative robot platforms.

4. Developing an intuitive and effective authoring pipeline
A final technical challenge is to enable users to rapidly and it-
eratively capture task models for manual work, explore human-
robot task plans, and deploy the created plans on robot plat-
forms for assessment, refinement, and training. Although users
might have prior experience with robot programming tools,
such as the demonstration or visual-programming tools that
are commonly used to program collaborative robots, we must
create intuitive software tools that users can quickly learn and
use in order to effectively facilitate the complex process of
human-robot teaming.

Technical Solutions
Below we detail the technical approach to our authoring envi-
ronment, Authr, addressing each technical challenge in order.

1. Creating a shared representation for human-robot work
The goal of our representation is to facilitate the translation of
natural-language task descriptions to a formal representation
that remains interpretable to human collaborators, yet robots
can understand and perform without having to update their
underlying implementation. The tasks being translated are
generally in the form of written natural-language lists com-
posed of task specific actions or tasks that can be observed
by an engineer as they are being performed by an operator.
Although examples of translating task-specific actions into
robot action primitives exist in various domains (e.g., cook-
ing [4] and route-navigation [6]), these solutions tend to be

2https://www.universal-robots.com/
3https://www.artiminds.com/

https://www.universal-robots.com/
https://www.artiminds.com/

highly contextual or robot-specific. One promising solution is
Therbligs, as proposed by Gilbreth and Gilbreth [13], which
address the issue of defining operational action primitives for
human work. Researchers have since applied Therbligs to
modeling or specifying robot behavior in various contexts [25,
24, 23, 36, 1].

Our representation builds on Therbligs and is further inspired
by Pearce et al.’s work [36] where they modeled human-robot
tasks using Hierarchical Task Analysis (HTA) with lowest-
level sub-tasks allocated between humans and robots. In work
analysis literature, HTA decomposes tasks into nested sub-
tasks until sufficient detail is achieved to perform work actions
[41]. Our representation adopts this approach with two impor-
tant changes. First, our approach only considers three levels in
HTA, operationalized as the Plan, Task, and Therblig, where
Therbligs function as sub-tasks. Second, Therbligs have both
high- and low-level parameters. High-level parameters include
Agents, Things, Destinations, while low-level parameters in-
clude numerical values, such as gripper effort, time, and cost.

Agents, Things, and Destinations—In our representation,
Agents. Things, and Destinations are used to fully specify
the high-level behaviors of Therbligs. Consider the action of a
robot placing an item, such as a mug, in a container for ship-
ping. In this case, we can think of the transport action as the
Therblig. High-level parameters, such as Agents, Things, and
Destinations serve to characterize these therbligs and more
clearly define their behavior. Thus, in the mug packing exam-
ple, the Therblig is specified by the Agent performing it (the
robot), the Thing being moved (the mug), and the Destination
it is moved to (the shipping container). Thus, the combination
of high-level parameters and the Therbligs serve to symboli-
cally define the action to the engineer. In Authr, we consider
an Agent to be any physical actor in the work environment that
performs a relevant action within the context of the Plan and
has a type (human or robot). Things are regarded as objects
within the environment that are manipulated by Agents in the
Plan. Destinations are operationalized to combine semantic
labels, such as the described location (e.g., the “shipping con-
tainer” in the example above) with a concrete position and
orientation that a robot could act on. Due to this represen-
tation, Authr enforces a strict set of spatial expectations on
the workspace, meaning real-time dynamics and variablity
are not considered in the current version of the system. As
such, this solution works well for clearly-defined workspaces
(e.g., kitting), but not for ones with variable Thing counts or
positions (e.g., bin-picking).

Plan, Tasks, and Therbligs—At the highest level of our HTA
approach is the Plan, which in Authr reflects the entirety of
the human-robot collaborative work being designed. The Plan
is composed of Tasks, which represent high-level descriptions
of behaviors used to achieve specific processes in the Plan.
Tasks, in turn, are composed of Therbligs. The full set of
18 Therbligs includes physical actions, cognitive processes,
and behaviors that are both physical and cognitive [13]. For
the current implementation of Authr, we focus on physical ac-
tions, resulting in the following list of Therbligs: (1) Transport
Empty, (2) Transport Loaded, (3) Grasp, (4) Release Load, (5)

Rest, and (6) Hold. These Therbligs are also listed in Figure
2 along with their descriptions. By focusing exclusively on
physical Therbligs, our task space is generally constrained
to pick-and-place-type tasks (e.g., kitting, assembly, palleti-
zation). Some limited tool use can be created in an ad hoc
manner (e.g., grasping a screwdriver and defining screwing
rotation through multiple Transport Loaded Therbligs), but
tasks requiring cognitive evaluation (e.g., force-sensed peg-in-
hole or component inspection) are currently not addressed in
our representation. Further work is needed to operationalize
cognitive and mixed cognitive-physical Therbligs.

Setting an Agent for the high-level parameter of a Therblig has
the effect of allocating it to that Agent, and leaving it empty
prompts automated allocation. Other high-level parameters,
such as Things and Destinations are required. These high-level
parameters are used to generate pre- and post-conditions of
each therblig, which serve to describe when the Therblig can
be performed and what the effect on the workspace will be. In
the mug packaging example from above, given that the action
was configured with the robot, the mug, and the shipping
container, we can say that for this action to be performed,
the robot must be both holding the mug, and the space for
the mug in the container must be empty. At the end of the
action, both the mug and the robot will be positioned at the
container. The full breakdown of parameters, pre-conditions,
and post-conditions for our Therbligs are shown in Figure 2.

Alongside high-level parameters (Agents, Things, and Destina-
tions, we need a way to standardize and compare the quality
of Therbligs to sufficiently allow for shared representation
of these collaborative tasks. Low-level parameters support
this reasoning by providing low-level information required to
execute an action by the robot, but may not be required by the
human (e.g., gripping effort). In this way, if a robot can theo-
retically perform the task, and if it is allocated the Therblig, it
has the necessary information to perform the task. Low-level
parameters also provide comparative power to Therbligs allo-
cated to separate Agents. Time to complete an action can be
simulated by the robot, but knowing the time for the human to
perform the task would be necessary for determining which
Agent is fastest at performing it. Likewise, if a task is hard for
a human but easy for the robot (or vice versa), being able to
weigh these values is necessary for thoughtful allocation of
tasks. One common metric of difficulty is ergonomic strain,
and being able to flexibly define this cost for a given Therblig
and Agent can empower the engineer to construct programs
that provide robotic assistance where it is needed most.

2. Enabling effective task allocation in human-robot teams
A critical challenge in authoring human-robot collaborative
tasks is the gap between engineers’ ability to construct single-
agent programs and the know-how of designing interactive
tasks. Even if some tasks or sub-tasks are only executable by
one Agent, the rest of the interaction needs to be planned in
a way that incorporates those restrictions on agent allocation.
Since many engineers from the manufacturing domain have
access to task specifications (albeit non-interactive, manual
ones), we sought a representation that translates this type of
non-agent focused representation into an interactive plan. Our

operationalization of Therbligs, along with the parameters we
specify, allows for a direct translation from their task speci-
fications to the shared Therblig representation, from which
the interactive Plan is constructed. This construction process
requires any non-specified Agents to be allocated to a given
task, all while accommodating specified (i.e., parameterized)
Agents and considering cost and time estimates.

Our proposed allocation process is performed in a series of
steps. First, the Plan is checked using the SMT solver Z3
[8], in which the pre- and post-conditions of each therblig
are translated into first-order logic and verified. This same
algorithm is used continuously during plan construction to
provide feedback about program correctness to the user. Next,
the Plan is further checked that all needed parameters are de-
fined, since not all parameters need to be set for verification to
succeed. Following this parameter check, the Plan proceeds
to allocation. For this purpose, a breadth-first search through
the interaction is utilized, resulting in a set of possible inter-
action traces. In the worst case, the state size upon applying
each Therblig tn of t1, t2, ..., tn has an upper bound of 2n for
two agents. However, we observe that users typically chain
together consecutive Therbligs for an Agent into individual
Tasks (e.g., pick-and-place: Transport Empty → Grasp →
Transport Loaded → Release Load). Due to the pre- and post-
constraints, Things act as tokens constraining the growth of the
state space, and the state space grows instead with 2m where
m is the number of Tasks. Since these traces are modeled as
a single sequence of consecutive actions (for computational
efficiency), the Plan is then parallelized such that allocated
Therbligs are performed as soon as possible while maintaining
first-order logic. The resulting traces are compared for overall
time and cost, using the provided time and cost weights, and
the optimal interactive Plan is returned.

The method described above was chosen because it most
closely matched the formulation of the Plans as provided
by the users, namely an initial state and a set of non-allocated
Therbligs to perform. With some additional work, and some
caveats, the Plans can be converted into standard planning-
based problems. The first caveat is that due to the nature of our
approach, the ordering of Therbligs is constrained for a given
Agent. Combined with the token-like nature of Things, this
means that users can specify sequences of Transport Loaded

Therblig
Transport Empty

Grasp

Transport Loaded

Release Load

Hold

Rest

Reaching for thing with empty hand/gripper

Grasping objectwith hand/gripper

Moving thing in hand/gripper to destination

Releasing thing fromhand/gripper

Pausingwhile holding thing in hand/gripper

Pausing for specified durationwithout grasp

Parameters
agent,dest.

agent, thing, effort

agent, thing, dest.

agent, thing

agent, thing, dur.

agent, dest., dur.

Pre-/Post-conditions
Pre:¬ gripping

Pre: ¬gripping ^ location(agent)=location(thing)

Pre: gripping ^ location(agent)=location(thing)

Pre: gripping

Pre: gripping ^ location(agent)=location(thing)

Pre: ¬gripping ^ location(agent)=dest.

Post: location(agent)=dest.

Post:gripping

Post: location(agent)=dest. ^ location(thing)=dest.

Post:¬ gripping

Post:none

Post:none

Figure 2. A description of the Therbligs implemented in Authr, including
parameters, pre-conditions, and post-conditions.

Therbligs, thereby creating waypoints, with certainty of the
ordering that the Agent will visit them. Additionally, if some
intermediate placement of an Agent or Thing is required, but
not captured in the final state, a coarse planning will not result
in this configuration, unless segmented into multiple planning
problems or supplying additional explicit goals.

While the allocation and parallelization algorithms specified
were sufficient for the complexity and size of Plans considered
in this study, it is important to consider how such methods com-
pare to more conventional planning approaches. To this effect,
we ran benchmarks with our process and a Multi-Objective
Divide-and-Evolve (MO-DAE) algorithm, which is an evolu-
tionary algorithm which supports multi-objective planning [9,
20]. Since interactive design is a key component in the user’s
workflow, we needed any algorithm to be sufficiently fast.
Thus, we capped the maximum compute time at 90 seconds
for quick user feedback. As input, we modeled three Plans
(shown in Figure 3) in Authr based on real-world manufac-
turing tasks. Each Plan was evaluated five times with each
algorithm. Our algorithm was deterministic, so there was no
variation other than slight differences in compute time.

The first Plan models a kitting task (assembling objects into
containers or kits) in which there is a grouping of four toys and
four batteries on the left side of the workspace. The goal of
this Plan is to move one toy and one battery into four separate
boxes, located to the right. The second Plan models a circuit
board assembly task. The initial state of this Plan consists of
a group of four nuts located to the right of a PCB, and two
cables positioned above the board. To complete this assembly
process, one nut must be screwed onto each corner of the
circuit board, and each of the two cables connected to the
circuit board. The third Plan models a repair task in which
two faulty components are replaced by new components on a
circuit board. The two components are functionally different,
with one requiring considerable cost for the human to place
but not remove. This repair task starts with the two distinct
faulty components attached to the circuit board and the two
distinct new components off to the side. The goal of this Plan
is to remove both faulty components, placing them to the right,
and replace them with the new components of the same type,
located to the left.

In order to estimate the Therblig times for the human Agent, we
set up a physical representation of each task and recorded the
amount of time it took for a human to perform each Therblig.

For each of the three Plans we evaluated, we targeted different
time and cost metrics. In the first Plan (kitting), the objective
was focused on minimizing time, so the optimization weights
for time and cost were set to 0.6 and 0.4, respectively. In the
second Plan (assembly), the objective was to minimize cost,
so time and cost weights were configured at 0.05 and 0.95,
respectively. Of concern in this Plan was the ergonomic strain
for humans in screwing in the nuts. Thus, the cost of this
action was configured to be higher for human than robots (0.9
vs 0.2). In the third Plan (repair), we set the cost weight to 0.6
and the time weight to 0.4. In this Plan, we were interested in
the effect of a high cost related to a single action and Agent,
as opposed to a class of actions.

Initial Goal

Initial Goal

Initial Goal

Figure 3. For the technical evaluation, we constructed three manufac-
turing tasks: Kitting, Assembly, and Repair. For Kitting, top, a toy
(cylinder) and a battery pack (cube) were moved to each container. In
Assembly, middle, screws (grey cylinders) are placed in each of the four
corners of a PCB and rotated, while two cables (pink cubes) are placed
in the center. Finally Repair, bottom, features two faulty components
(red cubes) being removed and replaced with new parts (green cubes).

Results of both methods (Authr Allocation versus MO-DAE)
for the three different Plan types are shown in Figure 4. This
evaluation showed that while the two methods were roughly
comparable for optimizing in Plan time, cost, and overall
score, the compute time for these similar metrics was less for
our implementation. Since a focus of Authr is to enable the
exploration of Plans, especially through iterative refinement,
we chose to utilize the simpler implementation outlined above
for further testing. However, we note that while this method
was sufficient for these purposes, alternative methods may be
superior with Plans of different size or complexity.

3. Implementing task plans into a collaborative robot.
Authr connects to a server developed for Robot Operating Sys-
tem (ROS) [37], running on Ubuntu. We chose to develop
our system in ROS to enable future integration with physical
robots. For robot trajectory planning, estimating Therblig ac-
tion time, and simulation, our implementation uses MoveIt
[7], specifically using Open Motion Planning Library (OMPL)
[44]. Because MoveIt is freely available and configurations
are easily made, this choice makes adding additional robots
to Authr straightforward. While the current implementation

allows the user to choose from the Franka Emika Panda or
Universal Robots’ UR3, UR5, and UR10, any robot with a
MoveIt configuration could be added. Utilizing a standard
inverse-kinematics and motion-planning tool enables us to
achieve our goal of a shared representation by converting
our spatial-semantic representations to robot-specific control.
Thus, Therblig behavior implemented on top the motion plan-
ner achieves Agent-agnostic functionality.

4. Facilitating the exploration of human-robot task plans.
Authr integrates the above representations and technologies
into a visual programming environment. This environment
is built using the Angular web framework [15] as a browser-
based application, which connects to a ROS-based server using
Robot Web Tools [45]. Authr has three modes, setup, plan,
and simulate , which a user works through in five main steps,
(1) setting up the workspace, (2) creating tasks, (3) adding
therbligs, (4) parameterizing, and (5) simulating the result
(Figure 5). The first step is for a user to set up a workspace,
as the Agents, Things, and Destinations created in this step
will be needed for the following steps. Next, the user can
create a Task and a set of Therbligs that will be performed
in this Task by dragging them from a library and dropping
them in the Task container. The user can then parameterize the
Therbligs and review any errors identified by Authr. Based on
these errors and the remainder of the Plan, the user can either
decide to create another Task or continue adding Therbligs to
an existing Task. At this point, the user can also navigate to the
simulation view to see the plan played out. After reviewing
the simulation, the user can create another Task to add to their
Plan if desired. Below, we detail how users would perform
each step.

Workspace Setup—This phase lets users set plan-level parame-
ters and configure Agents, Things, and Destinations. One or
two Agents (one human and/or one robot) must be defined.
Users also specify Things, which include cubes, spheres, cylin-
ders, and containers and can be customized with size and color.
When Agents or Things are created, Destinations that specify

0
20
40
60
80
100

C
om

pu
te
Ti
m
e

0
5
10
15
20
25

O
ve
ra
ll
Pl
an
Sc
or
e

Kitting Assembly Repair

Kitting Assembly Repair Kitting Assembly Repair

0

10

20

30

40

O
ve
ra
ll
Pl
an
Ti
m
e

Kitting Assembly Repair
0

10

20

30

O
ve
ra
ll
Pl
an
C
os
t

Figure 4. We evaluated the Authr Allocation and Parallelization algo-
rithms (blue) versus a MO-DAE planner (grey) with three different Plans
(Kitting, Assembly, and Repair) on 4 different metrics (Compute Time,
Overall Plan Score, Overall Plan Time, and Overall Plan Cost). Lower
scores for all metrics are desirable.

C
reate

Task
A
dd

Therbligs
Param

eterize
D
esign

W
orkspace

Si
m
ul
at
e

Pl
an

Se
tu
p

V
iew

Result

drag & drop

Figure 5. The three modes in Authr. In setup, users first configure the
workspace; Destinations are able to be added, deleted, and modified, and
each Agent and Thing gets assigned an initial location in the scene. Mov-
ing into planning in the Plan Tab, Tasks are represented as containers for
Therbligs and are ordered from left to right. Within each Task, Therbligs
are ordered from top to bottom. Therbligs and Tasks are also configured.
In simulate, after designing an interaction, users can simulate the actions
of human and robot Agents.

their initial locations are automatically created. Additionally,
users can specify new, unpaired Destinations as waypoints
or goals. While configuring Destinations, users can inspect
the robot action times for all possible Destination pairs in a
table generated by the motion planner. If a Destination is
unreachable, the robot time entry is marked invalid, prompt-
ing adjustment from the user. Users are able to adjust the
placement of Agents, Things, and Destinations within a 3D
simulation view or, alternatively, through manual entry.

Creating Tasks—Users develop their collaborative plans
through a drag-and-drop mechanism. Users can create any
number of Tasks, which will be executed from left to right.
As users are developing their Tasks, they may find that they
are repeatedly creating Tasks containing the same sequence
of Therbligs. Users create macros by exporting a Tasks as a
template of parameterized Therbligs. When a user then drops
a macro into a Task container, the macro expands back into a
sequence of those parameterized Therbligs.

Adding Therbligs—Users can drag Therbligs from the source
drawer and drop them into Task containers. Therbligs can be
rearranged within and across Tasks.

Parameterizing—While the user is developing the task struc-
ture they may open a contextual menu by clicking on an ele-
ment. If the element is a Therblig in the source drawer, then
the contextual menu provides an informational description of
the Therblig. Selecting a macro from the source drawer dis-
plays the sequence of parameterized Therbligs saved within.
Clicking on a Task brings up the ability to export it as a macro.
Finally, selecting a Therblig contained within a Task provides
access to its parameters.

The Therblig contextual menu affords configuration of both
high- and low-level parameters. High-level parameters
(Agents, Things, and Destinations) are presented as icons
with a drop-down list for configuration. All Therbligs re-
quest an Agent parameter and may also request Thing and/or
Destination parameters. Unique to Agent parameterization
is an option to defer to the allocation algorithm, presented
as an optimize option in the Agents drop-down list. Low-
level Therblig-specific parameters (e.g., time, cost, effort) are
presented when applicable. For time and cost, when a user
provides a human as the parameterized Agent, the contextual
menu simply requests the time parameter. However, when
the Agent is deferred to allocation, both time and cost for the
human Agent and cost for the robot Agent need to be specified.

The parameter view also provides the user with feedback on
any errors associated with that Therblig. In addition to iden-
tifying missing parameters, the same Z3-based verification
algorithm used in the allocation process is executed upon plan
updates, and provides helpful error messages, e.g., “Agent
must not be gripping.” As a visual shorthand, the interface
also indicates the presence of errors for a Therblig with a red
notification icon within its tile.

Simulating—Users enter the simulation phase to evaluate their
resulting Plan. On entry of this phase, Authr runs the Agent
allocation algorithm on the designed Plan. With successful
allocation, the user may start, pause, stop, and reset the simula-

tion in real-time. Robot simulation is handled through MoveIt,
and human simulation is simply linear interpolation between
Destinations. Also shown in the simulation view is a timeline
for each Agent’s allocated Therbligs. The timeline represen-
tation, a la Interaction Blocks [39], was chosen due to the
inherent temporality that it affords. Clicking on a Therblig
within the timeline will expand a context menu displaying its
duration and cost. While simulating the Plan, the Therblig
being performed in the 3D simulation by an Agent is also
highlighted within the timeline.

If the user enters simulation with an invalid plan, the view
is replaced with a list of errors detected. While the user is
simulating the Plan, they may find that their Therblig sequence
is not performing as they intended (e.g., they forgot to indicate
a Transport Loaded to a way-point Destination). The user
may then switch to either the setup or planning phase to fix
the error or refine their plan.

USER EVALUATIONS
To gauge the ability of our technical solutions to support the
creation of task plans for human-robot teams, we carried out
two evaluation studies. The first study focused on our solution
to the first technical challenge, creating a shared representa-
tion, and assessed the extent to which Authr provided users
with an appropriate vocabulary to model tasks. The second
evaluation focused on our solution to the second technical chal-
lenge, translating task models into human-robot task plans,
and evaluated Authr’s ability to effectively allocate task steps
to human and robot Agents. Both evaluations also measured
the general usability of and user experience with Authr.

Evaluation 1: Shared Task Representation
The first evaluation aimed to assess the ability of our HTA-
and Therblig-based framework to support the modeling of
manual tasks as well as the general usability of the software.
To achieve this goal, we asked engineers and engineering
students to implement a simple kitting task using Authr. This
evaluation used a version of Authr without the Simulate Mode
and was constrained to manual allocation of Therbligs. This
version provided a simulation view in setup where users could
move the robotic arm for virtual kinesthetic teaching.

Participants
A total of eight participants were recruited from a university
campus. All participants (5 males, 3 females) were native
English speakers with an average age of 27.63 (SD = 21.61).
They either held or were pursuing a degree in either industrial
engineering or mechanical engineering.

Procedure
After providing informed consent, participants interacted with
an early version of Authr, which lacked the simulation and
optimization components considered in the later evaluation.
Participants were shown a short 9-minute video explaining
how to use the software and the different types of Therbligs
they could use. This video walked users through designing a
simple pick-and-place task with a single Thing. Next, partici-
pants watched a video of a human actor, see Figure 6, perform-
ing a kitting process with three different types of Things, and
were then asked to implement that process as a Plan in Authr

that was performed by a robot. While full simulation was not
present in this version, participants were able to utilize a simu-
lated robot (Universal Robots’ UR5) for defining the locations
of Agents, Things, and Destinations. After completing the
task, participants received compensation at rate of $12/hour.

Measures
Participants were given as much time as they needed to design
their Plans and were asked to verbalize their thoughts in a
think-aloud procedure [11, 46]. After the task, users completed
the System Usability Scale (SUS) [5, 3], USE [26], and a short
demographic survey.

Results
Video data was transcribed and coded for emergent themes.
These themes are discussed below.

Theme 1: Planning and Strategy—All eight participants cre-
ated generally similar Plans, with a few differences. Only
one chose to group all their Therbligs into a single Task. The
remainder chose to group their Therbligs into separate Tasks,
based on the item being moved.

One participant switched from a single Task design to a three-
Task design after setting up the first group of Therbligs in
a Task. At the time, the singular Task contained (Transport
Empty, Grasp, Transport Loaded, and Release Load), as well
as an additional Transport Empty which returned the robot
back to its initial position to prepare for the next sequence:

So I suppose I could do 3 Tasks—that’d probably be pretty easy.
Grasp, Transport Loaded, Release Load, go back to neutral posi-
tion. I suppose that kind of makes “Only Task” [Name of the one
Task] not make much sense. Let’s grab Transport Empty, Grasp,
Transport Loaded. . . So that kinda makes this Transport Empty
not make any sense to do, because then all I am going to do is say
Transport Empty again right at the start of this [The next Task].
(P05)

In this excerpt, the participant made two adjustments. The
first was the aforementioned switch to three Tasks, instead
of one. In so doing, the participant also realized that the
Transport Empty they were performing, which returned the
robot back to its initial location, was actually unnecessary, as
it was immediately followed by the first Transport Empty of
the next Task.

When structuring their Tasks in this way, participants also
tended to notice parallels between the Tasks they created,

Figure 6. Participants viewed a video of an actor performing a simple
kitting task and used Authr to translate it to a human-robot task.

prompting many to comment or request some way to either
loop through or copy Tasks:

It seems like I am doing the same actions over and over, so it
would be nice if I could use the same Task. (P02)

Exporting Tasks as copy-ready macros had been planned but
not implemented by the time of these evaluation sessions.
These comments provided justification for adding this in the
next evaluation.

Theme 2: Destination Configuration—The most commonly
cited difficulty participants mentioned centered not around
Therbligs, but rather the specification of Destinations in the
3D workspace. The challenge was that to move a Destination
or Thing in the workspace, users had to click and drag various
toggles around the entities. This challenge could be due to
lacking a metaphor that they were familiar with [47]. The
controls were not immediately intuitive to users:

I am going to move. . . how do I. . . Oh that’s not it. Um oh I see,
OK. I didn’t know how to move it at first, and now I see that
you have to move it like mutually orthogonal in either of the 3
Cartesian directions. (P05)

In order to constrain the space of Destinations to the smaller
set of valid Destinations for a given robot arm, we used a
procedure in which users moved a marker around the scene,
and the arm attempted to match that pose. Setting the position
and orientation would copy the robot pose to the Destination,
as a direct parallel to kinesthetic guidance [32] which could be
used in a physical workspace to specify locations to the robot.
However, this approach did not seem intuitive to users in this
context, as suggested by the following excerpt:

But it is hard to know what moves what. I got it eventually. And
then the robot it isn’t super clear like where the base is and the
where the head starts, and then you have to move the robot to set
the Destination, which. . . And then like checking how far it can
go—that didn’t really make sense to me. (P03)

To address this confusion, for the final evaluated version of
our tool, each Destination was manipulated directly, and an
indicator showed when it was reachable by the robot Agent.
However, for future versions of Authr, this capability may
be added back in, for when users have a physical robot on
the scene and wish to use the physical robot to configure
the destinations and object locations more easily, much like
interfaces such as Polyscope and RAZER [42].

Theme 3: Simulation—A common comment by participants
was that upon completion, many wished to confirm the accu-
racy of their Plans by seeing it in action through simulation:

OK, it looks like it is all good, but I do not know how to test it.
(P06)

Indeed, one such participant made an error in their Plan that
likely would have been discovered through simulation. In
specifying the goal Destinations for the Transport Loaded
Therbligs, they incorrectly used the initial locations of the
objects as Destinations, instead of the goal location specified.
This does not create an error, since a Transport Loaded to the
same Destination is valid, albeit non-useful. The resulting
Plan would have shown no movement of items in the scene

USE Usefulness USE Ease USE Learning USE Satisfaction

1

2

3

4

5

6

7

Su
bs
ca
le
Sc
or
e

SUS

0

20

40

60

80

100

Sc
or
e

Figure 7. USE and SUS scores from Evaluation 1.

to the goal location. This provided further justification for
supporting iterative refinement through the design of Authr.

The quantitative data from the measures of usability and user
experience can be seen in Figure 7. The subscales of USE had
the following scores: Usefulness (M = 4.56, SD = 1.35), Ease
(M = 4.63, SD = 0.856), Learning (M = 5.81, SD = 0.579),
and Satisfaction (M = 4.29, SD = 0.990). The average SUS
score was 67.3, (SD = 14.1).

Evaluation 2: Agent Allocation
For the second evaluation, we turned our focus toward auto-
matic Agent allocation. Specifically, we studied the ease to
which participants author manual Agent allocation Plans in
comparison to authoring automatic Agent allocation Plans. To
understand how engineers may use Authr to perform these
tasks, we started participants with a more complex sorting
Plan where Agents, Things and Destinations are already de-
fined. We then asked them to implement the Tasks necessary to
complete the Plan. Once completed, the experimenter would
load in a different sorting Plan and repeat the experiment
with a different allocation type. The four conditions in the
experiment were counter-balanced.

Initial Goal

Initial Goal

Figure 8. For Evaluation 2, we constructed 2 comparable tasks, Cluster
Sort and Ordered Sort. For Cluster Sort, top, participants organized
blocks into clusters by type, and in Ordered Sort, bottom, participants
organized blocks into a grid.

Participants
Another eight participants (6 males, 2 females), aged 21 on
average (SD = 0.93), were recruited for Evaluation 2. All
participants were native English speakers and either held or
were pursuing degrees in industrial or mechanical engineering.

Procedure
After providing informed consent, participants interacted with
the next version of Authr, which added full simulation, verifi-
cation, automatic Agent allocation, and the adjustments to the
interface based on feedback from Evaluation 1. The version of
Authr described in the Technical Approach section was used
in this evaluation. A Universal Robots’ UR5 was used for
simulation and design. As in Evaluation 1, participants were
first shown a short eight-minute video explaining how to use
the software, and the different types of Therbligs they could
use. This video walked users through designing a different
basic pick-and-place task from Evaluation 1. Next, partici-
pants were instructed on how to view the robot action time
table and use macros by the experimenter. The experimenter
worked through one example, and the macro was deleted after
demonstration. Two different sorting tasks, see Figure 8, were
provided each with nine Things (three cubes, three cylinders,
and three spheres) that needed to be moved to their goal state
according to the condition. The Things had initial positions off
to the right side of the simulated workspace. In both cases the
initial positions of Things were identical. In the Cluster Sort,
participants were asked to move the Things from the unsorted
cluster into three sets of clusters, based on type. Similarly, in
the Ordered Sort, participants were asked to move the Things
into a grid formation.

To start the task, participants were provided a reference docu-
ment containing the task description with the sorting objective,
defined Plan workspace, a time estimate table for human ac-
tions, and cost tables for both Agents. Time and cost tables
were the same between Plans except for robot timing due to
differences in Destination positions and orientations. When
constructing a Plan in the manual allocation condition, the
participant was asked to explicitly define the Agents without
the allocation algorithm. The experimenter also provided the
participant with scratch paper and a calculator, and instructed
the participant to solve the allocation to the best of their ability.
When constructing a Plan in the automatic allocation condi-
tion, the participants were instructed to only use the automatic
allocation. For both allocation conditions, participants were
given as much time as they needed to work through the Plan.
Participants were also allowed to use simulation throughout
their design process. Once they felt that their Plan was fin-
ished they were given a series of questionnaires assessing
their experience with the tool, after which they would move
onto the second case. Except for the sorting objective and
method of Agent allocation, the procedure for the second Plan
was the same as the first. After the participant completed the
second Plan and the associated questionnaire, they received
compensation at rate of $12/hour.

Measures and Analysis
Participants were given as much time as they needed to design
their Plans. As in Evaluation 1, participants were asked to

verbalize their thoughts in a think-aloud procedure. After
completing the task, users completed the SUS [5, 3], USE
[26], and NASA Task Load Index (TLX) [17], as well as a
short demographic survey.

Results
Outcome measures were computed for each produced Plan:
Plan Time, Plan Cost, and Plan Score. Plan Score reflects the
weighted average of Plan Time and Plan Cost that the partici-
pants attempted to minimize. Additionally, scores for the SUS,
USE subscales, and the NASA TLX subscales were computed.
Each outcome measure was analyzed with a repeated mea-
sures one-way Analysis of Covariance (ANCOVA), modeling
allocation method while controlling for Plan type (Sorting or
Ordering). Plan Time, F(1, 6) = 6.8274, p = .0400; and Plan
Score, F(1, 6) = 6.9791, p = .0384, were found to be signif-
icant, where Automatic procedures outperformed Manual in
these cases. No other measures were significant. We note that
these results are based on a small sample and require further
validation and contextualization within qualitative findings.

Video data were transcribed and coded for emergent themes
for each Plan implemented by the participants. Given the
complexity of the Plans compared to Evaluation 1, engineers
constructed Plans that showed greater variation. This included
both boundaries for where the Plans were divided up into
Tasks, and when manually allocating Agents, how they chose to
handle prioritizing duration and cost. Frequently, participants
would express distaste for the workload when performing
manual allocation. These themes are discussed below.

Theme 1: Workload—When performing allocation manually,
many participants, after fully understanding the problem space,
articulated negative attitude or frustration with the process.
One such participant stated that they did not want to perform
all the necessary calculations:

Okay. I don’t really want to do all the calculations for figuring out
exactly which ones. . . . So many different possibilities. (P15)

This apprehension towards the problem resulted in a variety
of approximation strategies, detailed below. Others expressed
distaste for the work required to compare charts of times. In
the following excerpt, a participant who first performed the
automated allocation procedure remarks about how it differed
from the manual process:

Automated Manual
0

10

20

30

40

50

60

O
ve
ra
ll
Pl
an

Ti
m
e

Automated Manual
0.0

0.5

1.0

1.5

2.0

2.5

O
ve
ra
ll
Pl
an

C
os
t

Automated Manual
0

5

10

15

20

25

30

O
ve
ra
ll
Pl
an

Sc
or
e

Figure 9. Resulting Overall Plan Cost, Time, and Scores for Automatic
and Manual procedures. Cost refers to the objective corresponding to
effort or wear (depending on Agent), and Score refers to the overall score,
based on the weighted Time and Cost. Lower scores for all measures are
more desirable.

It’s definitely less frustrating calculating the cost than it is trying
to figure out the quickest path going through the the chart the first
way. . . Cause like quick mental math, I personally liked that better
than trying to stare at the chart. . . (P10)

When using automated allocation, participants simply had to
provide accurate times for the human, and costs for the robot
and human. While this certainly amounted to some tedious
calculation of effort and data entry, as seen here, participants
tended to prefer this to the complex considerations of the
manual approach. We will discuss options for reducing this
potentially tedious activity in the future directions.

That is not to say that the automatic method was without its
difficulties. A small number of participants did initially have
some trouble orienting to the more abstract representation of
the task. This problem of representing these more abstracted,
agent-agnostic actions is therefore in need of further research.

Theme 2: Strategies—Due to the workload required in the man-
ual allocation procedure, most participants developed various
heuristics or algorithms to determine the best allocation.

Some participants chose to approximate by looking at trends.
In the following excerpt, one participant averaged rows in
the robot times, to get a rough expected duration. This was
compared to the human times:

. . . and with the sphere, all of the robot numbers look like they’re
kind of a little bit higher than three for where they’re moving it to.
Um, if they like start at the sphere and like move to it. So I was
gonna make the human do that one. (P10)

Others took a more conditional approach, looking for cases
where patterns held or did not hold:

What’s the cost of moving the robot? The cost of moving the
robot is always cheaper. Wait. . . If it’s always cheaper... Yeah.
Then if time is cheaper than cost should be cheaper for the robot.
We should only consider it when. . . Since we’re only working
with these four and the robot’s cost is lower than these. So any-
way. . . yeah. Only if the human time is shorter then we take cost
into consideration. (P16)

Heuristics weren’t the only way to approach the problem,
however. Other participants opted to iterate on a Plan, moving
Agents from Task to Task. In some cases, participants would
leverage the simulation to assist with this process.

Theme 3: Mistakes and Errors—As seen above, most partic-
ipants, when manually allocating Agents, developed various
heuristics to determine the best allocation. Unfortunately, not
all these heuristics were valid, or consistently applied.

The excerpt from the discussion of workload also illustrates
this line of thinking:

So I’m just going to put these as the robot because it seemed
cheaper. . . Yeah. I’m just going to give the robot two of them.
Sure. We’ll say that’s good. (P15)

This a common error seen in these heuristics. When partic-
ipants used less concrete heuristics, they tended to place a
higher-than-necessary emphasis on cost than described in the
instructions. While cost was almost always lower for the robot

(the exception was Rest), the cost was usually small compared
to duration, while weights were equal.

Yet, even larger errors were sometimes made. In the following
case, the participant incorrectly opted to assign all Therbligs
to the robot, in order to minimize the overall cost, but forgot
to consider benefits of concurrency:

I feel like I’m not going to use the human at all. I feel like the time
that it’s using—like the 0.66 seconds—will offset the cost of 0.2
versus 0.05 for the transport. That’s my. . . I know. . . I’m going to
go forward with moving only the robot. Cost seems like a better
benefit. (P10)

This error resulted in a nearly two-fold increase in total Plan
score (38.6) when compared to their automatically-allocated
Plan (20.2). This illustrates the large potential for errors when
dealing with such complex allocation tasks in a completely
manual manner.

Theme 4: Modified Workflow—In addition to the differences in
the tactics of problem solving, participants appeared to display
a more streamlined reference → calculate → configure process
in the automated condition and a more fragmented approach
in the manual one. Consider the following process for P16 as
they configured a series of therbligs:

The participant begins by creating a series of empty Therbligs. P16
then considers the scene from the Setup tab, decides to work on
the second cylinder first based on its location, and then tentatively
proceeds by assigning the robot, choosing to alter the plan later
if desired. P16 switches to consult the reference document (on a
separate browser tab), but then needs to check where the robot arm
would be. Next, the participant needs to check the table of robot
times to see the time estimate based on that information and then
switch back to the reference to calculate the expected time and
cost parameters: “What are we working with... the cylinder. Four
seconds.” Finally getting the information, P16 switches back to
the Plan view and enters the information. Throughout the process,
the participant performs multiple context switches to reference
different information from different sources (some internal to the
Authr tool and some external), which requires the participant to
frequently verbally re-situate after each context switch.

Compare this pattern with the same participant configuring a
plan using the automated process as follows:

The participant creates a series of Therbligs in a Task, configuring
the high-level parameters for Things and Destinations. P16 then
switches to the reference document in the separate tab. The partic-
ipant obtains the estimated time and cost parameters and returns
to the Plan tab to enter the information.

Because the automated process utilizes its own information
(i.e., robot time estimates) in the allocation, participants did not
need to reference, handle, or utilize this information, reducing
the need to reference internal data. While the participant
had to perform some additional calculations, as seen in the
themes above, this process was preferred over the manual
approach. This preference was likely in part because of the
more streamlined reference → calculate → configure process
of the automated method.

DISCUSSION
Our evaluation studies provided us with a better understanding
of the extent to which the technical solution we have developed
enabled users to create human-robot task plans. Our findings
from Evaluation 1 indicate that the shared task representation
that incorporated ideas from HTA and work modeling served
as an appropriate framework to model tasks that users observed
from video. The representation not only provided an effective
set of building blocks to construct plans, but it also helped
users identify Therbligs that were unnecessary in achieving the
task goal. The evaluation also identified a number of usability
issues, specifically in positioning and assigning Destinations
for Therbligs, which informed the improvements we made in
Authr prior to Evaluation 2. Finally, participants repeatedly
expressed a desire to simulate the actions they were modeling,
providing evidence that simulation is a critical component of
any task-planning approach or environment.

The second evaluation, which focused on assessing the ef-
fectiveness of our technical solutions in enabling engineers
to allocate task steps to a human-robot team, revealed that
automated methods for such allocation is critical. Participants
in our study were overwhelmed by the combinatorial complex-
ity when considering the conjunction of task step ordering,
cost, time, and Agent allocation. To handle this complex-
ity, many participants developed heuristics to simplify the
allocation problem, but these heuristics were ineffective or
detrimental when they were not applied consistently or cor-
rectly. Finally, we found that designers using the automated
approach showed a more streamlined workflow for designing
and configuring their plans. Overall, our findings indicate that
automated methods that handle the complex computational
process of task assignment to multiple Agents are essential for
any task-planning environment.

Limitations and Future Directions
Authr offers a novel approach to the design of collaborative
robotic programs, but it does have certain limitations that
motivate a number of future research directions.

First, our solution to the shared task representation problem
only focused on physical manipulation tasks, although real-
world tasks will require additional capabilities such as percep-
tion and tool use. The original set of Therbligs that informed
the development of our solution proposed a set of cognitive
Therbligs such as Search and Inspect as well as a set of cog-
nitive and physical Therbligs such as Use [13]. In our future
work, we plan to extend the current set of Therbligs with the
ability to perform cognitive actions and tool use. The Use
Therblig in particular is worth exploring as it can potentially
handle a large number of tools and be applicable outside of
manipulation-type tasks. The challenge with operationalizing
Use in an agent-agnostic manner is that a semantic descrip-
tion of tool use is generally enough for humans to act but is
insufficient for robot instrumentation. That is, the tool’s be-
havior would need to be algorithmically defined. We suggest
two potential ways to approach the operationalization of Use.
In the first approach, Authr’s high-level parameters could be
extended with Tools. With well-defined behaviors, the Use
Therblig may be sufficiently descriptive as it could utilize the

capabilities each tool defines. An alternative approach is to
decompose Use into a larger number of Therblig-like actions
(e.g., Use-Screwdriver), each addressing a different behavior.

We designed Authr on the extendable infrastructure called
ROS. While our current solution does not directly connect
to physical robot devices, a minor configuration change and
the inclusion of an additional (usually standard) driver would
allow for this capability, since the control is based on inverse
kinematics and simply publishes joint instructions. Our evalua-
tions have thus far not tested this implementation, but in future
work we plan to test the inclusion of a physical device as a
component in the Authr task creation and evaluation processes.
This plan includes the potential to use the physical robot as
an input device for object and goal specification via PbD, as
well as a more grounded output for simulation. PbD could
also be investigated as a way of simultaneously accumulating
data on human activity time and effort, potentially reducing
the amount of parameterization required.

Our solution also does not address the complexities of varia-
tions in object attributes, positions, and counts that would be
encountered in complex, real-world tasks. Some of these prob-
lems could be modeled by extending our simulation process to
account for variance, resulting in more robust time estimates.
Furthermore, future work should incorporate computer vision
and sensing capabilities to respond to this variation and the
movements by the human collaborator in real-time.

Low-level parameterization of Therbligs is also currently lim-
ited to manual entry of values except robot action time. Several
options to provide sensible default values instead of relying
on user entry could be explored. First, Things can provide
relevant information such as grip-effort based on their intrinsic
properties. Second, a human simulation could be used to gen-
erate time estimates similar to the current approach for robot
Agents. Lastly, Authr could allow users to specify cost func-
tions algorithmically, taking into consideration time, weight,
grip effort, and so on, providing engineers with flexibility to
define their own metric without the burden of manual entry.

A shop-floor human-collaborator mode for Authr should also
be explored. Currently, Authr generates a static plan in sim-
ulation with the assumption that human Agents can follow it
precisely. Future work should investigate methods of inform-
ing workers on their current goals, tasks, and future robot-
collaborators actions. How human collaborator’s task perfor-
mance and cognitive load are affected while performing Plans
developed in Authr alongside a physical robot should also
be studied. Achieving these would require Authr’s represen-
tation to handle both human synchronization and errors not
addressed with the static programs currently generated. This
behavior can potentially be exposed to engineers using either
cognitive Therbligs or introducing more general programming
control flow. Authr should also be extended to provide safety
awareness such as minimum separation monitoring during
execution and considered when allocating Agents.

Finally, our user evaluations modeled simple tasks (ordering
and sorting) that may not represent the complexities of real-
world tasks, e.g., an assembly task. Our technical evaluation of

the Agent allocation algorithm used tasks derived from more
realistic situations (kitting, assembly, and repair), demonstrat-
ing greater representational capability. In the future, we plan
to carry out evaluations of Authr with engineers from the local
industry in their own environments (instead of our laboratory)
and ask them to create human-robot plans for the tasks that
their organizations perform. We expect such evaluations to
provide us with guidance on how to extend Authr’s capabilities
to further support complex real-world tasks.

CONCLUSION
In this paper, we sought to both better understand how to trans-
late manual tasks for human-robot teaming, and create a tool,
Authr, that facilitates this translation. This tool enables users,
such as engineers, at the manufacturing facility to build mod-
els of existing tasks which are automatically converted into
human-robot collaborative plans, providing end-to-end sup-
port for human-robot task teaming. To better understand this
process, we have evaluated Authr with engineering students
across two user studies. Our findings from these evaluations
indicated that the shared task representation that we developed
served as an appropriate framework for modeling existing
tasks, and our automated agent-allocation approach facilitated
the translation of these task models into plans that humans
and robots can collaboratively perform. Our work serves as a
first foray into the development of authoring tools for human-
robot teaming within the manufacturing context and provides
guidance for creating tools that can facilitate the real-world
adoption of collaborative robot systems more generally.

ACKNOWLEDGMENTS
This work has been supported by National Science Foundation
awards 1426824, 1651129, and 1925043. We would like to
thank Julie Shah, Joseph Kim, Margaret Pearce, Majid Aksari,
Brittney Johnson, Alex Padron, Abhay Venkatesh, John Balis,
and Steelcase, Inc. for their contributions to the conceptual
and software development of Authr.

REFERENCES
[1] H. Akrout, D. Anson, G. Bianchini, A. Neveur, C.

Trinel, M. Farnsworth, and T. Tomiyama. 2013.
Maintenance Task Classification: Towards Automated
Robotic Maintenance for Industry. Procedia CIRP 11
(2013), 367 – 372.

[2] Sonya Alexandrova, Zachary Tatlock, and Maya
Cakmak. 2015. Roboflow: A Flow-Based Visual
Programming Language for Mobile Manipulation Tasks.
In 2015 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 5537–5544.

[3] Aaron Bangor, Philip Kortum, and James Miller. 2008.
An Empirical Evaluation of the System Usability Scale.
Intl. Journal of Human–Computer Interaction 24, 6
(2008), 574–594.

[4] Mario Bollini, Stefanie Tellex, Tyler Thompson,
Nicholas Roy, and Daniela Rus. 2013. Interpreting and
Executing Recipes with a Cooking Robot. In
Experimental Robotics. Springer, 481–495.

[5] John Brooke. 1996. SUS-A Quick and Dirty Usability
Scale. Usability Evaluation in Industry 189, 194 (1996),
4–7.

[6] Guido Bugmann, Ewan Klein, Stanislao Lauria, and
Theocharis Kyriacou. 2004. Corpus-Based Robotics: A
Route Instruction Example. In Proceedings of
Intelligent Autonomous Systems. 96–103.

[7] Sachin Chitta, Ioan Sucan, and Steve Cousins. 2012.
Moveit![ros topics]. IEEE Robotics & Automation
Magazine 19, 1 (2012), 18–19.

[8] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An
Efficient SMT Solver. In International Conference on
Tools and Algorithms for the Construction and
Analysis of Systems. Springer, 337–340.

[9] Johann Dréo, Pierre Savéant, Marc Schoenauer, and
Vincent Vidal. 2011. Divide-and-Evolve: The Marriage
of Descartes and Darwin. Proceedings of the 7th
International Planning Competition (IPC). Freiburg,
Germany 91 (2011), 155.

[10] Shirine El Zaatari, Mohamed Marei, Weidong Li, and
Zahid Usman. 2019. Cobot Programming for
Collaborative Industrial Tasks: An Overview. Robotics
and Autonomous Systems 116 (2019), 162–180.

[11] K. Anders Ericsson and Herbert Simon. 1998. How to
Study Thinking in Everyday Life: Contrasting
Think-Aloud Protocols with Descriptions and
Explanations of Thinking. Mind, Culture, and Activity
5, 3 (1998), 178–186.

[12] C. Ailie Fraser, Tovi Grossman, and George Fitzmaurice.
2017. WeBuild: Automatically Distributing Assembly
Tasks Among Collocated Workers to Improve
Coordination. In Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems
(CHI ’17). ACM, New York, NY, USA, 1817–1830.

[13] Frank Gilbreth and Lilian Gilbreth. 1924. Classifying
the Elements of Work. Management and Administration
8, 2 (1924), 151–154.

[14] Matthew Gombolay, Ronald Wilcox, and Julie Shah.
2018. Fast Scheduling of Robot Teams Performing
Tasks With Temporospatial Constraints. IEEE
Transactions on Robotics 34, 1 (2018), 220–239.

[15] Google. 2019. Angular. (Jan 2019). https://angular.io/

[16] Kelleher Guerin, Colin Lea, Chris Paxton, and Gregory
Hager. 2015. A Framework for End-User Instruction of
a Robot Assistant for Manufacturing. In Robotics and
Automation (ICRA), 2015 IEEE International
Conference on. IEEE, 6167–6174.

[17] Sandra Hart and Lowell Staveland. 1988. Development
of NASA-TLX (Task Load Index): Results of Empirical
and Theoretical Research. In Advances in Psychology.
Vol. 52. Elsevier, 139–183.

https://angular.io/

[18] Justin Huang. 2017. Enabling Rapid End-to-End
Programming of Mobile Manipulators. In Proceedings
of the Companion of the 2017 ACM/IEEE International
Conference on Human-Robot Interaction. ACM,
343–344.

[19] Jun Kato, Daisuke Sakamoto, Takeo Igarashi, and
Masataka Goto. 2014. Sharedo: To-do List Interface for
Human-agent Task Sharing. In Proceedings of the
Second International Conference on Human-agent
Interaction (HAI ’14). ACM, New York, NY, USA,
345–351.

[20] Mostepha Khouadjia, Marc Schoenauer, Vincent Vidal,
Johann Dréo, and Pierre Savéant. 2013. Pareto-Based
Multiobjective AI Planning. In International Joint
Conference on Artificial Intelligence. AAAI.

[21] Seung Han Kim and Jae Wook Jeon. 2007.
Programming LEGO Mindstorms NXT with Visual
Programming. In 2007 International Conference on
Control, Automation and Systems. 2468–2472.

[22] Frank Klassner and Scott Anderson. 2003. LEGO
MindStorms: Not Just for K-12 Anymore. IEEE
Robotics Automation Magazine 10, 2 (June 2003),
12–18.

[23] Seung kook Jun, Madusudanan Narayanan, Pooja
Agarwal, Abeer Eddib, Pragya Singhal, Satyanarayana
Garimella, and Venkat Krovi. 2012. Robotic Minimally
Invasive Surgical Skill Assessment Based on Automated
Video-Analysis Motion Studies. 2012 4th IEEE RAS &
EMBS International Conference on Biomedical
Robotics and Biomechatronics (BioRob) (2012), 25–31.

[24] Hsien-I Lin and Chia-Hsien Cheng. 2014.
Behavior-Based Manipulator Programming Based on
Extensible Agent Behavior Specification Language. In
2014 14th International Conference on Control,
Automation and Systems (ICCAS 2014). 808–813.

[25] Hsien-I Lin and YP Chiang. 2015. Understanding
Human Hand Gestures for Learning Robot
Pick-and-Place Tasks. International Journal of
Advanced Robotic Systems 12, 5 (2015), 49.

[26] Arnold Lund. 2001. Measuring Usability with the USE
Questionnaire. Usability and User Experience
Newsletter of the STC Usability SIG 8 (01 2001).

[27] John Maloney, Mitchel Resnick, Natalie Rusk, Brian
Silverman, and Evelyn Eastmond. 2010. The Scratch
Programming Language and Environment. ACM
Transactions on Computing Education (TOCE) 10, 4
(2010), 16.

[28] Carlos Mateo, Alberto Brunete, Ernesto Gambao, and
Miguel Hernando. 2014. Hammer: An Android Based
Application for End-User Industrial Robot
Programming. In 2014 IEEE/ASME 10th International
Conference on Mechatronic and Embedded Systems
and Applications (MESA). IEEE, 1–6.

[29] Joseph Michaelis, Amanda Siebert-Evenstone, David
Shaffer, and Bilge Mutlu. 2020. Collaborative or Simply

Uncaged? Understanding Human-Cobot Interactions in
Automation. In Proceedings of the 2020 CHI
Conference on Human Factors in Computing Systems
(CHI ’20). 1–12.

[30] George Michalos, Sotiris Makris, Jason Spiliotopoulos,
Ioannis Misios, Panagiota Tsarouchi, and George
Chryssolouris. 2014. ROBO-PARTNER: Seamless
Human-Robot Cooperation for Intelligent, Flexible and
Safe Operations in the Assembly Factories of the Future.
Procedia CIRP 23 (2014), 71–76.

[31] George Michalos, Sotiris Makris, Panagiota Tsarouchi,
Toni Guasch, Dimitris Kontovrakis, and George
Chryssolouris. 2015. Design Considerations for Safe
Human-Robot Collaborative Workplaces. Procedia
CIRP 37 (2015), 248–253.

[32] Arne Muxfeldt, Jan-Henrik Kluth, and Daniel Kubus.
2014. Kinesthetic Teaching in Assembly Operations–A
User Study. In International Conference on Simulation,
Modeling, and Programming for Autonomous Robots.
Springer, 533–544.

[33] Hai Nguyen, Matei Ciocarlie, Kaijen Hsiao, and Charles
Kemp. 2013. ROS Commander (ROSCO): Behavior
Creation for Home Robots. In 2013 IEEE International
Conference on Robotics and Automation. IEEE,
467–474.

[34] Chris Paxton, Andrew Hundt, Felix Jonathan, Kelleher
Guerin, and Gregory Hager. 2017. CoSTAR: Instructing
Collaborative Robots with Behavior Trees and Vision. In
Robotics and Automation (ICRA), 2017 IEEE
International Conference on. IEEE, 564–571.

[35] Chris Paxton, Felix Jonathan, Andrew Hundt, Bilge
Mutlu, and Gregory D Hager. 2018. Evaluating Methods
for End-User Creation of Robot Task Plans. In 2018
IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 6086–6092.

[36] Margaret Pearce, Bilge Mutlu, Julie Shah, and Robert
Radwin. 2018. Optimizing Makespan and Ergonomics
in Integrating Collaborative Robots into Manufacturing
Processes. IEEE Transactions on Automation Science
and Engineering 99 (2018), 1–13.

[37] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust,
Tully Foote, Jeremy Leibs, Rob Wheeler, and Andrew Y
Ng. 2009. ROS: An Open-Source Robot Operating
System. In ICRA Workshop on Open Source Software,
Vol. 3. Kobe, Japan, 5.

[38] Dominik Riedelbauch and Dominik Henrich. 2018. Fast
Graphical Task Modelling for Flexible Human-Robot
Teaming. In ISR 2018; 50th International Symposium
on Robotics. 1–6.

[39] Allison Sauppé and Bilge Mutlu. 2014. Design Patterns
for Exploring and Prototyping Human-robot Interactions.
In Proceedings of the 32nd Annual ACM Conference
on Human Factors in Computing Systems (CHI ’14).
ACM, New York, NY, USA, 1439–1448.

[40] Alexander Skoglund, Boyko Iliev, Bourhane Kadmiry,
and Rainer Palm. 2007. Programming by Demonstration
of Pick-and-Place Tasks for Industrial Manipulators
using Task Primitives. In 2007 International
Symposium on Computational Intelligence in Robotics
and Automation. IEEE, 368–373.

[41] Neville Stanton. 2006. Hierarchical Task Analysis:
Developments, Applications, and Extensions. Applied
Ergonomics 37, 1 (2006), 55–79.

[42] Frank Steinmetz, Verena Nitsch, and Freek Stulp. 2019.
Intuitive Task-Level Programming by Demonstration
Through Semantic Skill Recognition. IEEE Robotics
and Automation Letters 4, 4 (Oct 2019), 3742–3749.

[43] Frank Steinmetz, Annika Wollschläger, and Roman
Weitschat. 2018. RAZER-A HRI for Visual Task-Level
Programming and Intuitive Skill Parameterization. IEEE
Robotics and Automation Letters 3, 3 (July 2018),
1362–1369.

[44] Ioan Şucan, Mark Moll, and Lydia Kavraki. 2012. The
Open Motion Planning Library. IEEE Robotics &
Automation Magazine 19, 4 (December 2012), 72–82.

[45] Russell Toris, Julius Kammerl, David Lu, Jihoon Lee,
Odest Chadwicke Jenkins, Sarah Osentoski, Mitchell
Wills, and Sonia Chernova. 2015. Robot Web Tools:
Efficient Messaging for Cloud Robotics. In 2015
IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 4530–4537.

[46] Maartin Van Someren, Yvonne Barnard, and Jacobijn
Sandberg. 1994. The Think Aloud Method : A Practical
Guide to Modelling Cognitive Processes. London:
AcademicPress (1994).

[47] Chadwick Wingrave and Joseph LaViola. 2010.
Reflecting on the Design and Implementation Issues of
Virtual Environments. Presence 19, 2 (April 2010),
179–195.

[48] Chongjie Zhang and Julie Shah. 2016. Co-optimizating
Multi-agent Placement with Task Assignment and
Scheduling. In Proceedings of the Twenty-Fifth
International Joint Conference on Artificial Intelligence
(IJCAI’16). AAAI Press, 3308–3314.

	INTRODUCTION
	RELATED WORK
	TECHNICAL APPROACH
	Technical Challenges
	1. Representing tasks for humans and robots
	2. Matching task elements with worker skills
	3. Supporting exploration across robot platforms
	4. Developing an intuitive and effective authoring pipeline

	Technical Solutions
	1. Creating a shared representation for human-robot work
	2. Enabling effective task allocation in human-robot teams
	3. Implementing task plans into a collaborative robot.
	4. Facilitating the exploration of human-robot task plans.

	USER EVALUATIONS
	Evaluation 1: Shared Task Representation
	Participants
	Procedure
	Measures
	Results

	Evaluation 2: Agent Allocation
	Participants
	Procedure
	Measures and Analysis
	Results

	DISCUSSION
	Limitations and Future Directions

	CONCLUSION
	Acknowledgments
	References

