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Figure 1. We present a novel workflow and a software environment, called Authr, that enable engineers to translate single-person, work-related tasks in 
domains ranging from manufacturing to logistics into tasks that can be performed by human-robot teams. 

ABSTRACT 
Collaborative robots promise to transform work across many 
industries and promote “human-robot teaming” as a novel 
paradigm. However, realizing this promise requires the under-
standing of how existing tasks, developed for and performed 
by humans, can be effectively translated into tasks that robots 
can singularly or human-robot teams can collaboratively per-
form. In the interest of developing tools that facilitate this 
process we present Authr, an end-to-end task authoring en-
vironment that assists engineers at manufacturing facilities 
in translating existing manual tasks into plans applicable for 
human-robot teams and simulates these plans as they would 
be performed by the human and robot. We evaluated Authr 
with two user studies, which demonstrate the usability and 
effectiveness of Authr as an interface and the benefits of assis-
tive task allocation methods for designing complex tasks for 
human-robot teams. We discuss the implications of these find-
ings for the design of software tools for authoring human-robot 
collaborative plans. 
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CCS Concepts 
•Human-centered computing → Graphical user inter-
faces; Collaborative interaction; User interface program-
ming; •Computing methodologies → Multi-agent planning; 
Robotic planning; •Computer systems organization → Ex-
ternal interfaces for robotics; 

INTRODUCTION 
The introduction of robots into industrial environments to au-
tomate physical work has been a paradigm shift for many 
industries, including manufacturing and logistics, increasing 
productivity and efficiency. To achieve these goals, highly 
capable, but inherently human-unsafe, robots had to be se-
questered, separating work that can be automated with robots 
from manual work performed by people. The emergence of 
collaborative robots (cobots), i.e., under-actuated robots de-
signed to be human-safe and easy-to-use, is signaling another 
paradigm shift toward more flexible, collaborative workspaces 
with the potential to improve productivity and safety [36]. 

The prospect of human-robot teaming, where humans and 
robots collaboratively perform parts of the task that they are 
best suited to perform, holds considerable promise for im-
proving industrial work, but significant hurdles still remain in 
capitalizing on that promise [10]. An ethnographic approach 
has indeed shown that there is a discrepancy between the tra-
ditional robot programming approaches used by developers 
and engineers who integrate robots into industrial environ-
ments and the needs of collaborative interaction design [29]. 
Put another way, the task of specifying collaborative tasks 
requires a different approach than what is afforded by standard 
non-interactive robot programming approaches. The result 
of this discrepancy is that most cobots today are still used as 
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traditional robots, but without the protective cages surround-
ing them. Overcoming this discrepancy requires answering 
a number of questions. For example, how can a user, e.g., 
an engineer, take an existing task, e.g., assembling a toy, and 
turn it into a human-robot plan? How can the user implement 
the robot’s portion of the plan? How can the user know that 
the plan best utilizes the skills of human and robot workers? 
Although robot programming tools enable users to quickly 
program collaborative robots through demonstration, e.g., the 
programming by demonstration (PbD) approach developed by 
Skoglund et al. [40], or using visual programming environ-
ments (VPEs), e.g., CoSTAR [34], no tools exist to support 
users in the entire process of translating existing human tasks 
to those that human-robot teams can perform within the manu-
facturing context. In this paper, we outline the technical chal-
lenges involved in authoring human-robot plans and present 
our authoring environment, Authr, as a solution. 

Our work addresses four key technical challenges involved in 
human-robot teaming: (1) representation: representing work 
for both human interpretation and robot execution; (2) task-
skill matching: creating human-robot plans that match task 
elements with worker skills while achieving task goals; (3) 
robot programming: implementing task elements for collabo-
rative robots in a way that supports exploration of task plans 
across robot platforms; and (4) authoring pipeline: facilitating 
intuitive and effective translation of manual work into human-
robot plans. Building on methods and tools from ergonomics, 
robotics, and human-computer interaction, we address these 
challenges by (a) formalizing a task- and action-level repre-
sentation that is human-interpretable and robot-executable, 
(b) utilizing a multi-agent allocation algorithm that generates 
plans that match worker skills to task elements within task con-
straints, (c) developing a software stack which converts plans 
into robot-executable actions built on an extendable Robot Op-
erating System (ROS) [37] infrastructure, and (d) designing an 
intuitive software environment that enables users to effectively 
create human-robot plans. 

In the remainder of the paper, we discuss these technical chal-
lenges in more detail, describe our solutions for each chal-
lenge, present the system design and implementation of Authr, 
describe two user studies that evaluated different facets of 
human-robot teaming using Authr, and discuss our findings 
and their implications for the design of tools which support 
the authoring of human-robot collaborative plans. The contri-
butions of this work include: 

• A novel workflow to translate manual human tasks to human-
robot tasks; 

• Novel representations and formalizations for modeling, 
planning, simulation, and implementation; 

• The design of an authoring environment that supports users 
in following this approach; 

• An open-source implementation of the environment for pub-
lic use and further development;1 

• Empirical evaluations of the approach and the authoring 
environment through a series of user studies. 

1https://github.com/Wisc-HCI/authr 

RELATED WORK 
A great deal of prior work has focused on the development of 
visual programming environments (VPEs) to enable easy pro-
gramming of tasks. A primary example is the student-oriented 
Scratch interface, which uses a block design to indicate con-
ventional programming constructs [27]. This approach has in-
spired a number of VPEs such as Hammer, a robotics-focused, 
android-based programming tool allowing novice users to de-
sign programs for robot arm movement and tool use [28], and 
Code3, a drag-and-drop system built for the PR2 robot [18], 
among others. Another influential VPE, LEGO Mindstorms 
NXT Programming Environment, focused on education and 
robotics [21, 22]. Flow designs have also been investigated: 
Roboflow embeds pre- and post-conditions into flow struc-
tures, focusing on a low-level specification of behaviors for 
robotics [2]; and ROSco (ROS Commander), a tool created 
for the PR2 Robot, uses hierarchical finite state machines and 
low-level building blocks to specify spatially-situated actions 
[33]. While all these interfaces contributed substantially in a 
variety of ways, they generally focused on specifying robot 
behavior, as opposed to human-robot collaboration. 

The space of human-robot collaboration specification is still 
quite new. The ROBO-PARTNER project has helped by artic-
ulating the needs and requirements of such systems, namely 
user-friendly interfaces, planners that allow the creation of ef-
ficient human-robot collaboration task plans, robot instruction 
libraries that allow for easy generation and modification of 
robot programs, and continual attention to safety concerns [30, 
31]. In an attempt to begin addressing these requirements, the 
CoSTAR system was developed, which integrates perception 
and reasoning into behavior trees [34, 35]. While the interface 
was successful in allowing users to specify complex programs, 
users had difficulties understanding the types and intentions 
of the robots’ actions. RAZER was designed for task-level 
programming to allow shop-floor operators to leverage lower-
level actions developed by experts, and it was later extended 
to support programming by demonstration [43, 42]. They 
compared their solution with systems such as CoSTAR and 
Scratch, finding RAZER to be easier to understand by non-
experts. Graphical representation of the workspace to assist 
users in creating task graphs have also been explored [38]. 

In an effort to improve the efficiency of human-robot plans, 
research into multi-agent task planning has been explored with 
works such as Tercio [14] and multi-abstraction search ap-
proach (MASA) [48]. Tercio takes inspiration from real-time 
processor scheduling for multi-robot hierarchical problems. 
The objective is to assign tasks to agents and schedule tasks 
with the goal of minimizing change in agent assignment and 
minimize number of spatial interfaces between tasks assigned 
to different robots. MASA uses a multi-level optimization ap-
proach with three phases: finding an initial solution for agent 
placement, hill-climbing to minimize maximum makespan, 
and finally refinement to the solution. While both approaches 
work well for optimizing agent allocation, there is a relatively 
high planning time. Another consideration is prioritization of 
various goals such as maximal efficiency and minimal strain, 
as shown by Pearce et al. [36]. They found that tasks that ben-
efited most from the goal of minimizing time and ergonomic 

https://github.com/Wisc-HCI/authr


strain were ones which enabled parallel work, were repetitive, 
and utilized robot-performable actions. 

Researchers have started to address how to leverage agent al-
location in human-robot-collaborative authoring environments 
with systems such as Sharedo [19] and WeBuild [12]. Sharedo 
functions as a structured to-do list for daily tasks where multi-
ple agents (human, robots, virtual-assistants) coordinate based 
on their capabilities. WeBuild provides allocation of tasks for 
multiple humans with varying capabilities in order to offload 
group coordination. Our work, drawing from the related lit-
erature, addresses the challenges of authoring human-robot 
collaboration within the manufacturing context. 

TECHNICAL APPROACH 

Technical Challenges 
Translating manual tasks into human-robot task plans involves 
a number of technical challenges. We discuss these challenges 
in this section and detail our solutions in the next section. 

1. Representing tasks for humans and robots 
Translating tasks that are currently performed manually by 
human workers into human-robot plans requires representing 
them in a way that is both interpretable by a human, so that 
they can be trained on the task and their performance can be 
assessed, and executable by a robot. Tasks describing manual 
work in manufacturing settings are generally represented as 
written natural-language lists of mid-level descriptions of task 
actions. Although this representation is human-interpretable, 
implementing tasks into robots based on these descriptions 
is challenging [35]. Furthermore, users without the neces-
sary experience in developing collaborative applications may 
generate implementations which are not generalizable across 
robot platforms and are ill-suited for task-level analysis of 
plan efficiency or safety. Therefore, we need a representation 
that enables the user to capture task elements from natural-
language descriptions or from qualitative observations of the 
task and to specify task elements for humans and robots to 
perform. 

2. Matching task elements with worker skills 
Answering the question of which aspects of the task that robots 
and humans should perform is critical to realizing the promise 
of human-robot teaming for improved productivity and worker 
safety. This requires effectively matching human and robot 
skills to elements of the task, considering the cost of the human 
or the robot performing the elements. Furthermore, while a 
simple matching can determine whether a specific task element 
can be performed by a human or a robot, it does not help the 
user determine whether it should be performed by a human 
or a robot given specific task expectations and requirements, 
such as speed (a robot that can perform a task element may 
be too slow) and ergonomic safety (a task element that a 
human worker can perform much more efficiently may be 
ergonomically unsafe for the human worker). Hence, there is 
a need to match task elements to the skills and capabilities of 
human workers while considering outcomes such as efficiency 
and safety at a task level. 

3. Supporting exploration across robot platforms 
When engineers in industry are considering converting a man-
ual process into one involving a collaborative robot, either as 
automation performed by the robot or collaboration between 
the robot and a human operator, they are faced with the deci-
sion of using manufacturer-provided software environments 
(e.g., Universal Robots Polyscope2), utilizing third-party tools 
(e.g., Artiminds3), or developing a custom software solution 
built on top of low-level APIs. Compounding the problem of 
making an informed choice is a potential lack of experience 
in developing collaborative human-robot teaming applications 
[29]. Therefore, we need to provide a tool that enables users 
to quickly and easily evaluate their tasks for multiple robot 
platforms before purchasing a particular robot. For example, 
an engineer interested in understanding whether a Universal 
Robots UR5 robot or a Franka Emika Panda robot would 
better fit into a given task would likely have to implement 
the same task for both robots using different programming 
tools or setups, as highlighted by the creators of the CoSTAR 
robot programming environment [16]. Furthermore, if the en-
gineer is interested in seeing alternative task plans in action to 
further refine them, the user must program each plan individu-
ally. Users should be provided visual or demonstration-based 
robot programming tools in order to easily program robots and 
integrated planning tools to easily handle skill-based task allo-
cation. Thus we need to enable the user to quickly and easily 
develop, deploy, view, and modify task plans for end-to-end 
exploration across multiple collaborative robot platforms. 

4. Developing an intuitive and effective authoring pipeline 
A final technical challenge is to enable users to rapidly and it-
eratively capture task models for manual work, explore human-
robot task plans, and deploy the created plans on robot plat-
forms for assessment, refinement, and training. Although users 
might have prior experience with robot programming tools, 
such as the demonstration or visual-programming tools that 
are commonly used to program collaborative robots, we must 
create intuitive software tools that users can quickly learn and 
use in order to effectively facilitate the complex process of 
human-robot teaming. 

Technical Solutions 
Below we detail the technical approach to our authoring envi-
ronment, Authr, addressing each technical challenge in order. 

1. Creating a shared representation for human-robot work 
The goal of our representation is to facilitate the translation of 
natural-language task descriptions to a formal representation 
that remains interpretable to human collaborators, yet robots 
can understand and perform without having to update their 
underlying implementation. The tasks being translated are 
generally in the form of written natural-language lists com-
posed of task specific actions or tasks that can be observed 
by an engineer as they are being performed by an operator. 
Although examples of translating task-specific actions into 
robot action primitives exist in various domains (e.g., cook-
ing [4] and route-navigation [6]), these solutions tend to be 

2https://www.universal-robots.com/ 
3https://www.artiminds.com/ 
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highly contextual or robot-specific. One promising solution is 
Therbligs, as proposed by Gilbreth and Gilbreth [13], which 
address the issue of defining operational action primitives for 
human work. Researchers have since applied Therbligs to 
modeling or specifying robot behavior in various contexts [25, 
24, 23, 36, 1]. 

Our representation builds on Therbligs and is further inspired 
by Pearce et al.’s work [36] where they modeled human-robot 
tasks using Hierarchical Task Analysis (HTA) with lowest-
level sub-tasks allocated between humans and robots. In work 
analysis literature, HTA decomposes tasks into nested sub-
tasks until sufficient detail is achieved to perform work actions 
[41]. Our representation adopts this approach with two impor-
tant changes. First, our approach only considers three levels in 
HTA, operationalized as the Plan, Task, and Therblig, where 
Therbligs function as sub-tasks. Second, Therbligs have both 
high- and low-level parameters. High-level parameters include 
Agents, Things, Destinations, while low-level parameters in-
clude numerical values, such as gripper effort, time, and cost. 

Agents, Things, and Destinations—In our representation, 
Agents. Things, and Destinations are used to fully specify 
the high-level behaviors of Therbligs. Consider the action of a 
robot placing an item, such as a mug, in a container for ship-
ping. In this case, we can think of the transport action as the 
Therblig. High-level parameters, such as Agents, Things, and 
Destinations serve to characterize these therbligs and more 
clearly define their behavior. Thus, in the mug packing exam-
ple, the Therblig is specified by the Agent performing it (the 
robot), the Thing being moved (the mug), and the Destination 
it is moved to (the shipping container). Thus, the combination 
of high-level parameters and the Therbligs serve to symboli-
cally define the action to the engineer. In Authr, we consider 
an Agent to be any physical actor in the work environment that 
performs a relevant action within the context of the Plan and 
has a type (human or robot). Things are regarded as objects 
within the environment that are manipulated by Agents in the 
Plan. Destinations are operationalized to combine semantic 
labels, such as the described location (e.g., the “shipping con-
tainer” in the example above) with a concrete position and 
orientation that a robot could act on. Due to this represen-
tation, Authr enforces a strict set of spatial expectations on 
the workspace, meaning real-time dynamics and variablity 
are not considered in the current version of the system. As 
such, this solution works well for clearly-defined workspaces 
(e.g., kitting), but not for ones with variable Thing counts or 
positions (e.g., bin-picking). 

Plan, Tasks, and Therbligs—At the highest level of our HTA 
approach is the Plan, which in Authr reflects the entirety of 
the human-robot collaborative work being designed. The Plan 
is composed of Tasks, which represent high-level descriptions 
of behaviors used to achieve specific processes in the Plan. 
Tasks, in turn, are composed of Therbligs. The full set of 
18 Therbligs includes physical actions, cognitive processes, 
and behaviors that are both physical and cognitive [13]. For 
the current implementation of Authr, we focus on physical ac-
tions, resulting in the following list of Therbligs: (1) Transport 
Empty, (2) Transport Loaded, (3) Grasp, (4) Release Load, (5) 

Rest, and (6) Hold. These Therbligs are also listed in Figure 
2 along with their descriptions. By focusing exclusively on 
physical Therbligs, our task space is generally constrained 
to pick-and-place-type tasks (e.g., kitting, assembly, palleti-
zation). Some limited tool use can be created in an ad hoc 
manner (e.g., grasping a screwdriver and defining screwing 
rotation through multiple Transport Loaded Therbligs), but 
tasks requiring cognitive evaluation (e.g., force-sensed peg-in-
hole or component inspection) are currently not addressed in 
our representation. Further work is needed to operationalize 
cognitive and mixed cognitive-physical Therbligs. 

Setting an Agent for the high-level parameter of a Therblig has 
the effect of allocating it to that Agent, and leaving it empty 
prompts automated allocation. Other high-level parameters, 
such as Things and Destinations are required. These high-level 
parameters are used to generate pre- and post-conditions of 
each therblig, which serve to describe when the Therblig can 
be performed and what the effect on the workspace will be. In 
the mug packaging example from above, given that the action 
was configured with the robot, the mug, and the shipping 
container, we can say that for this action to be performed, 
the robot must be both holding the mug, and the space for 
the mug in the container must be empty. At the end of the 
action, both the mug and the robot will be positioned at the 
container. The full breakdown of parameters, pre-conditions, 
and post-conditions for our Therbligs are shown in Figure 2. 

Alongside high-level parameters (Agents, Things, and Destina-
tions, we need a way to standardize and compare the quality 
of Therbligs to sufficiently allow for shared representation 
of these collaborative tasks. Low-level parameters support 
this reasoning by providing low-level information required to 
execute an action by the robot, but may not be required by the 
human (e.g., gripping effort). In this way, if a robot can theo-
retically perform the task, and if it is allocated the Therblig, it 
has the necessary information to perform the task. Low-level 
parameters also provide comparative power to Therbligs allo-
cated to separate Agents. Time to complete an action can be 
simulated by the robot, but knowing the time for the human to 
perform the task would be necessary for determining which 
Agent is fastest at performing it. Likewise, if a task is hard for 
a human but easy for the robot (or vice versa), being able to 
weigh these values is necessary for thoughtful allocation of 
tasks. One common metric of difficulty is ergonomic strain, 
and being able to flexibly define this cost for a given Therblig 
and Agent can empower the engineer to construct programs 
that provide robotic assistance where it is needed most. 

2. Enabling effective task allocation in human-robot teams 
A critical challenge in authoring human-robot collaborative 
tasks is the gap between engineers’ ability to construct single-
agent programs and the know-how of designing interactive 
tasks. Even if some tasks or sub-tasks are only executable by 
one Agent, the rest of the interaction needs to be planned in 
a way that incorporates those restrictions on agent allocation. 
Since many engineers from the manufacturing domain have 
access to task specifications (albeit non-interactive, manual 
ones), we sought a representation that translates this type of 
non-agent focused representation into an interactive plan. Our 



operationalization of Therbligs, along with the parameters we 
specify, allows for a direct translation from their task speci-
fications to the shared Therblig representation, from which 
the interactive Plan is constructed. This construction process 
requires any non-specified Agents to be allocated to a given 
task, all while accommodating specified (i.e., parameterized) 
Agents and considering cost and time estimates. 

Our proposed allocation process is performed in a series of 
steps. First, the Plan is checked using the SMT solver Z3 
[8], in which the pre- and post-conditions of each therblig 
are translated into first-order logic and verified. This same 
algorithm is used continuously during plan construction to 
provide feedback about program correctness to the user. Next, 
the Plan is further checked that all needed parameters are de-
fined, since not all parameters need to be set for verification to 
succeed. Following this parameter check, the Plan proceeds 
to allocation. For this purpose, a breadth-first search through 
the interaction is utilized, resulting in a set of possible inter-
action traces. In the worst case, the state size upon applying 
each Therblig tn of t1, t2, ..., tn has an upper bound of 2n for 
two agents. However, we observe that users typically chain 
together consecutive Therbligs for an Agent into individual 
Tasks (e.g., pick-and-place: Transport Empty → Grasp → 
Transport Loaded → Release Load). Due to the pre- and post-
constraints, Things act as tokens constraining the growth of the 
state space, and the state space grows instead with 2m where 
m is the number of Tasks. Since these traces are modeled as 
a single sequence of consecutive actions (for computational 
efficiency), the Plan is then parallelized such that allocated 
Therbligs are performed as soon as possible while maintaining 
first-order logic. The resulting traces are compared for overall 
time and cost, using the provided time and cost weights, and 
the optimal interactive Plan is returned. 

The method described above was chosen because it most 
closely matched the formulation of the Plans as provided 
by the users, namely an initial state and a set of non-allocated 
Therbligs to perform. With some additional work, and some 
caveats, the Plans can be converted into standard planning-
based problems. The first caveat is that due to the nature of our 
approach, the ordering of Therbligs is constrained for a given 
Agent. Combined with the token-like nature of Things, this 
means that users can specify sequences of Transport Loaded 

Therblig
Transport Empty

Grasp

Transport Loaded

Release Load

Hold

Rest

Reaching for thing with empty hand/gripper

Grasping objectwith hand/gripper

Moving thing in hand/gripper to destination

Releasing thing fromhand/gripper

Pausingwhile holding thing in hand/gripper

Pausing for specified durationwithout grasp

Parameters
agent,dest.

agent, thing, effort

agent, thing, dest.

agent, thing

agent, thing, dur.

agent, dest., dur.

Pre-/Post-conditions
Pre:¬ gripping

Pre: ¬gripping ^ location(agent)=location(thing)

Pre: gripping ^ location(agent)=location(thing)

Pre: gripping

Pre: gripping ^ location(agent)=location(thing)

Pre: ¬gripping ^ location(agent)=dest.

Post: location(agent)=dest.

Post:gripping

Post: location(agent)=dest. ^ location(thing)=dest.

Post:¬ gripping

Post:none

Post:none

Figure 2. A description of the Therbligs implemented in Authr, including 
parameters, pre-conditions, and post-conditions. 

Therbligs, thereby creating waypoints, with certainty of the 
ordering that the Agent will visit them. Additionally, if some 
intermediate placement of an Agent or Thing is required, but 
not captured in the final state, a coarse planning will not result 
in this configuration, unless segmented into multiple planning 
problems or supplying additional explicit goals. 

While the allocation and parallelization algorithms specified 
were sufficient for the complexity and size of Plans considered 
in this study, it is important to consider how such methods com-
pare to more conventional planning approaches. To this effect, 
we ran benchmarks with our process and a Multi-Objective 
Divide-and-Evolve (MO-DAE) algorithm, which is an evolu-
tionary algorithm which supports multi-objective planning [9, 
20]. Since interactive design is a key component in the user’s 
workflow, we needed any algorithm to be sufficiently fast. 
Thus, we capped the maximum compute time at 90 seconds 
for quick user feedback. As input, we modeled three Plans 
(shown in Figure 3) in Authr based on real-world manufac-
turing tasks. Each Plan was evaluated five times with each 
algorithm. Our algorithm was deterministic, so there was no 
variation other than slight differences in compute time. 

The first Plan models a kitting task (assembling objects into 
containers or kits) in which there is a grouping of four toys and 
four batteries on the left side of the workspace. The goal of 
this Plan is to move one toy and one battery into four separate 
boxes, located to the right. The second Plan models a circuit 
board assembly task. The initial state of this Plan consists of 
a group of four nuts located to the right of a PCB, and two 
cables positioned above the board. To complete this assembly 
process, one nut must be screwed onto each corner of the 
circuit board, and each of the two cables connected to the 
circuit board. The third Plan models a repair task in which 
two faulty components are replaced by new components on a 
circuit board. The two components are functionally different, 
with one requiring considerable cost for the human to place 
but not remove. This repair task starts with the two distinct 
faulty components attached to the circuit board and the two 
distinct new components off to the side. The goal of this Plan 
is to remove both faulty components, placing them to the right, 
and replace them with the new components of the same type, 
located to the left. 

In order to estimate the Therblig times for the human Agent, we 
set up a physical representation of each task and recorded the 
amount of time it took for a human to perform each Therblig. 

For each of the three Plans we evaluated, we targeted different 
time and cost metrics. In the first Plan (kitting), the objective 
was focused on minimizing time, so the optimization weights 
for time and cost were set to 0.6 and 0.4, respectively. In the 
second Plan (assembly), the objective was to minimize cost, 
so time and cost weights were configured at 0.05 and 0.95, 
respectively. Of concern in this Plan was the ergonomic strain 
for humans in screwing in the nuts. Thus, the cost of this 
action was configured to be higher for human than robots (0.9 
vs 0.2). In the third Plan (repair), we set the cost weight to 0.6 
and the time weight to 0.4. In this Plan, we were interested in 
the effect of a high cost related to a single action and Agent, 
as opposed to a class of actions. 



Initial Goal

Initial Goal

Initial Goal

Figure 3. For the technical evaluation, we constructed three manufac-
turing tasks: Kitting, Assembly, and Repair. For Kitting, top, a toy 
(cylinder) and a battery pack (cube) were moved to each container. In 
Assembly, middle, screws (grey cylinders) are placed in each of the four 
corners of a PCB and rotated, while two cables (pink cubes) are placed 
in the center. Finally Repair, bottom, features two faulty components 
(red cubes) being removed and replaced with new parts (green cubes). 

Results of both methods (Authr Allocation versus MO-DAE) 
for the three different Plan types are shown in Figure 4. This 
evaluation showed that while the two methods were roughly 
comparable for optimizing in Plan time, cost, and overall 
score, the compute time for these similar metrics was less for 
our implementation. Since a focus of Authr is to enable the 
exploration of Plans, especially through iterative refinement, 
we chose to utilize the simpler implementation outlined above 
for further testing. However, we note that while this method 
was sufficient for these purposes, alternative methods may be 
superior with Plans of different size or complexity. 

3. Implementing task plans into a collaborative robot. 
Authr connects to a server developed for Robot Operating Sys-
tem (ROS) [37], running on Ubuntu. We chose to develop 
our system in ROS to enable future integration with physical 
robots. For robot trajectory planning, estimating Therblig ac-
tion time, and simulation, our implementation uses MoveIt 
[7], specifically using Open Motion Planning Library (OMPL) 
[44]. Because MoveIt is freely available and configurations 
are easily made, this choice makes adding additional robots 
to Authr straightforward. While the current implementation 

allows the user to choose from the Franka Emika Panda or 
Universal Robots’ UR3, UR5, and UR10, any robot with a 
MoveIt configuration could be added. Utilizing a standard 
inverse-kinematics and motion-planning tool enables us to 
achieve our goal of a shared representation by converting 
our spatial-semantic representations to robot-specific control. 
Thus, Therblig behavior implemented on top the motion plan-
ner achieves Agent-agnostic functionality. 

4. Facilitating the exploration of human-robot task plans. 
Authr integrates the above representations and technologies 
into a visual programming environment. This environment 
is built using the Angular web framework [15] as a browser-
based application, which connects to a ROS-based server using 
Robot Web Tools [45]. Authr has three modes, setup, plan, 
and simulate , which a user works through in five main steps, 
(1) setting up the workspace, (2) creating tasks, (3) adding 
therbligs, (4) parameterizing, and (5) simulating the result 
(Figure 5). The first step is for a user to set up a workspace, 
as the Agents, Things, and Destinations created in this step 
will be needed for the following steps. Next, the user can 
create a Task and a set of Therbligs that will be performed 
in this Task by dragging them from a library and dropping 
them in the Task container. The user can then parameterize the 
Therbligs and review any errors identified by Authr. Based on 
these errors and the remainder of the Plan, the user can either 
decide to create another Task or continue adding Therbligs to 
an existing Task. At this point, the user can also navigate to the 
simulation view to see the plan played out. After reviewing 
the simulation, the user can create another Task to add to their 
Plan if desired. Below, we detail how users would perform 
each step. 

Workspace Setup—This phase lets users set plan-level parame-
ters and configure Agents, Things, and Destinations. One or 
two Agents (one human and/or one robot) must be defined. 
Users also specify Things, which include cubes, spheres, cylin-
ders, and containers and can be customized with size and color. 
When Agents or Things are created, Destinations that specify 
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Figure 4. We evaluated the Authr Allocation and Parallelization algo-
rithms (blue) versus a MO-DAE planner (grey) with three different Plans 
(Kitting, Assembly, and Repair) on 4 different metrics (Compute Time, 
Overall Plan Score, Overall Plan Time, and Overall Plan Cost). Lower 
scores for all metrics are desirable. 
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Figure 5. The three modes in Authr. In setup, users first configure the 
workspace; Destinations are able to be added, deleted, and modified, and 
each Agent and Thing gets assigned an initial location in the scene. Mov-
ing into planning in the Plan Tab, Tasks are represented as containers for 
Therbligs and are ordered from left to right. Within each Task, Therbligs 
are ordered from top to bottom. Therbligs and Tasks are also configured. 
In simulate, after designing an interaction, users can simulate the actions 
of human and robot Agents. 

their initial locations are automatically created. Additionally, 
users can specify new, unpaired Destinations as waypoints 
or goals. While configuring Destinations, users can inspect 
the robot action times for all possible Destination pairs in a 
table generated by the motion planner. If a Destination is 
unreachable, the robot time entry is marked invalid, prompt-
ing adjustment from the user. Users are able to adjust the 
placement of Agents, Things, and Destinations within a 3D 
simulation view or, alternatively, through manual entry. 

Creating Tasks—Users develop their collaborative plans 
through a drag-and-drop mechanism. Users can create any 
number of Tasks, which will be executed from left to right. 
As users are developing their Tasks, they may find that they 
are repeatedly creating Tasks containing the same sequence 
of Therbligs. Users create macros by exporting a Tasks as a 
template of parameterized Therbligs. When a user then drops 
a macro into a Task container, the macro expands back into a 
sequence of those parameterized Therbligs. 

Adding Therbligs—Users can drag Therbligs from the source 
drawer and drop them into Task containers. Therbligs can be 
rearranged within and across Tasks. 

Parameterizing—While the user is developing the task struc-
ture they may open a contextual menu by clicking on an ele-
ment. If the element is a Therblig in the source drawer, then 
the contextual menu provides an informational description of 
the Therblig. Selecting a macro from the source drawer dis-
plays the sequence of parameterized Therbligs saved within. 
Clicking on a Task brings up the ability to export it as a macro. 
Finally, selecting a Therblig contained within a Task provides 
access to its parameters. 

The Therblig contextual menu affords configuration of both 
high- and low-level parameters. High-level parameters 
(Agents, Things, and Destinations) are presented as icons 
with a drop-down list for configuration. All Therbligs re-
quest an Agent parameter and may also request Thing and/or 
Destination parameters. Unique to Agent parameterization 
is an option to defer to the allocation algorithm, presented 
as an optimize option in the Agents drop-down list. Low-
level Therblig-specific parameters (e.g., time, cost, effort) are 
presented when applicable. For time and cost, when a user 
provides a human as the parameterized Agent, the contextual 
menu simply requests the time parameter. However, when 
the Agent is deferred to allocation, both time and cost for the 
human Agent and cost for the robot Agent need to be specified. 

The parameter view also provides the user with feedback on 
any errors associated with that Therblig. In addition to iden-
tifying missing parameters, the same Z3-based verification 
algorithm used in the allocation process is executed upon plan 
updates, and provides helpful error messages, e.g., “Agent 
must not be gripping.” As a visual shorthand, the interface 
also indicates the presence of errors for a Therblig with a red 
notification icon within its tile. 

Simulating—Users enter the simulation phase to evaluate their 
resulting Plan. On entry of this phase, Authr runs the Agent 
allocation algorithm on the designed Plan. With successful 
allocation, the user may start, pause, stop, and reset the simula-



tion in real-time. Robot simulation is handled through MoveIt, 
and human simulation is simply linear interpolation between 
Destinations. Also shown in the simulation view is a timeline 
for each Agent’s allocated Therbligs. The timeline represen-
tation, a la Interaction Blocks [39], was chosen due to the 
inherent temporality that it affords. Clicking on a Therblig 
within the timeline will expand a context menu displaying its 
duration and cost. While simulating the Plan, the Therblig 
being performed in the 3D simulation by an Agent is also 
highlighted within the timeline. 

If the user enters simulation with an invalid plan, the view 
is replaced with a list of errors detected. While the user is 
simulating the Plan, they may find that their Therblig sequence 
is not performing as they intended (e.g., they forgot to indicate 
a Transport Loaded to a way-point Destination). The user 
may then switch to either the setup or planning phase to fix 
the error or refine their plan. 

USER EVALUATIONS 
To gauge the ability of our technical solutions to support the 
creation of task plans for human-robot teams, we carried out 
two evaluation studies. The first study focused on our solution 
to the first technical challenge, creating a shared representa-
tion, and assessed the extent to which Authr provided users 
with an appropriate vocabulary to model tasks. The second 
evaluation focused on our solution to the second technical chal-
lenge, translating task models into human-robot task plans, 
and evaluated Authr’s ability to effectively allocate task steps 
to human and robot Agents. Both evaluations also measured 
the general usability of and user experience with Authr. 

Evaluation 1: Shared Task Representation 
The first evaluation aimed to assess the ability of our HTA-
and Therblig-based framework to support the modeling of 
manual tasks as well as the general usability of the software. 
To achieve this goal, we asked engineers and engineering 
students to implement a simple kitting task using Authr. This 
evaluation used a version of Authr without the Simulate Mode 
and was constrained to manual allocation of Therbligs. This 
version provided a simulation view in setup where users could 
move the robotic arm for virtual kinesthetic teaching. 

Participants 
A total of eight participants were recruited from a university 
campus. All participants (5 males, 3 females) were native 
English speakers with an average age of 27.63 (SD = 21.61). 
They either held or were pursuing a degree in either industrial 
engineering or mechanical engineering. 

Procedure 
After providing informed consent, participants interacted with 
an early version of Authr, which lacked the simulation and 
optimization components considered in the later evaluation. 
Participants were shown a short 9-minute video explaining 
how to use the software and the different types of Therbligs 
they could use. This video walked users through designing a 
simple pick-and-place task with a single Thing. Next, partici-
pants watched a video of a human actor, see Figure 6, perform-
ing a kitting process with three different types of Things, and 
were then asked to implement that process as a Plan in Authr 

that was performed by a robot. While full simulation was not 
present in this version, participants were able to utilize a simu-
lated robot (Universal Robots’ UR5) for defining the locations 
of Agents, Things, and Destinations. After completing the 
task, participants received compensation at rate of $12/hour. 

Measures 
Participants were given as much time as they needed to design 
their Plans and were asked to verbalize their thoughts in a 
think-aloud procedure [11, 46]. After the task, users completed 
the System Usability Scale (SUS) [5, 3], USE [26], and a short 
demographic survey. 

Results 
Video data was transcribed and coded for emergent themes. 
These themes are discussed below. 

Theme 1: Planning and Strategy—All eight participants cre-
ated generally similar Plans, with a few differences. Only 
one chose to group all their Therbligs into a single Task. The 
remainder chose to group their Therbligs into separate Tasks, 
based on the item being moved. 

One participant switched from a single Task design to a three-
Task design after setting up the first group of Therbligs in 
a Task. At the time, the singular Task contained (Transport 
Empty, Grasp, Transport Loaded, and Release Load), as well 
as an additional Transport Empty which returned the robot 
back to its initial position to prepare for the next sequence: 

So I suppose I could do 3 Tasks—that’d probably be pretty easy. 
Grasp, Transport Loaded, Release Load, go back to neutral posi-
tion. I suppose that kind of makes “Only Task” [Name of the one 
Task] not make much sense. Let’s grab Transport Empty, Grasp, 
Transport Loaded. . . So that kinda makes this Transport Empty 
not make any sense to do, because then all I am going to do is say 
Transport Empty again right at the start of this [The next Task]. 
(P05) 

In this excerpt, the participant made two adjustments. The 
first was the aforementioned switch to three Tasks, instead 
of one. In so doing, the participant also realized that the 
Transport Empty they were performing, which returned the 
robot back to its initial location, was actually unnecessary, as 
it was immediately followed by the first Transport Empty of 
the next Task. 

When structuring their Tasks in this way, participants also 
tended to notice parallels between the Tasks they created, 

Figure 6. Participants viewed a video of an actor performing a simple 
kitting task and used Authr to translate it to a human-robot task. 



prompting many to comment or request some way to either 
loop through or copy Tasks: 

It seems like I am doing the same actions over and over, so it 
would be nice if I could use the same Task. (P02) 

Exporting Tasks as copy-ready macros had been planned but 
not implemented by the time of these evaluation sessions. 
These comments provided justification for adding this in the 
next evaluation. 

Theme 2: Destination Configuration—The most commonly 
cited difficulty participants mentioned centered not around 
Therbligs, but rather the specification of Destinations in the 
3D workspace. The challenge was that to move a Destination 
or Thing in the workspace, users had to click and drag various 
toggles around the entities. This challenge could be due to 
lacking a metaphor that they were familiar with [47]. The 
controls were not immediately intuitive to users: 

I am going to move. . . how do I. . . Oh that’s not it. Um oh I see, 
OK. I didn’t know how to move it at first, and now I see that 
you have to move it like mutually orthogonal in either of the 3 
Cartesian directions. (P05) 

In order to constrain the space of Destinations to the smaller 
set of valid Destinations for a given robot arm, we used a 
procedure in which users moved a marker around the scene, 
and the arm attempted to match that pose. Setting the position 
and orientation would copy the robot pose to the Destination, 
as a direct parallel to kinesthetic guidance [32] which could be 
used in a physical workspace to specify locations to the robot. 
However, this approach did not seem intuitive to users in this 
context, as suggested by the following excerpt: 

But it is hard to know what moves what. I got it eventually. And 
then the robot it isn’t super clear like where the base is and the 
where the head starts, and then you have to move the robot to set 
the Destination, which. . . And then like checking how far it can 
go—that didn’t really make sense to me. (P03) 

To address this confusion, for the final evaluated version of 
our tool, each Destination was manipulated directly, and an 
indicator showed when it was reachable by the robot Agent. 
However, for future versions of Authr, this capability may 
be added back in, for when users have a physical robot on 
the scene and wish to use the physical robot to configure 
the destinations and object locations more easily, much like 
interfaces such as Polyscope and RAZER [42]. 

Theme 3: Simulation—A common comment by participants 
was that upon completion, many wished to confirm the accu-
racy of their Plans by seeing it in action through simulation: 

OK, it looks like it is all good, but I do not know how to test it. 
(P06) 

Indeed, one such participant made an error in their Plan that 
likely would have been discovered through simulation. In 
specifying the goal Destinations for the Transport Loaded 
Therbligs, they incorrectly used the initial locations of the 
objects as Destinations, instead of the goal location specified. 
This does not create an error, since a Transport Loaded to the 
same Destination is valid, albeit non-useful. The resulting 
Plan would have shown no movement of items in the scene 
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Figure 7. USE and SUS scores from Evaluation 1. 

to the goal location. This provided further justification for 
supporting iterative refinement through the design of Authr. 

The quantitative data from the measures of usability and user 
experience can be seen in Figure 7. The subscales of USE had 
the following scores: Usefulness (M = 4.56, SD = 1.35), Ease 
(M = 4.63, SD = 0.856), Learning (M = 5.81, SD = 0.579), 
and Satisfaction (M = 4.29, SD = 0.990). The average SUS 
score was 67.3, (SD = 14.1). 

Evaluation 2: Agent Allocation 
For the second evaluation, we turned our focus toward auto-
matic Agent allocation. Specifically, we studied the ease to 
which participants author manual Agent allocation Plans in 
comparison to authoring automatic Agent allocation Plans. To 
understand how engineers may use Authr to perform these 
tasks, we started participants with a more complex sorting 
Plan where Agents, Things and Destinations are already de-
fined. We then asked them to implement the Tasks necessary to 
complete the Plan. Once completed, the experimenter would 
load in a different sorting Plan and repeat the experiment 
with a different allocation type. The four conditions in the 
experiment were counter-balanced. 

Initial Goal

Initial Goal

Figure 8. For Evaluation 2, we constructed 2 comparable tasks, Cluster 
Sort and Ordered Sort. For Cluster Sort, top, participants organized 
blocks into clusters by type, and in Ordered Sort, bottom, participants 
organized blocks into a grid. 



Participants 
Another eight participants (6 males, 2 females), aged 21 on 
average (SD = 0.93), were recruited for Evaluation 2. All 
participants were native English speakers and either held or 
were pursuing degrees in industrial or mechanical engineering. 

Procedure 
After providing informed consent, participants interacted with 
the next version of Authr, which added full simulation, verifi-
cation, automatic Agent allocation, and the adjustments to the 
interface based on feedback from Evaluation 1. The version of 
Authr described in the Technical Approach section was used 
in this evaluation. A Universal Robots’ UR5 was used for 
simulation and design. As in Evaluation 1, participants were 
first shown a short eight-minute video explaining how to use 
the software, and the different types of Therbligs they could 
use. This video walked users through designing a different 
basic pick-and-place task from Evaluation 1. Next, partici-
pants were instructed on how to view the robot action time 
table and use macros by the experimenter. The experimenter 
worked through one example, and the macro was deleted after 
demonstration. Two different sorting tasks, see Figure 8, were 
provided each with nine Things (three cubes, three cylinders, 
and three spheres) that needed to be moved to their goal state 
according to the condition. The Things had initial positions off 
to the right side of the simulated workspace. In both cases the 
initial positions of Things were identical. In the Cluster Sort, 
participants were asked to move the Things from the unsorted 
cluster into three sets of clusters, based on type. Similarly, in 
the Ordered Sort, participants were asked to move the Things 
into a grid formation. 

To start the task, participants were provided a reference docu-
ment containing the task description with the sorting objective, 
defined Plan workspace, a time estimate table for human ac-
tions, and cost tables for both Agents. Time and cost tables 
were the same between Plans except for robot timing due to 
differences in Destination positions and orientations. When 
constructing a Plan in the manual allocation condition, the 
participant was asked to explicitly define the Agents without 
the allocation algorithm. The experimenter also provided the 
participant with scratch paper and a calculator, and instructed 
the participant to solve the allocation to the best of their ability. 
When constructing a Plan in the automatic allocation condi-
tion, the participants were instructed to only use the automatic 
allocation. For both allocation conditions, participants were 
given as much time as they needed to work through the Plan. 
Participants were also allowed to use simulation throughout 
their design process. Once they felt that their Plan was fin-
ished they were given a series of questionnaires assessing 
their experience with the tool, after which they would move 
onto the second case. Except for the sorting objective and 
method of Agent allocation, the procedure for the second Plan 
was the same as the first. After the participant completed the 
second Plan and the associated questionnaire, they received 
compensation at rate of $12/hour. 

Measures and Analysis 
Participants were given as much time as they needed to design 
their Plans. As in Evaluation 1, participants were asked to 

verbalize their thoughts in a think-aloud procedure. After 
completing the task, users completed the SUS [5, 3], USE 
[26], and NASA Task Load Index (TLX) [17], as well as a 
short demographic survey. 

Results 
Outcome measures were computed for each produced Plan: 
Plan Time, Plan Cost, and Plan Score. Plan Score reflects the 
weighted average of Plan Time and Plan Cost that the partici-
pants attempted to minimize. Additionally, scores for the SUS, 
USE subscales, and the NASA TLX subscales were computed. 
Each outcome measure was analyzed with a repeated mea-
sures one-way Analysis of Covariance (ANCOVA), modeling 
allocation method while controlling for Plan type (Sorting or 
Ordering). Plan Time, F(1, 6) = 6.8274, p = .0400; and Plan 
Score, F(1, 6) = 6.9791, p = .0384, were found to be signif-
icant, where Automatic procedures outperformed Manual in 
these cases. No other measures were significant. We note that 
these results are based on a small sample and require further 
validation and contextualization within qualitative findings. 

Video data were transcribed and coded for emergent themes 
for each Plan implemented by the participants. Given the 
complexity of the Plans compared to Evaluation 1, engineers 
constructed Plans that showed greater variation. This included 
both boundaries for where the Plans were divided up into 
Tasks, and when manually allocating Agents, how they chose to 
handle prioritizing duration and cost. Frequently, participants 
would express distaste for the workload when performing 
manual allocation. These themes are discussed below. 

Theme 1: Workload—When performing allocation manually, 
many participants, after fully understanding the problem space, 
articulated negative attitude or frustration with the process. 
One such participant stated that they did not want to perform 
all the necessary calculations: 

Okay. I don’t really want to do all the calculations for figuring out 
exactly which ones. . . . So many different possibilities. (P15) 

This apprehension towards the problem resulted in a variety 
of approximation strategies, detailed below. Others expressed 
distaste for the work required to compare charts of times. In 
the following excerpt, a participant who first performed the 
automated allocation procedure remarks about how it differed 
from the manual process: 
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Figure 9. Resulting Overall Plan Cost, Time, and Scores for Automatic 
and Manual procedures. Cost refers to the objective corresponding to 
effort or wear (depending on Agent), and Score refers to the overall score, 
based on the weighted Time and Cost. Lower scores for all measures are 
more desirable. 



It’s definitely less frustrating calculating the cost than it is trying 
to figure out the quickest path going through the the chart the first 
way. . . Cause like quick mental math, I personally liked that better 
than trying to stare at the chart. . . (P10) 

When using automated allocation, participants simply had to 
provide accurate times for the human, and costs for the robot 
and human. While this certainly amounted to some tedious 
calculation of effort and data entry, as seen here, participants 
tended to prefer this to the complex considerations of the 
manual approach. We will discuss options for reducing this 
potentially tedious activity in the future directions. 

That is not to say that the automatic method was without its 
difficulties. A small number of participants did initially have 
some trouble orienting to the more abstract representation of 
the task. This problem of representing these more abstracted, 
agent-agnostic actions is therefore in need of further research. 

Theme 2: Strategies—Due to the workload required in the man-
ual allocation procedure, most participants developed various 
heuristics or algorithms to determine the best allocation. 

Some participants chose to approximate by looking at trends. 
In the following excerpt, one participant averaged rows in 
the robot times, to get a rough expected duration. This was 
compared to the human times: 

. . . and with the sphere, all of the robot numbers look like they’re 
kind of a little bit higher than three for where they’re moving it to. 
Um, if they like start at the sphere and like move to it. So I was 
gonna make the human do that one. (P10) 

Others took a more conditional approach, looking for cases 
where patterns held or did not hold: 

What’s the cost of moving the robot? The cost of moving the 
robot is always cheaper. Wait. . . If it’s always cheaper... Yeah. 
Then if time is cheaper than cost should be cheaper for the robot. 
We should only consider it when. . . Since we’re only working 
with these four and the robot’s cost is lower than these. So any-
way. . . yeah. Only if the human time is shorter then we take cost 
into consideration. (P16) 

Heuristics weren’t the only way to approach the problem, 
however. Other participants opted to iterate on a Plan, moving 
Agents from Task to Task. In some cases, participants would 
leverage the simulation to assist with this process. 

Theme 3: Mistakes and Errors—As seen above, most partic-
ipants, when manually allocating Agents, developed various 
heuristics to determine the best allocation. Unfortunately, not 
all these heuristics were valid, or consistently applied. 

The excerpt from the discussion of workload also illustrates 
this line of thinking: 

So I’m just going to put these as the robot because it seemed 
cheaper. . . Yeah. I’m just going to give the robot two of them. 
Sure. We’ll say that’s good. (P15) 

This a common error seen in these heuristics. When partic-
ipants used less concrete heuristics, they tended to place a 
higher-than-necessary emphasis on cost than described in the 
instructions. While cost was almost always lower for the robot 

(the exception was Rest), the cost was usually small compared 
to duration, while weights were equal. 

Yet, even larger errors were sometimes made. In the following 
case, the participant incorrectly opted to assign all Therbligs 
to the robot, in order to minimize the overall cost, but forgot 
to consider benefits of concurrency: 

I feel like I’m not going to use the human at all. I feel like the time 
that it’s using—like the 0.66 seconds—will offset the cost of 0.2 
versus 0.05 for the transport. That’s my. . . I know. . . I’m going to 
go forward with moving only the robot. Cost seems like a better 
benefit. (P10) 

This error resulted in a nearly two-fold increase in total Plan 
score (38.6) when compared to their automatically-allocated 
Plan (20.2). This illustrates the large potential for errors when 
dealing with such complex allocation tasks in a completely 
manual manner. 

Theme 4: Modified Workflow—In addition to the differences in 
the tactics of problem solving, participants appeared to display 
a more streamlined reference → calculate → configure process 
in the automated condition and a more fragmented approach 
in the manual one. Consider the following process for P16 as 
they configured a series of therbligs: 

The participant begins by creating a series of empty Therbligs. P16 
then considers the scene from the Setup tab, decides to work on 
the second cylinder first based on its location, and then tentatively 
proceeds by assigning the robot, choosing to alter the plan later 
if desired. P16 switches to consult the reference document (on a 
separate browser tab), but then needs to check where the robot arm 
would be. Next, the participant needs to check the table of robot 
times to see the time estimate based on that information and then 
switch back to the reference to calculate the expected time and 
cost parameters: “What are we working with... the cylinder. Four 
seconds.” Finally getting the information, P16 switches back to 
the Plan view and enters the information. Throughout the process, 
the participant performs multiple context switches to reference 
different information from different sources (some internal to the 
Authr tool and some external), which requires the participant to 
frequently verbally re-situate after each context switch. 

Compare this pattern with the same participant configuring a 
plan using the automated process as follows: 

The participant creates a series of Therbligs in a Task, configuring 
the high-level parameters for Things and Destinations. P16 then 
switches to the reference document in the separate tab. The partic-
ipant obtains the estimated time and cost parameters and returns 
to the Plan tab to enter the information. 

Because the automated process utilizes its own information 
(i.e., robot time estimates) in the allocation, participants did not 
need to reference, handle, or utilize this information, reducing 
the need to reference internal data. While the participant 
had to perform some additional calculations, as seen in the 
themes above, this process was preferred over the manual 
approach. This preference was likely in part because of the 
more streamlined reference → calculate → configure process 
of the automated method. 



DISCUSSION 
Our evaluation studies provided us with a better understanding 
of the extent to which the technical solution we have developed 
enabled users to create human-robot task plans. Our findings 
from Evaluation 1 indicate that the shared task representation 
that incorporated ideas from HTA and work modeling served 
as an appropriate framework to model tasks that users observed 
from video. The representation not only provided an effective 
set of building blocks to construct plans, but it also helped 
users identify Therbligs that were unnecessary in achieving the 
task goal. The evaluation also identified a number of usability 
issues, specifically in positioning and assigning Destinations 
for Therbligs, which informed the improvements we made in 
Authr prior to Evaluation 2. Finally, participants repeatedly 
expressed a desire to simulate the actions they were modeling, 
providing evidence that simulation is a critical component of 
any task-planning approach or environment. 

The second evaluation, which focused on assessing the ef-
fectiveness of our technical solutions in enabling engineers 
to allocate task steps to a human-robot team, revealed that 
automated methods for such allocation is critical. Participants 
in our study were overwhelmed by the combinatorial complex-
ity when considering the conjunction of task step ordering, 
cost, time, and Agent allocation. To handle this complex-
ity, many participants developed heuristics to simplify the 
allocation problem, but these heuristics were ineffective or 
detrimental when they were not applied consistently or cor-
rectly. Finally, we found that designers using the automated 
approach showed a more streamlined workflow for designing 
and configuring their plans. Overall, our findings indicate that 
automated methods that handle the complex computational 
process of task assignment to multiple Agents are essential for 
any task-planning environment. 

Limitations and Future Directions 
Authr offers a novel approach to the design of collaborative 
robotic programs, but it does have certain limitations that 
motivate a number of future research directions. 

First, our solution to the shared task representation problem 
only focused on physical manipulation tasks, although real-
world tasks will require additional capabilities such as percep-
tion and tool use. The original set of Therbligs that informed 
the development of our solution proposed a set of cognitive 
Therbligs such as Search and Inspect as well as a set of cog-
nitive and physical Therbligs such as Use [13]. In our future 
work, we plan to extend the current set of Therbligs with the 
ability to perform cognitive actions and tool use. The Use 
Therblig in particular is worth exploring as it can potentially 
handle a large number of tools and be applicable outside of 
manipulation-type tasks. The challenge with operationalizing 
Use in an agent-agnostic manner is that a semantic descrip-
tion of tool use is generally enough for humans to act but is 
insufficient for robot instrumentation. That is, the tool’s be-
havior would need to be algorithmically defined. We suggest 
two potential ways to approach the operationalization of Use. 
In the first approach, Authr’s high-level parameters could be 
extended with Tools. With well-defined behaviors, the Use 
Therblig may be sufficiently descriptive as it could utilize the 

capabilities each tool defines. An alternative approach is to 
decompose Use into a larger number of Therblig-like actions 
(e.g., Use-Screwdriver), each addressing a different behavior. 

We designed Authr on the extendable infrastructure called 
ROS. While our current solution does not directly connect 
to physical robot devices, a minor configuration change and 
the inclusion of an additional (usually standard) driver would 
allow for this capability, since the control is based on inverse 
kinematics and simply publishes joint instructions. Our evalua-
tions have thus far not tested this implementation, but in future 
work we plan to test the inclusion of a physical device as a 
component in the Authr task creation and evaluation processes. 
This plan includes the potential to use the physical robot as 
an input device for object and goal specification via PbD, as 
well as a more grounded output for simulation. PbD could 
also be investigated as a way of simultaneously accumulating 
data on human activity time and effort, potentially reducing 
the amount of parameterization required. 

Our solution also does not address the complexities of varia-
tions in object attributes, positions, and counts that would be 
encountered in complex, real-world tasks. Some of these prob-
lems could be modeled by extending our simulation process to 
account for variance, resulting in more robust time estimates. 
Furthermore, future work should incorporate computer vision 
and sensing capabilities to respond to this variation and the 
movements by the human collaborator in real-time. 

Low-level parameterization of Therbligs is also currently lim-
ited to manual entry of values except robot action time. Several 
options to provide sensible default values instead of relying 
on user entry could be explored. First, Things can provide 
relevant information such as grip-effort based on their intrinsic 
properties. Second, a human simulation could be used to gen-
erate time estimates similar to the current approach for robot 
Agents. Lastly, Authr could allow users to specify cost func-
tions algorithmically, taking into consideration time, weight, 
grip effort, and so on, providing engineers with flexibility to 
define their own metric without the burden of manual entry. 

A shop-floor human-collaborator mode for Authr should also 
be explored. Currently, Authr generates a static plan in sim-
ulation with the assumption that human Agents can follow it 
precisely. Future work should investigate methods of inform-
ing workers on their current goals, tasks, and future robot-
collaborators actions. How human collaborator’s task perfor-
mance and cognitive load are affected while performing Plans 
developed in Authr alongside a physical robot should also 
be studied. Achieving these would require Authr’s represen-
tation to handle both human synchronization and errors not 
addressed with the static programs currently generated. This 
behavior can potentially be exposed to engineers using either 
cognitive Therbligs or introducing more general programming 
control flow. Authr should also be extended to provide safety 
awareness such as minimum separation monitoring during 
execution and considered when allocating Agents. 

Finally, our user evaluations modeled simple tasks (ordering 
and sorting) that may not represent the complexities of real-
world tasks, e.g., an assembly task. Our technical evaluation of 



the Agent allocation algorithm used tasks derived from more 
realistic situations (kitting, assembly, and repair), demonstrat-
ing greater representational capability. In the future, we plan 
to carry out evaluations of Authr with engineers from the local 
industry in their own environments (instead of our laboratory) 
and ask them to create human-robot plans for the tasks that 
their organizations perform. We expect such evaluations to 
provide us with guidance on how to extend Authr’s capabilities 
to further support complex real-world tasks. 

CONCLUSION 
In this paper, we sought to both better understand how to trans-
late manual tasks for human-robot teaming, and create a tool, 
Authr, that facilitates this translation. This tool enables users, 
such as engineers, at the manufacturing facility to build mod-
els of existing tasks which are automatically converted into 
human-robot collaborative plans, providing end-to-end sup-
port for human-robot task teaming. To better understand this 
process, we have evaluated Authr with engineering students 
across two user studies. Our findings from these evaluations 
indicated that the shared task representation that we developed 
served as an appropriate framework for modeling existing 
tasks, and our automated agent-allocation approach facilitated 
the translation of these task models into plans that humans 
and robots can collaboratively perform. Our work serves as a 
first foray into the development of authoring tools for human-
robot teaming within the manufacturing context and provides 
guidance for creating tools that can facilitate the real-world 
adoption of collaborative robot systems more generally. 
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