
Journal of Parallel and Distributed Computing 144 (2020) 1–13

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

FALCON-X: Zero-copyMPI derived datatype processing onmodern
CPU and GPU architectures
Jahanzeb Maqbool Hashmi ∗, Ching-Hsiang Chu, Sourav Chakraborty,
Mohammadreza Bayatpour, Hari Subramoni, Dhabaleswar K. Panda
Department of Computer Science and Engineering, The Ohio State University, United States of America

a r t i c l e i n f o

Article history:
Received 8 November 2019
Received in revised form 21 April 2020
Accepted 17 May 2020
Available online 28 May 2020

Keywords:
HPC
MPI
Derived datatypes
CPU and GPU
NVIDIA DGX2

a b s t r a c t

This paper addresses the challenges of MPI derived datatype processing and proposes FALCON-X — A
Fast and Low-overhead Communication framework for optimized zero-copy intra-node derived
datatype communication on emerging CPU/GPU architectures. We quantify various performance
bottlenecks such as memory layout translation and copy overheads for highly fragmented MPI
datatypes and propose novel pipelining and memoization-based designs to achieve efficient derived
datatype communication. In addition, we also propose enhancements to the MPI standard to address
the semantic limitations. The experimental evaluations show that our proposed designs significantly
improve the intra-node communication latency and bandwidth over state-of-the-art MPI libraries
on modern CPU and GPU systems. By using representative application kernels such as MILC, WRF,
NAS_MG, Specfem3D, and Stencils on three different CPU architectures and two different GPU systems
including DGX-2, we demonstrate up to 5.5x improvement on multi-core CPUs and 120x benefits on
DXG-2 GPU system over state-of-the-art designs in other MPI libraries.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Modern High-Performance Computing (HPC) systems are en-
abling scientists from different research domains to explore,
model, and simulate computation-heavy problems at different
scales. The availability of multi- and many-core architectures
(e.g., Intel Xeon, Xeon Phi, OpenPOWER, and NVIDIA Volta GPUs)
has significantly accelerated the impact and capabilities of such
large-scale systems. The current multi-petaflop systems are pow-
ered by such multi- and many-core CPUs and GPUs, and the
adoption of these many-core architectures is expected to grow in
future exascale systems [1]. Message Passing Interface (MPI) [19]
has been used as the de-facto programming model for developing
high-performance parallel scientific applications for such systems
while Compute Unified Device Architecture (CUDA) being the
primary programming interface to exploit NVIDIA GPUs. The
emergence of CUDA-aware MPI [35] has relieved the applica-
tion developers of manually moving the data between the host
(CPU) and device (GPU) memories by switching between MPI
and CUDA programming models for the communication phases
of the applications. This allows the decoupling of CUDA and

∗ Corresponding author.
E-mail addresses: hashmi.29@osu.edu (J.M. Hashmi), chu.368@osu.edu

(C.-H. Chu), chakraborty.52@osu.edu (S. Chakraborty), bayatpour.1@osu.edu
(M. Bayatpour), subramoni.1@osu.edu (H. Subramoni), panda.2@osu.edu
(D.K. Panda).

MPI programming models within the applications as the CUDA
kernels are now used for computation while MPI is used to derive
applications’ communication. This ubiquity of MPI as a de-facto
programming model for modern CPU and GPU-based systems
mandates that the MPI libraries must be carefully designed to de-
liver the best possible performance for different communication
primitives.

High-performance parallel algorithms and scientific applica-
tions often need to communicate non-contiguous data. For ex-
ample, matrix-multiplication or halo-exchange often requires
communicating one or multiple columns of large matrices stored
in row-major format. To achieve this, the application can ‘pack’
the data into a temporary contiguous buffer and send it to the
recipient process, which can then ‘unpack’ the data. However,
this approach (known as ‘‘Manual Packing/Unpacking’’) provides
poor performance due to the multiple copies of the data and the
increased memory footprint of the application. Researchers have
shown that this packing/unpacking can take up to 90% of the
total communication cost [29]. Moreover, this places the burden
of managing these temporary buffers and manually copying the
data on the application developer, leading to poor productivity.

To address this, MPI provides a feature called Derived
Datatypes (DDT) for communicating non-contiguous data in a
portable and efficient manner. In this approach, the application
composes a Derived Datatype using simple datatypes predefined
by the MPI standard; and uses this datatype in the communi-
cation primitives. However, state-of-the-art MPI libraries suffer

https://doi.org/10.1016/j.jpdc.2020.05.008
0743-7315/© 2020 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jpdc.2020.05.008
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2020.05.008&domain=pdf
mailto:hashmi.29@osu.edu
mailto:chu.368@osu.edu
mailto:chakraborty.52@osu.edu
mailto:bayatpour.1@osu.edu
mailto:subramoni.1@osu.edu
mailto:panda.2@osu.edu
https://doi.org/10.1016/j.jpdc.2020.05.008


2 J.M. Hashmi, C.-H. Chu, S. Chakraborty et al. / Journal of Parallel and Distributed Computing 144 (2020) 1–13

from the poor performance of derived datatype processing caus-
ing many applications such as WRF [38], MILC [18], NAS MG [21],
and SPECFEM [32] to still rely on the manual pack/unpack method
instead of using DDTs [29]. While researchers have proposed
designs to improve the communication performance of DDTs on
interconnects like InfiniBand [16,27,33], some of the fundamen-
tal bottlenecks in datatype processing such as efficient trans-
lation from the datatype to memory-layout remain unsolved.
Furthermore, the challenges involved in handling the derived
datatype communication for both CPU and GPU resident data
brings forth several new challenges. For instance, MPI libraries
still use shared-memory-based designs for intra-node datatype
communication for CPU resident data, which requires multiple
copies and offers poor performance and overlap. Similarly, state-
of-the-art designs in CUDA-aware MPI implementations employ
CUDA kernel-based solution to accelerate the packing/unpacking
phases [4,30,39] for GPU-resident data. However, it still suffers
from the significant synchronization overhead between CPU and
GPU.

While zero-copy techniques for improving intra-node commu-
nication performance have been studied in depth [2,3,9,11,15],
the trade-offs involved in using these techniques for non-
contiguous communication have not been explored in the litera-
ture. In this work, we show that using zero-copy techniques for
MPI datatypes exposes novel challenges in terms of correctness
and performance, and propose efficient designs to address these
issues for modern CPU and GPU systems. We also propose designs
to reduce the layout translation overhead through memoization-
based techniques. Finally, we show that current MPI datatype
routines are not able to fully take advantage of the zero-copy se-
mantics and propose enhancements to address these limitations.

2. Motivation

The poor performance of datatype-based communication in
MPI libraries has been well documented in the literature [34,40].
To understand the bottlenecks involved in datatype-based
communication in MPI for CPU and GPU systems, we analyze the
communication latency of one such transfer from various repre-
sentative application kernels — WRF, MILC, NAS, and SPECFEC3D_
CM provided by DDTBench [28]. We have also modified the
DDTBench to support evaluating CUDA-aware MPI libraries.

Fig. 1 shows the profile of the application kernels on the
CPU and GPU. The performance trends were obtained using the
MVAPICH2 MPI libraries [20] on a Broadwell cluster. More details
about the experimental setup are described later in Section 7.
Similar trends were observed for MPICH and its derivatives like
Intel MPI as well. As shown in Fig. 1(a), the communication cost of
CPU-resident data involves two major components - (a) transla-
tion of the datatype’s definition to the actual memory layout, and
(b) copying of the data from the source to the target buffers. The
relative costs also depend on the amount of data transferred as
well as the complexity of the datatype used. Fig. 1(b) reveals the
major performance issues of GPU-based datatype communication
associated with state-of-the-art solutions in MVAPICH2-GDR [31].
As it can be seen, the communication cost is dominated by the
various CUDA operations used for preparing the datatype layout
for pack/unpack kernels, i.e., only less than 20% of the time is
spent on moving the data Again, similar trends were observed
for other CUDA-aware libraries such as Open MPI. To design an
efficient MPI derived datatypes communication runtime, we need
to consider the observed overhead and investigate which designs
and techniques can be used to improve their performance.

2.1. Inefficient translation of datatype to memory layout

MPI derived datatypes are described using a Type Map, which
consists of an ordered list of primitive datatypes and displace-
ments from the base address [34]. A derived datatype can also
contain other derived datatypes, known as Nested Datatypes. Since
the sender and the receiver process can use different datatypes,
they must independently translate the datatype definition to the
memory layout. This Layout Translation is done for each transfer
since the outcome depends on the various user inputs such as the
base address of the buffer, the datatype itself, and the number of
datatype elements. This step can quickly become very costly if a
complex datatype or a large count is specified. Since most scien-
tific applications use the same datatype for many iterations, there
is an opportunity to amortize this cost by reusing the translation
for multiple communications. This raises the following new chal-
lenges for MPI library designers: a) How can the cost of inferring
the memory layout from derived datatypes be reduced? (b) Can this
cost be amortized through reusing the layout for multiple communi-
cations? (c) How can this be achieved while maintaining correctness
and without introducing additional synchronization requirements?
Note that these challenges are independent of the communica-
tion mechanism and are applicable to both shared-memory and
zero-copy-based designs.

2.2. Inefficient data movement

MPI libraries rely on shared-memory-based designs for intra-
node datatype communication. Once the sender has computed
the individual segments to be sent, it starts copying them into
a pre-allocated shared memory region. Since the shared mem-
ory region is usually divided into multiple equal-sized blocks,
the receiver can start copying the data into its local buffers as
soon as the first block has been filled while the sender moves
on to the next block. This strategy is commonly referred to
as Pipelined Shared Memory design. However, this approach re-
quires creating multiple copies of the data (once at the sender
and once at the receiver), and requires both the sender and
the receiver CPU to actively progress the communication, which
leads to poor performance and overlap potential. To improve
the performance and overlap, we explore the efficacy of kernel-
assisted ‘‘zero-copy’’ data transfer techniques such as Cross Mem-
ory Attach (CMA) [17], and XPMEM [24] that allow a process to
directly read from or write to the memory of another process
on the same node. Similarly, to avoid expensive data copies and
packing/unpacking kernels for GPU-resident data. We investigate
the Peer-to-peer (P2P) technique, such as GPUdirect technol-
ogy [22] through CUDA Inter-Process Communication (IPC) APIs
for NVIDIA GPUs, to allow direct data movement between two
GPUs on the same node. Although most modern MPI libraries sup-
port using zero-copy mechanisms for intra-node communication
of contiguous buffers, the challenges and trade-offs involved in
using these techniques for non-contiguous buffers have not been
explored in the literature.

2.3. Challenges for zero-copy datatype communication

The use of zero-copy techniques requires sending the data
layout to the remote process before the copy can be initiated.
However, since the MPI standard only provides routines for local
creation and destruction of derived datatypes, the receiver pro-
cess is oblivious to the memory layout of the sender’s datatype.
Hence, zero-copy-based designs introduce an additional over-
head of Layout Exchange, which is not present in current shared-
memory-based designs. For heavily fragmented datatypes, the
cost of this exchange can be significant and sometimes be even



J.M. Hashmi, C.-H. Chu, S. Chakraborty et al. / Journal of Parallel and Distributed Computing 144 (2020) 1–13 3

Fig. 1. Cost breakdown of existing designs for datatype processing in MPI when using CPU and GPU resident data in communication on different application kernels.

higher than the cost of the actual data movement. Furthermore,
our prior works [3,11] have shown that there are other overheads
such as kernel-level contention, remote address translation, etc.,
that can affect the performance of zero-copy techniques. For GPU-
resident data, the overhead primarily lies in issuing and waiting
for CUDA operations of the P2P data movement [26]. Based on
these observations, we identify the following four challenges
introduced by the goal of zero-copy datatype communication:
(a) What are the overheads involved in using zero-copy techniques
for communicating CPU- and GPU-resident non-contiguous buffers
or datatypes? (b) What designs can be employed to minimize the
cost of such overheads? (c) How can zero-copy designs efficiently
handle different datatypes at the sender and the receiver? (d) Can
enhancements to the MPI semantics be proposed to mitigate the
layout translation and exchange overheads?

3. Contributions

These observations lead us to the following broad challenge:
How can we design a high-performance and efficient zero-copy-
based communication runtime for MPI derived datatypes on
modern CPU/GPU systems? In our prior work [12] we have
discussed the challenges involving CPU-based derived datatype
processing. In this paper, we enhance our earlier work on CPUs
and augment it further by proposing designs for GPU-based MPI
derived datatype processing in CUDA-aware MPI libraries.

In this work, we address the challenges mentioned in Section 2
and propose FALCON-X — Fast and Low-overhead Communication
designs for zero-copy MPI datatype processing on CPU/GPU ar-
chitectures. To the best of our knowledge, this is the first study
to identify and analyze the trade-offs involved in designing zero-
copy communication primitives for non-contiguous data move-
ment and address them in an efficient manner. We also propose
solutions to mitigate the overhead of layout translation using
designs internal to the MPI library and enhancements to the
MPI datatype creation semantics. We integrate our designs in the
popular MPI library MVAPICH2 [20] and MVAPICH2-GDR [37] and
show their efficacy using various microbenchmarks and applica-
tions. Our proposed designs can reduce the intra-node communi-
cation latency of MPI derived datatypes by up to 2× and improve
the performance of the communication kernels of different appli-
cations such as 3D-Stencil, MILC, WRF, NAS_MG, and Specfem3D
by up to 5.5× for host-based communication and up to 120× for
GPU-based communication on a DGX-2 system. To summarize,
we make the following key contributions:

• Identify the challenges and trade-offs involved in using zero-
copy techniques for MPI datatype processing

• Design efficient pipeline and novel caching mechanisms to
mitigate various overheads associated with zero-copy com-
munication schemes

• Propose design optimizations to enable reuse of datatype
layout information and amortize the cost of layout transla-
tion

• Optimized host and device-based derived datatype commu-
nication in MVAPICH2 and MVAPICH2-GDR MPI libraries

• Propose enhancements to current MPI datatype creation
semantics to enable further high-performance designs for
datatype-based communication

• Demonstrate the efficacy of the proposed designs on real
state-of-the-art CPU/GPU systems using micro-benchmarks
and applications

4. Designing zero-copy MPI datatype processing on modern
CPUs

In this section, we look at the detailed designs for using zero-
copy techniques for datatype-based intra-node communication,
and propose mechanisms to improve the performance of such
designs.

4.1. Naive zero-copy design

In contrast to shared-memory-based designs, zero-copy de-
signs rely on the sender transmitting the layout of the data
instead of the actual contents to the receiver. Fig. 2(a) illustrates
this design at a conceptual level.

Based on the parameters given to MPI_Send(buffer ad-
dress, datatype, count), the sender first translates the
datatype layout and creates a list of individual contiguous seg-
ments that need to be transferred. Each segment is defined using
a base address and an offset, commonly referred to as an I/O
vector or IOV. The sender then sends an RTS (Request-to-Send)
packet to the receiver, which contains various metadata such as
the source, tag, and the communicator context id. The receiver
uses this information to match the send to an appropriate receive
operation and responds with a CTS (Clear-to-Send) packet. The
sender then sends a data packet to the receiver, which con-
tains this list of segments or IOVs. Once this packet reaches the
receiver, it copies the data directly into the target buffers by
copying the individual segments from the sender’s memory.

In the case of CMA, the receiver process issues a process
_vm_readv system call, which takes the list of local and remote
segments/IOVs as input, and copies the data from the source
buffers to the target buffers inside the kernel. In the case of
XPMEM, the receiver process needs to ‘‘attach’’ the remote pages
to its own address space, and then directly read the contents of
the individual segments into its local buffers. The reverse, where
the receiver describes the layout of the target buffers to the
sender which then writes the data is also possible.



4 J.M. Hashmi, C.-H. Chu, S. Chakraborty et al. / Journal of Parallel and Distributed Computing 144 (2020) 1–13

Fig. 2. A high level overview of the various proposed designs for zero-copy datatype communication. These designs are applicable to both CPU and GPU-based MPI
communication.

Fig. 3. Performance comparison of CMA and XPMEM-based zero-copy with
varying IOV size. The total size of the buffer is 1 MB while individual IOV sizes
vary between 4 bytes to 4 KB.

The performance of CMA and XPMEM-based approaches heav-
ily depend on the amount of total data transferred as well as the
size of the individual segments. Since CMA incurs the overhead
of system call for each contiguous segment, its performance is
highly affected by the fragmentation of the datatype. The relative
performance of CMA-based naive zero-copy datatype processing
against XPMEM-based naive zero-copy with for 1 MB buffer with
varying IOV size (fragments) is shown in Fig. 3. The IOV size
ranges from 4 bytes to 1 KB which also varies the fragmentation
factor from high to low. The performance of CMA suffers from
expensive system calls when data is more fragmented, e.g., the
size of each IOV is small, and the total IOV count is high. However,
as the fragmentation decreases along the x-axis, the relative
performance difference between CMA and XPMEM also decreases.
At 4 KB IOV size (256 total IOVs), CMA is only 16% slower than
XPMEM as compared to 6.8× when IOV size is 4 bytes (256 K
total IOVs). Based on this evaluation, we will be focusing on using
XPMEM for the remainder of this paper. However, the designs
proposed later to mitigate various overheads are independent of
the underlying transport mechanism and would be applicable to
CMA or other zero-copy schemes as well.

In the following sections, we will focus on XPMEM-based
solutions to avoid unnecessary overheads posed by CMA.

Fig. 4 shows the impact of varying datatype fragmentation
using XPMEM as the underlying transfer mechanism. For a fixed
message size, small-sized segments lead to higher IOV counts
and increase the communication latency. This is expected as
smaller size segments lead to higher fragmentation of the data
and increase the total number of segments that need to be com-
municated. When IOV size is the same as the overall message
size, there is no non-contiguity in data e.g., only a single buffer

Fig. 4. Impact of data fragmentation on naive zero-copy datatype processing
using XPMEM. The lines represent total size of the communication buffer ranging
from 4 KB to 4 MB.

is being communicated. This allows the CPU to prefetch data
and exploit spatial locality. This also shows that there are addi-
tional overheads in this design (other than the cost of copying)
that become prominent as the number of segments increase.
To further analyze the impact of this behavior on application
performance, we show the breakdown of the time taken by
the individual steps inside the XPMEM-based naive zero-copy
design using the communication kernels from three applications
discussed in Section 2. The results are shown in Fig. 5. Compared
to the shared-memory-based designs, the time taken for layout
translation remains unchanged while the time taken for data
movement is reduced due to avoiding extra copies. However, this
improvement is negated by the two additional steps introduced
by the zero-copy design — (a) Layout Exchange, and (b) Address
Translation. Layout Exchange refers to the cost of communicating
the in-memory layout of the source buffers to the receiver. This
step is required since the receiver cannot assume that the sender
is using the same datatype as the receiver. The layout sent by
the sender also cannot be used directly by the receiver, since the
base addresses are from the sender’s address space and invalid in
the receiver’s address space. Thus, the receiver must ‘translate’
the remote addresses to valid local addresses before the data
can be copied. This step is shown as Address Translation. The
overhead of both these steps increases as the datatype becomes
more fragmented, i.e., contains more non-contiguous segments or
IOVs. While we show the breakdown for the design using XPMEM,
similar trends can be observed for other zero-copy techniques as
well. For example, the cost of creating and exchanging the layout
is the same for CMA, but the address translation and copying the
data are combined inside the process_vm_readv system call. In



J.M. Hashmi, C.-H. Chu, S. Chakraborty et al. / Journal of Parallel and Distributed Computing 144 (2020) 1–13 5

Fig. 5. Time breakdown of various steps involved in Shared Memory (SHM) and
XPMEM-based naive zero-copy (ZCPY) based design.

both cases, the actual cost of copying the data contributes only
a portion of the overall time. The rest comes from the various
preparatory steps that need to be performed before the data
movement can take place. These overheads have been analyzed
in detail in our prior work [3,11].

4.2. Pipelined zero-copy design

As shown in Fig. 5, the overhead of sending the layout from
the sender to the receiver can consume a significant portion of
the total communication time. This also delays the receiver from
performing useful work until all the IOVs have been received.
In order to address this limitation posed by the naive design,
we propose a pipelined zero-copy design. Fig. 2(b) describes this
design at a conceptual level. The main idea behind this design
is to send a partial list of sender’s IOVs allowing the receiver to
initiate the data transfer without waiting for the sender to finish
sending the entire list of IOVs. Meanwhile, the sender continues
to send subsequent chunks of the layout in a pipelined fashion.
The advantage of pipelined design over naive design is twofold:
(1) it allows the receiver to progress communication as soon as
the first chunk of IOVs is received, and (2) it overlaps the costs
of sending the data layout and copying of the data and thereby
reducing the overall latency. Although pipelined zero-copy design
hides most of the overheads associated with the layout exchange,
it still requires the sender to actively progress the communication
until all the layout information is sent. Thus, it reduces the
availability of the sender to progress other communication or
application computation when non-blocking sends are used.

4.3. Memoization-based zero-copy design

To address the limitations of pipelined zero-copy design, we
propose a memoization-based scheme where the communicating
peer of processes memoize the derived datatype layouts that are
being exchanged and use the memoized layouts for subsequent
communications. In this design, both the sender and the receiver
processes maintain a hashtable for memoization. The table on the
sender side stores the translated layout of the sender’s datatype,
while the table on the receiver side stores the sender’s layouts
that have so far been used in the communication between these
pairs of processes. When the sender process issues a send request
containing a non-contiguous derived datatype for a particular
receiver, the MPI runtime, after translating the layout, generates
a SHA1 hash of this translated layout. This hash is then searched
in the local hashtable. If the entry is found, this means the
sender has communicated with its peer using this IOV layout
and thus, the sender proceeds to ignore sending of the translated
layout (list of IOVs) to the receiver. If the hash does not match,
then the sender performs two tasks: (1) it memoizes the current

datatype layout by storing its associated hash as a key in the local
hashtable, and (2) it embeds the hash along with the translated
IOVs into data packet before sending it to the receiver. When a
request arrives at the receiver, it first pulls the value of the hash
from the packet and looks it up in the local hashtable associated
with the sender’s rank. If the hash is not found, this indicates
that the sender is trying to communicate a new datatype layout,
and the receiver can find a list of IOVs containing the sender’s
datatype layout in the received packet. The receiver then pro-
ceeds to memoize this layout by creating a new entry in its local
hashtable by using the received hash as a key and the received
list of IOVs as the value. In the case where the received hash
matches, the receiver does not pull any IOV information from the
packet. Fig. 2(c) shows a high-level overview of our memoization-
based design. We employ a standard chaining mechanism to
avoid hash collisions by embedding request_id in each hashed
entry. The memoization-based design completely eliminates the
overhead of communicating the sender’s datatype layout. Since
most applications perform many communications using the same
datatype, this design effectively performs the layout translation
only for the first transfer and amortizes the cost over the rest.

4.4. Avoiding remote address translation

The IOV layout of the sender contains addresses that are valid
only in the sender’s context while the receiver process needs to
‘translate’ these remote addresses to appropriate local addresses
before any access is made. However, as shown in Fig. 5, this step
contributes significantly to the overall communication cost. To
mitigate this, we enhance the memoization-based design so that
the receiver stores the IOV list that has already been translated
into local addresses. This ensures that the costly steps of attaching
to remote pages and translating the addresses are done only
once for each pair of processes. However, attaching to a large
number of remote pages can increase the page table size and
impact the overall performance. To avoid this, we implement a
simple LRU cache that discards the least recently used datatypes
and their translated mappings and detaches from the associated
remote pages. If a discarded datatype is used again, the receiver
requests the sender to resend the layout using the CTS packet
and performs the translation again. Each entry of the LRU cache
contains a 20-byte hash value and a 4-byte pointer to a list of
IOVs. The total number of entries is a tunable parameter.

4.5. Design discussion

To validate the efficacy of the proposed zero-copy designs, we
compare their performance against the existing shared memory
design for point-to-point communication. Fig. 6 shows the results
of these experiments on a Broadwell system. We compare the
latency, bandwidth, and bi-directional bandwidth of three ap-
proaches: existing shared-memory-based design (Default-SHM),
pipelined zero-copy design (Zcpy-Pipe), and memoization-based
zero-copy design (Zcpy-Memo). The naive zero-copy design de-
scribed in Section 4.1 is not shown due to its extremely poor
performance. For all the cases, we fix the message size to 2 MB
and vary the size of each segment from 128 bytes (16,384 seg-
ments) to 2 MB (one contiguous segment). As shown in Fig. 6(a),
the latency of Zcpy-Pipe is poor when the number of IOVs is large,
but it gradually improves as the number decreases. The Zcpy-
Memo design avoids the layout exchange overhead and hence
is not affected significantly by the number of IOVs. Compared
to the shared-memory-based design, the zero-copy design is up
to 3× faster till 8 KB and roughly 50% faster till 1 MB. The
discontinuity in the 8–16 KB range is due to the switch from
eager to rendezvous protocol. At 2 MB, the buffer is contiguous;



6 J.M. Hashmi, C.-H. Chu, S. Chakraborty et al. / Journal of Parallel and Distributed Computing 144 (2020) 1–13

Fig. 6. Performance comparison of proposed zero-copy designs against shared-memory-based designs on Broadwell.

hence, all three designs show similar performance. Figures 6(b)
and 6(c) compare the performance of unidirectional and bidirec-
tional bandwidth. The zero-copy design shows similar benefits
for bandwidth. However, the benefit for bi-bandwidth is higher
since the shared memory design requires both the sender and the
receiver processes to progress the communication while the zero-
copy design only requires the receiver process, thus delivering
more application-level performance.

5. Designing zero-copy design on multi-GPU systems

In the modern multi-GPU systems, high-performance inter-
connects such as PCIe and NVLink are widely used to connect
GPUs. This enables peer-to-peer (P2P) access by using either the
driver APIs (i.e., via copy call) or within a compute kernel (i.e., via
direct load-store operations). In this section, we elaborate on the
proposed MPI-level solutions to address the challenges of lever-
aging the P2P feature for achieving the zero-copy data movement
of non-contiguous GPU-resident data. We implemented the de-
signs similar to the designs discussed for the host in Sections 4.1
and 4.2. However, in the following sections, we only discuss
the optimized memoization-based zero-copy design for GPUs to
avoid redundant insights.

5.1. Naive P2P-based zero-copy design

When the sender’s layout is properly exchanged, and P2P
access is available between GPUs, the receiver process can is-
sue multiple asynchronous copy primitives cudaMemcpyAsync,
i.e., one for each contiguous block, to directly move non-
contiguous data without additional copies. Although this achieves
packing-free data transfer, issuing multiple copies still incurs sig-
nificant overhead due to multiple calls made to the CUDA driver
API. Past research has extensively studied the overheads of CUDA
drive API calls [4,5]. We find that the proposed memoization-
based design while showing the best performance for CPU, ex-
hibits poor performance on GPUs for highly fragmented layouts,
e.g., datatype with a large number of contiguous blocks. The
overheads caused by CUDA driver level calls for P2P communi-
cation outweigh the benefits obtained from memoization-based
designs for GPU resident data. It is worth noting that each CUDA
call, e.g., cudaMemcpyAsync, may incur 3–10 µs driver overhead
in the state-of-the-art GPU hardware. Using a naive zero-copy
approach for sparse datatypes used in applications such as MILC
can result in significant performance overheads, as shown in
Fig. 7. Thus, a more efficient zero-copy design is required for
GPU-resident data.

5.2. Kernel-based zero-copy design

To fully exploit the zero-copy designs on multi-GPU sys-
tems, we propose a load-store-based solution to minimize the
driver overhead by performing data movement of non-contiguous
buffers in one shot. To maximize the throughput, one warp (e.g.,

Fig. 7. Improvements of the optimized zero-copy over naive design on
GPU-resident data.

32 threads in NVIDIA GPUs or a workgroup in AMD GPU) is
responsible for moving one single contiguous block at a time, so
that it can achieve higher memory access throughput by taking
advantage of memory coalescing. That is, within each warp, each
thread loads an element from remote GPU and stores it to local
GPU, i.e., through GPUDirect P2P support. If the number of blocks
is larger than the number of available warps, each warp will be
working on multiple contiguous blocks in a round-robin manner.

One significant advantage of using load/store kernel is that
the receiver can launch multiple kernels to quickly saturate a
high-speed interconnect or transfer data on separate NVLinks in
parallel without contention. Furthermore, the existing datatype-
processing methods [30,39] launch multiple packing/unpacking
kernels or data copies to perform packing/unpacking. This
incurs a significant driver overhead, and the communication
cannot proceed before the packing phase is completed. In con-
trast, the proposed design asynchronously launches one kernel
for each MPI_Recv or MPI_Irecv to minimize the driver over-
head and overlaps multiple kernels to hide the driver and syn-
chronization overheads while maintaining high-throughput and
low-latency. Moreover, the kernels provide overlap opportunities
with application-level computation, which can further reduce
the overall application execution time. Fig. 7 demonstrates the
significant performance benefits over the naive design, up to
316× for the Specfem3D_cm kernel.

6. Efficient layout translation designs for CPU/GPU systems

The designs proposed in Section 4 focus on reducing the cost
of exchanging the sender’s layout. However, they still involve
the layout translation from the local datatypes on the receiver
process. As shown in Fig. 5, this datatype to memory layout
translation can be very costly for nested datatypes due to the
recursive nature of the datatype parsing. To mitigate this over-
head, we propose two approaches that eliminate the layout trans-
lation overheads for both the sender and the receiver processes.
The first approach involves caching the results of the datatype
parsing, while the second approach involves enhancing the MPI
semantics for datatype creation and destruction.



J.M. Hashmi, C.-H. Chu, S. Chakraborty et al. / Journal of Parallel and Distributed Computing 144 (2020) 1–13 7

6.1. Layout reuse through caching

As described in Sections 4.3 and 4.4, the sender and the re-
ceiver maintain hash tables to keep track of the sender’s trans-
lated layouts. However, these designs suffer from two limitations
— (a) the sender calculates the hash-based on the list of IOVs, and
(b) the receiver recreates its own data layout for every receive
operation. We enhance this design by hashing the communication
pattern instead of the translated IOVs. Listing 1 shows the struc-
ture describing the information of the communication request
that is used as the input to the hash function. The contents of
this structure are chosen to ensure that a combination of these
can uniquely identify a particular set of translated IOVs. Any
change in any of these parameters in this object means that it
requires creating a new layout. In our proposed design, when the
sender or the receiver posts a new communication request, they
create their local data layout according to the request and store
this information against a hash generated by this combination.
If the hash value is already present in the table, then both the
translation and the exchange of the layout can be skipped. This
way, both the sender and the receiver avoid this costly step after
the first iteration. To allow for discarding the rarely used datatype
layouts, additional flags are used in the RTS and CTS packets to
force the re-calculation and re-transmission of the IOV layouts.

1 struct dt_buf_info {
2 void *addr; // base address
3 MPI_Aint count; // number of elements
4 int dt_handle; // unique datatype identifier
5 int rank; // rank of source/destination
6 };

Listing 1: User provided parameters for reusing layout

6.2. Proposed enhancements to MPI semantics

While the memoization-based design proposed in Section 6.1
reduces the cost of exchanging the layout information between
the sender and the receiver, the sender still needs to commu-
nicate its data layout to the receiver when a datatype is used
for the first time. Thus, the first communication using a datatype
incurs more overhead compared to the subsequent transfers. Fur-
thermore, the sender calculates the hash-based on the datatype’s
unique identifier, commonly referred to as the ‘handle’. Thus,
each datatype needs to be assigned a unique handle for this
scheme to work. However, the MPI standard allows freeing of
existing datatypes and does not guarantee that the handles of
freed datatypes will not be reused. This can lead the sender or the
receiver to incorrectly conclude that the datatype in a particular
send/recv operation is being reused, leading to incorrect behavior.

MPI libraries can tackle the second issue by ensuring that
datatype handles are never reused once they have been allocated.
However, the first issue still exists because datatype creation is a
‘local’ operation (i.e., only the caller process participates) in the
current MPI standard. Thus, two processes cannot easily assign
the same unique identifier (handle) to the same datatype. To
address this, we propose two new MPI routines to create and free
derived datatypes shown in Listing 2.

These new functions are collective; thus, all the processes in
the specified communicator must participate. This allows the MPI
library to ensure that the newly created datatype is allocated the
same handle across all processes in the communicator. We imple-
ment this function to perform an allreduce operation internally to

Table 1
Hardware specification of different CPU testbed clusters.
Specification Xeon Xeon Phi OpenPOWER

Processor family Intel broadwell Knights landing IBM POWER8
Processor model E5 v2680 KNL 7250 S822LC (8335-GTA)
Clock speed 2.4 GHz 1.4 GHz 3.4 GHz
No. of sockets 2 1 2
Cores per socket 14 68 10
Threads per core 1 4 8
RAM (DDR) 128 GB 96 GB 256 GB
Interconnect IB-EDR (100 G) IB-EDR (100 G) IB-EDR (100 G)

determine the largest handle (L) used by the participant processes
and allocate the following handle (L + 1) to the datatype. Since
MPI libraries can internally call MPI_Type_commit and continue
to use the existing non-zero-copy-based designs, the complexity
of adoption for the new API is negligible.

1 /* Create a new datatype */
2 int MPIX_Type_commit_comm(
3 MPI_datatype *datatype,
4 MPI_Comm comm);
5

6 /* Free an existing datatype */
7 int MPIX_Type_free_comm(
8 MPI_datatype *datatype,
9 MPI_Comm comm);

Listing 2: Proposed enhancements to MPI datatype routines. The
new functions allow collective creation and freeing of derived
datatypes.

7. Experimental evaluation

We used three production MPI libraries — MVAPICH2-X v2.
3rc1, MVAPICH2-GDR 2.3.2, Intel MPI (IMPI) v2018.1.163 and
v2019.0.045, and Open MPI v3.1.2 with UCX v1.3.1. MVAPICH2-
X and Open MPI+UCX were configured to use XPMEM as the
intra-node transport mechanism. Our early experiments showed
IMPI 2018 to be performing better than IMPI 2019 for certain
benchmarks. We attribute this to the lack of optimizations for
derived datatypes in libfabric. Thus, we present the results for
both versions of Intel MPI to compare against the best available
designs. MVAPICH2-GDR and Open MPI are used to evaluate the
datatype processing for GPU-resident data. In our prior work,
we had observed vendor-provided MPI implementations to be
performing best on systems like KNL and OpenPOWER. Thus,
on these systems, we compare our designs against IMPI and
Spectrum MPI, while on Broadwell, we use Open MPI instead of
SpectrumMPI.

For micro-benchmark evaluation, we enhanced OSU Micro-
Benchmarks (OMB) v5.4.4 [23] to add support for MPI derived
datatypes. Each OMB test was run for 100 iterations, and the
average of 5 runs is reported. DDTBench [28] was used to evaluate
the communication performance of derived datatypes used in
popular scientific application kernels. Moreover, we extended
DDTBench to support GPU based derived datatype communica-
tion. Tables 1 and 2 list the hardware specifications of our CPU
and GPU testbeds, respectively.

7.1. Evaluation on multi-/many-core CPUs

In the following sections, we demonstrate a detailed evalua-
tion of our proposed optimized design (MV2X-OPT) on three dif-
ferent CPU architectures using microbenchmarks and application
kernels.



8 J.M. Hashmi, C.-H. Chu, S. Chakraborty et al. / Journal of Parallel and Distributed Computing 144 (2020) 1–13

Table 2
Hardware specification of different GPU-enabled testbed clusters.
Specification Cray CS-Storm NVIDIA DGX-2

CPU processor Intel Xeon E5-2690 (Haswell) 2.6 GHz Intel Xeon Platinum 8168 (Skylake) 2.7 GHz
CPU cores/socket 12 24
GPU processor NVIDIA Tesla K80 NVIDIA Tesla V100
GPU memory 24 GB 32 GB
Interconnects between GPUs PCIe Gen3 (x16) NVLink2 and NVSwitch
NVIDIA driver version 410.79 410.48
CUDA toolkit version 9.2.148 9.2.148

7.1.1. Performance of point-to-point communication
To compare the performance of our proposed design for point-

to-point communication against state-of-the-art MPI libraries, we
enhanced the OSUMicroBenchmark Suite (OMB) to use datatypes.
We used an MPI vector datatype containing blocks of MPI_CHAR
datatype. The total message size was fixed to 2 MB while the
size of each block was varied from 128 bytes to 2 MB. Con-
sequently, the number of blocks was varied from 16,384 to a
single block. The stride was selected to be twice the block size, to
allow the same amount of empty space between each block. The
results of latency, bandwidth, and bi-directional bandwidth tests
on the Broadwell architecture are shown in Fig. 8. As Fig. 8(a)
shows, our proposed design (shown as MV2X-OPT) improves the
latency by up to 3× for small-to-medium block sizes (<16 KB)
and by up to 2× for larger blocks. The difference at 16 KB
is caused by the switch from the ‘‘Eager’’ to the ‘‘Rendezvous’’
protocol. It shows that Intel MPI 2018 and MVAPICH2-X both
use the same threshold for this architecture. We note that IMPI
2019 showed worse performance compared to IMPI 2018 for
these tests, which we believe is due to the lack of optimizations
in the new libfabric-based implementation used by IMPI 2019.
We also see similar improvements for bandwidth as shown in
Fig. 8(b). For bi-bandwidth, our design achieves twice the per-
formance of unidirectional bandwidth while all other libraries
show the same performance as bandwidth. This is because our
proposed zero-copy design allows the sender and the receiver
processes to progress two communications in opposite directions
for non-blocking communication.

7.1.2. Application performance
MILC — MIMD Lattice Computation (MILC) application studies
the interaction of quarks and gluons using Quantum Chromody-
namics (QCD). MILC uses 48 different MPI DDTs to accomplish
halo exchange in the 4 directions. The MILC_su3_zd kernel in
DDTBench models the CG solver in the z direction of the su3_rmd
application from the MILC code. Table 3 describes the datatype
layout of the communication kernel. In this evaluation, we com-
pared our proposed design, referred to as MV2X-Opt, against
state-of-the-art MPI libraries. Fig. 9 shows the performance of
different designs for different grid dimensions on three differ-
ent architectures. The x-axis represents the increasing grid size,
while the y-axis plots the total execution latency. As we can see,
the proposed design shows significant improvement over other
MPI libraries for almost all the grid dimensions. For instance, at
B = (32, 32, 32, 32) dimensions that correspond roughly to a
768 KB message, the proposed design shows 31.2% improvement
over Open MPI, and up to 11× improvement over MV2X-2.3 on
Broadwell (Fig. 9(a)).

Similar performance trends were observed on KNL system,
as shown in Fig. 9(b), where MV2X-2.3 and IMPI 2018 both
performed similarly while MV2X-Opt showed an order of mag-
nitude improvement over both the libraries. The datatype lay-
out in the MILC kernel is the most complex with deeper nest-
ing levels among other communication kernels we used. Thus,
datatype layout translation constitutes most of the communica-
tion time. The performance benefit of MV2X-Opt mainly stems

from our memoization-based design, where we completely avoid
the datatype translation and exchange overheads. On the Open-
POWER system, our proposed MV2X-Opt shows about 3×
improvement over Spectrum MPI and almost two orders of mag-
nitude improvement over MV2X-2.3 as shown in Fig. 9(c). These
observations have led us to the findings that the datatype pro-
cessing designs in MPICH and its derivative MPI libraries (MVA-
PICH2 and IMPI) are suboptimal for complex datatypes like the
ones used in MILC. While Open MPI and its derivatives such as
Spectrum MPI employ better designs as they are not impacted
much by the datatype nesting levels. Although Open MPI and
Spectrum MPI have better designs for complex datatype process-
ing, they do not entirely eliminate the associated overheads. Thus,
the proposed MV2X-Opt with our novel designs outperforms both
MPICH and Open MPI derivative libraries.
WRF — Weather Research Forecasting (WRF) application models
the atmosphere using a regular 3-D Cartesian grid. The data
decomposition is done in two horizontal dimensions only. During
halo exchange phase, the slices of dimension arrays are commu-
nicated. DDTBench models the communication of the dimension
arrays by creating either hvector of vector datatypes, or a
struct of subarray datatypes. Table 3 describes the datatype
layout of WRF for each dimension. Fig. 10 shows the perfor-
mance of running WRF_y_vec kernel with varying problem sizes
on Broadwell (Fig. 10(a)), KNL (Fig. 10(b)), and OpenPOWER
(Fig. 10(c)) systems. The problem size is increased in such a way
that it increases the block size in each hvector or subarray
type creation. The evaluation shows that the proposed design ex-
hibits good scaling with the increasing problem size. For instance,
on Broadwell system using small problem set that communicates
roughly 42 KB message, we observe 2.1× improvement in latency
over Open MPI, 44% improvement over IMPI 2019, and 40.2%
improvement over MV2X-2.3. Similarly, for one of the larger
problem set with input parameters of D = (4, 1036, 8, 1032)
which correspond to a total of 3.8 MB message size, the proposed
design shows up to 2.9×, 2.15×, and 22.6% improvement over
IMPI 2019, MV2X-2.3, and Open MPI, respectively. This trend
continued on the KNL system as well, where both IMPI 2018
and MV2X-2.3 showed comparable performance while MV2X-Opt
outperformed both of them. Unlike MILC, the datatype layout of
WRF is less complex due to which MV2X-2.3 does not suffer con-
siderably from the layout translation and exchange. Furthermore,
the zero-copy mechanism used in Spectrum MPI is CMA which
has less performance than XPMEM. While MV2X-2.3 shows better
performance than Spectrum MPI, MV2X-Opt shows up to 37%
improvement in execution time over MV2X-2.3.
NAS_MG — communicates the faces of a 3-D array in a 3-D
stencil where each process has six neighbors. A 2-D slice of
the grid is communicated with corresponding neighbors in x,
y, or z direction. DDTBench modifies the pack function in MG
by constructing appropriate subarray or hvector datatypes.
Different variations of the kernel e.g., NAS_MG_x, NAS_MG_y,
and NAS_MG_z, represent data exchange in each of the three
dimension using nested vector datatypes. Fig. 11(a) shows the
performance of NAS_MG_z on a Broadwell system. As we can see,
the proposed designs show significant improvement over other



J.M. Hashmi, C.-H. Chu, S. Chakraborty et al. / Journal of Parallel and Distributed Computing 144 (2020) 1–13 9

Fig. 8. Performance comparison of proposed zero-copy designs against state-of-the-art MPI libraries on Broadwell. Total message size is fixed at 2 MB while size of
each block creating vector type increases along the x-axis.

Fig. 9. Performance comparison with MILC against state-of-the-art MPI libraries on different architectures. Grid Dimensions for A = (16, 16, 32, 32), B =

(32, 32, 32, 32), C = (64, 64, 32, 32),D = (128, 128, 32, 32), E = (128, 128, 64, 64).

Fig. 10. Performance comparison with WRF against state-of-the-art MPI libraries on different architectures. Problem size parameters (ims, ime, is, ie) for
A = (4, 140, 8, 136), B = (4, 268, 264, 8), C = (4, 524, 8, 520),D = (4, 1036, 8, 1032).

Fig. 11. Performance comparison with NAS_MG against state-of-the-art MPI libraries on different architectures. Grid Dimensions for A = (258, 130, 130), B =

(512, 258, 258), C = (768, 258, 258),D = (1024, 258, 258), E = (2048, 258, 258).

Table 3
Scientific application kernels and their derived datatype Layout. We ran all variations of the kernels
e.g., WRF_{x,y}_{vec, sa} and NAS_MG{x, y, z}, however, due to similarity in trends, one variation per kernel is
included.
Application kernel Application domain Datatype layout

MILC_su3_zd Quantum chromodynamics Nested vectors for 4D face exchanges
WRF_y_vec Atmospheric science Nested vectors and subarrays
NAS_MG_z Fluid dynamics Vectors and nested vectors for 3D face exchanges
3D-Stencil Stencil Communication 7-point stencil using Subarray datatypes

MPI libraries. For instance, at E = (2048, 258, 258) grid size, the
proposed designs in MV2X-Opt show up to 2× improvement in
latency over default MV2X-2.3, and IMPI 2019. The benefits over
IMPI 2018 are more pronounced at scale (up to 3× improvement).
Similar trends were seen on KNL system (Fig. 11(b)) as well
where both MV2X-2.3 and IMPI performed similarly while MV2X-
Opt showed up to 2.2× improvement. The performance trends
observed on OpenPOWER (Fig. 11(c)) were similar to the WRF

kernel, i.e., MV2X-2.3 showed better performance than Spectrum
MPI by taking advantage of the user-space zero-copy designs
while our proposed designs in MV2X-Opt showed up to 2× and
3× improvement over MV2X-2.3 and Spectrum MPI, respectively.
3D-Stencil — is a communication kernel that mimics the com-
munication pattern of many stencil-based applications and Adap-
tive Mesh Refinement (AMR) kernels. This communication kernel
performs a 7-point stencil with neighboring processes by using



10 J.M. Hashmi, C.-H. Chu, S. Chakraborty et al. / Journal of Parallel and Distributed Computing 144 (2020) 1–13

Fig. 12. Performance of 3D-Stencil with state-of-the-art designs in MPI libraries
on Broadwell. Grid dimension = 5123 .

subarray datatypes to communicate 2-D faces of the cartesian
grid. In this benchmark, we evaluate the performance of our
proposed design by increasing the scale and keeping the problem
size constant. Fig. 12 shows the performance of the proposed
design against other MPI libraries. We fixed the size of the grid at
5123 and vary the number of MPI processes on a Broadwell node.
For a two-process run, the proposed design shows up to 5.5×
improvement over Intel MPI 2019, and up to 2× improvement
over MV2X-2.3. This trend is continued with increasing num-
bers of processes. At 16 processes, the optimized design shows
38.7% improvement over IMPI 2019, 47.8% over IMPI 2018, and
36% improvement over MV2X-2.3. At full subscription, with 28-
processes per node, all the other MPI libraries perform worse
while the proposed design showed a linear growth in time. The
sudden increase in latency at full-subscription could potentially
be explained by the imbalanced distribution of the cartesian grid.
For KNL and OpenPOWER runs, we observed random crashes on
a higher number of processes for all the MPI libraries, which we
have reported to the application developers. Open MPI runs for
this application crashed on all the systems.

7.2. Evaluation on multi-GPU systems

To evaluate GPU-based derived datatype communication ker-
nels, we extended DDTBench to support the use of multiple
GPU buffers. Our modified DDTBench uses the GPU memory
instead of system memory, and the appropriate memory man-
agement calls were replaced by CUDA API calls, e.g., replacing
malloc with cudaMalloc. For GPU-based designs, we evalu-
ated three representative application kernels — NAS_MG, MILC,
and Specfem3D_cm. NAS_MG and MILC represent dense non-
contiguous layouts, while Specfem3D_cm represents a distributed
layout with a higher number of small-sized blocks (higher frag-
mentation). Finally, we also present the evaluation of a GPU-
enabled 2D-Stencil application. We ran each test five times, and
each run has 110 iterations, 10 of which are warm-up itera-
tions. We report the average latency. All the experiments were
conducted on the two GPU clusters described in Table 2.

Fig. 13 shows the performance comparison of state-of-the-
art CUDA-Aware MPI libraries and our proposed designs when
performing DDT transfer between two GPUs connected by a PCIe
switch. The proposed optimized zero-copy scheme MV2-GDR-Opt
always performs the best for dense layout with large message
sizes and distributed layout for all message sizes because of
one-shot kernel launch to saturate the PCIe bandwidth and mini-
mize the synchronization overhead. The proposed MV2-GDR-Opt
yields up to 22× and 4.8× lower latency than Open MPI and
MV2-GDR, respectively, for MILC. For a highly distributed layout
such as Specfem3D_cm, MV2-GDR-Opt can achieve up to 5836×
and 369× speedup than Open MPI and MV2-GDR, respectively.
Fig. 14 shows similar experiments but with NVLink intercon-
nect between the GPUs. Here, MV2-GDR-Opt outperforms other

schemes in all message sizes. Moreover, we can observe a lower
latency than the CS-Storm system. This is due to the low-latency
load-store operations over NVLink and reduced kernel launch
overhead on the latest NVIDIA Volta GPU architecture.
2D-Stencil: Finally, we conducted a two-dimensional and
9-point double-precision stencil computation test that consists of
halo exchange using MPI vector datatype, i.e., for communicating
data in ‘East’ and ‘West’ directions on the DGX-2 system. In this
experiment, we report throughput in terms of GigaFlops(GFLOPS)
over 1000 iterations while the grid size is kept constant at
1048 × 1048, resulting in a strong scaling trend.

Fig. 15 shows the performance benefits of the proposed design
over baseline MVAPICH2-GDR. We also tried Open MPI for this
experiment; however, the runs resulted in various runtime issues.
As it can be seen from the results, that the proposed design is able
to achieve up to 10% higher GFLOPS over default MVAPICH2-GDR
by efficiently taking advantage of the zero-copy schemes over
NVSwitch.

8. Related work

Researchers have explored network features to improve the
performance of MPI datatype processing. Santhanaraman et al.
[27] leveraged the Scatter/Gather List (SGL) feature to propose
a zero-copy based scheme called SGRS. Li et al. [16] exploited
User-mode Memory Registration (UMR) feature of Infiniband to
remove the packing/unpacking overhead on the sender and re-
ceiver sides, which led to better performance. Their design also
had lower memory utilization as it avoided the need for the
intermediate staging of the data during pack/unpack operation.
However, these designs rely on hardware features while our
proposed designs emphasize intra-node communication. Perry
et al. [25] proposed a compile-time transformation algorithm to
reduce the non-contiguous datatype entities inside the applica-
tion and avoid the copy overhead associated with pack/unpack
operation. Schneider et al. [29] used several compilation tech-
niques to generate an efficient and optimized packing code for
MPI datatypes during the commit phase, which showed perfor-
mance over manual packing code. Friedley et al. proposed differ-
ent designs for shared memory-based communication in a multi-
threaded MPI runtime [6,7], however, this work did not focus
on MPI datatypes and its associated overheads. Gropp et al. [10]
proposed concise datatype patterns and showed efficient im-
plementation techniques for designing them. Ganian et al. [8]
proposed a tree-like representation of MPI derived datatypes that
are efficient in terms of space and processing cost and showed
that their proposed design is capable of reconstructing a given
datatype in polynomial time. In contrast, our proposed designs
amortize or completely eliminate many of the layout translation
and exchange overheads to improve the application performance
transparently.

For the GPU-resident data, Wang et al. proposed a multi-stage
pipeline of data transfer and offloading packing/unpacking pro-
cessing from the host to the GPU to accelerate the non-contiguous
data movement [36]. Jenkins et al. [13,14] presented means for
converting conventional datatype representations into a GPU-
amenable format and exploited fine-grained, element-level par-
allelism offered by a GPU kernel to perform in-device packing
and unpacking of non-contiguous elements. However, this ap-
proach still remains focused on copy-based (packing/unpacking)
designs while the proposed work completely eliminates extra-
neous copies involved in packing/unpacking by using efficient
zero-copy mechanisms. Rong et al. [30] proposed a framework
called HAND to employ datatype-specific GPU kernels to im-
prove further the efficiency of packing and unpacking kernels.
Chu et al. [4] achieved a higher overlap between CPU and GPU



J.M. Hashmi, C.-H. Chu, S. Chakraborty et al. / Journal of Parallel and Distributed Computing 144 (2020) 1–13 11

Fig. 13. Performance comparison of non-contiguous data transfer when P2P access is available through PCIe on CS-Storm. Problem size for NAS_CG (A, B, C, D) =

(3360, 62496, 256032, 1036320). Problems size for MILC (A, B, C, D) = 12288, 24576, 49152, 98304). Problem size for specfec3D_cm (A, B, C, D) = (26424, 55224,
106248, 177672).

Fig. 14. Performance comparison of non-contiguous data transfer when P2P access is available through NVLink on DGX-2. Problem sizes are the same as Fig. 13.

Fig. 15. Throughput of stencil computation on a DGX-2 machine. (Higher is
better).

executions and eliminated the unnecessary synchronizations by
using an asynchronous packing/unpacking solution. Wu et al. [39]
proposed a different kernel-based design in Open MPI to of-
fload unpacking and packing operations onto the GPU. How-
ever, their design fundamentally remained focused on optimizing
the packing/unpacking by exploiting GPU resources. In contrast,
our approach is fundamentally different since we use zero-copy
mechanisms and address various limitations posed by zero-copy
designs. Chu et al. [5] proposed adaptive selection strategies
to choose between zero-copy and packing/unpacking schemes
based on the system configurations and workload characteris-
tics on the Dense-GPU systems. Their focus remained on the
adaptive selection of various GPU-specific schemes to handle
non-contiguous data-movement for GPU resident data. However,
some of their designs still expose various overheads such as extra
memory allocations for packing/unpacking, extraneous copies,
and synchronization overheads. In contrast to their approach, our
work mainly focuses on extending the ideas of host-based non-
contiguous data-movement and demonstrates the applicability of
our load/store based designs to dense GPU systems. As we have
shown in this paper, while the GPU-based non-contiguous data-
movement poses some additional challenges, the core ideas and
designs for host-based data-movement are equally applicable to
dense GPU systems as well when communication is carried out
using the load/store semantics.

9. Conclusion and future work

In this paper, we identified the challenges involved in de-
signing intra-node zero-copy communication schemes for MPI
derived datatypes on modern multi-/many-core CPU and GPU
architectures and proposed designs to address them efficiently.
The proposed solutions, referred to as FALCON-X, reduced the
cost of layout translation and exchange using novel designs based
on pipelining and memoization. Finally, we propose enhance-
ments to the MPI datatype creation semantics to enable future
avenues for high-performance zero-copy datatype processing. We
integrated our proposed FALCON-X designs in the variants of the
MVAPICH2 library, namely MVAPICH2-X for CPU and MVAPICH2-
GDR for GPU. We demonstrated their efficacy and performance
improvement using various micro-benchmarks and applications
on emerging multi-/many-core CPUs and modern GPU systems
such as DGX-2. The proposed designs were able to reduce the
intra-node point-to-point communication latency of MPI derived
datatypes by up to 3×, and improved the communication per-
formance of various application kernels such as 3D-Stencil, MILC,
WRF, and NAS_MG by up to 5.5× on CPUs and up to 120× on
DGX-2 system over state-of-the-art MPI libraries. Going forward,
we plan to integrate our designs with inter-node zero-copy with
multi-GPU clusters and evaluate their impact on applications at a
larger scale.

CRediT authorship contribution statement

Jahanzeb Maqbool Hashmi: Conceptualization, Investigation,
Methodology, Writing - original draft. Ching-Hsiang Chu: Con-
ceptualization, Investigation. Sourav Chakraborty: Methodology,
Writing - review & editing. Mohammadreza Bayatpour: Data cu-
ration, Methodology. Hari Subramoni: Supervision. Dhabaleswar
K. Panda: Supervision, Validation, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.



12 J.M. Hashmi, C.-H. Chu, S. Chakraborty et al. / Journal of Parallel and Distributed Computing 144 (2020) 1–13

Acknowledgments

This research is supported in part by NSF grants #ACI-
2007991, #CNS-1513120, #ACI-1450440, #CCF-1565414, #ACI-
1664137, and #ACI-1931537. The authors would like to thank Dr.
Sadaf Alam and Dr. Carlos Osuna for providing access to the CSCS
testbed.

References

[1] Aurora supercomputer, http://aurora.alcf.anl.gov.
[2] M. Bayatpour, J.M. Hashmi, S. Chakraborty, H. Subramoni, P. Kousha, D.K.

Panda, SALaR: Scalable and adaptive designs for large message reduction
collectives, in: 2018 IEEE International Conference on Cluster Computing,
CLUSTER, IEEE, 2018, pp. 12–23.

[3] S. Chakraborty, H. Subramoni, D. Panda, Contention aware kernel-assisted
MPI collectives for multi/many-core systems, in: 2017 IEEE International
Conference on Cluster Computing, 2017.

[4] C.-H. Chu, K. Hamidouche, A. Venkatesh, D.S. Banerjee, H. Subramoni, D.K.
Panda, Exploiting maximal overlap for non-contiguous data movement
processing on modern GPU-enabled systems, in: 2016 IEEE International
Parallel and Distributed Processing Symposium, IPDPS, 2016, pp. 983–992.

[5] C.-H. Chu, J.M. Hashmi, K.S. Khorassani, H. Subramoni, D.K. Panda, High-
performance adaptive MPI derived datatype communication for modern
multi-GPU systems, in: 2019 IEEE 26th International Conference on
High Performance Computing, Data, and Analytics, HiPC, IEEE, 2019,
pp. 267–276.

[6] A. Friedley, G. Bronevetsky, T. Hoefler, A. Lumsdaine, Hybrid MPI: Efficient
message passing for multi-core systems, in: Proceedings of the Interna-
tional Conference on High Performance Computing, Networking, Storage
and Analysis, ACM, 2013, p. 18.

[7] A. Friedley, T. Hoefler, G. Bronevetsky, A. Lumsdaine, C.-C. Ma, Ownership
passing: Efficient distributed memory programming on multi-core systems,
in: ACM SIGPLAN Notices, Vol. 48, (8) ACM, 2013, pp. 177–186.

[8] R. Ganian, M. Kalany, S. Szeider, J.L. Träff, Polynomial-time construction
of optimal MPI derived datatype trees, in: 2016 IEEE International Parallel
and Distributed Processing Symposium, IPDPS, IEEE, 2016, pp. 638–647.

[9] B. Goglin, S. Moreaud, KNEM: A generic and scalable kernel-assisted intra-
node MPI communication framework, J. Parallel Distrib. Comput. 73 (2)
(2013) 176–188.

[10] W. Gropp, E. Lusk, D. Swider, Improving the performance of MPI de-
rived datatypes, in: Proceedings of the Third MPI Developer’s and User’s
Conference, MPI Software Technology Press, 1999, pp. 25–30.

[11] J.M. Hashmi, S. Chakraborty, M. Bayatpour, H. Subramoni, D.K. Panda,
Designing efficient shared address space reduction collectives for
multi-/many-cores, in: 2018 IEEE International Parallel and Distributed
Processing Symposium, IPDPS, IEEE, 2018, pp. 1020–1029.

[12] J.M. Hashmi, S. Chakraborty, M. Bayatpour, H. Subramoni, D.K. Panda,
FALCON: Efficient designs for zero-copy MPI datatype processing on
emerging architectures, in: 2019 IEEE International Parallel and Distributed
Processing Symposium, IPDPS, IEEE, 2019, pp. 355–364.

[13] J. Jenkins, J. Dinan, P. Balaji, T. Peterka, N.F. Samatova, R. Thakur, Processing
MPI derived datatypes on noncontiguous GPU-resident data, IEEE Trans.
Parallel Distrib. Syst. 25 (10) (2014) 2627–2637.

[14] J. Jenkins, J. Dinan, P. Balaji, N.F. Samatova, R. Thakur, Enabling fast,
noncontiguous GPU data movement in hybrid MPI + GPU environments,
in: 2012 IEEE International Conference on Cluster Computing, 2012,
pp. 468–476.

[15] H.-W. Jin, S. Sur, L. Chai, D.K. Panda, Limic: Support for high-performance
MPI intra-node communication on Linux cluster, in: 2005 International
Conference on Parallel Processing, ICPP’05, IEEE, 2005, pp. 184–191.

[16] M. Li, H. Subramoni, K. Hamidouche, X. Lu, D.K. Panda, High per-
formance MPI datatype support with user-mode memory registration:
Challenges, designs, and benefits, in: Cluster Computing. CLUSTER, 2015
IEEE International Conference on, IEEE, 2015, pp. 226–235.

[17] Linux Kernel, Cross memory attach, https://lwn.net/Articles/405284/.
(Online; Accessed April 21, 2020).

[18] MIMD lattice computation (MILC), http://physics.indiana.edu/~sg/milc.
html. (Online; Accessed April 21, 2020).

[19] Message passing interface forum, MPI: A message-passing interface
standard, 1994.

[20] MVAPICH2: MPI over infiniband, 10GigE/iWARP and RoCE, https://mvapich.
cse.ohio-state.edu/. (Online; Accessed April 21, 2020).

[21] NAS parallel benchmarks, https://www.nas.nasa.gov/publications/npb.html.
(Online; Accessed April 21, 2020).

[22] NVIDIA, NVIDIA GPUDirect, 2019, URL https://developer.nvidia.com/
gpudirect. (Accessed: April 21, 2020).

[23] OSU micro-benchmarks, http://mvapich.cse.ohio-state.edu/benchmarks/.
(Online; Accessed April 21, 2020).

[24] K. Pedretti, B. Barrett, XPMEM: Cross-process memory mapping, https:
//gitlab.com/hjelmn/xpmem. (Online; Accessed April 21, 2020).

[25] B. Perry, M. Swany, Improving MPI communication via data type fission,
in: Proceedings of the 19th ACM International Symposium on High Perfor-
mance Distributed Computing, HPDC ’10, ACM, New York, NY, USA, 2010,
pp. 352–355, http://dx.doi.org/10.1145/1851476.1851528.

[26] S. Potluri, H. Wang, D. Bureddy, A.K. Singh, C. Rosales, D.K. Panda,
Optimizing MPI communication on multi-GPU systems using CUDA inter-
process communication, in: Parallel and Distributed Processing Symposium
Workshops PhD Forum, IPDPSW, 2012 IEEE 26th International, 2012,
pp. 1848–1857.

[27] G. Santhanaraman, J. Wu, D.K. Panda, Zero-copy MPI derived datatype com-
munication over infiniband, in: European Parallel Virtual Machine/Message
Passing Interface Users’ Group Meeting, Springer, 2004, pp. 47–56.

[28] T. Schneider, R. Gerstenberger, T. Hoefler, Micro-applications for commu-
nication data access patterns and MPI datatypes, in: European MPI Users’
Group Meeting, Springer, 2012, pp. 121–131.

[29] T. Schneider, F. Kjolstad, T. Hoefler, MPI datatype processing using runtime
compilation, in: Proceedings of the 20th European MPI Users’ Group
Meeting, ACM, 2013, pp. 19–24.

[30] R. Shi, X. Lu, S. Potluri, K. Hamidouche, J. Zhang, D.K. Panda, HAND: A
hybrid approach to accelerate non-contiguous data movement using MPI
datatypes on GPU clusters, in: 2014 43rd International Conference on
Parallel Processing, 2014, pp. 221–230.

[31] R. Shi, S. Potluri, K. Hamidouche, J. Perkins, M. Li, D. Rossetti, D.K. Panda,
Designing efficient small message transfer mechanism for inter-node MPI
communication on infiniband GPU clusters, in: 2014 21st International
Conference on High Performance Computing, HiPC, 2014, pp. 1–10.

[32] SPECFEM 3D, https://geodynamics.org/cig/software/specfem3d/. (Online;
Accessed April 21, 2020).

[33] V. Tipparaju, G. Santhanaraman, J. Nieplocha, D. Panda, Host-assisted zero-
copy remote memory access communication on infiniband, in: Parallel and
Distributed Processing Symposium, 2004. Proceedings. 18th International,
IEEE, 2004, p. 31.

[34] J.L. Träff, R. Hempel, H. Ritzdorf, F. Zimmermann, Flattening on the fly:
Efficient handling of mpi derived datatypes, in: European Parallel Virtual
Machine/Message Passing Interface Users’ Group Meeting, Springer, 1999,
pp. 109–116.

[35] H. Wang, S. Potluri, D. Bureddy, C. Rosales, D.K. Panda, GPU-Aware MPI
on RDMA-enabled clusters: Design, implementation and evaluation, IEEE
Trans. Parallel Distrib. Syst. 25 (10) (2014) 2595–2605.

[36] H. Wang, S. Potluri, M. Luo, A. Singh, X. Ouyang, S. Sur, D. Panda, Optimized
non-contiguous MPI datatype communication for GPU clusters: design,
implementation and evaluation with MVAPICH2, in: Cluster Computing,
CLUSTER, 2011 IEEE International Conference on, 2011, pp. 308–316.

[37] H. Wang, S. Potluri, M. Luo, A.K. Singh, S. Sur, D.K. Panda, MVAPICH2-GPU:
Optimized GPU to GPU communication for infiniband clusters, Comput.
Sci.-Res. Dev. 26 (3–4) (2011) 257.

[38] WRF: Weather research and forecasting model, https://www.mmm.ucar.
edu/weather-research-and-forecasting-model. (Online; Accessed April 21,
2020).

[39] W. Wu, G. Bosilca, R. vandeVaart, S. Jeaugey, J. Dongarra, GPU-Aware non-
contiguous data movement in open MPI, in: Proceedings of the 25th ACM
International Symposium on High-Performance Parallel and Distributed
Computing, HPDC ’16, ACM, New York, NY, USA, 2016, pp. 231–242.

[40] J. Wu, P. Wyckoff, D. Panda, High performance implementation of MPI
derived datatype communication over infiniband, in: 18th International
Parallel and Distributed Processing Symposium, 2004. Proceedings, IEEE,
2004, p. 14.

Jahanzeb Maqbool Hashmi is a Ph.D. candidate at The
Ohio State University where he works at Network-
Based Computing Laboratory (NBCL). Before joining
NBCL, he was a graduate fellow at the Department
of Computer Science and Engineering, Ohio State Uni-
versity. His research is mainly targeted at enabling
high-level programming models and runtime systems
to achieve high-performance and scalability on dense
CPU and GPU architectures. He works on the areas
related to shared-memory and shared-address-space
communication, topology-aware communication proto-

cols, high-performance deep learning, and optimizations for MPI, PGAS, and
MPI+X programming models on modern CPU, accelerators, and interconnects.
Prior to joining OSU, he completed his MS in computer engineering at Ajou
University, South Korea under the Korean Global IT fellowship where he worked
on the performance evaluation and characterization of energy-efficient clusters
for scientific workloads. He received his BS from National University of Science
and Technology, Pakistan under the Prime Minister’s ICT fellowship.

http://aurora.alcf.anl.gov
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb2
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb2
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb2
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb2
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb2
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb2
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb2
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb5
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb5
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb5
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb5
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb5
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb5
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb5
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb5
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb5
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb6
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb6
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb6
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb6
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb6
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb6
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb6
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb7
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb7
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb7
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb7
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb7
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb8
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb8
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb8
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb8
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb8
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb9
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb9
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb9
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb9
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb9
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb10
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb10
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb10
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb10
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb10
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb11
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb11
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb11
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb11
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb11
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb11
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb11
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb12
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb12
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb12
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb12
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb12
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb12
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb12
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb13
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb13
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb13
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb13
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb13
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb15
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb15
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb15
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb15
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb15
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb16
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb16
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb16
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb16
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb16
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb16
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb16
https://lwn.net/Articles/405284/
http://physics.indiana.edu/~sg/milc.html
http://physics.indiana.edu/~sg/milc.html
http://physics.indiana.edu/~sg/milc.html
https://mvapich.cse.ohio-state.edu/
https://mvapich.cse.ohio-state.edu/
https://mvapich.cse.ohio-state.edu/
https://www.nas.nasa.gov/publications/npb.html
https://developer.nvidia.com/gpudirect
https://developer.nvidia.com/gpudirect
https://developer.nvidia.com/gpudirect
http://mvapich.cse.ohio-state.edu/benchmarks/
https://gitlab.com/hjelmn/xpmem
https://gitlab.com/hjelmn/xpmem
https://gitlab.com/hjelmn/xpmem
http://dx.doi.org/10.1145/1851476.1851528
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb27
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb27
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb27
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb27
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb27
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb28
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb28
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb28
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb28
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb28
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb29
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb29
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb29
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb29
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb29
https://geodynamics.org/cig/software/specfem3d/
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb33
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb33
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb33
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb33
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb33
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb33
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb33
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb34
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb34
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb34
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb34
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb34
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb34
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb34
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb35
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb35
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb35
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb35
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb35
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb37
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb37
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb37
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb37
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb37
https://www.mmm.ucar.edu/weather-research-and-forecasting-model
https://www.mmm.ucar.edu/weather-research-and-forecasting-model
https://www.mmm.ucar.edu/weather-research-and-forecasting-model
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb39
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb39
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb39
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb39
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb39
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb39
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb39
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb40
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb40
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb40
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb40
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb40
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb40
http://refhub.elsevier.com/S0743-7315(20)30287-2/sb40


J.M. Hashmi, C.-H. Chu, S. Chakraborty et al. / Journal of Parallel and Distributed Computing 144 (2020) 1–13 13

Ching-Hsiang Chu is a Ph.D. candidate in Computer
Science and Engineering at The Ohio State University,
Columbus, Ohio, U.S.A. He received B.S. and M.S. de-
grees in Computer Science and Information Engineering
from National Changhua University of Education, Tai-
wan in 2010 and National Central University, Taiwan
in 2012, respectively. His research interests include
high-performance computing, GPU communication, and
wireless networks. He is a student member of IEEE
and ACM. More details are available at http://web.cse.
ohiostate.edu/~chu.368.

Sourav Chakraborty graduated with a Ph.D. from Ohio
State University where he worked at Network Based
Computing Laboratory (NBCL). His research interests
include Highperformance Computing, MPI and PGAS
programming models, kernel assisted collective com-
munication, and designing MPI protocols for emerging
architectures. He had made contributions to the MVA-
PICH2 and MVAPICH2-X projects that are used by wider
HPC community.

Mohammadreza Bayatpour is a 5th year Ph.D. stu-
dent at Ohio State University in Computer Science
and Engineering Department. His research interests are
High-Performance Networking and Computing, Scalable
Distributed Systems, Parallel Programming Models, and
In-Network Computing.

Hari Subramoni received the Ph.D. degree in Computer
Science from The Ohio State University, Columbus,
OH, in 2013. He is a research scientist in the De-
partment of Computer Science and Engineering at the
Ohio State University, USA, since September 2015. His
current research interests include high performance
interconnects and protocols, parallel computer archi-
tecture, network-based computing, exascale computing,
network topology aware computing, QoS, power-aware
LAN-WAN communication, fault tolerance, virtualiza-
tion, big data, and cloud computing. He has published

over 50 papers in international journals and conferences related to these
research areas. Recently, Dr. Subramoni is doing research and working on
the design and development of MVAPICH2, MVAPICH2-GDR, and MVAPICH2-X
software packages. He is a member of IEEE. More details about Dr. Subramoni
are available from http://www.cse.ohio-state.edu/~subramon.

Dhabaleswar K. Panda is a Professor and University
Distinguished Scholar of Computer Science and Engi-
neering at The Ohio State University. He has published
over 450 papers in major journals and international
conferences. The MVAPICH2 (High Performance MPI
over InfiniBand, iWARP and RoCE) open-source soft-
ware package, developed by his research group (http:
//mvapich.cse.ohiostate.edu), are currently being used
by more than 3,075 organizations worldwide (in 89
countries). This software has enabled several InfiniBand
clusters to get into the latest TOP500 ranking during

the last decade (including the current #3). More than 756,000 downloads of
this software have taken place from the project’s website alone. He is an IEEE
Fellow and a member of ACM. More details about him are available from
http://web.cse.ohio-state.edu/~panda.2/.

http://web.cse.ohiostate.edu/~chu.368
http://web.cse.ohiostate.edu/~chu.368
http://web.cse.ohiostate.edu/~chu.368
http://www.cse.ohio-state.edu/~subramon
http://mvapich.cse.ohiostate.edu
http://mvapich.cse.ohiostate.edu
http://mvapich.cse.ohiostate.edu
http://web.cse.ohio-state.edu/~panda.2/

	FALCON-X: Zero-copy MPI derived datatype processing on modern CPU and GPU architectures
	Introduction
	Motivation
	Inefficient translation of datatype to memory layout
	Inefficient data movement
	Challenges for zero-copy datatype communication

	Contributions
	Designing zero-copy MPI datatype processing on modern CPUs
	Naive zero-copy design
	Pipelined zero-copy design
	Memoization-based zero-copy design
	Avoiding remote address translation
	Design discussion

	Designing zero-copy design on multi-GPU systems
	Naive P2P-based zero-copy design
	Kernel-based zero-copy design

	Efficient layout translation designs for CPU/GPU systems
	Layout reuse through caching
	Proposed enhancements to MPI semantics

	Experimental evaluation
	Evaluation on multi-/many-core CPUs
	Performance of point-to-point communication
	Application performance

	Evaluation on multi-GPU systems

	Related work
	Conclusion and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


